xref: /netbsd-src/lib/libc/time/localtime.c (revision c41a4eebefede43f6950f838a387dc18c6a431bf)
1 /*	$NetBSD: localtime.c,v 1.13 1997/09/05 02:11:55 jtc Exp $	*/
2 
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson@nih.gov).
6 */
7 
8 #include <sys/cdefs.h>
9 #ifndef lint
10 #ifndef NOID
11 #if 0
12 static char	elsieid[] = "@(#)localtime.c	7.62";
13 #else
14 __RCSID("$NetBSD: localtime.c,v 1.13 1997/09/05 02:11:55 jtc Exp $");
15 #endif
16 #endif /* !defined NOID */
17 #endif /* !defined lint */
18 
19 /*
20 ** Leap second handling from Bradley White (bww@k.gp.cs.cmu.edu).
21 ** POSIX-style TZ environment variable handling from Guy Harris
22 ** (guy@auspex.com).
23 */
24 
25 /*LINTLIBRARY*/
26 
27 #include "namespace.h"
28 #include "private.h"
29 #include "tzfile.h"
30 #include "fcntl.h"
31 
32 #ifdef __weak_alias
33 __weak_alias(offtime,_offtime);
34 __weak_alias(posix2time,_posix2time);
35 __weak_alias(time2posix,_time2posix);
36 __weak_alias(timegm,_timegm);
37 __weak_alias(timelocal,_timelocal);
38 __weak_alias(timeoff,_timeoff);
39 __weak_alias(tzset,_tzset);
40 __weak_alias(tzsetwall,_tzsetwall);
41 #endif
42 
43 /*
44 ** SunOS 4.1.1 headers lack O_BINARY.
45 */
46 
47 #ifdef O_BINARY
48 #define OPEN_MODE	(O_RDONLY | O_BINARY)
49 #endif /* defined O_BINARY */
50 #ifndef O_BINARY
51 #define OPEN_MODE	O_RDONLY
52 #endif /* !defined O_BINARY */
53 
54 #ifndef WILDABBR
55 /*
56 ** Someone might make incorrect use of a time zone abbreviation:
57 **	1.	They might reference tzname[0] before calling tzset (explicitly
58 **		or implicitly).
59 **	2.	They might reference tzname[1] before calling tzset (explicitly
60 **		or implicitly).
61 **	3.	They might reference tzname[1] after setting to a time zone
62 **		in which Daylight Saving Time is never observed.
63 **	4.	They might reference tzname[0] after setting to a time zone
64 **		in which Standard Time is never observed.
65 **	5.	They might reference tm.TM_ZONE after calling offtime.
66 ** What's best to do in the above cases is open to debate;
67 ** for now, we just set things up so that in any of the five cases
68 ** WILDABBR is used.  Another possibility:  initialize tzname[0] to the
69 ** string "tzname[0] used before set", and similarly for the other cases.
70 ** And another:  initialize tzname[0] to "ERA", with an explanation in the
71 ** manual page of what this "time zone abbreviation" means (doing this so
72 ** that tzname[0] has the "normal" length of three characters).
73 */
74 #define WILDABBR	"   "
75 #endif /* !defined WILDABBR */
76 
77 static char		wildabbr[] = "WILDABBR";
78 
79 static const char	gmt[] = "GMT";
80 
81 struct ttinfo {				/* time type information */
82 	long		tt_gmtoff;	/* GMT offset in seconds */
83 	int		tt_isdst;	/* used to set tm_isdst */
84 	int		tt_abbrind;	/* abbreviation list index */
85 	int		tt_ttisstd;	/* TRUE if transition is std time */
86 	int		tt_ttisgmt;	/* TRUE if transition is GMT */
87 };
88 
89 struct lsinfo {				/* leap second information */
90 	time_t		ls_trans;	/* transition time */
91 	long		ls_corr;	/* correction to apply */
92 };
93 
94 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
95 
96 #ifdef TZNAME_MAX
97 #define MY_TZNAME_MAX	TZNAME_MAX
98 #endif /* defined TZNAME_MAX */
99 #ifndef TZNAME_MAX
100 #define MY_TZNAME_MAX	255
101 #endif /* !defined TZNAME_MAX */
102 
103 struct state {
104 	int		leapcnt;
105 	int		timecnt;
106 	int		typecnt;
107 	int		charcnt;
108 	time_t		ats[TZ_MAX_TIMES];
109 	unsigned char	types[TZ_MAX_TIMES];
110 	struct ttinfo	ttis[TZ_MAX_TYPES];
111 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
112 				(2 * (MY_TZNAME_MAX + 1)))];
113 	struct lsinfo	lsis[TZ_MAX_LEAPS];
114 };
115 
116 struct rule {
117 	int		r_type;		/* type of rule--see below */
118 	int		r_day;		/* day number of rule */
119 	int		r_week;		/* week number of rule */
120 	int		r_mon;		/* month number of rule */
121 	long		r_time;		/* transition time of rule */
122 };
123 
124 #define JULIAN_DAY		0	/* Jn - Julian day */
125 #define DAY_OF_YEAR		1	/* n - day of year */
126 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
127 
128 /*
129 ** Prototypes for static functions.
130 */
131 
132 static long		detzcode P((const char * codep));
133 static const char *	getzname P((const char * strp));
134 static const char *	getnum P((const char * strp, int * nump, int min,
135 				int max));
136 static const char *	getsecs P((const char * strp, long * secsp));
137 static const char *	getoffset P((const char * strp, long * offsetp));
138 static const char *	getrule P((const char * strp, struct rule * rulep));
139 static void		gmtload P((struct state * sp));
140 static void		gmtsub P((const time_t * timep, long offset,
141 				struct tm * tmp));
142 static void		localsub P((const time_t * timep, long offset,
143 				struct tm * tmp));
144 static int		increment_overflow P((int * number, int delta));
145 static int		normalize_overflow P((int * tensptr, int * unitsptr,
146 				int base));
147 static void		settzname P((void));
148 static time_t		time1 P((struct tm * tmp,
149 				void(*funcp) P((const time_t *,
150 				long, struct tm *)),
151 				long offset));
152 static time_t		time2 P((struct tm *tmp,
153 				void(*funcp) P((const time_t *,
154 				long, struct tm*)),
155 				long offset, int * okayp));
156 static time_t		time2sub P((struct tm *tmp,
157 				void(*funcp) P((const time_t *,
158 				long, struct tm*)),
159 				long offset, int * okayp, int do_norm_secs));
160 static void		timesub P((const time_t * timep, long offset,
161 				const struct state * sp, struct tm * tmp));
162 static int		tmcomp P((const struct tm * atmp,
163 				const struct tm * btmp));
164 static time_t		transtime P((time_t janfirst, int year,
165 				const struct rule * rulep, long offset));
166 static int		tzload P((const char * name, struct state * sp));
167 static int		tzparse P((const char * name, struct state * sp,
168 				int lastditch));
169 #ifdef STD_INSPIRED
170 static long		leapcorr P((time_t * timep));
171 #endif
172 
173 #ifdef ALL_STATE
174 static struct state *	lclptr;
175 static struct state *	gmtptr;
176 #endif /* defined ALL_STATE */
177 
178 #ifndef ALL_STATE
179 static struct state	lclmem;
180 static struct state	gmtmem;
181 #define lclptr		(&lclmem)
182 #define gmtptr		(&gmtmem)
183 #endif /* State Farm */
184 
185 #ifndef TZ_STRLEN_MAX
186 #define TZ_STRLEN_MAX 255
187 #endif /* !defined TZ_STRLEN_MAX */
188 
189 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
190 static int		lcl_is_set;
191 static int		gmt_is_set;
192 
193 char *			tzname[2] = {
194 	wildabbr,
195 	wildabbr
196 };
197 
198 /*
199 ** Section 4.12.3 of X3.159-1989 requires that
200 **	Except for the strftime function, these functions [asctime,
201 **	ctime, gmtime, localtime] return values in one of two static
202 **	objects: a broken-down time structure and an array of char.
203 ** Thanks to Paul Eggert (eggert@twinsun.com) for noting this.
204 */
205 
206 static struct tm	tm;
207 
208 #ifdef USG_COMPAT
209 time_t			timezone = 0;
210 int			daylight = 0;
211 #endif /* defined USG_COMPAT */
212 
213 #ifdef ALTZONE
214 time_t			altzone = 0;
215 #endif /* defined ALTZONE */
216 
217 static long
218 detzcode(codep)
219 const char * const	codep;
220 {
221 	register long	result;
222 
223 	/*
224         ** The first character must be sign extended on systems with >32bit
225         ** longs.  This was solved differently in the master tzcode sources
226         ** (the fix first appeared in tzcode95c.tar.gz).  But I believe
227 	** that this implementation is superior.
228         */
229 
230 #ifdef __STDC__
231 #define SIGN_EXTEND_CHAR(x)	((signed char) x)
232 #else
233 #define SIGN_EXTEND_CHAR(x)	((x & 0x80) ? ((~0 << 8) | x) : x)
234 #endif
235 
236 	result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
237 	       | (codep[1] & 0xff) << 16 \
238 	       | (codep[2] & 0xff) << 8
239 	       | (codep[3] & 0xff);
240 	return result;
241 }
242 
243 static void
244 settzname P((void))
245 {
246 	register struct state * const	sp = lclptr;
247 	register int			i;
248 
249 	tzname[0] = wildabbr;
250 	tzname[1] = wildabbr;
251 #ifdef USG_COMPAT
252 	daylight = 0;
253 	timezone = 0;
254 #endif /* defined USG_COMPAT */
255 #ifdef ALTZONE
256 	altzone = 0;
257 #endif /* defined ALTZONE */
258 #ifdef ALL_STATE
259 	if (sp == NULL) {
260 		tzname[0] = tzname[1] = gmt;
261 		return;
262 	}
263 #endif /* defined ALL_STATE */
264 	for (i = 0; i < sp->typecnt; ++i) {
265 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
266 
267 		tzname[ttisp->tt_isdst] =
268 			&sp->chars[ttisp->tt_abbrind];
269 #ifdef USG_COMPAT
270 		if (ttisp->tt_isdst)
271 			daylight = 1;
272 		if (i == 0 || !ttisp->tt_isdst)
273 			timezone = -(ttisp->tt_gmtoff);
274 #endif /* defined USG_COMPAT */
275 #ifdef ALTZONE
276 		if (i == 0 || ttisp->tt_isdst)
277 			altzone = -(ttisp->tt_gmtoff);
278 #endif /* defined ALTZONE */
279 	}
280 	/*
281 	** And to get the latest zone names into tzname. . .
282 	*/
283 	for (i = 0; i < sp->timecnt; ++i) {
284 		register const struct ttinfo * const	ttisp =
285 							&sp->ttis[
286 								sp->types[i]];
287 
288 		tzname[ttisp->tt_isdst] =
289 			&sp->chars[ttisp->tt_abbrind];
290 	}
291 }
292 
293 static int
294 tzload(name, sp)
295 register const char *		name;
296 register struct state * const	sp;
297 {
298 	register const char *	p;
299 	register int		i;
300 	register int		fid;
301 
302 	if (name == NULL && (name = TZDEFAULT) == NULL)
303 		return -1;
304 
305 	{
306 		register int	doaccess;
307 		/*
308 		** Section 4.9.1 of the C standard says that
309 		** "FILENAME_MAX expands to an integral constant expression
310 		** that is the size needed for an array of char large enough
311 		** to hold the longest file name string that the implementation
312 		** guarantees can be opened."
313 		*/
314 		char		fullname[FILENAME_MAX + 1];
315 
316 		if (name[0] == ':')
317 			++name;
318 		doaccess = name[0] == '/';
319 		if (!doaccess) {
320 			if ((p = TZDIR) == NULL)
321 				return -1;
322 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
323 				return -1;
324 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
325 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
326 			(void) strcat(fullname, name);	/* XXX strcat is safe */
327 			/*
328 			** Set doaccess if '.' (as in "../") shows up in name.
329 			*/
330 			if (strchr(name, '.') != NULL)
331 				doaccess = TRUE;
332 			name = fullname;
333 		}
334 		if (doaccess && access(name, R_OK) != 0)
335 			return -1;
336 		/*
337 		 * XXX potential security problem here if user of a set-id
338 		 * program has set TZ (which is passed in as name) here,
339 		 * and uses a race condition trick to defeat the access(2)
340 		 * above.
341 		 */
342 		if ((fid = open(name, OPEN_MODE)) == -1)
343 			return -1;
344 	}
345 	{
346 		struct tzhead *	tzhp;
347 		char		buf[sizeof *sp + sizeof *tzhp];
348 		int		ttisstdcnt;
349 		int		ttisgmtcnt;
350 
351 		i = read(fid, buf, sizeof buf);
352 		if (close(fid) != 0)
353 			return -1;
354 		p = buf;
355 		p += sizeof tzhp->tzh_reserved;
356 		ttisstdcnt = (int) detzcode(p);
357 		p += 4;
358 		ttisgmtcnt = (int) detzcode(p);
359 		p += 4;
360 		sp->leapcnt = (int) detzcode(p);
361 		p += 4;
362 		sp->timecnt = (int) detzcode(p);
363 		p += 4;
364 		sp->typecnt = (int) detzcode(p);
365 		p += 4;
366 		sp->charcnt = (int) detzcode(p);
367 		p += 4;
368 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
369 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
370 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
371 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
372 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
373 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
374 				return -1;
375 		if (i - (p - buf) < sp->timecnt * 4 +	/* ats */
376 			sp->timecnt +			/* types */
377 			sp->typecnt * (4 + 2) +		/* ttinfos */
378 			sp->charcnt +			/* chars */
379 			sp->leapcnt * (4 + 4) +		/* lsinfos */
380 			ttisstdcnt +			/* ttisstds */
381 			ttisgmtcnt)			/* ttisgmts */
382 				return -1;
383 		for (i = 0; i < sp->timecnt; ++i) {
384 			sp->ats[i] = detzcode(p);
385 			p += 4;
386 		}
387 		for (i = 0; i < sp->timecnt; ++i) {
388 			sp->types[i] = (unsigned char) *p++;
389 			if (sp->types[i] >= sp->typecnt)
390 				return -1;
391 		}
392 		for (i = 0; i < sp->typecnt; ++i) {
393 			register struct ttinfo *	ttisp;
394 
395 			ttisp = &sp->ttis[i];
396 			ttisp->tt_gmtoff = detzcode(p);
397 			p += 4;
398 			ttisp->tt_isdst = (unsigned char) *p++;
399 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
400 				return -1;
401 			ttisp->tt_abbrind = (unsigned char) *p++;
402 			if (ttisp->tt_abbrind < 0 ||
403 				ttisp->tt_abbrind > sp->charcnt)
404 					return -1;
405 		}
406 		for (i = 0; i < sp->charcnt; ++i)
407 			sp->chars[i] = *p++;
408 		sp->chars[i] = '\0';	/* ensure '\0' at end */
409 		for (i = 0; i < sp->leapcnt; ++i) {
410 			register struct lsinfo *	lsisp;
411 
412 			lsisp = &sp->lsis[i];
413 			lsisp->ls_trans = detzcode(p);
414 			p += 4;
415 			lsisp->ls_corr = detzcode(p);
416 			p += 4;
417 		}
418 		for (i = 0; i < sp->typecnt; ++i) {
419 			register struct ttinfo *	ttisp;
420 
421 			ttisp = &sp->ttis[i];
422 			if (ttisstdcnt == 0)
423 				ttisp->tt_ttisstd = FALSE;
424 			else {
425 				ttisp->tt_ttisstd = *p++;
426 				if (ttisp->tt_ttisstd != TRUE &&
427 					ttisp->tt_ttisstd != FALSE)
428 						return -1;
429 			}
430 		}
431 		for (i = 0; i < sp->typecnt; ++i) {
432 			register struct ttinfo *	ttisp;
433 
434 			ttisp = &sp->ttis[i];
435 			if (ttisgmtcnt == 0)
436 				ttisp->tt_ttisgmt = FALSE;
437 			else {
438 				ttisp->tt_ttisgmt = *p++;
439 				if (ttisp->tt_ttisgmt != TRUE &&
440 					ttisp->tt_ttisgmt != FALSE)
441 						return -1;
442 			}
443 		}
444 	}
445 	return 0;
446 }
447 
448 static const int	mon_lengths[2][MONSPERYEAR] = {
449 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
450 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
451 };
452 
453 static const int	year_lengths[2] = {
454 	DAYSPERNYEAR, DAYSPERLYEAR
455 };
456 
457 /*
458 ** Given a pointer into a time zone string, scan until a character that is not
459 ** a valid character in a zone name is found.  Return a pointer to that
460 ** character.
461 */
462 
463 static const char *
464 getzname(strp)
465 register const char *	strp;
466 {
467 	register char	c;
468 
469 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
470 		c != '+')
471 			++strp;
472 	return strp;
473 }
474 
475 /*
476 ** Given a pointer into a time zone string, extract a number from that string.
477 ** Check that the number is within a specified range; if it is not, return
478 ** NULL.
479 ** Otherwise, return a pointer to the first character not part of the number.
480 */
481 
482 static const char *
483 getnum(strp, nump, min, max)
484 register const char *	strp;
485 int * const		nump;
486 const int		min;
487 const int		max;
488 {
489 	register char	c;
490 	register int	num;
491 
492 	if (strp == NULL || !is_digit(c = *strp))
493 		return NULL;
494 	num = 0;
495 	do {
496 		num = num * 10 + (c - '0');
497 		if (num > max)
498 			return NULL;	/* illegal value */
499 		c = *++strp;
500 	} while (is_digit(c));
501 	if (num < min)
502 		return NULL;		/* illegal value */
503 	*nump = num;
504 	return strp;
505 }
506 
507 /*
508 ** Given a pointer into a time zone string, extract a number of seconds,
509 ** in hh[:mm[:ss]] form, from the string.
510 ** If any error occurs, return NULL.
511 ** Otherwise, return a pointer to the first character not part of the number
512 ** of seconds.
513 */
514 
515 static const char *
516 getsecs(strp, secsp)
517 register const char *	strp;
518 long * const		secsp;
519 {
520 	int	num;
521 
522 	/*
523 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
524 	** "M10.4.6/26", which does not conform to Posix,
525 	** but which specifies the equivalent of
526 	** ``02:00 on the first Sunday on or after 23 Oct''.
527 	*/
528 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
529 	if (strp == NULL)
530 		return NULL;
531 	*secsp = num * (long) SECSPERHOUR;
532 	if (*strp == ':') {
533 		++strp;
534 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
535 		if (strp == NULL)
536 			return NULL;
537 		*secsp += num * SECSPERMIN;
538 		if (*strp == ':') {
539 			++strp;
540 			/* `SECSPERMIN' allows for leap seconds.  */
541 			strp = getnum(strp, &num, 0, SECSPERMIN);
542 			if (strp == NULL)
543 				return NULL;
544 			*secsp += num;
545 		}
546 	}
547 	return strp;
548 }
549 
550 /*
551 ** Given a pointer into a time zone string, extract an offset, in
552 ** [+-]hh[:mm[:ss]] form, from the string.
553 ** If any error occurs, return NULL.
554 ** Otherwise, return a pointer to the first character not part of the time.
555 */
556 
557 static const char *
558 getoffset(strp, offsetp)
559 register const char *	strp;
560 long * const		offsetp;
561 {
562 	register int	neg = 0;
563 
564 	if (*strp == '-') {
565 		neg = 1;
566 		++strp;
567 	} else if (*strp == '+')
568 		++strp;
569 	strp = getsecs(strp, offsetp);
570 	if (strp == NULL)
571 		return NULL;		/* illegal time */
572 	if (neg)
573 		*offsetp = -*offsetp;
574 	return strp;
575 }
576 
577 /*
578 ** Given a pointer into a time zone string, extract a rule in the form
579 ** date[/time].  See POSIX section 8 for the format of "date" and "time".
580 ** If a valid rule is not found, return NULL.
581 ** Otherwise, return a pointer to the first character not part of the rule.
582 */
583 
584 static const char *
585 getrule(strp, rulep)
586 const char *			strp;
587 register struct rule * const	rulep;
588 {
589 	if (*strp == 'J') {
590 		/*
591 		** Julian day.
592 		*/
593 		rulep->r_type = JULIAN_DAY;
594 		++strp;
595 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
596 	} else if (*strp == 'M') {
597 		/*
598 		** Month, week, day.
599 		*/
600 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
601 		++strp;
602 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
603 		if (strp == NULL)
604 			return NULL;
605 		if (*strp++ != '.')
606 			return NULL;
607 		strp = getnum(strp, &rulep->r_week, 1, 5);
608 		if (strp == NULL)
609 			return NULL;
610 		if (*strp++ != '.')
611 			return NULL;
612 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
613 	} else if (is_digit(*strp)) {
614 		/*
615 		** Day of year.
616 		*/
617 		rulep->r_type = DAY_OF_YEAR;
618 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
619 	} else	return NULL;		/* invalid format */
620 	if (strp == NULL)
621 		return NULL;
622 	if (*strp == '/') {
623 		/*
624 		** Time specified.
625 		*/
626 		++strp;
627 		strp = getsecs(strp, &rulep->r_time);
628 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
629 	return strp;
630 }
631 
632 /*
633 ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
634 ** year, a rule, and the offset from GMT at the time that rule takes effect,
635 ** calculate the Epoch-relative time that rule takes effect.
636 */
637 
638 static time_t
639 transtime(janfirst, year, rulep, offset)
640 const time_t				janfirst;
641 const int				year;
642 register const struct rule * const	rulep;
643 const long				offset;
644 {
645 	register int	leapyear;
646 	register time_t	value;
647 	register int	i;
648 	int		d, m1, yy0, yy1, yy2, dow;
649 
650 	INITIALIZE(value);
651 	leapyear = isleap(year);
652 	switch (rulep->r_type) {
653 
654 	case JULIAN_DAY:
655 		/*
656 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
657 		** years.
658 		** In non-leap years, or if the day number is 59 or less, just
659 		** add SECSPERDAY times the day number-1 to the time of
660 		** January 1, midnight, to get the day.
661 		*/
662 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
663 		if (leapyear && rulep->r_day >= 60)
664 			value += SECSPERDAY;
665 		break;
666 
667 	case DAY_OF_YEAR:
668 		/*
669 		** n - day of year.
670 		** Just add SECSPERDAY times the day number to the time of
671 		** January 1, midnight, to get the day.
672 		*/
673 		value = janfirst + rulep->r_day * SECSPERDAY;
674 		break;
675 
676 	case MONTH_NTH_DAY_OF_WEEK:
677 		/*
678 		** Mm.n.d - nth "dth day" of month m.
679 		*/
680 		value = janfirst;
681 		for (i = 0; i < rulep->r_mon - 1; ++i)
682 			value += mon_lengths[leapyear][i] * SECSPERDAY;
683 
684 		/*
685 		** Use Zeller's Congruence to get day-of-week of first day of
686 		** month.
687 		*/
688 		m1 = (rulep->r_mon + 9) % 12 + 1;
689 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
690 		yy1 = yy0 / 100;
691 		yy2 = yy0 % 100;
692 		dow = ((26 * m1 - 2) / 10 +
693 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
694 		if (dow < 0)
695 			dow += DAYSPERWEEK;
696 
697 		/*
698 		** "dow" is the day-of-week of the first day of the month.  Get
699 		** the day-of-month (zero-origin) of the first "dow" day of the
700 		** month.
701 		*/
702 		d = rulep->r_day - dow;
703 		if (d < 0)
704 			d += DAYSPERWEEK;
705 		for (i = 1; i < rulep->r_week; ++i) {
706 			if (d + DAYSPERWEEK >=
707 				mon_lengths[leapyear][rulep->r_mon - 1])
708 					break;
709 			d += DAYSPERWEEK;
710 		}
711 
712 		/*
713 		** "d" is the day-of-month (zero-origin) of the day we want.
714 		*/
715 		value += d * SECSPERDAY;
716 		break;
717 	}
718 
719 	/*
720 	** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
721 	** question.  To get the Epoch-relative time of the specified local
722 	** time on that day, add the transition time and the current offset
723 	** from GMT.
724 	*/
725 	return value + rulep->r_time + offset;
726 }
727 
728 /*
729 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
730 ** appropriate.
731 */
732 
733 static int
734 tzparse(name, sp, lastditch)
735 const char *			name;
736 register struct state * const	sp;
737 const int			lastditch;
738 {
739 	const char *			stdname;
740 	const char *			dstname;
741 	size_t				stdlen;
742 	size_t				dstlen;
743 	long				stdoffset;
744 	long				dstoffset;
745 	register time_t *		atp;
746 	register unsigned char *	typep;
747 	register char *			cp;
748 	register int			load_result;
749 
750 	INITIALIZE(dstname);
751 	stdname = name;
752 	if (lastditch) {
753 		stdlen = strlen(name);	/* length of standard zone name */
754 		name += stdlen;
755 		if (stdlen >= sizeof sp->chars)
756 			stdlen = (sizeof sp->chars) - 1;
757 		stdoffset = 0;
758 	} else {
759 		name = getzname(name);
760 		stdlen = name - stdname;
761 		if (stdlen < 3)
762 			return -1;
763 		if (*name == '\0')
764 			return -1;
765 		name = getoffset(name, &stdoffset);
766 		if (name == NULL)
767 			return -1;
768 	}
769 	load_result = tzload(TZDEFRULES, sp);
770 	if (load_result != 0)
771 		sp->leapcnt = 0;		/* so, we're off a little */
772 	if (*name != '\0') {
773 		dstname = name;
774 		name = getzname(name);
775 		dstlen = name - dstname;	/* length of DST zone name */
776 		if (dstlen < 3)
777 			return -1;
778 		if (*name != '\0' && *name != ',' && *name != ';') {
779 			name = getoffset(name, &dstoffset);
780 			if (name == NULL)
781 				return -1;
782 		} else	dstoffset = stdoffset - SECSPERHOUR;
783 		if (*name == ',' || *name == ';') {
784 			struct rule	start;
785 			struct rule	end;
786 			register int	year;
787 			register time_t	janfirst;
788 			time_t		starttime;
789 			time_t		endtime;
790 
791 			++name;
792 			if ((name = getrule(name, &start)) == NULL)
793 				return -1;
794 			if (*name++ != ',')
795 				return -1;
796 			if ((name = getrule(name, &end)) == NULL)
797 				return -1;
798 			if (*name != '\0')
799 				return -1;
800 			sp->typecnt = 2;	/* standard time and DST */
801 			/*
802 			** Two transitions per year, from EPOCH_YEAR to 2037.
803 			*/
804 			sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
805 			if (sp->timecnt > TZ_MAX_TIMES)
806 				return -1;
807 			sp->ttis[0].tt_gmtoff = -dstoffset;
808 			sp->ttis[0].tt_isdst = 1;
809 			sp->ttis[0].tt_abbrind = stdlen + 1;
810 			sp->ttis[1].tt_gmtoff = -stdoffset;
811 			sp->ttis[1].tt_isdst = 0;
812 			sp->ttis[1].tt_abbrind = 0;
813 			atp = sp->ats;
814 			typep = sp->types;
815 			janfirst = 0;
816 			for (year = EPOCH_YEAR; year <= 2037; ++year) {
817 				starttime = transtime(janfirst, year, &start,
818 					stdoffset);
819 				endtime = transtime(janfirst, year, &end,
820 					dstoffset);
821 				if (starttime > endtime) {
822 					*atp++ = endtime;
823 					*typep++ = 1;	/* DST ends */
824 					*atp++ = starttime;
825 					*typep++ = 0;	/* DST begins */
826 				} else {
827 					*atp++ = starttime;
828 					*typep++ = 0;	/* DST begins */
829 					*atp++ = endtime;
830 					*typep++ = 1;	/* DST ends */
831 				}
832 				janfirst += year_lengths[isleap(year)] *
833 					SECSPERDAY;
834 			}
835 		} else {
836 			register long	theirstdoffset;
837 			register long	theirdstoffset;
838 			register long	theiroffset;
839 			register int	isdst;
840 			register int	i;
841 			register int	j;
842 
843 			if (*name != '\0')
844 				return -1;
845 			if (load_result != 0)
846 				return -1;
847 			/*
848 			** Initial values of theirstdoffset and theirdstoffset.
849 			*/
850 			theirstdoffset = 0;
851 			for (i = 0; i < sp->timecnt; ++i) {
852 				j = sp->types[i];
853 				if (!sp->ttis[j].tt_isdst) {
854 					theirstdoffset =
855 						-sp->ttis[j].tt_gmtoff;
856 					break;
857 				}
858 			}
859 			theirdstoffset = 0;
860 			for (i = 0; i < sp->timecnt; ++i) {
861 				j = sp->types[i];
862 				if (sp->ttis[j].tt_isdst) {
863 					theirdstoffset =
864 						-sp->ttis[j].tt_gmtoff;
865 					break;
866 				}
867 			}
868 			/*
869 			** Initially we're assumed to be in standard time.
870 			*/
871 			isdst = FALSE;
872 			theiroffset = theirstdoffset;
873 			/*
874 			** Now juggle transition times and types
875 			** tracking offsets as you do.
876 			*/
877 			for (i = 0; i < sp->timecnt; ++i) {
878 				j = sp->types[i];
879 				sp->types[i] = sp->ttis[j].tt_isdst;
880 				if (sp->ttis[j].tt_ttisgmt) {
881 					/* No adjustment to transition time */
882 				} else {
883 					/*
884 					** If summer time is in effect, and the
885 					** transition time was not specified as
886 					** standard time, add the summer time
887 					** offset to the transition time;
888 					** otherwise, add the standard time
889 					** offset to the transition time.
890 					*/
891 					/*
892 					** Transitions from DST to DDST
893 					** will effectively disappear since
894 					** POSIX provides for only one DST
895 					** offset.
896 					*/
897 					if (isdst && !sp->ttis[j].tt_ttisstd) {
898 						sp->ats[i] += dstoffset -
899 							theirdstoffset;
900 					} else {
901 						sp->ats[i] += stdoffset -
902 							theirstdoffset;
903 					}
904 				}
905 				theiroffset = -sp->ttis[j].tt_gmtoff;
906 				if (sp->ttis[j].tt_isdst)
907 					theirdstoffset = theiroffset;
908 				else	theirstdoffset = theiroffset;
909 			}
910 			/*
911 			** Finally, fill in ttis.
912 			** ttisstd and ttisgmt need not be handled.
913 			*/
914 			sp->ttis[0].tt_gmtoff = -stdoffset;
915 			sp->ttis[0].tt_isdst = FALSE;
916 			sp->ttis[0].tt_abbrind = 0;
917 			sp->ttis[1].tt_gmtoff = -dstoffset;
918 			sp->ttis[1].tt_isdst = TRUE;
919 			sp->ttis[1].tt_abbrind = stdlen + 1;
920 			sp->typecnt = 2;
921 		}
922 	} else {
923 		dstlen = 0;
924 		sp->typecnt = 1;		/* only standard time */
925 		sp->timecnt = 0;
926 		sp->ttis[0].tt_gmtoff = -stdoffset;
927 		sp->ttis[0].tt_isdst = 0;
928 		sp->ttis[0].tt_abbrind = 0;
929 	}
930 	sp->charcnt = stdlen + 1;
931 	if (dstlen != 0)
932 		sp->charcnt += dstlen + 1;
933 	if ((size_t) sp->charcnt > sizeof sp->chars)
934 		return -1;
935 	cp = sp->chars;
936 	(void) strncpy(cp, stdname, stdlen);
937 	cp += stdlen;
938 	*cp++ = '\0';
939 	if (dstlen != 0) {
940 		(void) strncpy(cp, dstname, dstlen);
941 		*(cp + dstlen) = '\0';
942 	}
943 	return 0;
944 }
945 
946 static void
947 gmtload(sp)
948 struct state * const	sp;
949 {
950 	if (tzload(gmt, sp) != 0)
951 		(void) tzparse(gmt, sp, TRUE);
952 }
953 
954 #ifndef STD_INSPIRED
955 /*
956 ** A non-static declaration of tzsetwall in a system header file
957 ** may cause a warning about this upcoming static declaration...
958 */
959 static
960 #endif /* !defined STD_INSPIRED */
961 void
962 tzsetwall P((void))
963 {
964 	if (lcl_is_set < 0)
965 		return;
966 	lcl_is_set = -1;
967 
968 #ifdef ALL_STATE
969 	if (lclptr == NULL) {
970 		lclptr = (struct state *) malloc(sizeof *lclptr);
971 		if (lclptr == NULL) {
972 			settzname();	/* all we can do */
973 			return;
974 		}
975 	}
976 #endif /* defined ALL_STATE */
977 	if (tzload((char *) NULL, lclptr) != 0)
978 		gmtload(lclptr);
979 	settzname();
980 }
981 
982 void
983 tzset P((void))
984 {
985 	register const char *	name;
986 
987 	name = getenv("TZ");
988 	if (name == NULL) {
989 		tzsetwall();
990 		return;
991 	}
992 
993 	if (lcl_is_set > 0  &&  strcmp(lcl_TZname, name) == 0)
994 		return;
995 	lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
996 	if (lcl_is_set)
997 		(void)strncpy(lcl_TZname, name, sizeof(lcl_TZname) - 1);
998 
999 #ifdef ALL_STATE
1000 	if (lclptr == NULL) {
1001 		lclptr = (struct state *) malloc(sizeof *lclptr);
1002 		if (lclptr == NULL) {
1003 			settzname();	/* all we can do */
1004 			return;
1005 		}
1006 	}
1007 #endif /* defined ALL_STATE */
1008 	if (*name == '\0') {
1009 		/*
1010 		** User wants it fast rather than right.
1011 		*/
1012 		lclptr->leapcnt = 0;		/* so, we're off a little */
1013 		lclptr->timecnt = 0;
1014 		lclptr->ttis[0].tt_gmtoff = 0;
1015 		lclptr->ttis[0].tt_abbrind = 0;
1016 		(void)strncpy(lclptr->chars, gmt, sizeof(lclptr->chars) - 1);
1017 	} else if (tzload(name, lclptr) != 0)
1018 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1019 			(void) gmtload(lclptr);
1020 	settzname();
1021 }
1022 
1023 /*
1024 ** The easy way to behave "as if no library function calls" localtime
1025 ** is to not call it--so we drop its guts into "localsub", which can be
1026 ** freely called.  (And no, the PANS doesn't require the above behavior--
1027 ** but it *is* desirable.)
1028 **
1029 ** The unused offset argument is for the benefit of mktime variants.
1030 */
1031 
1032 /*ARGSUSED*/
1033 static void
1034 localsub(timep, offset, tmp)
1035 const time_t * const	timep;
1036 const long		offset;
1037 struct tm * const	tmp;
1038 {
1039 	register struct state *		sp;
1040 	register const struct ttinfo *	ttisp;
1041 	register int			i;
1042 	const time_t			t = *timep;
1043 
1044 	sp = lclptr;
1045 #ifdef ALL_STATE
1046 	if (sp == NULL) {
1047 		gmtsub(timep, offset, tmp);
1048 		return;
1049 	}
1050 #endif /* defined ALL_STATE */
1051 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1052 		i = 0;
1053 		while (sp->ttis[i].tt_isdst)
1054 			if (++i >= sp->typecnt) {
1055 				i = 0;
1056 				break;
1057 			}
1058 	} else {
1059 		for (i = 1; i < sp->timecnt; ++i)
1060 			if (t < sp->ats[i])
1061 				break;
1062 		i = sp->types[i - 1];
1063 	}
1064 	ttisp = &sp->ttis[i];
1065 	/*
1066 	** To get (wrong) behavior that's compatible with System V Release 2.0
1067 	** you'd replace the statement below with
1068 	**	t += ttisp->tt_gmtoff;
1069 	**	timesub(&t, 0L, sp, tmp);
1070 	*/
1071 	timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1072 	tmp->tm_isdst = ttisp->tt_isdst;
1073 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1074 #ifdef TM_ZONE
1075 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1076 #endif /* defined TM_ZONE */
1077 }
1078 
1079 struct tm *
1080 localtime(timep)
1081 const time_t * const	timep;
1082 {
1083 	tzset();
1084 	localsub(timep, 0L, &tm);
1085 	return &tm;
1086 }
1087 
1088 /*
1089 ** gmtsub is to gmtime as localsub is to localtime.
1090 */
1091 
1092 static void
1093 gmtsub(timep, offset, tmp)
1094 const time_t * const	timep;
1095 const long		offset;
1096 struct tm * const	tmp;
1097 {
1098 	if (!gmt_is_set) {
1099 		gmt_is_set = TRUE;
1100 #ifdef ALL_STATE
1101 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
1102 		if (gmtptr != NULL)
1103 #endif /* defined ALL_STATE */
1104 			gmtload(gmtptr);
1105 	}
1106 	timesub(timep, offset, gmtptr, tmp);
1107 #ifdef TM_ZONE
1108 	/*
1109 	** Could get fancy here and deliver something such as
1110 	** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
1111 	** but this is no time for a treasure hunt.
1112 	*/
1113 	if (offset != 0)
1114 		tmp->TM_ZONE = wildabbr;
1115 	else {
1116 #ifdef ALL_STATE
1117 		if (gmtptr == NULL)
1118 			tmp->TM_ZONE = gmt;
1119 		else	tmp->TM_ZONE = gmtptr->chars;
1120 #endif /* defined ALL_STATE */
1121 #ifndef ALL_STATE
1122 		tmp->TM_ZONE = gmtptr->chars;
1123 #endif /* State Farm */
1124 	}
1125 #endif /* defined TM_ZONE */
1126 }
1127 
1128 struct tm *
1129 gmtime(timep)
1130 const time_t * const	timep;
1131 {
1132 	gmtsub(timep, 0L, &tm);
1133 	return &tm;
1134 }
1135 
1136 #ifdef STD_INSPIRED
1137 
1138 struct tm *
1139 offtime(timep, offset)
1140 const time_t * const	timep;
1141 const long		offset;
1142 {
1143 	gmtsub(timep, offset, &tm);
1144 	return &tm;
1145 }
1146 
1147 #endif /* defined STD_INSPIRED */
1148 
1149 static void
1150 timesub(timep, offset, sp, tmp)
1151 const time_t * const			timep;
1152 const long				offset;
1153 register const struct state * const	sp;
1154 register struct tm * const		tmp;
1155 {
1156 	register const struct lsinfo *	lp;
1157 	register long			days;
1158 	register long			rem;
1159 	register int			y;
1160 	register int			yleap;
1161 	register const int *		ip;
1162 	register long			corr;
1163 	register int			hit;
1164 	register int			i;
1165 
1166 	corr = 0;
1167 	hit = 0;
1168 #ifdef ALL_STATE
1169 	i = (sp == NULL) ? 0 : sp->leapcnt;
1170 #endif /* defined ALL_STATE */
1171 #ifndef ALL_STATE
1172 	i = sp->leapcnt;
1173 #endif /* State Farm */
1174 	while (--i >= 0) {
1175 		lp = &sp->lsis[i];
1176 		if (*timep >= lp->ls_trans) {
1177 			if (*timep == lp->ls_trans) {
1178 				hit = ((i == 0 && lp->ls_corr > 0) ||
1179 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1180 				if (hit)
1181 					while (i > 0 &&
1182 						sp->lsis[i].ls_trans ==
1183 						sp->lsis[i - 1].ls_trans + 1 &&
1184 						sp->lsis[i].ls_corr ==
1185 						sp->lsis[i - 1].ls_corr + 1) {
1186 							++hit;
1187 							--i;
1188 					}
1189 			}
1190 			corr = lp->ls_corr;
1191 			break;
1192 		}
1193 	}
1194 	days = *timep / SECSPERDAY;
1195 	rem = *timep % SECSPERDAY;
1196 #ifdef mc68k
1197 	if (*timep == 0x80000000) {
1198 		/*
1199 		** A 3B1 muffs the division on the most negative number.
1200 		*/
1201 		days = -24855;
1202 		rem = -11648;
1203 	}
1204 #endif /* defined mc68k */
1205 	rem += (offset - corr);
1206 	while (rem < 0) {
1207 		rem += SECSPERDAY;
1208 		--days;
1209 	}
1210 	while (rem >= SECSPERDAY) {
1211 		rem -= SECSPERDAY;
1212 		++days;
1213 	}
1214 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1215 	rem = rem % SECSPERHOUR;
1216 	tmp->tm_min = (int) (rem / SECSPERMIN);
1217 	/*
1218 	** A positive leap second requires a special
1219 	** representation.  This uses "... ??:59:60" et seq.
1220 	*/
1221 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1222 	tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1223 	if (tmp->tm_wday < 0)
1224 		tmp->tm_wday += DAYSPERWEEK;
1225 	y = EPOCH_YEAR;
1226 #define LEAPS_THRU_END_OF(y)	((y) / 4 - (y) / 100 + (y) / 400)
1227 	while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1228 		register int	newy;
1229 
1230 		newy = y + days / DAYSPERNYEAR;
1231 		if (days < 0)
1232 			--newy;
1233 		days -= (newy - y) * DAYSPERNYEAR +
1234 			LEAPS_THRU_END_OF(newy - 1) -
1235 			LEAPS_THRU_END_OF(y - 1);
1236 		y = newy;
1237 	}
1238 	tmp->tm_year = y - TM_YEAR_BASE;
1239 	tmp->tm_yday = (int) days;
1240 	ip = mon_lengths[yleap];
1241 	for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1242 		days = days - (long) ip[tmp->tm_mon];
1243 	tmp->tm_mday = (int) (days + 1);
1244 	tmp->tm_isdst = 0;
1245 #ifdef TM_GMTOFF
1246 	tmp->TM_GMTOFF = offset;
1247 #endif /* defined TM_GMTOFF */
1248 }
1249 
1250 char *
1251 ctime(timep)
1252 const time_t * const	timep;
1253 {
1254 /*
1255 ** Section 4.12.3.2 of X3.159-1989 requires that
1256 **	The ctime funciton converts the calendar time pointed to by timer
1257 **	to local time in the form of a string.  It is equivalent to
1258 **		asctime(localtime(timer))
1259 */
1260 	return asctime(localtime(timep));
1261 }
1262 
1263 /*
1264 ** Adapted from code provided by Robert Elz, who writes:
1265 **	The "best" way to do mktime I think is based on an idea of Bob
1266 **	Kridle's (so its said...) from a long time ago.
1267 **	[kridle@xinet.com as of 1996-01-16.]
1268 **	It does a binary search of the time_t space.  Since time_t's are
1269 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1270 **	would still be very reasonable).
1271 */
1272 
1273 #ifndef WRONG
1274 #define WRONG	(-1)
1275 #endif /* !defined WRONG */
1276 
1277 /*
1278 ** Simplified normalize logic courtesy Paul Eggert (eggert@twinsun.com).
1279 */
1280 
1281 static int
1282 increment_overflow(number, delta)
1283 int *	number;
1284 int	delta;
1285 {
1286 	int	number0;
1287 
1288 	number0 = *number;
1289 	*number += delta;
1290 	return (*number < number0) != (delta < 0);
1291 }
1292 
1293 static int
1294 normalize_overflow(tensptr, unitsptr, base)
1295 int * const	tensptr;
1296 int * const	unitsptr;
1297 const int	base;
1298 {
1299 	register int	tensdelta;
1300 
1301 	tensdelta = (*unitsptr >= 0) ?
1302 		(*unitsptr / base) :
1303 		(-1 - (-1 - *unitsptr) / base);
1304 	*unitsptr -= tensdelta * base;
1305 	return increment_overflow(tensptr, tensdelta);
1306 }
1307 
1308 static int
1309 tmcomp(atmp, btmp)
1310 register const struct tm * const atmp;
1311 register const struct tm * const btmp;
1312 {
1313 	register int	result;
1314 
1315 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1316 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1317 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1318 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1319 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1320 			result = atmp->tm_sec - btmp->tm_sec;
1321 	return result;
1322 }
1323 
1324 static time_t
1325 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1326 struct tm * const	tmp;
1327 void (* const		funcp) P((const time_t*, long, struct tm*));
1328 const long		offset;
1329 int * const		okayp;
1330 const int		do_norm_secs;
1331 {
1332 	register const struct state *	sp;
1333 	register int			dir;
1334 	register int			bits;
1335 	register int			i, j ;
1336 	register int			saved_seconds;
1337 	time_t				newt;
1338 	time_t				t;
1339 	struct tm			yourtm, mytm;
1340 
1341 	*okayp = FALSE;
1342 	yourtm = *tmp;
1343 	if (do_norm_secs) {
1344 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1345 			SECSPERMIN))
1346 				return WRONG;
1347 	}
1348 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1349 		return WRONG;
1350 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1351 		return WRONG;
1352 	if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1353 		return WRONG;
1354 	/*
1355 	** Turn yourtm.tm_year into an actual year number for now.
1356 	** It is converted back to an offset from TM_YEAR_BASE later.
1357 	*/
1358 	if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1359 		return WRONG;
1360 	while (yourtm.tm_mday <= 0) {
1361 		if (increment_overflow(&yourtm.tm_year, -1))
1362 			return WRONG;
1363 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
1364 		yourtm.tm_mday += year_lengths[isleap(i)];
1365 	}
1366 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1367 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
1368 		yourtm.tm_mday -= year_lengths[isleap(i)];
1369 		if (increment_overflow(&yourtm.tm_year, 1))
1370 			return WRONG;
1371 	}
1372 	for ( ; ; ) {
1373 		i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1374 		if (yourtm.tm_mday <= i)
1375 			break;
1376 		yourtm.tm_mday -= i;
1377 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1378 			yourtm.tm_mon = 0;
1379 			if (increment_overflow(&yourtm.tm_year, 1))
1380 				return WRONG;
1381 		}
1382 	}
1383 	if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1384 		return WRONG;
1385 	if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1386 		/*
1387 		** We can't set tm_sec to 0, because that might push the
1388 		** time below the minimum representable time.
1389 		** Set tm_sec to 59 instead.
1390 		** This assumes that the minimum representable time is
1391 		** not in the same minute that a leap second was deleted from,
1392 		** which is a safer assumption than using 58 would be.
1393 		*/
1394 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1395 			return WRONG;
1396 		saved_seconds = yourtm.tm_sec;
1397 		yourtm.tm_sec = SECSPERMIN - 1;
1398 	} else {
1399 		saved_seconds = yourtm.tm_sec;
1400 		yourtm.tm_sec = 0;
1401 	}
1402 	/*
1403 	** Divide the search space in half
1404 	** (this works whether time_t is signed or unsigned).
1405 	*/
1406 	bits = TYPE_BIT(time_t) - 1;
1407 	/*
1408 	** If time_t is signed, then 0 is just above the median,
1409 	** assuming two's complement arithmetic.
1410 	** If time_t is unsigned, then (1 << bits) is just above the median.
1411 	*/
1412 	t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1413 	for ( ; ; ) {
1414 		(*funcp)(&t, offset, &mytm);
1415 		dir = tmcomp(&mytm, &yourtm);
1416 		if (dir != 0) {
1417 			if (bits-- < 0)
1418 				return WRONG;
1419 			if (bits < 0)
1420 				--t; /* may be needed if new t is minimal */
1421 			else if (dir > 0)
1422 				t -= ((time_t) 1) << bits;
1423 			else	t += ((time_t) 1) << bits;
1424 			continue;
1425 		}
1426 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1427 			break;
1428 		/*
1429 		** Right time, wrong type.
1430 		** Hunt for right time, right type.
1431 		** It's okay to guess wrong since the guess
1432 		** gets checked.
1433 		*/
1434 		/*
1435 		** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1436 		*/
1437 		sp = (const struct state *)
1438 			(((void *) funcp == (void *) localsub) ?
1439 			lclptr : gmtptr);
1440 #ifdef ALL_STATE
1441 		if (sp == NULL)
1442 			return WRONG;
1443 #endif /* defined ALL_STATE */
1444 		for (i = sp->typecnt - 1; i >= 0; --i) {
1445 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1446 				continue;
1447 			for (j = sp->typecnt - 1; j >= 0; --j) {
1448 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1449 					continue;
1450 				newt = t + sp->ttis[j].tt_gmtoff -
1451 					sp->ttis[i].tt_gmtoff;
1452 				(*funcp)(&newt, offset, &mytm);
1453 				if (tmcomp(&mytm, &yourtm) != 0)
1454 					continue;
1455 				if (mytm.tm_isdst != yourtm.tm_isdst)
1456 					continue;
1457 				/*
1458 				** We have a match.
1459 				*/
1460 				t = newt;
1461 				goto label;
1462 			}
1463 		}
1464 		return WRONG;
1465 	}
1466 label:
1467 	newt = t + saved_seconds;
1468 	if ((newt < t) != (saved_seconds < 0))
1469 		return WRONG;
1470 	t = newt;
1471 	(*funcp)(&t, offset, tmp);
1472 	*okayp = TRUE;
1473 	return t;
1474 }
1475 
1476 static time_t
1477 time2(tmp, funcp, offset, okayp)
1478 struct tm * const	tmp;
1479 void (* const		funcp) P((const time_t*, long, struct tm*));
1480 const long		offset;
1481 int * const		okayp;
1482 {
1483 	time_t	t;
1484 
1485 	/*
1486 	** First try without normalization of seconds
1487 	** (in case tm_sec contains a value associated with a leap second).
1488 	** If that fails, try with normalization of seconds.
1489 	*/
1490 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
1491 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1492 }
1493 
1494 static time_t
1495 time1(tmp, funcp, offset)
1496 struct tm * const	tmp;
1497 void (* const		funcp) P((const time_t *, long, struct tm *));
1498 const long		offset;
1499 {
1500 	register time_t			t;
1501 	register const struct state *	sp;
1502 	register int			samei, otheri;
1503 	int				okay;
1504 
1505 	if (tmp->tm_isdst > 1)
1506 		tmp->tm_isdst = 1;
1507 	t = time2(tmp, funcp, offset, &okay);
1508 #ifdef PCTS
1509 	/*
1510 	** PCTS code courtesy Grant Sullivan (grant@osf.org).
1511 	*/
1512 	if (okay)
1513 		return t;
1514 	if (tmp->tm_isdst < 0)
1515 		tmp->tm_isdst = 0;	/* reset to std and try again */
1516 #endif /* defined PCTS */
1517 #ifndef PCTS
1518 	if (okay || tmp->tm_isdst < 0)
1519 		return t;
1520 #endif /* !defined PCTS */
1521 	/*
1522 	** We're supposed to assume that somebody took a time of one type
1523 	** and did some math on it that yielded a "struct tm" that's bad.
1524 	** We try to divine the type they started from and adjust to the
1525 	** type they need.
1526 	*/
1527 	/*
1528 	** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1529 	*/
1530 	sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1531 		lclptr : gmtptr);
1532 #ifdef ALL_STATE
1533 	if (sp == NULL)
1534 		return WRONG;
1535 #endif /* defined ALL_STATE */
1536 	for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1537 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1538 			continue;
1539 		for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1540 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1541 				continue;
1542 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1543 					sp->ttis[samei].tt_gmtoff;
1544 			tmp->tm_isdst = !tmp->tm_isdst;
1545 			t = time2(tmp, funcp, offset, &okay);
1546 			if (okay)
1547 				return t;
1548 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1549 					sp->ttis[samei].tt_gmtoff;
1550 			tmp->tm_isdst = !tmp->tm_isdst;
1551 		}
1552 	}
1553 	return WRONG;
1554 }
1555 
1556 time_t
1557 mktime(tmp)
1558 struct tm * const	tmp;
1559 {
1560 	tzset();
1561 	return time1(tmp, localsub, 0L);
1562 }
1563 
1564 #ifdef STD_INSPIRED
1565 
1566 time_t
1567 timelocal(tmp)
1568 struct tm * const	tmp;
1569 {
1570 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
1571 	return mktime(tmp);
1572 }
1573 
1574 time_t
1575 timegm(tmp)
1576 struct tm * const	tmp;
1577 {
1578 	tmp->tm_isdst = 0;
1579 	return time1(tmp, gmtsub, 0L);
1580 }
1581 
1582 time_t
1583 timeoff(tmp, offset)
1584 struct tm * const	tmp;
1585 const long		offset;
1586 {
1587 	tmp->tm_isdst = 0;
1588 	return time1(tmp, gmtsub, offset);
1589 }
1590 
1591 #endif /* defined STD_INSPIRED */
1592 
1593 #ifdef CMUCS
1594 
1595 /*
1596 ** The following is supplied for compatibility with
1597 ** previous versions of the CMUCS runtime library.
1598 */
1599 
1600 long
1601 gtime(tmp)
1602 struct tm * const	tmp;
1603 {
1604 	const time_t	t = mktime(tmp);
1605 
1606 	if (t == WRONG)
1607 		return -1;
1608 	return t;
1609 }
1610 
1611 #endif /* defined CMUCS */
1612 
1613 /*
1614 ** XXX--is the below the right way to conditionalize??
1615 */
1616 
1617 #ifdef STD_INSPIRED
1618 
1619 /*
1620 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1621 ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
1622 ** is not the case if we are accounting for leap seconds.
1623 ** So, we provide the following conversion routines for use
1624 ** when exchanging timestamps with POSIX conforming systems.
1625 */
1626 
1627 static long
1628 leapcorr(timep)
1629 time_t *	timep;
1630 {
1631 	register struct state *		sp;
1632 	register struct lsinfo *	lp;
1633 	register int			i;
1634 
1635 	sp = lclptr;
1636 	i = sp->leapcnt;
1637 	while (--i >= 0) {
1638 		lp = &sp->lsis[i];
1639 		if (*timep >= lp->ls_trans)
1640 			return lp->ls_corr;
1641 	}
1642 	return 0;
1643 }
1644 
1645 time_t
1646 time2posix(t)
1647 time_t	t;
1648 {
1649 	tzset();
1650 	return t - leapcorr(&t);
1651 }
1652 
1653 time_t
1654 posix2time(t)
1655 time_t	t;
1656 {
1657 	time_t	x;
1658 	time_t	y;
1659 
1660 	tzset();
1661 	/*
1662 	** For a positive leap second hit, the result
1663 	** is not unique.  For a negative leap second
1664 	** hit, the corresponding time doesn't exist,
1665 	** so we return an adjacent second.
1666 	*/
1667 	x = t + leapcorr(&t);
1668 	y = x - leapcorr(&x);
1669 	if (y < t) {
1670 		do {
1671 			x++;
1672 			y = x - leapcorr(&x);
1673 		} while (y < t);
1674 		if (t != y)
1675 			return x - 1;
1676 	} else if (y > t) {
1677 		do {
1678 			--x;
1679 			y = x - leapcorr(&x);
1680 		} while (y > t);
1681 		if (t != y)
1682 			return x + 1;
1683 	}
1684 	return x;
1685 }
1686 
1687 #endif /* defined STD_INSPIRED */
1688