1 /* $NetBSD: localtime.c,v 1.72 2012/10/28 19:02:29 christos Exp $ */ 2 3 /* 4 ** This file is in the public domain, so clarified as of 5 ** 1996-06-05 by Arthur David Olson. 6 */ 7 8 #include <sys/cdefs.h> 9 #if defined(LIBC_SCCS) && !defined(lint) 10 #if 0 11 static char elsieid[] = "@(#)localtime.c 8.17"; 12 #else 13 __RCSID("$NetBSD: localtime.c,v 1.72 2012/10/28 19:02:29 christos Exp $"); 14 #endif 15 #endif /* LIBC_SCCS and not lint */ 16 17 /* 18 ** Leap second handling from Bradley White. 19 ** POSIX-style TZ environment variable handling from Guy Harris. 20 */ 21 22 /*LINTLIBRARY*/ 23 24 #include "namespace.h" 25 #include "private.h" 26 #include "tzfile.h" 27 #include "fcntl.h" 28 #include "reentrant.h" 29 30 #if defined(__weak_alias) 31 __weak_alias(daylight,_daylight) 32 __weak_alias(tzname,_tzname) 33 #endif 34 35 #include "float.h" /* for FLT_MAX and DBL_MAX */ 36 37 #ifndef TZ_ABBR_MAX_LEN 38 #define TZ_ABBR_MAX_LEN 16 39 #endif /* !defined TZ_ABBR_MAX_LEN */ 40 41 #ifndef TZ_ABBR_CHAR_SET 42 #define TZ_ABBR_CHAR_SET \ 43 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._" 44 #endif /* !defined TZ_ABBR_CHAR_SET */ 45 46 #ifndef TZ_ABBR_ERR_CHAR 47 #define TZ_ABBR_ERR_CHAR '_' 48 #endif /* !defined TZ_ABBR_ERR_CHAR */ 49 50 /* 51 ** SunOS 4.1.1 headers lack O_BINARY. 52 */ 53 54 #ifdef O_BINARY 55 #define OPEN_MODE (O_RDONLY | O_BINARY) 56 #endif /* defined O_BINARY */ 57 #ifndef O_BINARY 58 #define OPEN_MODE O_RDONLY 59 #endif /* !defined O_BINARY */ 60 61 #ifndef WILDABBR 62 /* 63 ** Someone might make incorrect use of a time zone abbreviation: 64 ** 1. They might reference tzname[0] before calling tzset (explicitly 65 ** or implicitly). 66 ** 2. They might reference tzname[1] before calling tzset (explicitly 67 ** or implicitly). 68 ** 3. They might reference tzname[1] after setting to a time zone 69 ** in which Daylight Saving Time is never observed. 70 ** 4. They might reference tzname[0] after setting to a time zone 71 ** in which Standard Time is never observed. 72 ** 5. They might reference tm.TM_ZONE after calling offtime. 73 ** What's best to do in the above cases is open to debate; 74 ** for now, we just set things up so that in any of the five cases 75 ** WILDABBR is used. Another possibility: initialize tzname[0] to the 76 ** string "tzname[0] used before set", and similarly for the other cases. 77 ** And another: initialize tzname[0] to "ERA", with an explanation in the 78 ** manual page of what this "time zone abbreviation" means (doing this so 79 ** that tzname[0] has the "normal" length of three characters). 80 */ 81 #define WILDABBR " " 82 #endif /* !defined WILDABBR */ 83 84 static const char wildabbr[] = WILDABBR; 85 86 static const char gmt[] = "GMT"; 87 88 /* 89 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES. 90 ** We default to US rules as of 1999-08-17. 91 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are 92 ** implementation dependent; for historical reasons, US rules are a 93 ** common default. 94 */ 95 #ifndef TZDEFRULESTRING 96 #define TZDEFRULESTRING ",M4.1.0,M10.5.0" 97 #endif /* !defined TZDEFDST */ 98 99 struct ttinfo { /* time type information */ 100 long tt_gmtoff; /* UTC offset in seconds */ 101 int tt_isdst; /* used to set tm_isdst */ 102 int tt_abbrind; /* abbreviation list index */ 103 int tt_ttisstd; /* TRUE if transition is std time */ 104 int tt_ttisgmt; /* TRUE if transition is UTC */ 105 }; 106 107 struct lsinfo { /* leap second information */ 108 time_t ls_trans; /* transition time */ 109 long ls_corr; /* correction to apply */ 110 }; 111 112 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b)) 113 114 #ifdef TZNAME_MAX 115 #define MY_TZNAME_MAX TZNAME_MAX 116 #endif /* defined TZNAME_MAX */ 117 #ifndef TZNAME_MAX 118 #define MY_TZNAME_MAX 255 119 #endif /* !defined TZNAME_MAX */ 120 121 struct __state { 122 int leapcnt; 123 int timecnt; 124 int typecnt; 125 int charcnt; 126 int goback; 127 int goahead; 128 time_t ats[TZ_MAX_TIMES]; 129 unsigned char types[TZ_MAX_TIMES]; 130 struct ttinfo ttis[TZ_MAX_TYPES]; 131 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, 132 sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))]; 133 struct lsinfo lsis[TZ_MAX_LEAPS]; 134 }; 135 136 struct rule { 137 int r_type; /* type of rule--see below */ 138 int r_day; /* day number of rule */ 139 int r_week; /* week number of rule */ 140 int r_mon; /* month number of rule */ 141 long r_time; /* transition time of rule */ 142 }; 143 144 #define JULIAN_DAY 0 /* Jn - Julian day */ 145 #define DAY_OF_YEAR 1 /* n - day of year */ 146 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */ 147 148 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep, 149 long offset, struct tm *tmp); 150 151 /* 152 ** Prototypes for static functions. 153 */ 154 155 static long detzcode(const char * codep); 156 static time_t detzcode64(const char * codep); 157 static int differ_by_repeat(time_t t1, time_t t0); 158 static const char * getzname(const char * strp) __pure; 159 static const char * getqzname(const char * strp, const int delim) __pure; 160 static const char * getnum(const char * strp, int * nump, int min, 161 int max); 162 static const char * getsecs(const char * strp, long * secsp); 163 static const char * getoffset(const char * strp, long * offsetp); 164 static const char * getrule(const char * strp, struct rule * rulep); 165 static void gmtload(timezone_t sp); 166 static struct tm * gmtsub(const timezone_t sp, const time_t *timep, 167 long offset, struct tm * tmp); 168 static struct tm * localsub(const timezone_t sp, const time_t *timep, 169 long offset, struct tm *tmp); 170 static int increment_overflow(int * number, int delta); 171 static int leaps_thru_end_of(int y) __pure; 172 static int long_increment_overflow(long * number, int delta); 173 static int long_normalize_overflow(long * tensptr, 174 int * unitsptr, int base); 175 static int normalize_overflow(int * tensptr, int * unitsptr, 176 int base); 177 static void settzname(void); 178 static time_t time1(const timezone_t sp, struct tm * const tmp, 179 subfun_t funcp, const long offset); 180 static time_t time2(const timezone_t sp, struct tm * const tmp, 181 subfun_t funcp, 182 const long offset, int *const okayp); 183 static time_t time2sub(const timezone_t sp, struct tm * const tmp, 184 subfun_t funcp, const long offset, 185 int *const okayp, const int do_norm_secs); 186 static struct tm * timesub(const timezone_t sp, const time_t * timep, 187 long offset, struct tm * tmp); 188 static int tmcomp(const struct tm * atmp, 189 const struct tm * btmp); 190 static time_t transtime(time_t janfirst, int year, 191 const struct rule * rulep, long offset) __pure; 192 static int typesequiv(const timezone_t sp, int a, int b); 193 static int tzload(timezone_t sp, const char * name, 194 int doextend); 195 static int tzparse(timezone_t sp, const char * name, 196 int lastditch); 197 static void tzset_unlocked(void); 198 static void tzsetwall_unlocked(void); 199 static long leapcorr(const timezone_t sp, time_t * timep); 200 201 static timezone_t lclptr; 202 static timezone_t gmtptr; 203 204 #ifndef TZ_STRLEN_MAX 205 #define TZ_STRLEN_MAX 255 206 #endif /* !defined TZ_STRLEN_MAX */ 207 208 static char lcl_TZname[TZ_STRLEN_MAX + 1]; 209 static int lcl_is_set; 210 static int gmt_is_set; 211 212 #if !defined(__LIBC12_SOURCE__) 213 214 __aconst char * tzname[2] = { 215 (__aconst char *)__UNCONST(wildabbr), 216 (__aconst char *)__UNCONST(wildabbr) 217 }; 218 219 #else 220 221 extern __aconst char * tzname[2]; 222 223 #endif 224 225 #ifdef _REENTRANT 226 static rwlock_t lcl_lock = RWLOCK_INITIALIZER; 227 #endif 228 229 /* 230 ** Section 4.12.3 of X3.159-1989 requires that 231 ** Except for the strftime function, these functions [asctime, 232 ** ctime, gmtime, localtime] return values in one of two static 233 ** objects: a broken-down time structure and an array of char. 234 ** Thanks to Paul Eggert for noting this. 235 */ 236 237 static struct tm tm; 238 239 #ifdef USG_COMPAT 240 #if !defined(__LIBC12_SOURCE__) 241 long timezone = 0; 242 int daylight = 0; 243 #else 244 extern int daylight; 245 extern long timezone __RENAME(__timezone13); 246 #endif 247 #endif /* defined USG_COMPAT */ 248 249 #ifdef ALTZONE 250 time_t altzone = 0; 251 #endif /* defined ALTZONE */ 252 253 static long 254 detzcode(const char *const codep) 255 { 256 long result; 257 int i; 258 259 result = (codep[0] & 0x80) ? ~0L : 0; 260 for (i = 0; i < 4; ++i) 261 result = (result << 8) | (codep[i] & 0xff); 262 return result; 263 } 264 265 static time_t 266 detzcode64(const char *const codep) 267 { 268 time_t result; 269 int i; 270 271 result = (time_t)((codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0); 272 for (i = 0; i < 8; ++i) 273 result = result * 256 + (codep[i] & 0xff); 274 return result; 275 } 276 277 const char * 278 tzgetname(const timezone_t sp, int isdst) 279 { 280 int i; 281 for (i = 0; i < sp->timecnt; ++i) { 282 const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]]; 283 284 if (ttisp->tt_isdst == isdst) 285 return &sp->chars[ttisp->tt_abbrind]; 286 } 287 return NULL; 288 } 289 290 static void 291 settzname_z(timezone_t sp) 292 { 293 int i; 294 295 /* 296 ** Scrub the abbreviations. 297 ** First, replace bogus characters. 298 */ 299 for (i = 0; i < sp->charcnt; ++i) 300 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL) 301 sp->chars[i] = TZ_ABBR_ERR_CHAR; 302 /* 303 ** Second, truncate long abbreviations. 304 */ 305 for (i = 0; i < sp->typecnt; ++i) { 306 const struct ttinfo * const ttisp = &sp->ttis[i]; 307 char * cp = &sp->chars[ttisp->tt_abbrind]; 308 309 if (strlen(cp) > TZ_ABBR_MAX_LEN && 310 strcmp(cp, GRANDPARENTED) != 0) 311 *(cp + TZ_ABBR_MAX_LEN) = '\0'; 312 } 313 } 314 315 static void 316 settzname(void) 317 { 318 timezone_t const sp = lclptr; 319 int i; 320 321 tzname[0] = (__aconst char *)__UNCONST(wildabbr); 322 tzname[1] = (__aconst char *)__UNCONST(wildabbr); 323 #ifdef USG_COMPAT 324 daylight = 0; 325 timezone = 0; 326 #endif /* defined USG_COMPAT */ 327 #ifdef ALTZONE 328 altzone = 0; 329 #endif /* defined ALTZONE */ 330 if (sp == NULL) { 331 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt); 332 return; 333 } 334 /* 335 ** And to get the latest zone names into tzname. . . 336 */ 337 for (i = 0; i < sp->typecnt; ++i) { 338 const struct ttinfo * const ttisp = &sp->ttis[i]; 339 340 tzname[ttisp->tt_isdst] = 341 &sp->chars[ttisp->tt_abbrind]; 342 #ifdef USG_COMPAT 343 if (ttisp->tt_isdst) 344 daylight = 1; 345 if (!ttisp->tt_isdst) 346 timezone = -(ttisp->tt_gmtoff); 347 #endif /* defined USG_COMPAT */ 348 #ifdef ALTZONE 349 if (ttisp->tt_isdst) 350 altzone = -(ttisp->tt_gmtoff); 351 #endif /* defined ALTZONE */ 352 } 353 settzname_z(sp); 354 } 355 356 static int 357 differ_by_repeat(const time_t t1, const time_t t0) 358 { 359 if (TYPE_INTEGRAL(time_t) && 360 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS) 361 return 0; 362 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT; 363 } 364 365 static int 366 tzload(timezone_t sp, const char *name, const int doextend) 367 { 368 const char * p; 369 int i; 370 int fid; 371 int stored; 372 ssize_t nread; 373 typedef union { 374 struct tzhead tzhead; 375 char buf[2 * sizeof(struct tzhead) + 376 2 * sizeof *sp + 377 4 * TZ_MAX_TIMES]; 378 } u_t; 379 u_t * up; 380 381 up = calloc(1, sizeof *up); 382 if (up == NULL) 383 return -1; 384 385 sp->goback = sp->goahead = FALSE; 386 if (name == NULL && (name = TZDEFAULT) == NULL) 387 goto oops; 388 { 389 int doaccess; 390 /* 391 ** Section 4.9.1 of the C standard says that 392 ** "FILENAME_MAX expands to an integral constant expression 393 ** that is the size needed for an array of char large enough 394 ** to hold the longest file name string that the implementation 395 ** guarantees can be opened." 396 */ 397 char fullname[FILENAME_MAX + 1]; 398 399 if (name[0] == ':') 400 ++name; 401 doaccess = name[0] == '/'; 402 if (!doaccess) { 403 if ((p = TZDIR) == NULL) 404 goto oops; 405 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) 406 goto oops; 407 (void) strcpy(fullname, p); /* XXX strcpy is safe */ 408 (void) strcat(fullname, "/"); /* XXX strcat is safe */ 409 (void) strcat(fullname, name); /* XXX strcat is safe */ 410 /* 411 ** Set doaccess if '.' (as in "../") shows up in name. 412 */ 413 if (strchr(name, '.') != NULL) 414 doaccess = TRUE; 415 name = fullname; 416 } 417 if (doaccess && access(name, R_OK) != 0) 418 goto oops; 419 /* 420 * XXX potential security problem here if user of a set-id 421 * program has set TZ (which is passed in as name) here, 422 * and uses a race condition trick to defeat the access(2) 423 * above. 424 */ 425 if ((fid = open(name, OPEN_MODE)) == -1) 426 goto oops; 427 } 428 nread = read(fid, up->buf, sizeof up->buf); 429 if (close(fid) < 0 || nread <= 0) 430 goto oops; 431 for (stored = 4; stored <= 8; stored *= 2) { 432 int ttisstdcnt; 433 int ttisgmtcnt; 434 435 ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt); 436 ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt); 437 sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt); 438 sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt); 439 sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt); 440 sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt); 441 p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt; 442 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS || 443 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES || 444 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES || 445 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS || 446 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || 447 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) 448 goto oops; 449 if (nread - (p - up->buf) < 450 sp->timecnt * stored + /* ats */ 451 sp->timecnt + /* types */ 452 sp->typecnt * 6 + /* ttinfos */ 453 sp->charcnt + /* chars */ 454 sp->leapcnt * (stored + 4) + /* lsinfos */ 455 ttisstdcnt + /* ttisstds */ 456 ttisgmtcnt) /* ttisgmts */ 457 goto oops; 458 for (i = 0; i < sp->timecnt; ++i) { 459 sp->ats[i] = (time_t)((stored == 4) ? 460 detzcode(p) : detzcode64(p)); 461 p += stored; 462 } 463 for (i = 0; i < sp->timecnt; ++i) { 464 sp->types[i] = (unsigned char) *p++; 465 if (sp->types[i] >= sp->typecnt) 466 goto oops; 467 } 468 for (i = 0; i < sp->typecnt; ++i) { 469 struct ttinfo * ttisp; 470 471 ttisp = &sp->ttis[i]; 472 ttisp->tt_gmtoff = detzcode(p); 473 p += 4; 474 ttisp->tt_isdst = (unsigned char) *p++; 475 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) 476 goto oops; 477 ttisp->tt_abbrind = (unsigned char) *p++; 478 if (ttisp->tt_abbrind < 0 || 479 ttisp->tt_abbrind > sp->charcnt) 480 goto oops; 481 } 482 for (i = 0; i < sp->charcnt; ++i) 483 sp->chars[i] = *p++; 484 sp->chars[i] = '\0'; /* ensure '\0' at end */ 485 for (i = 0; i < sp->leapcnt; ++i) { 486 struct lsinfo * lsisp; 487 488 lsisp = &sp->lsis[i]; 489 lsisp->ls_trans = (time_t)((stored == 4) ? 490 detzcode(p) : detzcode64(p)); 491 p += stored; 492 lsisp->ls_corr = detzcode(p); 493 p += 4; 494 } 495 for (i = 0; i < sp->typecnt; ++i) { 496 struct ttinfo * ttisp; 497 498 ttisp = &sp->ttis[i]; 499 if (ttisstdcnt == 0) 500 ttisp->tt_ttisstd = FALSE; 501 else { 502 ttisp->tt_ttisstd = *p++; 503 if (ttisp->tt_ttisstd != TRUE && 504 ttisp->tt_ttisstd != FALSE) 505 goto oops; 506 } 507 } 508 for (i = 0; i < sp->typecnt; ++i) { 509 struct ttinfo * ttisp; 510 511 ttisp = &sp->ttis[i]; 512 if (ttisgmtcnt == 0) 513 ttisp->tt_ttisgmt = FALSE; 514 else { 515 ttisp->tt_ttisgmt = *p++; 516 if (ttisp->tt_ttisgmt != TRUE && 517 ttisp->tt_ttisgmt != FALSE) 518 goto oops; 519 } 520 } 521 /* 522 ** Out-of-sort ats should mean we're running on a 523 ** signed time_t system but using a data file with 524 ** unsigned values (or vice versa). 525 */ 526 for (i = 0; i < sp->timecnt - 2; ++i) 527 if (sp->ats[i] > sp->ats[i + 1]) { 528 ++i; 529 if (TYPE_SIGNED(time_t)) { 530 /* 531 ** Ignore the end (easy). 532 */ 533 sp->timecnt = i; 534 } else { 535 /* 536 ** Ignore the beginning (harder). 537 */ 538 int j; 539 540 for (j = 0; j + i < sp->timecnt; ++j) { 541 sp->ats[j] = sp->ats[j + i]; 542 sp->types[j] = sp->types[j + i]; 543 } 544 sp->timecnt = j; 545 } 546 break; 547 } 548 /* 549 ** If this is an old file, we're done. 550 */ 551 if (up->tzhead.tzh_version[0] == '\0') 552 break; 553 nread -= p - up->buf; 554 for (i = 0; i < nread; ++i) 555 up->buf[i] = p[i]; 556 /* 557 ** If this is a narrow integer time_t system, we're done. 558 */ 559 if (stored >= (int) sizeof(time_t) 560 /* CONSTCOND */ 561 && TYPE_INTEGRAL(time_t)) 562 break; 563 } 564 if (doextend && nread > 2 && 565 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' && 566 sp->typecnt + 2 <= TZ_MAX_TYPES) { 567 struct __state ts; 568 int result; 569 570 up->buf[nread - 1] = '\0'; 571 result = tzparse(&ts, &up->buf[1], FALSE); 572 if (result == 0 && ts.typecnt == 2 && 573 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) { 574 for (i = 0; i < 2; ++i) 575 ts.ttis[i].tt_abbrind += 576 sp->charcnt; 577 for (i = 0; i < ts.charcnt; ++i) 578 sp->chars[sp->charcnt++] = 579 ts.chars[i]; 580 i = 0; 581 while (i < ts.timecnt && 582 ts.ats[i] <= 583 sp->ats[sp->timecnt - 1]) 584 ++i; 585 while (i < ts.timecnt && 586 sp->timecnt < TZ_MAX_TIMES) { 587 sp->ats[sp->timecnt] = 588 ts.ats[i]; 589 sp->types[sp->timecnt] = 590 sp->typecnt + 591 ts.types[i]; 592 ++sp->timecnt; 593 ++i; 594 } 595 sp->ttis[sp->typecnt++] = ts.ttis[0]; 596 sp->ttis[sp->typecnt++] = ts.ttis[1]; 597 } 598 } 599 if (sp->timecnt > 1) { 600 for (i = 1; i < sp->timecnt; ++i) 601 if (typesequiv(sp, sp->types[i], sp->types[0]) && 602 differ_by_repeat(sp->ats[i], sp->ats[0])) { 603 sp->goback = TRUE; 604 break; 605 } 606 for (i = sp->timecnt - 2; i >= 0; --i) 607 if (typesequiv(sp, sp->types[sp->timecnt - 1], 608 sp->types[i]) && 609 differ_by_repeat(sp->ats[sp->timecnt - 1], 610 sp->ats[i])) { 611 sp->goahead = TRUE; 612 break; 613 } 614 } 615 free(up); 616 return 0; 617 oops: 618 free(up); 619 return -1; 620 } 621 622 static int 623 typesequiv(const timezone_t sp, const int a, const int b) 624 { 625 int result; 626 627 if (sp == NULL || 628 a < 0 || a >= sp->typecnt || 629 b < 0 || b >= sp->typecnt) 630 result = FALSE; 631 else { 632 const struct ttinfo * ap = &sp->ttis[a]; 633 const struct ttinfo * bp = &sp->ttis[b]; 634 result = ap->tt_gmtoff == bp->tt_gmtoff && 635 ap->tt_isdst == bp->tt_isdst && 636 ap->tt_ttisstd == bp->tt_ttisstd && 637 ap->tt_ttisgmt == bp->tt_ttisgmt && 638 strcmp(&sp->chars[ap->tt_abbrind], 639 &sp->chars[bp->tt_abbrind]) == 0; 640 } 641 return result; 642 } 643 644 static const int mon_lengths[2][MONSPERYEAR] = { 645 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, 646 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } 647 }; 648 649 static const int year_lengths[2] = { 650 DAYSPERNYEAR, DAYSPERLYEAR 651 }; 652 653 /* 654 ** Given a pointer into a time zone string, scan until a character that is not 655 ** a valid character in a zone name is found. Return a pointer to that 656 ** character. 657 */ 658 659 static const char * 660 getzname(const char *strp) 661 { 662 char c; 663 664 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && 665 c != '+') 666 ++strp; 667 return strp; 668 } 669 670 /* 671 ** Given a pointer into an extended time zone string, scan until the ending 672 ** delimiter of the zone name is located. Return a pointer to the delimiter. 673 ** 674 ** As with getzname above, the legal character set is actually quite 675 ** restricted, with other characters producing undefined results. 676 ** We don't do any checking here; checking is done later in common-case code. 677 */ 678 679 static const char * 680 getqzname(const char *strp, const int delim) 681 { 682 int c; 683 684 while ((c = *strp) != '\0' && c != delim) 685 ++strp; 686 return strp; 687 } 688 689 /* 690 ** Given a pointer into a time zone string, extract a number from that string. 691 ** Check that the number is within a specified range; if it is not, return 692 ** NULL. 693 ** Otherwise, return a pointer to the first character not part of the number. 694 */ 695 696 static const char * 697 getnum(const char *strp, int *const nump, const int min, const int max) 698 { 699 char c; 700 int num; 701 702 if (strp == NULL || !is_digit(c = *strp)) { 703 errno = EINVAL; 704 return NULL; 705 } 706 num = 0; 707 do { 708 num = num * 10 + (c - '0'); 709 if (num > max) { 710 errno = EOVERFLOW; 711 return NULL; /* illegal value */ 712 } 713 c = *++strp; 714 } while (is_digit(c)); 715 if (num < min) { 716 errno = EINVAL; 717 return NULL; /* illegal value */ 718 } 719 *nump = num; 720 return strp; 721 } 722 723 /* 724 ** Given a pointer into a time zone string, extract a number of seconds, 725 ** in hh[:mm[:ss]] form, from the string. 726 ** If any error occurs, return NULL. 727 ** Otherwise, return a pointer to the first character not part of the number 728 ** of seconds. 729 */ 730 731 static const char * 732 getsecs(const char *strp, long *const secsp) 733 { 734 int num; 735 736 /* 737 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like 738 ** "M10.4.6/26", which does not conform to Posix, 739 ** but which specifies the equivalent of 740 ** ``02:00 on the first Sunday on or after 23 Oct''. 741 */ 742 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); 743 if (strp == NULL) 744 return NULL; 745 *secsp = num * (long) SECSPERHOUR; 746 if (*strp == ':') { 747 ++strp; 748 strp = getnum(strp, &num, 0, MINSPERHOUR - 1); 749 if (strp == NULL) 750 return NULL; 751 *secsp += num * SECSPERMIN; 752 if (*strp == ':') { 753 ++strp; 754 /* `SECSPERMIN' allows for leap seconds. */ 755 strp = getnum(strp, &num, 0, SECSPERMIN); 756 if (strp == NULL) 757 return NULL; 758 *secsp += num; 759 } 760 } 761 return strp; 762 } 763 764 /* 765 ** Given a pointer into a time zone string, extract an offset, in 766 ** [+-]hh[:mm[:ss]] form, from the string. 767 ** If any error occurs, return NULL. 768 ** Otherwise, return a pointer to the first character not part of the time. 769 */ 770 771 static const char * 772 getoffset(const char *strp, long *const offsetp) 773 { 774 int neg = 0; 775 776 if (*strp == '-') { 777 neg = 1; 778 ++strp; 779 } else if (*strp == '+') 780 ++strp; 781 strp = getsecs(strp, offsetp); 782 if (strp == NULL) 783 return NULL; /* illegal time */ 784 if (neg) 785 *offsetp = -*offsetp; 786 return strp; 787 } 788 789 /* 790 ** Given a pointer into a time zone string, extract a rule in the form 791 ** date[/time]. See POSIX section 8 for the format of "date" and "time". 792 ** If a valid rule is not found, return NULL. 793 ** Otherwise, return a pointer to the first character not part of the rule. 794 */ 795 796 static const char * 797 getrule(const char *strp, struct rule *const rulep) 798 { 799 if (*strp == 'J') { 800 /* 801 ** Julian day. 802 */ 803 rulep->r_type = JULIAN_DAY; 804 ++strp; 805 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); 806 } else if (*strp == 'M') { 807 /* 808 ** Month, week, day. 809 */ 810 rulep->r_type = MONTH_NTH_DAY_OF_WEEK; 811 ++strp; 812 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); 813 if (strp == NULL) 814 return NULL; 815 if (*strp++ != '.') 816 return NULL; 817 strp = getnum(strp, &rulep->r_week, 1, 5); 818 if (strp == NULL) 819 return NULL; 820 if (*strp++ != '.') 821 return NULL; 822 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); 823 } else if (is_digit(*strp)) { 824 /* 825 ** Day of year. 826 */ 827 rulep->r_type = DAY_OF_YEAR; 828 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); 829 } else return NULL; /* invalid format */ 830 if (strp == NULL) 831 return NULL; 832 if (*strp == '/') { 833 /* 834 ** Time specified. 835 */ 836 ++strp; 837 strp = getsecs(strp, &rulep->r_time); 838 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ 839 return strp; 840 } 841 842 /* 843 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the 844 ** year, a rule, and the offset from UTC at the time that rule takes effect, 845 ** calculate the Epoch-relative time that rule takes effect. 846 */ 847 848 static time_t 849 transtime(const time_t janfirst, const int year, const struct rule *const rulep, 850 const long offset) 851 { 852 int leapyear; 853 time_t value; 854 int i; 855 int d, m1, yy0, yy1, yy2, dow; 856 857 INITIALIZE(value); 858 leapyear = isleap(year); 859 switch (rulep->r_type) { 860 861 case JULIAN_DAY: 862 /* 863 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap 864 ** years. 865 ** In non-leap years, or if the day number is 59 or less, just 866 ** add SECSPERDAY times the day number-1 to the time of 867 ** January 1, midnight, to get the day. 868 */ 869 value = (time_t)(janfirst + (rulep->r_day - 1) * SECSPERDAY); 870 if (leapyear && rulep->r_day >= 60) 871 value += SECSPERDAY; 872 break; 873 874 case DAY_OF_YEAR: 875 /* 876 ** n - day of year. 877 ** Just add SECSPERDAY times the day number to the time of 878 ** January 1, midnight, to get the day. 879 */ 880 value = (time_t)(janfirst + rulep->r_day * SECSPERDAY); 881 break; 882 883 case MONTH_NTH_DAY_OF_WEEK: 884 /* 885 ** Mm.n.d - nth "dth day" of month m. 886 */ 887 value = janfirst; 888 for (i = 0; i < rulep->r_mon - 1; ++i) 889 value += (time_t)(mon_lengths[leapyear][i] * SECSPERDAY); 890 891 /* 892 ** Use Zeller's Congruence to get day-of-week of first day of 893 ** month. 894 */ 895 m1 = (rulep->r_mon + 9) % 12 + 1; 896 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; 897 yy1 = yy0 / 100; 898 yy2 = yy0 % 100; 899 dow = ((26 * m1 - 2) / 10 + 900 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; 901 if (dow < 0) 902 dow += DAYSPERWEEK; 903 904 /* 905 ** "dow" is the day-of-week of the first day of the month. Get 906 ** the day-of-month (zero-origin) of the first "dow" day of the 907 ** month. 908 */ 909 d = rulep->r_day - dow; 910 if (d < 0) 911 d += DAYSPERWEEK; 912 for (i = 1; i < rulep->r_week; ++i) { 913 if (d + DAYSPERWEEK >= 914 mon_lengths[leapyear][rulep->r_mon - 1]) 915 break; 916 d += DAYSPERWEEK; 917 } 918 919 /* 920 ** "d" is the day-of-month (zero-origin) of the day we want. 921 */ 922 value += (time_t)(d * SECSPERDAY); 923 break; 924 } 925 926 /* 927 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in 928 ** question. To get the Epoch-relative time of the specified local 929 ** time on that day, add the transition time and the current offset 930 ** from UTC. 931 */ 932 return (time_t)(value + rulep->r_time + offset); 933 } 934 935 /* 936 ** Given a POSIX section 8-style TZ string, fill in the rule tables as 937 ** appropriate. 938 */ 939 940 static int 941 tzparse(timezone_t sp, const char *name, const int lastditch) 942 { 943 const char * stdname; 944 const char * dstname; 945 size_t stdlen; 946 size_t dstlen; 947 long stdoffset; 948 long dstoffset; 949 time_t * atp; 950 unsigned char * typep; 951 char * cp; 952 int load_result; 953 954 INITIALIZE(dstname); 955 stdname = name; 956 if (lastditch) { 957 stdlen = strlen(name); /* length of standard zone name */ 958 name += stdlen; 959 if (stdlen >= sizeof sp->chars) 960 stdlen = (sizeof sp->chars) - 1; 961 stdoffset = 0; 962 } else { 963 if (*name == '<') { 964 name++; 965 stdname = name; 966 name = getqzname(name, '>'); 967 if (*name != '>') 968 return (-1); 969 stdlen = name - stdname; 970 name++; 971 } else { 972 name = getzname(name); 973 stdlen = name - stdname; 974 } 975 if (*name == '\0') 976 return -1; 977 name = getoffset(name, &stdoffset); 978 if (name == NULL) 979 return -1; 980 } 981 load_result = tzload(sp, TZDEFRULES, FALSE); 982 if (load_result != 0) 983 sp->leapcnt = 0; /* so, we're off a little */ 984 if (*name != '\0') { 985 if (*name == '<') { 986 dstname = ++name; 987 name = getqzname(name, '>'); 988 if (*name != '>') 989 return -1; 990 dstlen = name - dstname; 991 name++; 992 } else { 993 dstname = name; 994 name = getzname(name); 995 dstlen = name - dstname; /* length of DST zone name */ 996 } 997 if (*name != '\0' && *name != ',' && *name != ';') { 998 name = getoffset(name, &dstoffset); 999 if (name == NULL) 1000 return -1; 1001 } else dstoffset = stdoffset - SECSPERHOUR; 1002 if (*name == '\0' && load_result != 0) 1003 name = TZDEFRULESTRING; 1004 if (*name == ',' || *name == ';') { 1005 struct rule start; 1006 struct rule end; 1007 int year; 1008 time_t janfirst; 1009 time_t starttime; 1010 time_t endtime; 1011 1012 ++name; 1013 if ((name = getrule(name, &start)) == NULL) 1014 return -1; 1015 if (*name++ != ',') 1016 return -1; 1017 if ((name = getrule(name, &end)) == NULL) 1018 return -1; 1019 if (*name != '\0') 1020 return -1; 1021 sp->typecnt = 2; /* standard time and DST */ 1022 /* 1023 ** Two transitions per year, from EPOCH_YEAR forward. 1024 */ 1025 memset(sp->ttis, 0, sizeof(sp->ttis)); 1026 sp->ttis[0].tt_gmtoff = -dstoffset; 1027 sp->ttis[0].tt_isdst = 1; 1028 sp->ttis[0].tt_abbrind = (int)(stdlen + 1); 1029 sp->ttis[1].tt_gmtoff = -stdoffset; 1030 sp->ttis[1].tt_isdst = 0; 1031 sp->ttis[1].tt_abbrind = 0; 1032 atp = sp->ats; 1033 typep = sp->types; 1034 janfirst = 0; 1035 sp->timecnt = 0; 1036 for (year = EPOCH_YEAR; 1037 sp->timecnt + 2 <= TZ_MAX_TIMES; 1038 ++year) { 1039 time_t newfirst; 1040 1041 starttime = transtime(janfirst, year, &start, 1042 stdoffset); 1043 endtime = transtime(janfirst, year, &end, 1044 dstoffset); 1045 if (starttime > endtime) { 1046 *atp++ = endtime; 1047 *typep++ = 1; /* DST ends */ 1048 *atp++ = starttime; 1049 *typep++ = 0; /* DST begins */ 1050 } else { 1051 *atp++ = starttime; 1052 *typep++ = 0; /* DST begins */ 1053 *atp++ = endtime; 1054 *typep++ = 1; /* DST ends */ 1055 } 1056 sp->timecnt += 2; 1057 newfirst = janfirst; 1058 newfirst += (time_t) 1059 (year_lengths[isleap(year)] * SECSPERDAY); 1060 if (newfirst <= janfirst) 1061 break; 1062 janfirst = newfirst; 1063 } 1064 } else { 1065 long theirstdoffset; 1066 long theirdstoffset; 1067 long theiroffset; 1068 int isdst; 1069 int i; 1070 int j; 1071 1072 if (*name != '\0') 1073 return -1; 1074 /* 1075 ** Initial values of theirstdoffset and theirdstoffset. 1076 */ 1077 theirstdoffset = 0; 1078 for (i = 0; i < sp->timecnt; ++i) { 1079 j = sp->types[i]; 1080 if (!sp->ttis[j].tt_isdst) { 1081 theirstdoffset = 1082 -sp->ttis[j].tt_gmtoff; 1083 break; 1084 } 1085 } 1086 theirdstoffset = 0; 1087 for (i = 0; i < sp->timecnt; ++i) { 1088 j = sp->types[i]; 1089 if (sp->ttis[j].tt_isdst) { 1090 theirdstoffset = 1091 -sp->ttis[j].tt_gmtoff; 1092 break; 1093 } 1094 } 1095 /* 1096 ** Initially we're assumed to be in standard time. 1097 */ 1098 isdst = FALSE; 1099 theiroffset = theirstdoffset; 1100 /* 1101 ** Now juggle transition times and types 1102 ** tracking offsets as you do. 1103 */ 1104 for (i = 0; i < sp->timecnt; ++i) { 1105 j = sp->types[i]; 1106 sp->types[i] = sp->ttis[j].tt_isdst; 1107 if (sp->ttis[j].tt_ttisgmt) { 1108 /* No adjustment to transition time */ 1109 } else { 1110 /* 1111 ** If summer time is in effect, and the 1112 ** transition time was not specified as 1113 ** standard time, add the summer time 1114 ** offset to the transition time; 1115 ** otherwise, add the standard time 1116 ** offset to the transition time. 1117 */ 1118 /* 1119 ** Transitions from DST to DDST 1120 ** will effectively disappear since 1121 ** POSIX provides for only one DST 1122 ** offset. 1123 */ 1124 if (isdst && !sp->ttis[j].tt_ttisstd) { 1125 sp->ats[i] += (time_t) 1126 (dstoffset - theirdstoffset); 1127 } else { 1128 sp->ats[i] += (time_t) 1129 (stdoffset - theirstdoffset); 1130 } 1131 } 1132 theiroffset = -sp->ttis[j].tt_gmtoff; 1133 if (!sp->ttis[j].tt_isdst) 1134 theirstdoffset = theiroffset; 1135 else theirdstoffset = theiroffset; 1136 } 1137 /* 1138 ** Finally, fill in ttis. 1139 ** ttisstd and ttisgmt need not be handled 1140 */ 1141 memset(sp->ttis, 0, sizeof(sp->ttis)); 1142 sp->ttis[0].tt_gmtoff = -stdoffset; 1143 sp->ttis[0].tt_isdst = FALSE; 1144 sp->ttis[0].tt_abbrind = 0; 1145 sp->ttis[1].tt_gmtoff = -dstoffset; 1146 sp->ttis[1].tt_isdst = TRUE; 1147 sp->ttis[1].tt_abbrind = (int)(stdlen + 1); 1148 sp->typecnt = 2; 1149 } 1150 } else { 1151 dstlen = 0; 1152 sp->typecnt = 1; /* only standard time */ 1153 sp->timecnt = 0; 1154 memset(sp->ttis, 0, sizeof(sp->ttis)); 1155 sp->ttis[0].tt_gmtoff = -stdoffset; 1156 sp->ttis[0].tt_isdst = 0; 1157 sp->ttis[0].tt_abbrind = 0; 1158 } 1159 sp->charcnt = (int)(stdlen + 1); 1160 if (dstlen != 0) 1161 sp->charcnt += (int)(dstlen + 1); 1162 if ((size_t) sp->charcnt > sizeof sp->chars) 1163 return -1; 1164 cp = sp->chars; 1165 (void) strncpy(cp, stdname, stdlen); 1166 cp += stdlen; 1167 *cp++ = '\0'; 1168 if (dstlen != 0) { 1169 (void) strncpy(cp, dstname, dstlen); 1170 *(cp + dstlen) = '\0'; 1171 } 1172 return 0; 1173 } 1174 1175 static void 1176 gmtload(timezone_t sp) 1177 { 1178 if (tzload(sp, gmt, TRUE) != 0) 1179 (void) tzparse(sp, gmt, TRUE); 1180 } 1181 1182 timezone_t 1183 tzalloc(const char *name) 1184 { 1185 timezone_t sp = calloc(1, sizeof *sp); 1186 if (sp == NULL) 1187 return NULL; 1188 if (tzload(sp, name, TRUE) != 0) { 1189 free(sp); 1190 return NULL; 1191 } 1192 settzname_z(sp); 1193 return sp; 1194 } 1195 1196 void 1197 tzfree(const timezone_t sp) 1198 { 1199 free(sp); 1200 } 1201 1202 static void 1203 tzsetwall_unlocked(void) 1204 { 1205 if (lcl_is_set < 0) 1206 return; 1207 lcl_is_set = -1; 1208 1209 if (lclptr == NULL) { 1210 int saveerrno = errno; 1211 lclptr = calloc(1, sizeof *lclptr); 1212 errno = saveerrno; 1213 if (lclptr == NULL) { 1214 settzname(); /* all we can do */ 1215 return; 1216 } 1217 } 1218 if (tzload(lclptr, NULL, TRUE) != 0) 1219 gmtload(lclptr); 1220 settzname(); 1221 } 1222 1223 #ifndef STD_INSPIRED 1224 /* 1225 ** A non-static declaration of tzsetwall in a system header file 1226 ** may cause a warning about this upcoming static declaration... 1227 */ 1228 static 1229 #endif /* !defined STD_INSPIRED */ 1230 void 1231 tzsetwall(void) 1232 { 1233 rwlock_wrlock(&lcl_lock); 1234 tzsetwall_unlocked(); 1235 rwlock_unlock(&lcl_lock); 1236 } 1237 1238 #ifndef STD_INSPIRED 1239 /* 1240 ** A non-static declaration of tzsetwall in a system header file 1241 ** may cause a warning about this upcoming static declaration... 1242 */ 1243 static 1244 #endif /* !defined STD_INSPIRED */ 1245 void 1246 tzset_unlocked(void) 1247 { 1248 const char * name; 1249 1250 name = getenv("TZ"); 1251 if (name == NULL) { 1252 tzsetwall_unlocked(); 1253 return; 1254 } 1255 1256 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) 1257 return; 1258 lcl_is_set = strlen(name) < sizeof lcl_TZname; 1259 if (lcl_is_set) 1260 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname)); 1261 1262 if (lclptr == NULL) { 1263 int saveerrno = errno; 1264 lclptr = calloc(1, sizeof *lclptr); 1265 errno = saveerrno; 1266 if (lclptr == NULL) { 1267 settzname(); /* all we can do */ 1268 return; 1269 } 1270 } 1271 if (*name == '\0') { 1272 /* 1273 ** User wants it fast rather than right. 1274 */ 1275 lclptr->leapcnt = 0; /* so, we're off a little */ 1276 lclptr->timecnt = 0; 1277 lclptr->typecnt = 0; 1278 lclptr->ttis[0].tt_isdst = 0; 1279 lclptr->ttis[0].tt_gmtoff = 0; 1280 lclptr->ttis[0].tt_abbrind = 0; 1281 (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars)); 1282 } else if (tzload(lclptr, name, TRUE) != 0) 1283 if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0) 1284 (void) gmtload(lclptr); 1285 settzname(); 1286 } 1287 1288 void 1289 tzset(void) 1290 { 1291 rwlock_wrlock(&lcl_lock); 1292 tzset_unlocked(); 1293 rwlock_unlock(&lcl_lock); 1294 } 1295 1296 /* 1297 ** The easy way to behave "as if no library function calls" localtime 1298 ** is to not call it--so we drop its guts into "localsub", which can be 1299 ** freely called. (And no, the PANS doesn't require the above behavior-- 1300 ** but it *is* desirable.) 1301 ** 1302 ** The unused offset argument is for the benefit of mktime variants. 1303 */ 1304 1305 /*ARGSUSED*/ 1306 static struct tm * 1307 localsub(const timezone_t sp, const time_t * const timep, const long offset, 1308 struct tm *const tmp) 1309 { 1310 const struct ttinfo * ttisp; 1311 int i; 1312 struct tm * result; 1313 const time_t t = *timep; 1314 1315 if ((sp->goback && t < sp->ats[0]) || 1316 (sp->goahead && t > sp->ats[sp->timecnt - 1])) { 1317 time_t newt = t; 1318 time_t seconds; 1319 time_t tcycles; 1320 int_fast64_t icycles; 1321 1322 if (t < sp->ats[0]) 1323 seconds = sp->ats[0] - t; 1324 else seconds = t - sp->ats[sp->timecnt - 1]; 1325 --seconds; 1326 tcycles = (time_t) 1327 (seconds / YEARSPERREPEAT / AVGSECSPERYEAR); 1328 ++tcycles; 1329 icycles = tcycles; 1330 if (tcycles - icycles >= 1 || icycles - tcycles >= 1) 1331 return NULL; 1332 seconds = (time_t) icycles; 1333 seconds *= YEARSPERREPEAT; 1334 seconds *= AVGSECSPERYEAR; 1335 if (t < sp->ats[0]) 1336 newt += seconds; 1337 else newt -= seconds; 1338 if (newt < sp->ats[0] || 1339 newt > sp->ats[sp->timecnt - 1]) 1340 return NULL; /* "cannot happen" */ 1341 result = localsub(sp, &newt, offset, tmp); 1342 if (result == tmp) { 1343 time_t newy; 1344 1345 newy = tmp->tm_year; 1346 if (t < sp->ats[0]) 1347 newy -= (time_t)icycles * YEARSPERREPEAT; 1348 else newy += (time_t)icycles * YEARSPERREPEAT; 1349 tmp->tm_year = (int)newy; 1350 if (tmp->tm_year != newy) 1351 return NULL; 1352 } 1353 return result; 1354 } 1355 if (sp->timecnt == 0 || t < sp->ats[0]) { 1356 i = 0; 1357 while (sp->ttis[i].tt_isdst) 1358 if (++i >= sp->typecnt) { 1359 i = 0; 1360 break; 1361 } 1362 } else { 1363 int lo = 1; 1364 int hi = sp->timecnt; 1365 1366 while (lo < hi) { 1367 int mid = (lo + hi) / 2; 1368 1369 if (t < sp->ats[mid]) 1370 hi = mid; 1371 else lo = mid + 1; 1372 } 1373 i = (int) sp->types[lo - 1]; 1374 } 1375 ttisp = &sp->ttis[i]; 1376 /* 1377 ** To get (wrong) behavior that's compatible with System V Release 2.0 1378 ** you'd replace the statement below with 1379 ** t += ttisp->tt_gmtoff; 1380 ** timesub(&t, 0L, sp, tmp); 1381 */ 1382 result = timesub(sp, &t, ttisp->tt_gmtoff, tmp); 1383 tmp->tm_isdst = ttisp->tt_isdst; 1384 if (sp == lclptr) 1385 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind]; 1386 #ifdef TM_ZONE 1387 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind]; 1388 #endif /* defined TM_ZONE */ 1389 return result; 1390 } 1391 1392 /* 1393 ** Re-entrant version of localtime. 1394 */ 1395 1396 struct tm * 1397 localtime_r(const time_t * __restrict timep, struct tm *tmp) 1398 { 1399 rwlock_rdlock(&lcl_lock); 1400 tzset_unlocked(); 1401 tmp = localtime_rz(lclptr, timep, tmp); 1402 rwlock_unlock(&lcl_lock); 1403 return tmp; 1404 } 1405 1406 struct tm * 1407 localtime(const time_t *const timep) 1408 { 1409 return localtime_r(timep, &tm); 1410 } 1411 1412 struct tm * 1413 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp) 1414 { 1415 if (sp == NULL) 1416 tmp = gmtsub(NULL, timep, 0L, tmp); 1417 else 1418 tmp = localsub(sp, timep, 0L, tmp); 1419 if (tmp == NULL) 1420 errno = EOVERFLOW; 1421 return tmp; 1422 } 1423 1424 /* 1425 ** gmtsub is to gmtime as localsub is to localtime. 1426 */ 1427 1428 static struct tm * 1429 gmtsub(const timezone_t sp, const time_t *const timep, const long offset, 1430 struct tm *const tmp) 1431 { 1432 struct tm * result; 1433 #ifdef _REENTRANT 1434 static mutex_t gmt_mutex = MUTEX_INITIALIZER; 1435 #endif 1436 1437 mutex_lock(&gmt_mutex); 1438 if (!gmt_is_set) { 1439 int saveerrno; 1440 gmt_is_set = TRUE; 1441 saveerrno = errno; 1442 gmtptr = calloc(1, sizeof *gmtptr); 1443 errno = saveerrno; 1444 if (gmtptr != NULL) 1445 gmtload(gmtptr); 1446 } 1447 mutex_unlock(&gmt_mutex); 1448 result = timesub(gmtptr, timep, offset, tmp); 1449 #ifdef TM_ZONE 1450 /* 1451 ** Could get fancy here and deliver something such as 1452 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero, 1453 ** but this is no time for a treasure hunt. 1454 */ 1455 if (offset != 0) 1456 tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr); 1457 else { 1458 if (gmtptr == NULL) 1459 tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt); 1460 else tmp->TM_ZONE = gmtptr->chars; 1461 } 1462 #endif /* defined TM_ZONE */ 1463 return result; 1464 } 1465 1466 struct tm * 1467 gmtime(const time_t *const timep) 1468 { 1469 struct tm *tmp = gmtsub(NULL, timep, 0L, &tm); 1470 1471 if (tmp == NULL) 1472 errno = EOVERFLOW; 1473 1474 return tmp; 1475 } 1476 1477 /* 1478 ** Re-entrant version of gmtime. 1479 */ 1480 1481 struct tm * 1482 gmtime_r(const time_t * const timep, struct tm *tmp) 1483 { 1484 tmp = gmtsub(NULL, timep, 0L, tmp); 1485 1486 if (tmp == NULL) 1487 errno = EOVERFLOW; 1488 1489 return tmp; 1490 } 1491 1492 #ifdef STD_INSPIRED 1493 1494 struct tm * 1495 offtime(const time_t *const timep, long offset) 1496 { 1497 struct tm *tmp = gmtsub(NULL, timep, offset, &tm); 1498 1499 if (tmp == NULL) 1500 errno = EOVERFLOW; 1501 1502 return tmp; 1503 } 1504 1505 struct tm * 1506 offtime_r(const time_t *timep, long offset, struct tm *tmp) 1507 { 1508 tmp = gmtsub(NULL, timep, offset, tmp); 1509 1510 if (tmp == NULL) 1511 errno = EOVERFLOW; 1512 1513 return tmp; 1514 } 1515 1516 #endif /* defined STD_INSPIRED */ 1517 1518 /* 1519 ** Return the number of leap years through the end of the given year 1520 ** where, to make the math easy, the answer for year zero is defined as zero. 1521 */ 1522 1523 static int 1524 leaps_thru_end_of(const int y) 1525 { 1526 return (y >= 0) ? (y / 4 - y / 100 + y / 400) : 1527 -(leaps_thru_end_of(-(y + 1)) + 1); 1528 } 1529 1530 static struct tm * 1531 timesub(const timezone_t sp, const time_t *const timep, const long offset, 1532 struct tm *const tmp) 1533 { 1534 const struct lsinfo * lp; 1535 time_t tdays; 1536 int idays; /* unsigned would be so 2003 */ 1537 long rem; 1538 int y; 1539 const int * ip; 1540 long corr; 1541 int hit; 1542 int i; 1543 1544 corr = 0; 1545 hit = 0; 1546 i = (sp == NULL) ? 0 : sp->leapcnt; 1547 while (--i >= 0) { 1548 lp = &sp->lsis[i]; 1549 if (*timep >= lp->ls_trans) { 1550 if (*timep == lp->ls_trans) { 1551 hit = ((i == 0 && lp->ls_corr > 0) || 1552 lp->ls_corr > sp->lsis[i - 1].ls_corr); 1553 if (hit) 1554 while (i > 0 && 1555 sp->lsis[i].ls_trans == 1556 sp->lsis[i - 1].ls_trans + 1 && 1557 sp->lsis[i].ls_corr == 1558 sp->lsis[i - 1].ls_corr + 1) { 1559 ++hit; 1560 --i; 1561 } 1562 } 1563 corr = lp->ls_corr; 1564 break; 1565 } 1566 } 1567 y = EPOCH_YEAR; 1568 tdays = (time_t)(*timep / SECSPERDAY); 1569 rem = (long) (*timep - tdays * SECSPERDAY); 1570 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) { 1571 int newy; 1572 time_t tdelta; 1573 int idelta; 1574 int leapdays; 1575 1576 tdelta = tdays / DAYSPERLYEAR; 1577 idelta = (int) tdelta; 1578 if (tdelta - idelta >= 1 || idelta - tdelta >= 1) 1579 return NULL; 1580 if (idelta == 0) 1581 idelta = (tdays < 0) ? -1 : 1; 1582 newy = y; 1583 if (increment_overflow(&newy, idelta)) 1584 return NULL; 1585 leapdays = leaps_thru_end_of(newy - 1) - 1586 leaps_thru_end_of(y - 1); 1587 tdays -= ((time_t) newy - y) * DAYSPERNYEAR; 1588 tdays -= leapdays; 1589 y = newy; 1590 } 1591 { 1592 long seconds; 1593 1594 seconds = tdays * SECSPERDAY + 0.5; 1595 tdays = (time_t)(seconds / SECSPERDAY); 1596 rem += (long) (seconds - tdays * SECSPERDAY); 1597 } 1598 /* 1599 ** Given the range, we can now fearlessly cast... 1600 */ 1601 idays = (int) tdays; 1602 rem += offset - corr; 1603 while (rem < 0) { 1604 rem += SECSPERDAY; 1605 --idays; 1606 } 1607 while (rem >= SECSPERDAY) { 1608 rem -= SECSPERDAY; 1609 ++idays; 1610 } 1611 while (idays < 0) { 1612 if (increment_overflow(&y, -1)) 1613 return NULL; 1614 idays += year_lengths[isleap(y)]; 1615 } 1616 while (idays >= year_lengths[isleap(y)]) { 1617 idays -= year_lengths[isleap(y)]; 1618 if (increment_overflow(&y, 1)) 1619 return NULL; 1620 } 1621 tmp->tm_year = y; 1622 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) 1623 return NULL; 1624 tmp->tm_yday = idays; 1625 /* 1626 ** The "extra" mods below avoid overflow problems. 1627 */ 1628 tmp->tm_wday = EPOCH_WDAY + 1629 ((y - EPOCH_YEAR) % DAYSPERWEEK) * 1630 (DAYSPERNYEAR % DAYSPERWEEK) + 1631 leaps_thru_end_of(y - 1) - 1632 leaps_thru_end_of(EPOCH_YEAR - 1) + 1633 idays; 1634 tmp->tm_wday %= DAYSPERWEEK; 1635 if (tmp->tm_wday < 0) 1636 tmp->tm_wday += DAYSPERWEEK; 1637 tmp->tm_hour = (int) (rem / SECSPERHOUR); 1638 rem %= SECSPERHOUR; 1639 tmp->tm_min = (int) (rem / SECSPERMIN); 1640 /* 1641 ** A positive leap second requires a special 1642 ** representation. This uses "... ??:59:60" et seq. 1643 */ 1644 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; 1645 ip = mon_lengths[isleap(y)]; 1646 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) 1647 idays -= ip[tmp->tm_mon]; 1648 tmp->tm_mday = (int) (idays + 1); 1649 tmp->tm_isdst = 0; 1650 #ifdef TM_GMTOFF 1651 tmp->TM_GMTOFF = offset; 1652 #endif /* defined TM_GMTOFF */ 1653 return tmp; 1654 } 1655 1656 char * 1657 ctime(const time_t *const timep) 1658 { 1659 /* 1660 ** Section 4.12.3.2 of X3.159-1989 requires that 1661 ** The ctime function converts the calendar time pointed to by timer 1662 ** to local time in the form of a string. It is equivalent to 1663 ** asctime(localtime(timer)) 1664 */ 1665 struct tm *rtm = localtime(timep); 1666 if (rtm == NULL) 1667 return NULL; 1668 return asctime(rtm); 1669 } 1670 1671 char * 1672 ctime_r(const time_t *const timep, char *buf) 1673 { 1674 struct tm mytm, *rtm; 1675 1676 rtm = localtime_r(timep, &mytm); 1677 if (rtm == NULL) 1678 return NULL; 1679 return asctime_r(rtm, buf); 1680 } 1681 1682 char * 1683 ctime_rz(const timezone_t sp, const time_t * timep, char *buf) 1684 { 1685 struct tm mytm, *rtm; 1686 1687 rtm = localtime_rz(sp, timep, &mytm); 1688 if (rtm == NULL) 1689 return NULL; 1690 return asctime_r(rtm, buf); 1691 } 1692 1693 /* 1694 ** Adapted from code provided by Robert Elz, who writes: 1695 ** The "best" way to do mktime I think is based on an idea of Bob 1696 ** Kridle's (so its said...) from a long time ago. 1697 ** It does a binary search of the time_t space. Since time_t's are 1698 ** just 32 bits, its a max of 32 iterations (even at 64 bits it 1699 ** would still be very reasonable). 1700 */ 1701 1702 #ifndef WRONG 1703 #define WRONG ((time_t)-1) 1704 #endif /* !defined WRONG */ 1705 1706 /* 1707 ** Simplified normalize logic courtesy Paul Eggert. 1708 */ 1709 1710 static int 1711 increment_overflow(int *const ip, int j) 1712 { 1713 int i = *ip; 1714 1715 /* 1716 ** If i >= 0 there can only be overflow if i + j > INT_MAX 1717 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow. 1718 ** If i < 0 there can only be overflow if i + j < INT_MIN 1719 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow. 1720 */ 1721 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i)) 1722 return TRUE; 1723 *ip += j; 1724 return FALSE; 1725 } 1726 1727 static int 1728 long_increment_overflow(long *const lp, int m) 1729 { 1730 long l = *lp; 1731 1732 if ((l >= 0) ? (m > LONG_MAX - l) : (m < LONG_MIN - l)) 1733 return TRUE; 1734 *lp += m; 1735 return FALSE; 1736 } 1737 1738 static int 1739 normalize_overflow(int *const tensptr, int *const unitsptr, const int base) 1740 { 1741 int tensdelta; 1742 1743 tensdelta = (*unitsptr >= 0) ? 1744 (*unitsptr / base) : 1745 (-1 - (-1 - *unitsptr) / base); 1746 *unitsptr -= tensdelta * base; 1747 return increment_overflow(tensptr, tensdelta); 1748 } 1749 1750 static int 1751 long_normalize_overflow(long *const tensptr, int *const unitsptr, 1752 const int base) 1753 { 1754 int tensdelta; 1755 1756 tensdelta = (*unitsptr >= 0) ? 1757 (*unitsptr / base) : 1758 (-1 - (-1 - *unitsptr) / base); 1759 *unitsptr -= tensdelta * base; 1760 return long_increment_overflow(tensptr, tensdelta); 1761 } 1762 1763 static int 1764 tmcomp(const struct tm *const atmp, const struct tm *const btmp) 1765 { 1766 int result; 1767 1768 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 && 1769 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 && 1770 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && 1771 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && 1772 (result = (atmp->tm_min - btmp->tm_min)) == 0) 1773 result = atmp->tm_sec - btmp->tm_sec; 1774 return result; 1775 } 1776 1777 static time_t 1778 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp, 1779 const long offset, int *const okayp, const int do_norm_secs) 1780 { 1781 int dir; 1782 int i, j; 1783 int saved_seconds; 1784 long li; 1785 time_t lo; 1786 time_t hi; 1787 #ifdef NO_ERROR_IN_DST_GAP 1788 time_t ilo; 1789 #endif 1790 long y; 1791 time_t newt; 1792 time_t t; 1793 struct tm yourtm, mytm; 1794 1795 *okayp = FALSE; 1796 yourtm = *tmp; 1797 #ifdef NO_ERROR_IN_DST_GAP 1798 again: 1799 #endif 1800 if (do_norm_secs) { 1801 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, 1802 SECSPERMIN)) 1803 goto overflow; 1804 } 1805 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) 1806 goto overflow; 1807 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) 1808 goto overflow; 1809 y = yourtm.tm_year; 1810 if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR)) 1811 goto overflow; 1812 /* 1813 ** Turn y into an actual year number for now. 1814 ** It is converted back to an offset from TM_YEAR_BASE later. 1815 */ 1816 if (long_increment_overflow(&y, TM_YEAR_BASE)) 1817 goto overflow; 1818 while (yourtm.tm_mday <= 0) { 1819 if (long_increment_overflow(&y, -1)) 1820 goto overflow; 1821 li = y + (1 < yourtm.tm_mon); 1822 yourtm.tm_mday += year_lengths[isleap(li)]; 1823 } 1824 while (yourtm.tm_mday > DAYSPERLYEAR) { 1825 li = y + (1 < yourtm.tm_mon); 1826 yourtm.tm_mday -= year_lengths[isleap(li)]; 1827 if (long_increment_overflow(&y, 1)) 1828 goto overflow; 1829 } 1830 for ( ; ; ) { 1831 i = mon_lengths[isleap(y)][yourtm.tm_mon]; 1832 if (yourtm.tm_mday <= i) 1833 break; 1834 yourtm.tm_mday -= i; 1835 if (++yourtm.tm_mon >= MONSPERYEAR) { 1836 yourtm.tm_mon = 0; 1837 if (long_increment_overflow(&y, 1)) 1838 goto overflow; 1839 } 1840 } 1841 if (long_increment_overflow(&y, -TM_YEAR_BASE)) 1842 goto overflow; 1843 yourtm.tm_year = (int)y; 1844 if (yourtm.tm_year != y) 1845 goto overflow; 1846 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) 1847 saved_seconds = 0; 1848 else if (y + TM_YEAR_BASE < EPOCH_YEAR) { 1849 /* 1850 ** We can't set tm_sec to 0, because that might push the 1851 ** time below the minimum representable time. 1852 ** Set tm_sec to 59 instead. 1853 ** This assumes that the minimum representable time is 1854 ** not in the same minute that a leap second was deleted from, 1855 ** which is a safer assumption than using 58 would be. 1856 */ 1857 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) 1858 goto overflow; 1859 saved_seconds = yourtm.tm_sec; 1860 yourtm.tm_sec = SECSPERMIN - 1; 1861 } else { 1862 saved_seconds = yourtm.tm_sec; 1863 yourtm.tm_sec = 0; 1864 } 1865 /* 1866 ** Do a binary search (this works whatever time_t's type is). 1867 */ 1868 /* LINTED const not */ 1869 if (!TYPE_SIGNED(time_t)) { 1870 lo = 0; 1871 hi = lo - 1; 1872 /* LINTED const not */ 1873 } else if (!TYPE_INTEGRAL(time_t)) { 1874 /* CONSTCOND */ 1875 if (sizeof(time_t) > sizeof(float)) 1876 /* LINTED assumed double */ 1877 hi = (time_t) DBL_MAX; 1878 /* LINTED assumed float */ 1879 else hi = (time_t) FLT_MAX; 1880 lo = -hi; 1881 } else { 1882 lo = 1; 1883 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i) 1884 lo *= 2; 1885 hi = -(lo + 1); 1886 } 1887 #ifdef NO_ERROR_IN_DST_GAP 1888 ilo = lo; 1889 #endif 1890 for ( ; ; ) { 1891 t = lo / 2 + hi / 2; 1892 if (t < lo) 1893 t = lo; 1894 else if (t > hi) 1895 t = hi; 1896 if ((*funcp)(sp, &t, offset, &mytm) == NULL) { 1897 /* 1898 ** Assume that t is too extreme to be represented in 1899 ** a struct tm; arrange things so that it is less 1900 ** extreme on the next pass. 1901 */ 1902 dir = (t > 0) ? 1 : -1; 1903 } else dir = tmcomp(&mytm, &yourtm); 1904 if (dir != 0) { 1905 if (t == lo) { 1906 ++t; 1907 if (t <= lo) 1908 goto overflow; 1909 ++lo; 1910 } else if (t == hi) { 1911 --t; 1912 if (t >= hi) 1913 goto overflow; 1914 --hi; 1915 } 1916 #ifdef NO_ERROR_IN_DST_GAP 1917 if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 && 1918 do_norm_secs) { 1919 for (i = sp->typecnt - 1; i >= 0; --i) { 1920 for (j = sp->typecnt - 1; j >= 0; --j) { 1921 time_t off; 1922 if (sp->ttis[j].tt_isdst == 1923 sp->ttis[i].tt_isdst) 1924 continue; 1925 off = sp->ttis[j].tt_gmtoff - 1926 sp->ttis[i].tt_gmtoff; 1927 yourtm.tm_sec += off < 0 ? 1928 -off : off; 1929 goto again; 1930 } 1931 } 1932 } 1933 #endif 1934 if (lo > hi) 1935 goto invalid; 1936 if (dir > 0) 1937 hi = t; 1938 else lo = t; 1939 continue; 1940 } 1941 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) 1942 break; 1943 /* 1944 ** Right time, wrong type. 1945 ** Hunt for right time, right type. 1946 ** It's okay to guess wrong since the guess 1947 ** gets checked. 1948 */ 1949 if (sp == NULL) 1950 goto invalid; 1951 for (i = sp->typecnt - 1; i >= 0; --i) { 1952 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) 1953 continue; 1954 for (j = sp->typecnt - 1; j >= 0; --j) { 1955 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) 1956 continue; 1957 newt = (time_t)(t + sp->ttis[j].tt_gmtoff - 1958 sp->ttis[i].tt_gmtoff); 1959 if ((*funcp)(sp, &newt, offset, &mytm) == NULL) 1960 continue; 1961 if (tmcomp(&mytm, &yourtm) != 0) 1962 continue; 1963 if (mytm.tm_isdst != yourtm.tm_isdst) 1964 continue; 1965 /* 1966 ** We have a match. 1967 */ 1968 t = newt; 1969 goto label; 1970 } 1971 } 1972 goto invalid; 1973 } 1974 label: 1975 newt = t + saved_seconds; 1976 if ((newt < t) != (saved_seconds < 0)) 1977 goto overflow; 1978 t = newt; 1979 if ((*funcp)(sp, &t, offset, tmp)) { 1980 *okayp = TRUE; 1981 return t; 1982 } 1983 overflow: 1984 errno = EOVERFLOW; 1985 return WRONG; 1986 invalid: 1987 errno = EINVAL; 1988 return WRONG; 1989 } 1990 1991 static time_t 1992 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp, 1993 const long offset, int *const okayp) 1994 { 1995 time_t t; 1996 1997 /* 1998 ** First try without normalization of seconds 1999 ** (in case tm_sec contains a value associated with a leap second). 2000 ** If that fails, try with normalization of seconds. 2001 */ 2002 t = time2sub(sp, tmp, funcp, offset, okayp, FALSE); 2003 return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE); 2004 } 2005 2006 static time_t 2007 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp, 2008 const long offset) 2009 { 2010 time_t t; 2011 int samei, otheri; 2012 int sameind, otherind; 2013 int i; 2014 int nseen; 2015 int seen[TZ_MAX_TYPES]; 2016 int types[TZ_MAX_TYPES]; 2017 int okay; 2018 2019 if (tmp == NULL) { 2020 errno = EINVAL; 2021 return WRONG; 2022 } 2023 if (tmp->tm_isdst > 1) 2024 tmp->tm_isdst = 1; 2025 t = time2(sp, tmp, funcp, offset, &okay); 2026 #ifdef PCTS 2027 /* 2028 ** PCTS code courtesy Grant Sullivan. 2029 */ 2030 if (okay) 2031 return t; 2032 if (tmp->tm_isdst < 0) 2033 tmp->tm_isdst = 0; /* reset to std and try again */ 2034 #endif /* defined PCTS */ 2035 #ifndef PCTS 2036 if (okay || tmp->tm_isdst < 0) 2037 return t; 2038 #endif /* !defined PCTS */ 2039 /* 2040 ** We're supposed to assume that somebody took a time of one type 2041 ** and did some math on it that yielded a "struct tm" that's bad. 2042 ** We try to divine the type they started from and adjust to the 2043 ** type they need. 2044 */ 2045 if (sp == NULL) { 2046 errno = EINVAL; 2047 return WRONG; 2048 } 2049 for (i = 0; i < sp->typecnt; ++i) 2050 seen[i] = FALSE; 2051 nseen = 0; 2052 for (i = sp->timecnt - 1; i >= 0; --i) 2053 if (!seen[sp->types[i]]) { 2054 seen[sp->types[i]] = TRUE; 2055 types[nseen++] = sp->types[i]; 2056 } 2057 for (sameind = 0; sameind < nseen; ++sameind) { 2058 samei = types[sameind]; 2059 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) 2060 continue; 2061 for (otherind = 0; otherind < nseen; ++otherind) { 2062 otheri = types[otherind]; 2063 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) 2064 continue; 2065 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff - 2066 sp->ttis[samei].tt_gmtoff); 2067 tmp->tm_isdst = !tmp->tm_isdst; 2068 t = time2(sp, tmp, funcp, offset, &okay); 2069 if (okay) 2070 return t; 2071 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff - 2072 sp->ttis[samei].tt_gmtoff); 2073 tmp->tm_isdst = !tmp->tm_isdst; 2074 } 2075 } 2076 errno = EOVERFLOW; 2077 return WRONG; 2078 } 2079 2080 time_t 2081 mktime_z(const timezone_t sp, struct tm *const tmp) 2082 { 2083 time_t t; 2084 if (sp == NULL) 2085 t = time1(NULL, tmp, gmtsub, 0L); 2086 else 2087 t = time1(sp, tmp, localsub, 0L); 2088 return t; 2089 } 2090 2091 time_t 2092 mktime(struct tm *const tmp) 2093 { 2094 time_t result; 2095 2096 rwlock_wrlock(&lcl_lock); 2097 tzset_unlocked(); 2098 result = mktime_z(lclptr, tmp); 2099 rwlock_unlock(&lcl_lock); 2100 return result; 2101 } 2102 2103 #ifdef STD_INSPIRED 2104 2105 time_t 2106 timelocal_z(const timezone_t sp, struct tm *const tmp) 2107 { 2108 if (tmp != NULL) 2109 tmp->tm_isdst = -1; /* in case it wasn't initialized */ 2110 return mktime_z(sp, tmp); 2111 } 2112 2113 time_t 2114 timelocal(struct tm *const tmp) 2115 { 2116 if (tmp != NULL) 2117 tmp->tm_isdst = -1; /* in case it wasn't initialized */ 2118 return mktime(tmp); 2119 } 2120 2121 time_t 2122 timegm(struct tm *const tmp) 2123 { 2124 time_t t; 2125 2126 if (tmp != NULL) 2127 tmp->tm_isdst = 0; 2128 t = time1(gmtptr, tmp, gmtsub, 0L); 2129 return t; 2130 } 2131 2132 time_t 2133 timeoff(struct tm *const tmp, const long offset) 2134 { 2135 time_t t; 2136 2137 if (tmp != NULL) 2138 tmp->tm_isdst = 0; 2139 t = time1(gmtptr, tmp, gmtsub, offset); 2140 return t; 2141 } 2142 2143 #endif /* defined STD_INSPIRED */ 2144 2145 #ifdef CMUCS 2146 2147 /* 2148 ** The following is supplied for compatibility with 2149 ** previous versions of the CMUCS runtime library. 2150 */ 2151 2152 long 2153 gtime(struct tm *const tmp) 2154 { 2155 const time_t t = mktime(tmp); 2156 2157 if (t == WRONG) 2158 return -1; 2159 return t; 2160 } 2161 2162 #endif /* defined CMUCS */ 2163 2164 /* 2165 ** XXX--is the below the right way to conditionalize?? 2166 */ 2167 2168 #ifdef STD_INSPIRED 2169 2170 /* 2171 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599 2172 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which 2173 ** is not the case if we are accounting for leap seconds. 2174 ** So, we provide the following conversion routines for use 2175 ** when exchanging timestamps with POSIX conforming systems. 2176 */ 2177 2178 static long 2179 leapcorr(const timezone_t sp, time_t *timep) 2180 { 2181 struct lsinfo * lp; 2182 int i; 2183 2184 i = sp->leapcnt; 2185 while (--i >= 0) { 2186 lp = &sp->lsis[i]; 2187 if (*timep >= lp->ls_trans) 2188 return lp->ls_corr; 2189 } 2190 return 0; 2191 } 2192 2193 time_t 2194 time2posix_z(const timezone_t sp, time_t t) 2195 { 2196 return (time_t)(t - leapcorr(sp, &t)); 2197 } 2198 2199 time_t 2200 time2posix(time_t t) 2201 { 2202 time_t result; 2203 rwlock_wrlock(&lcl_lock); 2204 tzset_unlocked(); 2205 result = (time_t)(t - leapcorr(lclptr, &t)); 2206 rwlock_unlock(&lcl_lock); 2207 return (result); 2208 } 2209 2210 time_t 2211 posix2time_z(const timezone_t sp, time_t t) 2212 { 2213 time_t x; 2214 time_t y; 2215 2216 /* 2217 ** For a positive leap second hit, the result 2218 ** is not unique. For a negative leap second 2219 ** hit, the corresponding time doesn't exist, 2220 ** so we return an adjacent second. 2221 */ 2222 x = (time_t)(t + leapcorr(sp, &t)); 2223 y = (time_t)(x - leapcorr(sp, &x)); 2224 if (y < t) { 2225 do { 2226 x++; 2227 y = (time_t)(x - leapcorr(sp, &x)); 2228 } while (y < t); 2229 if (t != y) { 2230 return x - 1; 2231 } 2232 } else if (y > t) { 2233 do { 2234 --x; 2235 y = (time_t)(x - leapcorr(sp, &x)); 2236 } while (y > t); 2237 if (t != y) { 2238 return x + 1; 2239 } 2240 } 2241 return x; 2242 } 2243 2244 2245 2246 time_t 2247 posix2time(time_t t) 2248 { 2249 time_t result; 2250 2251 rwlock_wrlock(&lcl_lock); 2252 tzset_unlocked(); 2253 result = posix2time_z(lclptr, t); 2254 rwlock_unlock(&lcl_lock); 2255 return result; 2256 } 2257 2258 #endif /* defined STD_INSPIRED */ 2259