1 /* $NetBSD: localtime.c,v 1.73 2013/03/02 21:24:28 christos Exp $ */ 2 3 /* 4 ** This file is in the public domain, so clarified as of 5 ** 1996-06-05 by Arthur David Olson. 6 */ 7 8 #include <sys/cdefs.h> 9 #if defined(LIBC_SCCS) && !defined(lint) 10 #if 0 11 static char elsieid[] = "@(#)localtime.c 8.17"; 12 #else 13 __RCSID("$NetBSD: localtime.c,v 1.73 2013/03/02 21:24:28 christos Exp $"); 14 #endif 15 #endif /* LIBC_SCCS and not lint */ 16 17 /* 18 ** Leap second handling from Bradley White. 19 ** POSIX-style TZ environment variable handling from Guy Harris. 20 */ 21 22 /*LINTLIBRARY*/ 23 24 #include "namespace.h" 25 #include "private.h" 26 #include "tzfile.h" 27 #include "fcntl.h" 28 #include "reentrant.h" 29 30 #if defined(__weak_alias) 31 __weak_alias(daylight,_daylight) 32 __weak_alias(tzname,_tzname) 33 #endif 34 35 #include "float.h" /* for FLT_MAX and DBL_MAX */ 36 37 #ifndef TZ_ABBR_MAX_LEN 38 #define TZ_ABBR_MAX_LEN 16 39 #endif /* !defined TZ_ABBR_MAX_LEN */ 40 41 #ifndef TZ_ABBR_CHAR_SET 42 #define TZ_ABBR_CHAR_SET \ 43 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._" 44 #endif /* !defined TZ_ABBR_CHAR_SET */ 45 46 #ifndef TZ_ABBR_ERR_CHAR 47 #define TZ_ABBR_ERR_CHAR '_' 48 #endif /* !defined TZ_ABBR_ERR_CHAR */ 49 50 /* 51 ** SunOS 4.1.1 headers lack O_BINARY. 52 */ 53 54 #ifdef O_BINARY 55 #define OPEN_MODE (O_RDONLY | O_BINARY) 56 #endif /* defined O_BINARY */ 57 #ifndef O_BINARY 58 #define OPEN_MODE O_RDONLY 59 #endif /* !defined O_BINARY */ 60 61 #ifndef WILDABBR 62 /* 63 ** Someone might make incorrect use of a time zone abbreviation: 64 ** 1. They might reference tzname[0] before calling tzset (explicitly 65 ** or implicitly). 66 ** 2. They might reference tzname[1] before calling tzset (explicitly 67 ** or implicitly). 68 ** 3. They might reference tzname[1] after setting to a time zone 69 ** in which Daylight Saving Time is never observed. 70 ** 4. They might reference tzname[0] after setting to a time zone 71 ** in which Standard Time is never observed. 72 ** 5. They might reference tm.TM_ZONE after calling offtime. 73 ** What's best to do in the above cases is open to debate; 74 ** for now, we just set things up so that in any of the five cases 75 ** WILDABBR is used. Another possibility: initialize tzname[0] to the 76 ** string "tzname[0] used before set", and similarly for the other cases. 77 ** And another: initialize tzname[0] to "ERA", with an explanation in the 78 ** manual page of what this "time zone abbreviation" means (doing this so 79 ** that tzname[0] has the "normal" length of three characters). 80 */ 81 #define WILDABBR " " 82 #endif /* !defined WILDABBR */ 83 84 static const char wildabbr[] = WILDABBR; 85 86 static const char gmt[] = "GMT"; 87 88 /* 89 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES. 90 ** We default to US rules as of 1999-08-17. 91 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are 92 ** implementation dependent; for historical reasons, US rules are a 93 ** common default. 94 */ 95 #ifndef TZDEFRULESTRING 96 #define TZDEFRULESTRING ",M4.1.0,M10.5.0" 97 #endif /* !defined TZDEFDST */ 98 99 struct ttinfo { /* time type information */ 100 long tt_gmtoff; /* UTC offset in seconds */ 101 int tt_isdst; /* used to set tm_isdst */ 102 int tt_abbrind; /* abbreviation list index */ 103 int tt_ttisstd; /* TRUE if transition is std time */ 104 int tt_ttisgmt; /* TRUE if transition is UTC */ 105 }; 106 107 struct lsinfo { /* leap second information */ 108 time_t ls_trans; /* transition time */ 109 long ls_corr; /* correction to apply */ 110 }; 111 112 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b)) 113 114 #ifdef TZNAME_MAX 115 #define MY_TZNAME_MAX TZNAME_MAX 116 #endif /* defined TZNAME_MAX */ 117 #ifndef TZNAME_MAX 118 #define MY_TZNAME_MAX 255 119 #endif /* !defined TZNAME_MAX */ 120 121 struct __state { 122 int leapcnt; 123 int timecnt; 124 int typecnt; 125 int charcnt; 126 int goback; 127 int goahead; 128 time_t ats[TZ_MAX_TIMES]; 129 unsigned char types[TZ_MAX_TIMES]; 130 struct ttinfo ttis[TZ_MAX_TYPES]; 131 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, 132 sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))]; 133 struct lsinfo lsis[TZ_MAX_LEAPS]; 134 }; 135 136 struct rule { 137 int r_type; /* type of rule--see below */ 138 int r_day; /* day number of rule */ 139 int r_week; /* week number of rule */ 140 int r_mon; /* month number of rule */ 141 long r_time; /* transition time of rule */ 142 }; 143 144 #define JULIAN_DAY 0 /* Jn - Julian day */ 145 #define DAY_OF_YEAR 1 /* n - day of year */ 146 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */ 147 148 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep, 149 long offset, struct tm *tmp); 150 151 /* 152 ** Prototypes for static functions. 153 */ 154 155 static long detzcode(const char * codep); 156 static time_t detzcode64(const char * codep); 157 static int differ_by_repeat(time_t t1, time_t t0); 158 static const char * getzname(const char * strp) __pure; 159 static const char * getqzname(const char * strp, const int delim) __pure; 160 static const char * getnum(const char * strp, int * nump, int min, 161 int max); 162 static const char * getsecs(const char * strp, long * secsp); 163 static const char * getoffset(const char * strp, long * offsetp); 164 static const char * getrule(const char * strp, struct rule * rulep); 165 static void gmtload(timezone_t sp); 166 static struct tm * gmtsub(const timezone_t sp, const time_t *timep, 167 long offset, struct tm * tmp); 168 static struct tm * localsub(const timezone_t sp, const time_t *timep, 169 long offset, struct tm *tmp); 170 static int increment_overflow(int * number, int delta); 171 static int leaps_thru_end_of(int y) __pure; 172 static int long_increment_overflow(long * number, int delta); 173 static int long_normalize_overflow(long * tensptr, 174 int * unitsptr, int base); 175 static int normalize_overflow(int * tensptr, int * unitsptr, 176 int base); 177 static void settzname(void); 178 static time_t time1(const timezone_t sp, struct tm * const tmp, 179 subfun_t funcp, const long offset); 180 static time_t time2(const timezone_t sp, struct tm * const tmp, 181 subfun_t funcp, 182 const long offset, int *const okayp); 183 static time_t time2sub(const timezone_t sp, struct tm * const tmp, 184 subfun_t funcp, const long offset, 185 int *const okayp, const int do_norm_secs); 186 static struct tm * timesub(const timezone_t sp, const time_t * timep, 187 long offset, struct tm * tmp); 188 static int tmcomp(const struct tm * atmp, 189 const struct tm * btmp); 190 static time_t transtime(time_t janfirst, int year, 191 const struct rule * rulep, long offset) __pure; 192 static int typesequiv(const timezone_t sp, int a, int b); 193 static int tzload(timezone_t sp, const char * name, 194 int doextend); 195 static int tzparse(timezone_t sp, const char * name, 196 int lastditch); 197 static void tzset_unlocked(void); 198 static void tzsetwall_unlocked(void); 199 static long leapcorr(const timezone_t sp, time_t * timep); 200 201 static timezone_t lclptr; 202 static timezone_t gmtptr; 203 204 #ifndef TZ_STRLEN_MAX 205 #define TZ_STRLEN_MAX 255 206 #endif /* !defined TZ_STRLEN_MAX */ 207 208 static char lcl_TZname[TZ_STRLEN_MAX + 1]; 209 static int lcl_is_set; 210 static int gmt_is_set; 211 212 #if !defined(__LIBC12_SOURCE__) 213 214 __aconst char * tzname[2] = { 215 (__aconst char *)__UNCONST(wildabbr), 216 (__aconst char *)__UNCONST(wildabbr) 217 }; 218 219 #else 220 221 extern __aconst char * tzname[2]; 222 223 #endif 224 225 #ifdef _REENTRANT 226 static rwlock_t lcl_lock = RWLOCK_INITIALIZER; 227 #endif 228 229 /* 230 ** Section 4.12.3 of X3.159-1989 requires that 231 ** Except for the strftime function, these functions [asctime, 232 ** ctime, gmtime, localtime] return values in one of two static 233 ** objects: a broken-down time structure and an array of char. 234 ** Thanks to Paul Eggert for noting this. 235 */ 236 237 static struct tm tm; 238 239 #ifdef USG_COMPAT 240 #if !defined(__LIBC12_SOURCE__) 241 long timezone = 0; 242 int daylight = 0; 243 #else 244 extern int daylight; 245 extern long timezone __RENAME(__timezone13); 246 #endif 247 #endif /* defined USG_COMPAT */ 248 249 #ifdef ALTZONE 250 time_t altzone = 0; 251 #endif /* defined ALTZONE */ 252 253 static long 254 detzcode(const char *const codep) 255 { 256 long result; 257 int i; 258 259 result = (codep[0] & 0x80) ? ~0L : 0; 260 for (i = 0; i < 4; ++i) 261 result = (result << 8) | (codep[i] & 0xff); 262 return result; 263 } 264 265 static time_t 266 detzcode64(const char *const codep) 267 { 268 time_t result; 269 int i; 270 271 result = (time_t)((codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0); 272 for (i = 0; i < 8; ++i) 273 result = result * 256 + (codep[i] & 0xff); 274 return result; 275 } 276 277 const char * 278 tzgetname(const timezone_t sp, int isdst) 279 { 280 int i; 281 for (i = 0; i < sp->timecnt; ++i) { 282 const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]]; 283 284 if (ttisp->tt_isdst == isdst) 285 return &sp->chars[ttisp->tt_abbrind]; 286 } 287 return NULL; 288 } 289 290 static void 291 settzname_z(timezone_t sp) 292 { 293 int i; 294 295 /* 296 ** Scrub the abbreviations. 297 ** First, replace bogus characters. 298 */ 299 for (i = 0; i < sp->charcnt; ++i) 300 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL) 301 sp->chars[i] = TZ_ABBR_ERR_CHAR; 302 /* 303 ** Second, truncate long abbreviations. 304 */ 305 for (i = 0; i < sp->typecnt; ++i) { 306 const struct ttinfo * const ttisp = &sp->ttis[i]; 307 char * cp = &sp->chars[ttisp->tt_abbrind]; 308 309 if (strlen(cp) > TZ_ABBR_MAX_LEN && 310 strcmp(cp, GRANDPARENTED) != 0) 311 *(cp + TZ_ABBR_MAX_LEN) = '\0'; 312 } 313 } 314 315 static void 316 settzname(void) 317 { 318 timezone_t const sp = lclptr; 319 int i; 320 321 tzname[0] = (__aconst char *)__UNCONST(wildabbr); 322 tzname[1] = (__aconst char *)__UNCONST(wildabbr); 323 #ifdef USG_COMPAT 324 daylight = 0; 325 timezone = 0; 326 #endif /* defined USG_COMPAT */ 327 #ifdef ALTZONE 328 altzone = 0; 329 #endif /* defined ALTZONE */ 330 if (sp == NULL) { 331 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt); 332 return; 333 } 334 /* 335 ** And to get the latest zone names into tzname. . . 336 */ 337 for (i = 0; i < sp->typecnt; ++i) { 338 const struct ttinfo * const ttisp = &sp->ttis[i]; 339 340 tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind]; 341 #ifdef USG_COMPAT 342 if (ttisp->tt_isdst) 343 daylight = 1; 344 if (!ttisp->tt_isdst) 345 timezone = -(ttisp->tt_gmtoff); 346 #endif /* defined USG_COMPAT */ 347 #ifdef ALTZONE 348 if (ttisp->tt_isdst) 349 altzone = -(ttisp->tt_gmtoff); 350 #endif /* defined ALTZONE */ 351 } 352 settzname_z(sp); 353 } 354 355 static int 356 differ_by_repeat(const time_t t1, const time_t t0) 357 { 358 if (TYPE_INTEGRAL(time_t) && 359 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS) 360 return 0; 361 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT; 362 } 363 364 static int 365 tzload(timezone_t sp, const char *name, const int doextend) 366 { 367 const char * p; 368 int i; 369 int fid; 370 int stored; 371 ssize_t nread; 372 typedef union { 373 struct tzhead tzhead; 374 char buf[2 * sizeof(struct tzhead) + 375 2 * sizeof *sp + 376 4 * TZ_MAX_TIMES]; 377 } u_t; 378 u_t * up; 379 380 up = calloc(1, sizeof *up); 381 if (up == NULL) 382 return -1; 383 384 sp->goback = sp->goahead = FALSE; 385 if (name == NULL && (name = TZDEFAULT) == NULL) 386 goto oops; 387 { 388 int doaccess; 389 /* 390 ** Section 4.9.1 of the C standard says that 391 ** "FILENAME_MAX expands to an integral constant expression 392 ** that is the size needed for an array of char large enough 393 ** to hold the longest file name string that the implementation 394 ** guarantees can be opened." 395 */ 396 char fullname[FILENAME_MAX + 1]; 397 398 if (name[0] == ':') 399 ++name; 400 doaccess = name[0] == '/'; 401 if (!doaccess) { 402 if ((p = TZDIR) == NULL) 403 goto oops; 404 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) 405 goto oops; 406 (void) strcpy(fullname, p); /* XXX strcpy is safe */ 407 (void) strcat(fullname, "/"); /* XXX strcat is safe */ 408 (void) strcat(fullname, name); /* XXX strcat is safe */ 409 /* 410 ** Set doaccess if '.' (as in "../") shows up in name. 411 */ 412 if (strchr(name, '.') != NULL) 413 doaccess = TRUE; 414 name = fullname; 415 } 416 if (doaccess && access(name, R_OK) != 0) 417 goto oops; 418 /* 419 * XXX potential security problem here if user of a set-id 420 * program has set TZ (which is passed in as name) here, 421 * and uses a race condition trick to defeat the access(2) 422 * above. 423 */ 424 if ((fid = open(name, OPEN_MODE)) == -1) 425 goto oops; 426 } 427 nread = read(fid, up->buf, sizeof up->buf); 428 if (close(fid) < 0 || nread <= 0) 429 goto oops; 430 for (stored = 4; stored <= 8; stored *= 2) { 431 int ttisstdcnt; 432 int ttisgmtcnt; 433 434 ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt); 435 ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt); 436 sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt); 437 sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt); 438 sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt); 439 sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt); 440 p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt; 441 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS || 442 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES || 443 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES || 444 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS || 445 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || 446 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) 447 goto oops; 448 if (nread - (p - up->buf) < 449 sp->timecnt * stored + /* ats */ 450 sp->timecnt + /* types */ 451 sp->typecnt * 6 + /* ttinfos */ 452 sp->charcnt + /* chars */ 453 sp->leapcnt * (stored + 4) + /* lsinfos */ 454 ttisstdcnt + /* ttisstds */ 455 ttisgmtcnt) /* ttisgmts */ 456 goto oops; 457 for (i = 0; i < sp->timecnt; ++i) { 458 sp->ats[i] = (time_t)((stored == 4) ? 459 detzcode(p) : detzcode64(p)); 460 p += stored; 461 } 462 for (i = 0; i < sp->timecnt; ++i) { 463 sp->types[i] = (unsigned char) *p++; 464 if (sp->types[i] >= sp->typecnt) 465 goto oops; 466 } 467 for (i = 0; i < sp->typecnt; ++i) { 468 struct ttinfo * ttisp; 469 470 ttisp = &sp->ttis[i]; 471 ttisp->tt_gmtoff = detzcode(p); 472 p += 4; 473 ttisp->tt_isdst = (unsigned char) *p++; 474 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) 475 goto oops; 476 ttisp->tt_abbrind = (unsigned char) *p++; 477 if (ttisp->tt_abbrind < 0 || 478 ttisp->tt_abbrind > sp->charcnt) 479 goto oops; 480 } 481 for (i = 0; i < sp->charcnt; ++i) 482 sp->chars[i] = *p++; 483 sp->chars[i] = '\0'; /* ensure '\0' at end */ 484 for (i = 0; i < sp->leapcnt; ++i) { 485 struct lsinfo * lsisp; 486 487 lsisp = &sp->lsis[i]; 488 lsisp->ls_trans = (time_t)((stored == 4) ? 489 detzcode(p) : detzcode64(p)); 490 p += stored; 491 lsisp->ls_corr = detzcode(p); 492 p += 4; 493 } 494 for (i = 0; i < sp->typecnt; ++i) { 495 struct ttinfo * ttisp; 496 497 ttisp = &sp->ttis[i]; 498 if (ttisstdcnt == 0) 499 ttisp->tt_ttisstd = FALSE; 500 else { 501 ttisp->tt_ttisstd = *p++; 502 if (ttisp->tt_ttisstd != TRUE && 503 ttisp->tt_ttisstd != FALSE) 504 goto oops; 505 } 506 } 507 for (i = 0; i < sp->typecnt; ++i) { 508 struct ttinfo * ttisp; 509 510 ttisp = &sp->ttis[i]; 511 if (ttisgmtcnt == 0) 512 ttisp->tt_ttisgmt = FALSE; 513 else { 514 ttisp->tt_ttisgmt = *p++; 515 if (ttisp->tt_ttisgmt != TRUE && 516 ttisp->tt_ttisgmt != FALSE) 517 goto oops; 518 } 519 } 520 /* 521 ** Out-of-sort ats should mean we're running on a 522 ** signed time_t system but using a data file with 523 ** unsigned values (or vice versa). 524 */ 525 for (i = 0; i < sp->timecnt; ++i) 526 if ((i < sp->timecnt - 1 && 527 sp->ats[i] > sp->ats[i + 1]) || 528 (i == sp->timecnt - 1 && !TYPE_SIGNED(time_t) && 529 sp->ats[i] > 530 ((stored == 4) ? INT32_MAX : INT64_MAX))) { 531 if (TYPE_SIGNED(time_t)) { 532 /* 533 ** Ignore the end (easy). 534 */ 535 sp->timecnt = i + 1; 536 } else { 537 /* 538 ** Ignore the beginning (harder). 539 */ 540 int j; 541 542 /* 543 ** Keep the record right before the 544 ** epoch boundary, 545 ** but tweak it so that it starts 546 ** right with the epoch 547 ** (thanks to Doug Bailey). 548 */ 549 sp->ats[i] = 0; 550 for (j = 0; j + i < sp->timecnt; ++j) { 551 sp->ats[j] = sp->ats[j + i]; 552 sp->types[j] = sp->types[j + i]; 553 } 554 sp->timecnt = j; 555 } 556 break; 557 } 558 /* 559 ** If this is an old file, we're done. 560 */ 561 if (up->tzhead.tzh_version[0] == '\0') 562 break; 563 nread -= p - up->buf; 564 for (i = 0; i < nread; ++i) 565 up->buf[i] = p[i]; 566 /* 567 ** If this is a narrow integer time_t system, we're done. 568 */ 569 if (stored >= (int) sizeof(time_t) 570 /* CONSTCOND */ 571 && TYPE_INTEGRAL(time_t)) 572 break; 573 } 574 if (doextend && nread > 2 && 575 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' && 576 sp->typecnt + 2 <= TZ_MAX_TYPES) { 577 struct __state ts; 578 int result; 579 580 up->buf[nread - 1] = '\0'; 581 result = tzparse(&ts, &up->buf[1], FALSE); 582 if (result == 0 && ts.typecnt == 2 && 583 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) { 584 for (i = 0; i < 2; ++i) 585 ts.ttis[i].tt_abbrind += 586 sp->charcnt; 587 for (i = 0; i < ts.charcnt; ++i) 588 sp->chars[sp->charcnt++] = 589 ts.chars[i]; 590 i = 0; 591 while (i < ts.timecnt && 592 ts.ats[i] <= 593 sp->ats[sp->timecnt - 1]) 594 ++i; 595 while (i < ts.timecnt && 596 sp->timecnt < TZ_MAX_TIMES) { 597 sp->ats[sp->timecnt] = 598 ts.ats[i]; 599 sp->types[sp->timecnt] = 600 sp->typecnt + 601 ts.types[i]; 602 ++sp->timecnt; 603 ++i; 604 } 605 sp->ttis[sp->typecnt++] = ts.ttis[0]; 606 sp->ttis[sp->typecnt++] = ts.ttis[1]; 607 } 608 } 609 if (sp->timecnt > 1) { 610 for (i = 1; i < sp->timecnt; ++i) 611 if (typesequiv(sp, sp->types[i], sp->types[0]) && 612 differ_by_repeat(sp->ats[i], sp->ats[0])) { 613 sp->goback = TRUE; 614 break; 615 } 616 for (i = sp->timecnt - 2; i >= 0; --i) 617 if (typesequiv(sp, sp->types[sp->timecnt - 1], 618 sp->types[i]) && 619 differ_by_repeat(sp->ats[sp->timecnt - 1], 620 sp->ats[i])) { 621 sp->goahead = TRUE; 622 break; 623 } 624 } 625 free(up); 626 return 0; 627 oops: 628 free(up); 629 return -1; 630 } 631 632 static int 633 typesequiv(const timezone_t sp, const int a, const int b) 634 { 635 int result; 636 637 if (sp == NULL || 638 a < 0 || a >= sp->typecnt || 639 b < 0 || b >= sp->typecnt) 640 result = FALSE; 641 else { 642 const struct ttinfo * ap = &sp->ttis[a]; 643 const struct ttinfo * bp = &sp->ttis[b]; 644 result = ap->tt_gmtoff == bp->tt_gmtoff && 645 ap->tt_isdst == bp->tt_isdst && 646 ap->tt_ttisstd == bp->tt_ttisstd && 647 ap->tt_ttisgmt == bp->tt_ttisgmt && 648 strcmp(&sp->chars[ap->tt_abbrind], 649 &sp->chars[bp->tt_abbrind]) == 0; 650 } 651 return result; 652 } 653 654 static const int mon_lengths[2][MONSPERYEAR] = { 655 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, 656 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } 657 }; 658 659 static const int year_lengths[2] = { 660 DAYSPERNYEAR, DAYSPERLYEAR 661 }; 662 663 /* 664 ** Given a pointer into a time zone string, scan until a character that is not 665 ** a valid character in a zone name is found. Return a pointer to that 666 ** character. 667 */ 668 669 static const char * 670 getzname(const char *strp) 671 { 672 char c; 673 674 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && 675 c != '+') 676 ++strp; 677 return strp; 678 } 679 680 /* 681 ** Given a pointer into an extended time zone string, scan until the ending 682 ** delimiter of the zone name is located. Return a pointer to the delimiter. 683 ** 684 ** As with getzname above, the legal character set is actually quite 685 ** restricted, with other characters producing undefined results. 686 ** We don't do any checking here; checking is done later in common-case code. 687 */ 688 689 static const char * 690 getqzname(const char *strp, const int delim) 691 { 692 int c; 693 694 while ((c = *strp) != '\0' && c != delim) 695 ++strp; 696 return strp; 697 } 698 699 /* 700 ** Given a pointer into a time zone string, extract a number from that string. 701 ** Check that the number is within a specified range; if it is not, return 702 ** NULL. 703 ** Otherwise, return a pointer to the first character not part of the number. 704 */ 705 706 static const char * 707 getnum(const char *strp, int *const nump, const int min, const int max) 708 { 709 char c; 710 int num; 711 712 if (strp == NULL || !is_digit(c = *strp)) { 713 errno = EINVAL; 714 return NULL; 715 } 716 num = 0; 717 do { 718 num = num * 10 + (c - '0'); 719 if (num > max) { 720 errno = EOVERFLOW; 721 return NULL; /* illegal value */ 722 } 723 c = *++strp; 724 } while (is_digit(c)); 725 if (num < min) { 726 errno = EINVAL; 727 return NULL; /* illegal value */ 728 } 729 *nump = num; 730 return strp; 731 } 732 733 /* 734 ** Given a pointer into a time zone string, extract a number of seconds, 735 ** in hh[:mm[:ss]] form, from the string. 736 ** If any error occurs, return NULL. 737 ** Otherwise, return a pointer to the first character not part of the number 738 ** of seconds. 739 */ 740 741 static const char * 742 getsecs(const char *strp, long *const secsp) 743 { 744 int num; 745 746 /* 747 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like 748 ** "M10.4.6/26", which does not conform to Posix, 749 ** but which specifies the equivalent of 750 ** ``02:00 on the first Sunday on or after 23 Oct''. 751 */ 752 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); 753 if (strp == NULL) 754 return NULL; 755 *secsp = num * (long) SECSPERHOUR; 756 if (*strp == ':') { 757 ++strp; 758 strp = getnum(strp, &num, 0, MINSPERHOUR - 1); 759 if (strp == NULL) 760 return NULL; 761 *secsp += num * SECSPERMIN; 762 if (*strp == ':') { 763 ++strp; 764 /* `SECSPERMIN' allows for leap seconds. */ 765 strp = getnum(strp, &num, 0, SECSPERMIN); 766 if (strp == NULL) 767 return NULL; 768 *secsp += num; 769 } 770 } 771 return strp; 772 } 773 774 /* 775 ** Given a pointer into a time zone string, extract an offset, in 776 ** [+-]hh[:mm[:ss]] form, from the string. 777 ** If any error occurs, return NULL. 778 ** Otherwise, return a pointer to the first character not part of the time. 779 */ 780 781 static const char * 782 getoffset(const char *strp, long *const offsetp) 783 { 784 int neg = 0; 785 786 if (*strp == '-') { 787 neg = 1; 788 ++strp; 789 } else if (*strp == '+') 790 ++strp; 791 strp = getsecs(strp, offsetp); 792 if (strp == NULL) 793 return NULL; /* illegal time */ 794 if (neg) 795 *offsetp = -*offsetp; 796 return strp; 797 } 798 799 /* 800 ** Given a pointer into a time zone string, extract a rule in the form 801 ** date[/time]. See POSIX section 8 for the format of "date" and "time". 802 ** If a valid rule is not found, return NULL. 803 ** Otherwise, return a pointer to the first character not part of the rule. 804 */ 805 806 static const char * 807 getrule(const char *strp, struct rule *const rulep) 808 { 809 if (*strp == 'J') { 810 /* 811 ** Julian day. 812 */ 813 rulep->r_type = JULIAN_DAY; 814 ++strp; 815 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); 816 } else if (*strp == 'M') { 817 /* 818 ** Month, week, day. 819 */ 820 rulep->r_type = MONTH_NTH_DAY_OF_WEEK; 821 ++strp; 822 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); 823 if (strp == NULL) 824 return NULL; 825 if (*strp++ != '.') 826 return NULL; 827 strp = getnum(strp, &rulep->r_week, 1, 5); 828 if (strp == NULL) 829 return NULL; 830 if (*strp++ != '.') 831 return NULL; 832 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); 833 } else if (is_digit(*strp)) { 834 /* 835 ** Day of year. 836 */ 837 rulep->r_type = DAY_OF_YEAR; 838 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); 839 } else return NULL; /* invalid format */ 840 if (strp == NULL) 841 return NULL; 842 if (*strp == '/') { 843 /* 844 ** Time specified. 845 */ 846 ++strp; 847 strp = getsecs(strp, &rulep->r_time); 848 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ 849 return strp; 850 } 851 852 /* 853 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the 854 ** year, a rule, and the offset from UTC at the time that rule takes effect, 855 ** calculate the Epoch-relative time that rule takes effect. 856 */ 857 858 static time_t 859 transtime(const time_t janfirst, const int year, const struct rule *const rulep, 860 const long offset) 861 { 862 int leapyear; 863 time_t value; 864 int i; 865 int d, m1, yy0, yy1, yy2, dow; 866 867 INITIALIZE(value); 868 leapyear = isleap(year); 869 switch (rulep->r_type) { 870 871 case JULIAN_DAY: 872 /* 873 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap 874 ** years. 875 ** In non-leap years, or if the day number is 59 or less, just 876 ** add SECSPERDAY times the day number-1 to the time of 877 ** January 1, midnight, to get the day. 878 */ 879 value = (time_t)(janfirst + (rulep->r_day - 1) * SECSPERDAY); 880 if (leapyear && rulep->r_day >= 60) 881 value += SECSPERDAY; 882 break; 883 884 case DAY_OF_YEAR: 885 /* 886 ** n - day of year. 887 ** Just add SECSPERDAY times the day number to the time of 888 ** January 1, midnight, to get the day. 889 */ 890 value = (time_t)(janfirst + rulep->r_day * SECSPERDAY); 891 break; 892 893 case MONTH_NTH_DAY_OF_WEEK: 894 /* 895 ** Mm.n.d - nth "dth day" of month m. 896 */ 897 value = janfirst; 898 for (i = 0; i < rulep->r_mon - 1; ++i) 899 value += (time_t)(mon_lengths[leapyear][i] * SECSPERDAY); 900 901 /* 902 ** Use Zeller's Congruence to get day-of-week of first day of 903 ** month. 904 */ 905 m1 = (rulep->r_mon + 9) % 12 + 1; 906 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; 907 yy1 = yy0 / 100; 908 yy2 = yy0 % 100; 909 dow = ((26 * m1 - 2) / 10 + 910 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; 911 if (dow < 0) 912 dow += DAYSPERWEEK; 913 914 /* 915 ** "dow" is the day-of-week of the first day of the month. Get 916 ** the day-of-month (zero-origin) of the first "dow" day of the 917 ** month. 918 */ 919 d = rulep->r_day - dow; 920 if (d < 0) 921 d += DAYSPERWEEK; 922 for (i = 1; i < rulep->r_week; ++i) { 923 if (d + DAYSPERWEEK >= 924 mon_lengths[leapyear][rulep->r_mon - 1]) 925 break; 926 d += DAYSPERWEEK; 927 } 928 929 /* 930 ** "d" is the day-of-month (zero-origin) of the day we want. 931 */ 932 value += (time_t)(d * SECSPERDAY); 933 break; 934 } 935 936 /* 937 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in 938 ** question. To get the Epoch-relative time of the specified local 939 ** time on that day, add the transition time and the current offset 940 ** from UTC. 941 */ 942 return (time_t)(value + rulep->r_time + offset); 943 } 944 945 /* 946 ** Given a POSIX section 8-style TZ string, fill in the rule tables as 947 ** appropriate. 948 */ 949 950 static int 951 tzparse(timezone_t sp, const char *name, const int lastditch) 952 { 953 const char * stdname; 954 const char * dstname; 955 size_t stdlen; 956 size_t dstlen; 957 long stdoffset; 958 long dstoffset; 959 time_t * atp; 960 unsigned char * typep; 961 char * cp; 962 int load_result; 963 964 INITIALIZE(dstname); 965 stdname = name; 966 if (lastditch) { 967 stdlen = strlen(name); /* length of standard zone name */ 968 name += stdlen; 969 if (stdlen >= sizeof sp->chars) 970 stdlen = (sizeof sp->chars) - 1; 971 stdoffset = 0; 972 } else { 973 if (*name == '<') { 974 name++; 975 stdname = name; 976 name = getqzname(name, '>'); 977 if (*name != '>') 978 return (-1); 979 stdlen = name - stdname; 980 name++; 981 } else { 982 name = getzname(name); 983 stdlen = name - stdname; 984 } 985 if (*name == '\0') 986 return -1; 987 name = getoffset(name, &stdoffset); 988 if (name == NULL) 989 return -1; 990 } 991 load_result = tzload(sp, TZDEFRULES, FALSE); 992 if (load_result != 0) 993 sp->leapcnt = 0; /* so, we're off a little */ 994 if (*name != '\0') { 995 if (*name == '<') { 996 dstname = ++name; 997 name = getqzname(name, '>'); 998 if (*name != '>') 999 return -1; 1000 dstlen = name - dstname; 1001 name++; 1002 } else { 1003 dstname = name; 1004 name = getzname(name); 1005 dstlen = name - dstname; /* length of DST zone name */ 1006 } 1007 if (*name != '\0' && *name != ',' && *name != ';') { 1008 name = getoffset(name, &dstoffset); 1009 if (name == NULL) 1010 return -1; 1011 } else dstoffset = stdoffset - SECSPERHOUR; 1012 if (*name == '\0' && load_result != 0) 1013 name = TZDEFRULESTRING; 1014 if (*name == ',' || *name == ';') { 1015 struct rule start; 1016 struct rule end; 1017 int year; 1018 time_t janfirst; 1019 time_t starttime; 1020 time_t endtime; 1021 1022 ++name; 1023 if ((name = getrule(name, &start)) == NULL) 1024 return -1; 1025 if (*name++ != ',') 1026 return -1; 1027 if ((name = getrule(name, &end)) == NULL) 1028 return -1; 1029 if (*name != '\0') 1030 return -1; 1031 sp->typecnt = 2; /* standard time and DST */ 1032 /* 1033 ** Two transitions per year, from EPOCH_YEAR forward. 1034 */ 1035 memset(sp->ttis, 0, sizeof(sp->ttis)); 1036 sp->ttis[0].tt_gmtoff = -dstoffset; 1037 sp->ttis[0].tt_isdst = 1; 1038 sp->ttis[0].tt_abbrind = (int)(stdlen + 1); 1039 sp->ttis[1].tt_gmtoff = -stdoffset; 1040 sp->ttis[1].tt_isdst = 0; 1041 sp->ttis[1].tt_abbrind = 0; 1042 atp = sp->ats; 1043 typep = sp->types; 1044 janfirst = 0; 1045 sp->timecnt = 0; 1046 for (year = EPOCH_YEAR; 1047 sp->timecnt + 2 <= TZ_MAX_TIMES; 1048 ++year) { 1049 time_t newfirst; 1050 1051 starttime = transtime(janfirst, year, &start, 1052 stdoffset); 1053 endtime = transtime(janfirst, year, &end, 1054 dstoffset); 1055 if (starttime > endtime) { 1056 *atp++ = endtime; 1057 *typep++ = 1; /* DST ends */ 1058 *atp++ = starttime; 1059 *typep++ = 0; /* DST begins */ 1060 } else { 1061 *atp++ = starttime; 1062 *typep++ = 0; /* DST begins */ 1063 *atp++ = endtime; 1064 *typep++ = 1; /* DST ends */ 1065 } 1066 sp->timecnt += 2; 1067 newfirst = janfirst; 1068 newfirst += (time_t) 1069 (year_lengths[isleap(year)] * SECSPERDAY); 1070 if (newfirst <= janfirst) 1071 break; 1072 janfirst = newfirst; 1073 } 1074 } else { 1075 long theirstdoffset; 1076 long theirdstoffset; 1077 long theiroffset; 1078 int isdst; 1079 int i; 1080 int j; 1081 1082 if (*name != '\0') 1083 return -1; 1084 /* 1085 ** Initial values of theirstdoffset and theirdstoffset. 1086 */ 1087 theirstdoffset = 0; 1088 for (i = 0; i < sp->timecnt; ++i) { 1089 j = sp->types[i]; 1090 if (!sp->ttis[j].tt_isdst) { 1091 theirstdoffset = 1092 -sp->ttis[j].tt_gmtoff; 1093 break; 1094 } 1095 } 1096 theirdstoffset = 0; 1097 for (i = 0; i < sp->timecnt; ++i) { 1098 j = sp->types[i]; 1099 if (sp->ttis[j].tt_isdst) { 1100 theirdstoffset = 1101 -sp->ttis[j].tt_gmtoff; 1102 break; 1103 } 1104 } 1105 /* 1106 ** Initially we're assumed to be in standard time. 1107 */ 1108 isdst = FALSE; 1109 theiroffset = theirstdoffset; 1110 /* 1111 ** Now juggle transition times and types 1112 ** tracking offsets as you do. 1113 */ 1114 for (i = 0; i < sp->timecnt; ++i) { 1115 j = sp->types[i]; 1116 sp->types[i] = sp->ttis[j].tt_isdst; 1117 if (sp->ttis[j].tt_ttisgmt) { 1118 /* No adjustment to transition time */ 1119 } else { 1120 /* 1121 ** If summer time is in effect, and the 1122 ** transition time was not specified as 1123 ** standard time, add the summer time 1124 ** offset to the transition time; 1125 ** otherwise, add the standard time 1126 ** offset to the transition time. 1127 */ 1128 /* 1129 ** Transitions from DST to DDST 1130 ** will effectively disappear since 1131 ** POSIX provides for only one DST 1132 ** offset. 1133 */ 1134 if (isdst && !sp->ttis[j].tt_ttisstd) { 1135 sp->ats[i] += (time_t) 1136 (dstoffset - theirdstoffset); 1137 } else { 1138 sp->ats[i] += (time_t) 1139 (stdoffset - theirstdoffset); 1140 } 1141 } 1142 theiroffset = -sp->ttis[j].tt_gmtoff; 1143 if (!sp->ttis[j].tt_isdst) 1144 theirstdoffset = theiroffset; 1145 else theirdstoffset = theiroffset; 1146 } 1147 /* 1148 ** Finally, fill in ttis. 1149 ** ttisstd and ttisgmt need not be handled 1150 */ 1151 memset(sp->ttis, 0, sizeof(sp->ttis)); 1152 sp->ttis[0].tt_gmtoff = -stdoffset; 1153 sp->ttis[0].tt_isdst = FALSE; 1154 sp->ttis[0].tt_abbrind = 0; 1155 sp->ttis[1].tt_gmtoff = -dstoffset; 1156 sp->ttis[1].tt_isdst = TRUE; 1157 sp->ttis[1].tt_abbrind = (int)(stdlen + 1); 1158 sp->typecnt = 2; 1159 } 1160 } else { 1161 dstlen = 0; 1162 sp->typecnt = 1; /* only standard time */ 1163 sp->timecnt = 0; 1164 memset(sp->ttis, 0, sizeof(sp->ttis)); 1165 sp->ttis[0].tt_gmtoff = -stdoffset; 1166 sp->ttis[0].tt_isdst = 0; 1167 sp->ttis[0].tt_abbrind = 0; 1168 } 1169 sp->charcnt = (int)(stdlen + 1); 1170 if (dstlen != 0) 1171 sp->charcnt += (int)(dstlen + 1); 1172 if ((size_t) sp->charcnt > sizeof sp->chars) 1173 return -1; 1174 cp = sp->chars; 1175 (void) strncpy(cp, stdname, stdlen); 1176 cp += stdlen; 1177 *cp++ = '\0'; 1178 if (dstlen != 0) { 1179 (void) strncpy(cp, dstname, dstlen); 1180 *(cp + dstlen) = '\0'; 1181 } 1182 return 0; 1183 } 1184 1185 static void 1186 gmtload(timezone_t sp) 1187 { 1188 if (tzload(sp, gmt, TRUE) != 0) 1189 (void) tzparse(sp, gmt, TRUE); 1190 } 1191 1192 timezone_t 1193 tzalloc(const char *name) 1194 { 1195 timezone_t sp = calloc(1, sizeof *sp); 1196 if (sp == NULL) 1197 return NULL; 1198 if (tzload(sp, name, TRUE) != 0) { 1199 free(sp); 1200 return NULL; 1201 } 1202 settzname_z(sp); 1203 return sp; 1204 } 1205 1206 void 1207 tzfree(const timezone_t sp) 1208 { 1209 free(sp); 1210 } 1211 1212 static void 1213 tzsetwall_unlocked(void) 1214 { 1215 if (lcl_is_set < 0) 1216 return; 1217 lcl_is_set = -1; 1218 1219 if (lclptr == NULL) { 1220 int saveerrno = errno; 1221 lclptr = calloc(1, sizeof *lclptr); 1222 errno = saveerrno; 1223 if (lclptr == NULL) { 1224 settzname(); /* all we can do */ 1225 return; 1226 } 1227 } 1228 if (tzload(lclptr, NULL, TRUE) != 0) 1229 gmtload(lclptr); 1230 settzname(); 1231 } 1232 1233 #ifndef STD_INSPIRED 1234 /* 1235 ** A non-static declaration of tzsetwall in a system header file 1236 ** may cause a warning about this upcoming static declaration... 1237 */ 1238 static 1239 #endif /* !defined STD_INSPIRED */ 1240 void 1241 tzsetwall(void) 1242 { 1243 rwlock_wrlock(&lcl_lock); 1244 tzsetwall_unlocked(); 1245 rwlock_unlock(&lcl_lock); 1246 } 1247 1248 #ifndef STD_INSPIRED 1249 /* 1250 ** A non-static declaration of tzsetwall in a system header file 1251 ** may cause a warning about this upcoming static declaration... 1252 */ 1253 static 1254 #endif /* !defined STD_INSPIRED */ 1255 void 1256 tzset_unlocked(void) 1257 { 1258 const char * name; 1259 1260 name = getenv("TZ"); 1261 if (name == NULL) { 1262 tzsetwall_unlocked(); 1263 return; 1264 } 1265 1266 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) 1267 return; 1268 lcl_is_set = strlen(name) < sizeof lcl_TZname; 1269 if (lcl_is_set) 1270 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname)); 1271 1272 if (lclptr == NULL) { 1273 int saveerrno = errno; 1274 lclptr = calloc(1, sizeof *lclptr); 1275 errno = saveerrno; 1276 if (lclptr == NULL) { 1277 settzname(); /* all we can do */ 1278 return; 1279 } 1280 } 1281 if (*name == '\0') { 1282 /* 1283 ** User wants it fast rather than right. 1284 */ 1285 lclptr->leapcnt = 0; /* so, we're off a little */ 1286 lclptr->timecnt = 0; 1287 lclptr->typecnt = 0; 1288 lclptr->ttis[0].tt_isdst = 0; 1289 lclptr->ttis[0].tt_gmtoff = 0; 1290 lclptr->ttis[0].tt_abbrind = 0; 1291 (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars)); 1292 } else if (tzload(lclptr, name, TRUE) != 0) 1293 if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0) 1294 (void) gmtload(lclptr); 1295 settzname(); 1296 } 1297 1298 void 1299 tzset(void) 1300 { 1301 rwlock_wrlock(&lcl_lock); 1302 tzset_unlocked(); 1303 rwlock_unlock(&lcl_lock); 1304 } 1305 1306 /* 1307 ** The easy way to behave "as if no library function calls" localtime 1308 ** is to not call it--so we drop its guts into "localsub", which can be 1309 ** freely called. (And no, the PANS doesn't require the above behavior-- 1310 ** but it *is* desirable.) 1311 ** 1312 ** The unused offset argument is for the benefit of mktime variants. 1313 */ 1314 1315 /*ARGSUSED*/ 1316 static struct tm * 1317 localsub(const timezone_t sp, const time_t * const timep, const long offset, 1318 struct tm *const tmp) 1319 { 1320 const struct ttinfo * ttisp; 1321 int i; 1322 struct tm * result; 1323 const time_t t = *timep; 1324 1325 if ((sp->goback && t < sp->ats[0]) || 1326 (sp->goahead && t > sp->ats[sp->timecnt - 1])) { 1327 time_t newt = t; 1328 time_t seconds; 1329 time_t tcycles; 1330 int_fast64_t icycles; 1331 1332 if (t < sp->ats[0]) 1333 seconds = sp->ats[0] - t; 1334 else seconds = t - sp->ats[sp->timecnt - 1]; 1335 --seconds; 1336 tcycles = (time_t) 1337 (seconds / YEARSPERREPEAT / AVGSECSPERYEAR); 1338 ++tcycles; 1339 icycles = tcycles; 1340 if (tcycles - icycles >= 1 || icycles - tcycles >= 1) 1341 return NULL; 1342 seconds = (time_t) icycles; 1343 seconds *= YEARSPERREPEAT; 1344 seconds *= AVGSECSPERYEAR; 1345 if (t < sp->ats[0]) 1346 newt += seconds; 1347 else newt -= seconds; 1348 if (newt < sp->ats[0] || 1349 newt > sp->ats[sp->timecnt - 1]) 1350 return NULL; /* "cannot happen" */ 1351 result = localsub(sp, &newt, offset, tmp); 1352 if (result == tmp) { 1353 time_t newy; 1354 1355 newy = tmp->tm_year; 1356 if (t < sp->ats[0]) 1357 newy -= (time_t)icycles * YEARSPERREPEAT; 1358 else newy += (time_t)icycles * YEARSPERREPEAT; 1359 tmp->tm_year = (int)newy; 1360 if (tmp->tm_year != newy) 1361 return NULL; 1362 } 1363 return result; 1364 } 1365 if (sp->timecnt == 0 || t < sp->ats[0]) { 1366 i = 0; 1367 while (sp->ttis[i].tt_isdst) 1368 if (++i >= sp->typecnt) { 1369 i = 0; 1370 break; 1371 } 1372 } else { 1373 int lo = 1; 1374 int hi = sp->timecnt; 1375 1376 while (lo < hi) { 1377 int mid = (lo + hi) / 2; 1378 1379 if (t < sp->ats[mid]) 1380 hi = mid; 1381 else lo = mid + 1; 1382 } 1383 i = (int) sp->types[lo - 1]; 1384 } 1385 ttisp = &sp->ttis[i]; 1386 /* 1387 ** To get (wrong) behavior that's compatible with System V Release 2.0 1388 ** you'd replace the statement below with 1389 ** t += ttisp->tt_gmtoff; 1390 ** timesub(&t, 0L, sp, tmp); 1391 */ 1392 result = timesub(sp, &t, ttisp->tt_gmtoff, tmp); 1393 tmp->tm_isdst = ttisp->tt_isdst; 1394 if (sp == lclptr) 1395 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind]; 1396 #ifdef TM_ZONE 1397 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind]; 1398 #endif /* defined TM_ZONE */ 1399 return result; 1400 } 1401 1402 /* 1403 ** Re-entrant version of localtime. 1404 */ 1405 1406 struct tm * 1407 localtime_r(const time_t * __restrict timep, struct tm *tmp) 1408 { 1409 rwlock_rdlock(&lcl_lock); 1410 tzset_unlocked(); 1411 tmp = localtime_rz(lclptr, timep, tmp); 1412 rwlock_unlock(&lcl_lock); 1413 return tmp; 1414 } 1415 1416 struct tm * 1417 localtime(const time_t *const timep) 1418 { 1419 return localtime_r(timep, &tm); 1420 } 1421 1422 struct tm * 1423 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp) 1424 { 1425 if (sp == NULL) 1426 tmp = gmtsub(NULL, timep, 0L, tmp); 1427 else 1428 tmp = localsub(sp, timep, 0L, tmp); 1429 if (tmp == NULL) 1430 errno = EOVERFLOW; 1431 return tmp; 1432 } 1433 1434 /* 1435 ** gmtsub is to gmtime as localsub is to localtime. 1436 */ 1437 1438 static struct tm * 1439 gmtsub(const timezone_t sp, const time_t *const timep, const long offset, 1440 struct tm *const tmp) 1441 { 1442 struct tm * result; 1443 #ifdef _REENTRANT 1444 static mutex_t gmt_mutex = MUTEX_INITIALIZER; 1445 #endif 1446 1447 mutex_lock(&gmt_mutex); 1448 if (!gmt_is_set) { 1449 int saveerrno; 1450 gmt_is_set = TRUE; 1451 saveerrno = errno; 1452 gmtptr = calloc(1, sizeof *gmtptr); 1453 errno = saveerrno; 1454 if (gmtptr != NULL) 1455 gmtload(gmtptr); 1456 } 1457 mutex_unlock(&gmt_mutex); 1458 result = timesub(gmtptr, timep, offset, tmp); 1459 #ifdef TM_ZONE 1460 /* 1461 ** Could get fancy here and deliver something such as 1462 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero, 1463 ** but this is no time for a treasure hunt. 1464 */ 1465 if (offset != 0) 1466 tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr); 1467 else { 1468 if (gmtptr == NULL) 1469 tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt); 1470 else tmp->TM_ZONE = gmtptr->chars; 1471 } 1472 #endif /* defined TM_ZONE */ 1473 return result; 1474 } 1475 1476 struct tm * 1477 gmtime(const time_t *const timep) 1478 { 1479 struct tm *tmp = gmtsub(NULL, timep, 0L, &tm); 1480 1481 if (tmp == NULL) 1482 errno = EOVERFLOW; 1483 1484 return tmp; 1485 } 1486 1487 /* 1488 ** Re-entrant version of gmtime. 1489 */ 1490 1491 struct tm * 1492 gmtime_r(const time_t * const timep, struct tm *tmp) 1493 { 1494 tmp = gmtsub(NULL, timep, 0L, tmp); 1495 1496 if (tmp == NULL) 1497 errno = EOVERFLOW; 1498 1499 return tmp; 1500 } 1501 1502 #ifdef STD_INSPIRED 1503 1504 struct tm * 1505 offtime(const time_t *const timep, long offset) 1506 { 1507 struct tm *tmp = gmtsub(NULL, timep, offset, &tm); 1508 1509 if (tmp == NULL) 1510 errno = EOVERFLOW; 1511 1512 return tmp; 1513 } 1514 1515 struct tm * 1516 offtime_r(const time_t *timep, long offset, struct tm *tmp) 1517 { 1518 tmp = gmtsub(NULL, timep, offset, tmp); 1519 1520 if (tmp == NULL) 1521 errno = EOVERFLOW; 1522 1523 return tmp; 1524 } 1525 1526 #endif /* defined STD_INSPIRED */ 1527 1528 /* 1529 ** Return the number of leap years through the end of the given year 1530 ** where, to make the math easy, the answer for year zero is defined as zero. 1531 */ 1532 1533 static int 1534 leaps_thru_end_of(const int y) 1535 { 1536 return (y >= 0) ? (y / 4 - y / 100 + y / 400) : 1537 -(leaps_thru_end_of(-(y + 1)) + 1); 1538 } 1539 1540 static struct tm * 1541 timesub(const timezone_t sp, const time_t *const timep, const long offset, 1542 struct tm *const tmp) 1543 { 1544 const struct lsinfo * lp; 1545 time_t tdays; 1546 int idays; /* unsigned would be so 2003 */ 1547 long rem; 1548 int y; 1549 const int * ip; 1550 long corr; 1551 int hit; 1552 int i; 1553 1554 corr = 0; 1555 hit = 0; 1556 i = (sp == NULL) ? 0 : sp->leapcnt; 1557 while (--i >= 0) { 1558 lp = &sp->lsis[i]; 1559 if (*timep >= lp->ls_trans) { 1560 if (*timep == lp->ls_trans) { 1561 hit = ((i == 0 && lp->ls_corr > 0) || 1562 lp->ls_corr > sp->lsis[i - 1].ls_corr); 1563 if (hit) 1564 while (i > 0 && 1565 sp->lsis[i].ls_trans == 1566 sp->lsis[i - 1].ls_trans + 1 && 1567 sp->lsis[i].ls_corr == 1568 sp->lsis[i - 1].ls_corr + 1) { 1569 ++hit; 1570 --i; 1571 } 1572 } 1573 corr = lp->ls_corr; 1574 break; 1575 } 1576 } 1577 y = EPOCH_YEAR; 1578 tdays = (time_t)(*timep / SECSPERDAY); 1579 rem = (long) (*timep - tdays * SECSPERDAY); 1580 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) { 1581 int newy; 1582 time_t tdelta; 1583 int idelta; 1584 int leapdays; 1585 1586 tdelta = tdays / DAYSPERLYEAR; 1587 idelta = (int) tdelta; 1588 if (tdelta - idelta >= 1 || idelta - tdelta >= 1) 1589 return NULL; 1590 if (idelta == 0) 1591 idelta = (tdays < 0) ? -1 : 1; 1592 newy = y; 1593 if (increment_overflow(&newy, idelta)) 1594 return NULL; 1595 leapdays = leaps_thru_end_of(newy - 1) - 1596 leaps_thru_end_of(y - 1); 1597 tdays -= ((time_t) newy - y) * DAYSPERNYEAR; 1598 tdays -= leapdays; 1599 y = newy; 1600 } 1601 { 1602 long seconds; 1603 1604 seconds = tdays * SECSPERDAY + 0.5; 1605 tdays = (time_t)(seconds / SECSPERDAY); 1606 rem += (long) (seconds - tdays * SECSPERDAY); 1607 } 1608 /* 1609 ** Given the range, we can now fearlessly cast... 1610 */ 1611 idays = (int) tdays; 1612 rem += offset - corr; 1613 while (rem < 0) { 1614 rem += SECSPERDAY; 1615 --idays; 1616 } 1617 while (rem >= SECSPERDAY) { 1618 rem -= SECSPERDAY; 1619 ++idays; 1620 } 1621 while (idays < 0) { 1622 if (increment_overflow(&y, -1)) 1623 return NULL; 1624 idays += year_lengths[isleap(y)]; 1625 } 1626 while (idays >= year_lengths[isleap(y)]) { 1627 idays -= year_lengths[isleap(y)]; 1628 if (increment_overflow(&y, 1)) 1629 return NULL; 1630 } 1631 tmp->tm_year = y; 1632 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) 1633 return NULL; 1634 tmp->tm_yday = idays; 1635 /* 1636 ** The "extra" mods below avoid overflow problems. 1637 */ 1638 tmp->tm_wday = EPOCH_WDAY + 1639 ((y - EPOCH_YEAR) % DAYSPERWEEK) * 1640 (DAYSPERNYEAR % DAYSPERWEEK) + 1641 leaps_thru_end_of(y - 1) - 1642 leaps_thru_end_of(EPOCH_YEAR - 1) + 1643 idays; 1644 tmp->tm_wday %= DAYSPERWEEK; 1645 if (tmp->tm_wday < 0) 1646 tmp->tm_wday += DAYSPERWEEK; 1647 tmp->tm_hour = (int) (rem / SECSPERHOUR); 1648 rem %= SECSPERHOUR; 1649 tmp->tm_min = (int) (rem / SECSPERMIN); 1650 /* 1651 ** A positive leap second requires a special 1652 ** representation. This uses "... ??:59:60" et seq. 1653 */ 1654 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; 1655 ip = mon_lengths[isleap(y)]; 1656 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) 1657 idays -= ip[tmp->tm_mon]; 1658 tmp->tm_mday = (int) (idays + 1); 1659 tmp->tm_isdst = 0; 1660 #ifdef TM_GMTOFF 1661 tmp->TM_GMTOFF = offset; 1662 #endif /* defined TM_GMTOFF */ 1663 return tmp; 1664 } 1665 1666 char * 1667 ctime(const time_t *const timep) 1668 { 1669 /* 1670 ** Section 4.12.3.2 of X3.159-1989 requires that 1671 ** The ctime function converts the calendar time pointed to by timer 1672 ** to local time in the form of a string. It is equivalent to 1673 ** asctime(localtime(timer)) 1674 */ 1675 struct tm *rtm = localtime(timep); 1676 if (rtm == NULL) 1677 return NULL; 1678 return asctime(rtm); 1679 } 1680 1681 char * 1682 ctime_r(const time_t *const timep, char *buf) 1683 { 1684 struct tm mytm, *rtm; 1685 1686 rtm = localtime_r(timep, &mytm); 1687 if (rtm == NULL) 1688 return NULL; 1689 return asctime_r(rtm, buf); 1690 } 1691 1692 char * 1693 ctime_rz(const timezone_t sp, const time_t * timep, char *buf) 1694 { 1695 struct tm mytm, *rtm; 1696 1697 rtm = localtime_rz(sp, timep, &mytm); 1698 if (rtm == NULL) 1699 return NULL; 1700 return asctime_r(rtm, buf); 1701 } 1702 1703 /* 1704 ** Adapted from code provided by Robert Elz, who writes: 1705 ** The "best" way to do mktime I think is based on an idea of Bob 1706 ** Kridle's (so its said...) from a long time ago. 1707 ** It does a binary search of the time_t space. Since time_t's are 1708 ** just 32 bits, its a max of 32 iterations (even at 64 bits it 1709 ** would still be very reasonable). 1710 */ 1711 1712 #ifndef WRONG 1713 #define WRONG ((time_t)-1) 1714 #endif /* !defined WRONG */ 1715 1716 /* 1717 ** Simplified normalize logic courtesy Paul Eggert. 1718 */ 1719 1720 static int 1721 increment_overflow(int *const ip, int j) 1722 { 1723 int i = *ip; 1724 1725 /* 1726 ** If i >= 0 there can only be overflow if i + j > INT_MAX 1727 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow. 1728 ** If i < 0 there can only be overflow if i + j < INT_MIN 1729 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow. 1730 */ 1731 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i)) 1732 return TRUE; 1733 *ip += j; 1734 return FALSE; 1735 } 1736 1737 static int 1738 long_increment_overflow(long *const lp, int m) 1739 { 1740 long l = *lp; 1741 1742 if ((l >= 0) ? (m > LONG_MAX - l) : (m < LONG_MIN - l)) 1743 return TRUE; 1744 *lp += m; 1745 return FALSE; 1746 } 1747 1748 static int 1749 normalize_overflow(int *const tensptr, int *const unitsptr, const int base) 1750 { 1751 int tensdelta; 1752 1753 tensdelta = (*unitsptr >= 0) ? 1754 (*unitsptr / base) : 1755 (-1 - (-1 - *unitsptr) / base); 1756 *unitsptr -= tensdelta * base; 1757 return increment_overflow(tensptr, tensdelta); 1758 } 1759 1760 static int 1761 long_normalize_overflow(long *const tensptr, int *const unitsptr, 1762 const int base) 1763 { 1764 int tensdelta; 1765 1766 tensdelta = (*unitsptr >= 0) ? 1767 (*unitsptr / base) : 1768 (-1 - (-1 - *unitsptr) / base); 1769 *unitsptr -= tensdelta * base; 1770 return long_increment_overflow(tensptr, tensdelta); 1771 } 1772 1773 static int 1774 tmcomp(const struct tm *const atmp, const struct tm *const btmp) 1775 { 1776 int result; 1777 1778 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 && 1779 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 && 1780 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && 1781 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && 1782 (result = (atmp->tm_min - btmp->tm_min)) == 0) 1783 result = atmp->tm_sec - btmp->tm_sec; 1784 return result; 1785 } 1786 1787 static time_t 1788 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp, 1789 const long offset, int *const okayp, const int do_norm_secs) 1790 { 1791 int dir; 1792 int i, j; 1793 int saved_seconds; 1794 long li; 1795 time_t lo; 1796 time_t hi; 1797 #ifdef NO_ERROR_IN_DST_GAP 1798 time_t ilo; 1799 #endif 1800 long y; 1801 time_t newt; 1802 time_t t; 1803 struct tm yourtm, mytm; 1804 1805 *okayp = FALSE; 1806 yourtm = *tmp; 1807 #ifdef NO_ERROR_IN_DST_GAP 1808 again: 1809 #endif 1810 if (do_norm_secs) { 1811 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, 1812 SECSPERMIN)) 1813 goto overflow; 1814 } 1815 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) 1816 goto overflow; 1817 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) 1818 goto overflow; 1819 y = yourtm.tm_year; 1820 if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR)) 1821 goto overflow; 1822 /* 1823 ** Turn y into an actual year number for now. 1824 ** It is converted back to an offset from TM_YEAR_BASE later. 1825 */ 1826 if (long_increment_overflow(&y, TM_YEAR_BASE)) 1827 goto overflow; 1828 while (yourtm.tm_mday <= 0) { 1829 if (long_increment_overflow(&y, -1)) 1830 goto overflow; 1831 li = y + (1 < yourtm.tm_mon); 1832 yourtm.tm_mday += year_lengths[isleap(li)]; 1833 } 1834 while (yourtm.tm_mday > DAYSPERLYEAR) { 1835 li = y + (1 < yourtm.tm_mon); 1836 yourtm.tm_mday -= year_lengths[isleap(li)]; 1837 if (long_increment_overflow(&y, 1)) 1838 goto overflow; 1839 } 1840 for ( ; ; ) { 1841 i = mon_lengths[isleap(y)][yourtm.tm_mon]; 1842 if (yourtm.tm_mday <= i) 1843 break; 1844 yourtm.tm_mday -= i; 1845 if (++yourtm.tm_mon >= MONSPERYEAR) { 1846 yourtm.tm_mon = 0; 1847 if (long_increment_overflow(&y, 1)) 1848 goto overflow; 1849 } 1850 } 1851 if (long_increment_overflow(&y, -TM_YEAR_BASE)) 1852 goto overflow; 1853 yourtm.tm_year = (int)y; 1854 if (yourtm.tm_year != y) 1855 goto overflow; 1856 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) 1857 saved_seconds = 0; 1858 else if (y + TM_YEAR_BASE < EPOCH_YEAR) { 1859 /* 1860 ** We can't set tm_sec to 0, because that might push the 1861 ** time below the minimum representable time. 1862 ** Set tm_sec to 59 instead. 1863 ** This assumes that the minimum representable time is 1864 ** not in the same minute that a leap second was deleted from, 1865 ** which is a safer assumption than using 58 would be. 1866 */ 1867 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) 1868 goto overflow; 1869 saved_seconds = yourtm.tm_sec; 1870 yourtm.tm_sec = SECSPERMIN - 1; 1871 } else { 1872 saved_seconds = yourtm.tm_sec; 1873 yourtm.tm_sec = 0; 1874 } 1875 /* 1876 ** Do a binary search (this works whatever time_t's type is). 1877 */ 1878 /* LINTED const not */ 1879 if (!TYPE_SIGNED(time_t)) { 1880 lo = 0; 1881 hi = lo - 1; 1882 /* LINTED const not */ 1883 } else if (!TYPE_INTEGRAL(time_t)) { 1884 /* CONSTCOND */ 1885 if (sizeof(time_t) > sizeof(float)) 1886 /* LINTED assumed double */ 1887 hi = (time_t) DBL_MAX; 1888 /* LINTED assumed float */ 1889 else hi = (time_t) FLT_MAX; 1890 lo = -hi; 1891 } else { 1892 lo = 1; 1893 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i) 1894 lo *= 2; 1895 hi = -(lo + 1); 1896 } 1897 #ifdef NO_ERROR_IN_DST_GAP 1898 ilo = lo; 1899 #endif 1900 for ( ; ; ) { 1901 t = lo / 2 + hi / 2; 1902 if (t < lo) 1903 t = lo; 1904 else if (t > hi) 1905 t = hi; 1906 if ((*funcp)(sp, &t, offset, &mytm) == NULL) { 1907 /* 1908 ** Assume that t is too extreme to be represented in 1909 ** a struct tm; arrange things so that it is less 1910 ** extreme on the next pass. 1911 */ 1912 dir = (t > 0) ? 1 : -1; 1913 } else dir = tmcomp(&mytm, &yourtm); 1914 if (dir != 0) { 1915 if (t == lo) { 1916 ++t; 1917 if (t <= lo) 1918 goto overflow; 1919 ++lo; 1920 } else if (t == hi) { 1921 --t; 1922 if (t >= hi) 1923 goto overflow; 1924 --hi; 1925 } 1926 #ifdef NO_ERROR_IN_DST_GAP 1927 if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 && 1928 do_norm_secs) { 1929 for (i = sp->typecnt - 1; i >= 0; --i) { 1930 for (j = sp->typecnt - 1; j >= 0; --j) { 1931 time_t off; 1932 if (sp->ttis[j].tt_isdst == 1933 sp->ttis[i].tt_isdst) 1934 continue; 1935 off = sp->ttis[j].tt_gmtoff - 1936 sp->ttis[i].tt_gmtoff; 1937 yourtm.tm_sec += off < 0 ? 1938 -off : off; 1939 goto again; 1940 } 1941 } 1942 } 1943 #endif 1944 if (lo > hi) 1945 goto invalid; 1946 if (dir > 0) 1947 hi = t; 1948 else lo = t; 1949 continue; 1950 } 1951 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) 1952 break; 1953 /* 1954 ** Right time, wrong type. 1955 ** Hunt for right time, right type. 1956 ** It's okay to guess wrong since the guess 1957 ** gets checked. 1958 */ 1959 if (sp == NULL) 1960 goto invalid; 1961 for (i = sp->typecnt - 1; i >= 0; --i) { 1962 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) 1963 continue; 1964 for (j = sp->typecnt - 1; j >= 0; --j) { 1965 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) 1966 continue; 1967 newt = (time_t)(t + sp->ttis[j].tt_gmtoff - 1968 sp->ttis[i].tt_gmtoff); 1969 if ((*funcp)(sp, &newt, offset, &mytm) == NULL) 1970 continue; 1971 if (tmcomp(&mytm, &yourtm) != 0) 1972 continue; 1973 if (mytm.tm_isdst != yourtm.tm_isdst) 1974 continue; 1975 /* 1976 ** We have a match. 1977 */ 1978 t = newt; 1979 goto label; 1980 } 1981 } 1982 goto invalid; 1983 } 1984 label: 1985 newt = t + saved_seconds; 1986 if ((newt < t) != (saved_seconds < 0)) 1987 goto overflow; 1988 t = newt; 1989 if ((*funcp)(sp, &t, offset, tmp)) { 1990 *okayp = TRUE; 1991 return t; 1992 } 1993 overflow: 1994 errno = EOVERFLOW; 1995 return WRONG; 1996 invalid: 1997 errno = EINVAL; 1998 return WRONG; 1999 } 2000 2001 static time_t 2002 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp, 2003 const long offset, int *const okayp) 2004 { 2005 time_t t; 2006 2007 /* 2008 ** First try without normalization of seconds 2009 ** (in case tm_sec contains a value associated with a leap second). 2010 ** If that fails, try with normalization of seconds. 2011 */ 2012 t = time2sub(sp, tmp, funcp, offset, okayp, FALSE); 2013 return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE); 2014 } 2015 2016 static time_t 2017 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp, 2018 const long offset) 2019 { 2020 time_t t; 2021 int samei, otheri; 2022 int sameind, otherind; 2023 int i; 2024 int nseen; 2025 int seen[TZ_MAX_TYPES]; 2026 int types[TZ_MAX_TYPES]; 2027 int okay; 2028 2029 if (tmp == NULL) { 2030 errno = EINVAL; 2031 return WRONG; 2032 } 2033 if (tmp->tm_isdst > 1) 2034 tmp->tm_isdst = 1; 2035 t = time2(sp, tmp, funcp, offset, &okay); 2036 #ifdef PCTS 2037 /* 2038 ** PCTS code courtesy Grant Sullivan. 2039 */ 2040 if (okay) 2041 return t; 2042 if (tmp->tm_isdst < 0) 2043 tmp->tm_isdst = 0; /* reset to std and try again */ 2044 #endif /* defined PCTS */ 2045 #ifndef PCTS 2046 if (okay || tmp->tm_isdst < 0) 2047 return t; 2048 #endif /* !defined PCTS */ 2049 /* 2050 ** We're supposed to assume that somebody took a time of one type 2051 ** and did some math on it that yielded a "struct tm" that's bad. 2052 ** We try to divine the type they started from and adjust to the 2053 ** type they need. 2054 */ 2055 if (sp == NULL) { 2056 errno = EINVAL; 2057 return WRONG; 2058 } 2059 for (i = 0; i < sp->typecnt; ++i) 2060 seen[i] = FALSE; 2061 nseen = 0; 2062 for (i = sp->timecnt - 1; i >= 0; --i) 2063 if (!seen[sp->types[i]]) { 2064 seen[sp->types[i]] = TRUE; 2065 types[nseen++] = sp->types[i]; 2066 } 2067 for (sameind = 0; sameind < nseen; ++sameind) { 2068 samei = types[sameind]; 2069 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) 2070 continue; 2071 for (otherind = 0; otherind < nseen; ++otherind) { 2072 otheri = types[otherind]; 2073 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) 2074 continue; 2075 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff - 2076 sp->ttis[samei].tt_gmtoff); 2077 tmp->tm_isdst = !tmp->tm_isdst; 2078 t = time2(sp, tmp, funcp, offset, &okay); 2079 if (okay) 2080 return t; 2081 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff - 2082 sp->ttis[samei].tt_gmtoff); 2083 tmp->tm_isdst = !tmp->tm_isdst; 2084 } 2085 } 2086 errno = EOVERFLOW; 2087 return WRONG; 2088 } 2089 2090 time_t 2091 mktime_z(const timezone_t sp, struct tm *const tmp) 2092 { 2093 time_t t; 2094 if (sp == NULL) 2095 t = time1(NULL, tmp, gmtsub, 0L); 2096 else 2097 t = time1(sp, tmp, localsub, 0L); 2098 return t; 2099 } 2100 2101 time_t 2102 mktime(struct tm *const tmp) 2103 { 2104 time_t result; 2105 2106 rwlock_wrlock(&lcl_lock); 2107 tzset_unlocked(); 2108 result = mktime_z(lclptr, tmp); 2109 rwlock_unlock(&lcl_lock); 2110 return result; 2111 } 2112 2113 #ifdef STD_INSPIRED 2114 2115 time_t 2116 timelocal_z(const timezone_t sp, struct tm *const tmp) 2117 { 2118 if (tmp != NULL) 2119 tmp->tm_isdst = -1; /* in case it wasn't initialized */ 2120 return mktime_z(sp, tmp); 2121 } 2122 2123 time_t 2124 timelocal(struct tm *const tmp) 2125 { 2126 if (tmp != NULL) 2127 tmp->tm_isdst = -1; /* in case it wasn't initialized */ 2128 return mktime(tmp); 2129 } 2130 2131 time_t 2132 timegm(struct tm *const tmp) 2133 { 2134 time_t t; 2135 2136 if (tmp != NULL) 2137 tmp->tm_isdst = 0; 2138 t = time1(gmtptr, tmp, gmtsub, 0L); 2139 return t; 2140 } 2141 2142 time_t 2143 timeoff(struct tm *const tmp, const long offset) 2144 { 2145 time_t t; 2146 2147 if (tmp != NULL) 2148 tmp->tm_isdst = 0; 2149 t = time1(gmtptr, tmp, gmtsub, offset); 2150 return t; 2151 } 2152 2153 #endif /* defined STD_INSPIRED */ 2154 2155 #ifdef CMUCS 2156 2157 /* 2158 ** The following is supplied for compatibility with 2159 ** previous versions of the CMUCS runtime library. 2160 */ 2161 2162 long 2163 gtime(struct tm *const tmp) 2164 { 2165 const time_t t = mktime(tmp); 2166 2167 if (t == WRONG) 2168 return -1; 2169 return t; 2170 } 2171 2172 #endif /* defined CMUCS */ 2173 2174 /* 2175 ** XXX--is the below the right way to conditionalize?? 2176 */ 2177 2178 #ifdef STD_INSPIRED 2179 2180 /* 2181 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599 2182 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which 2183 ** is not the case if we are accounting for leap seconds. 2184 ** So, we provide the following conversion routines for use 2185 ** when exchanging timestamps with POSIX conforming systems. 2186 */ 2187 2188 static long 2189 leapcorr(const timezone_t sp, time_t *timep) 2190 { 2191 struct lsinfo * lp; 2192 int i; 2193 2194 i = sp->leapcnt; 2195 while (--i >= 0) { 2196 lp = &sp->lsis[i]; 2197 if (*timep >= lp->ls_trans) 2198 return lp->ls_corr; 2199 } 2200 return 0; 2201 } 2202 2203 time_t 2204 time2posix_z(const timezone_t sp, time_t t) 2205 { 2206 return (time_t)(t - leapcorr(sp, &t)); 2207 } 2208 2209 time_t 2210 time2posix(time_t t) 2211 { 2212 time_t result; 2213 rwlock_wrlock(&lcl_lock); 2214 tzset_unlocked(); 2215 result = (time_t)(t - leapcorr(lclptr, &t)); 2216 rwlock_unlock(&lcl_lock); 2217 return (result); 2218 } 2219 2220 time_t 2221 posix2time_z(const timezone_t sp, time_t t) 2222 { 2223 time_t x; 2224 time_t y; 2225 2226 /* 2227 ** For a positive leap second hit, the result 2228 ** is not unique. For a negative leap second 2229 ** hit, the corresponding time doesn't exist, 2230 ** so we return an adjacent second. 2231 */ 2232 x = (time_t)(t + leapcorr(sp, &t)); 2233 y = (time_t)(x - leapcorr(sp, &x)); 2234 if (y < t) { 2235 do { 2236 x++; 2237 y = (time_t)(x - leapcorr(sp, &x)); 2238 } while (y < t); 2239 if (t != y) { 2240 return x - 1; 2241 } 2242 } else if (y > t) { 2243 do { 2244 --x; 2245 y = (time_t)(x - leapcorr(sp, &x)); 2246 } while (y > t); 2247 if (t != y) { 2248 return x + 1; 2249 } 2250 } 2251 return x; 2252 } 2253 2254 2255 2256 time_t 2257 posix2time(time_t t) 2258 { 2259 time_t result; 2260 2261 rwlock_wrlock(&lcl_lock); 2262 tzset_unlocked(); 2263 result = posix2time_z(lclptr, t); 2264 rwlock_unlock(&lcl_lock); 2265 return result; 2266 } 2267 2268 #endif /* defined STD_INSPIRED */ 2269