1 /* $NetBSD: localtime.c,v 1.86 2014/09/18 13:58:20 christos Exp $ */ 2 3 /* 4 ** This file is in the public domain, so clarified as of 5 ** 1996-06-05 by Arthur David Olson. 6 */ 7 8 #include <sys/cdefs.h> 9 #if defined(LIBC_SCCS) && !defined(lint) 10 #if 0 11 static char elsieid[] = "@(#)localtime.c 8.17"; 12 #else 13 __RCSID("$NetBSD: localtime.c,v 1.86 2014/09/18 13:58:20 christos Exp $"); 14 #endif 15 #endif /* LIBC_SCCS and not lint */ 16 17 /* 18 ** Leap second handling from Bradley White. 19 ** POSIX-style TZ environment variable handling from Guy Harris. 20 */ 21 22 /*LINTLIBRARY*/ 23 24 #include "namespace.h" 25 #include <assert.h> 26 #include "private.h" 27 #include "tzfile.h" 28 #include "fcntl.h" 29 #include "reentrant.h" 30 31 #if defined(__weak_alias) 32 __weak_alias(daylight,_daylight) 33 __weak_alias(tzname,_tzname) 34 #endif 35 36 #ifndef TZ_ABBR_MAX_LEN 37 #define TZ_ABBR_MAX_LEN 16 38 #endif /* !defined TZ_ABBR_MAX_LEN */ 39 40 #ifndef TZ_ABBR_CHAR_SET 41 #define TZ_ABBR_CHAR_SET \ 42 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._" 43 #endif /* !defined TZ_ABBR_CHAR_SET */ 44 45 #ifndef TZ_ABBR_ERR_CHAR 46 #define TZ_ABBR_ERR_CHAR '_' 47 #endif /* !defined TZ_ABBR_ERR_CHAR */ 48 49 /* The minimum and maximum finite time values. */ 50 static time_t const time_t_min = 51 (TYPE_SIGNED(time_t) 52 ? (time_t) -1 << (int)(CHAR_BIT * sizeof (time_t) - 1) 53 : 0); 54 static time_t const time_t_max = 55 (TYPE_SIGNED(time_t) 56 ? - (~ 0 < 0) - ((time_t) -1 << (int)(CHAR_BIT * sizeof (time_t) - 1)) 57 : -1); 58 59 /* 60 ** SunOS 4.1.1 headers lack O_BINARY. 61 */ 62 63 #ifdef O_BINARY 64 #define OPEN_MODE (O_RDONLY | O_BINARY | O_CLOEXEC) 65 #endif /* defined O_BINARY */ 66 #ifndef O_BINARY 67 #define OPEN_MODE (O_RDONLY | O_CLOEXEC) 68 #endif /* !defined O_BINARY */ 69 70 #ifndef WILDABBR 71 /* 72 ** Someone might make incorrect use of a time zone abbreviation: 73 ** 1. They might reference tzname[0] before calling tzset (explicitly 74 ** or implicitly). 75 ** 2. They might reference tzname[1] before calling tzset (explicitly 76 ** or implicitly). 77 ** 3. They might reference tzname[1] after setting to a time zone 78 ** in which Daylight Saving Time is never observed. 79 ** 4. They might reference tzname[0] after setting to a time zone 80 ** in which Standard Time is never observed. 81 ** 5. They might reference tm.TM_ZONE after calling offtime. 82 ** What's best to do in the above cases is open to debate; 83 ** for now, we just set things up so that in any of the five cases 84 ** WILDABBR is used. Another possibility: initialize tzname[0] to the 85 ** string "tzname[0] used before set", and similarly for the other cases. 86 ** And another: initialize tzname[0] to "ERA", with an explanation in the 87 ** manual page of what this "time zone abbreviation" means (doing this so 88 ** that tzname[0] has the "normal" length of three characters). 89 */ 90 #define WILDABBR " " 91 #endif /* !defined WILDABBR */ 92 93 static const char wildabbr[] = WILDABBR; 94 95 static const char gmt[] = "GMT"; 96 97 /* 98 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES. 99 ** We default to US rules as of 1999-08-17. 100 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are 101 ** implementation dependent; for historical reasons, US rules are a 102 ** common default. 103 */ 104 #ifndef TZDEFRULESTRING 105 #define TZDEFRULESTRING ",M4.1.0,M10.5.0" 106 #endif /* !defined TZDEFDST */ 107 108 struct ttinfo { /* time type information */ 109 int_fast32_t tt_gmtoff; /* UT offset in seconds */ 110 int tt_isdst; /* used to set tm_isdst */ 111 int tt_abbrind; /* abbreviation list index */ 112 int tt_ttisstd; /* TRUE if transition is std time */ 113 int tt_ttisgmt; /* TRUE if transition is UT */ 114 }; 115 116 struct lsinfo { /* leap second information */ 117 time_t ls_trans; /* transition time */ 118 int_fast64_t ls_corr; /* correction to apply */ 119 }; 120 121 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b)) 122 123 #ifdef TZNAME_MAX 124 #define MY_TZNAME_MAX TZNAME_MAX 125 #endif /* defined TZNAME_MAX */ 126 #ifndef TZNAME_MAX 127 #define MY_TZNAME_MAX 255 128 #endif /* !defined TZNAME_MAX */ 129 130 struct __state { 131 int leapcnt; 132 int timecnt; 133 int typecnt; 134 int charcnt; 135 int goback; 136 int goahead; 137 time_t ats[TZ_MAX_TIMES]; 138 unsigned char types[TZ_MAX_TIMES]; 139 struct ttinfo ttis[TZ_MAX_TYPES]; 140 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, 141 sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))]; 142 struct lsinfo lsis[TZ_MAX_LEAPS]; 143 int defaulttype; /* for early times or if no transitions */ 144 }; 145 146 struct rule { 147 int r_type; /* type of rule; see below */ 148 int r_day; /* day number of rule */ 149 int r_week; /* week number of rule */ 150 int r_mon; /* month number of rule */ 151 int_fast32_t r_time; /* transition time of rule */ 152 }; 153 154 #define JULIAN_DAY 0 /* Jn = Julian day */ 155 #define DAY_OF_YEAR 1 /* n = day of year */ 156 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d = month, week, day of week */ 157 158 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep, 159 const int_fast32_t offset, struct tm *tmp); 160 161 /* 162 ** Prototypes for static functions. 163 */ 164 165 static int_fast32_t detzcode(const char * codep); 166 static int_fast64_t detzcode64(const char * codep); 167 static int differ_by_repeat(time_t t1, time_t t0); 168 static const char * getzname(const char * strp) ATTRIBUTE_PURE; 169 static const char * getqzname(const char * strp, const int delim) ATTRIBUTE_PURE; 170 static const char * getnum(const char * strp, int * nump, int min, 171 int max); 172 static const char * getsecs(const char * strp, int_fast32_t * secsp); 173 static const char * getoffset(const char * strp, int_fast32_t * offsetp); 174 static const char * getrule(const char * strp, struct rule * rulep); 175 static void gmtload(timezone_t sp); 176 static struct tm * gmtsub(const timezone_t sp, const time_t *timep, 177 const int_fast32_t offset, struct tm * tmp); 178 static struct tm * localsub(const timezone_t sp, const time_t *timep, 179 const int_fast32_t offset, struct tm *tmp); 180 static int increment_overflow(int * number, int delta); 181 static int increment_overflow32(int_fast32_t * number, int delta); 182 static int increment_overflow_time(time_t *t, int_fast32_t delta); 183 static int leaps_thru_end_of(int y) ATTRIBUTE_PURE; 184 static int normalize_overflow(int * tensptr, int * unitsptr, 185 int base); 186 static int normalize_overflow32(int_fast32_t * tensptr, 187 int * unitsptr, int base); 188 static void settzname(void); 189 static time_t time1(const timezone_t sp, struct tm * const tmp, 190 subfun_t funcp, const int_fast32_t offset); 191 static time_t time2(const timezone_t sp, struct tm * const tmp, 192 subfun_t funcp, 193 const int_fast32_t offset, int *const okayp); 194 static time_t time2sub(const timezone_t sp, struct tm * const tmp, 195 subfun_t funcp, const int_fast32_t offset, 196 int *const okayp, const int do_norm_secs); 197 static struct tm * timesub(const timezone_t sp, const time_t * timep, 198 const int_fast32_t offset, struct tm * tmp); 199 static int tmcomp(const struct tm * atmp, 200 const struct tm * btmp); 201 static int_fast32_t transtime(int year, const struct rule * rulep, 202 int_fast32_t offset) 203 ATTRIBUTE_PURE; 204 static int typesequiv(const timezone_t sp, int a, int b); 205 static int tzload(timezone_t sp, const char * name, 206 int doextend); 207 static int tzparse(timezone_t sp, const char * name, 208 int lastditch); 209 static void tzset_unlocked(void); 210 static void tzsetwall_unlocked(void); 211 static int_fast64_t leapcorr(const timezone_t sp, time_t * timep); 212 213 static timezone_t lclptr; 214 static timezone_t gmtptr; 215 216 #ifndef TZ_STRLEN_MAX 217 #define TZ_STRLEN_MAX 255 218 #endif /* !defined TZ_STRLEN_MAX */ 219 220 static char lcl_TZname[TZ_STRLEN_MAX + 1]; 221 static int lcl_is_set; 222 static int gmt_is_set; 223 224 #if !defined(__LIBC12_SOURCE__) 225 226 __aconst char * tzname[2] = { 227 (__aconst char *)__UNCONST(wildabbr), 228 (__aconst char *)__UNCONST(wildabbr) 229 }; 230 231 #else 232 233 extern __aconst char * tzname[2]; 234 235 #endif 236 237 #ifdef _REENTRANT 238 static rwlock_t lcl_lock = RWLOCK_INITIALIZER; 239 #endif 240 241 /* 242 ** Section 4.12.3 of X3.159-1989 requires that 243 ** Except for the strftime function, these functions [asctime, 244 ** ctime, gmtime, localtime] return values in one of two static 245 ** objects: a broken-down time structure and an array of char. 246 ** Thanks to Paul Eggert for noting this. 247 */ 248 249 static struct tm tm; 250 251 #ifdef USG_COMPAT 252 #if !defined(__LIBC12_SOURCE__) 253 long timezone = 0; 254 int daylight = 0; 255 #else 256 extern int daylight; 257 extern long timezone __RENAME(__timezone13); 258 #endif 259 #endif /* defined USG_COMPAT */ 260 261 #ifdef ALTZONE 262 long altzone = 0; 263 #endif /* defined ALTZONE */ 264 265 static int_fast32_t 266 detzcode(const char *const codep) 267 { 268 int_fast32_t result; 269 int i; 270 271 result = (codep[0] & 0x80) ? -1 : 0; 272 for (i = 0; i < 4; ++i) 273 result = (result << 8) | (codep[i] & 0xff); 274 return result; 275 } 276 277 static int_fast64_t 278 detzcode64(const char *const codep) 279 { 280 int_fast64_t result; 281 int i; 282 283 result = (codep[0] & 0x80) ? -1 : 0; 284 for (i = 0; i < 8; ++i) 285 result = (result << 8) | (codep[i] & 0xff); 286 return result; 287 } 288 289 const char * 290 tzgetname(const timezone_t sp, int isdst) 291 { 292 int i; 293 for (i = 0; i < sp->timecnt; ++i) { 294 const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]]; 295 296 if (ttisp->tt_isdst == isdst) 297 return &sp->chars[ttisp->tt_abbrind]; 298 } 299 return NULL; 300 } 301 302 static void 303 settzname_z(timezone_t sp) 304 { 305 int i; 306 307 /* 308 ** Scrub the abbreviations. 309 ** First, replace bogus characters. 310 */ 311 for (i = 0; i < sp->charcnt; ++i) 312 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL) 313 sp->chars[i] = TZ_ABBR_ERR_CHAR; 314 /* 315 ** Second, truncate long abbreviations. 316 */ 317 for (i = 0; i < sp->typecnt; ++i) { 318 const struct ttinfo * const ttisp = &sp->ttis[i]; 319 char * cp = &sp->chars[ttisp->tt_abbrind]; 320 321 if (strlen(cp) > TZ_ABBR_MAX_LEN && 322 strcmp(cp, GRANDPARENTED) != 0) 323 *(cp + TZ_ABBR_MAX_LEN) = '\0'; 324 } 325 } 326 327 static void 328 settzname(void) 329 { 330 timezone_t const sp = lclptr; 331 int i; 332 333 tzname[0] = (__aconst char *)__UNCONST(wildabbr); 334 tzname[1] = (__aconst char *)__UNCONST(wildabbr); 335 #ifdef USG_COMPAT 336 daylight = 0; 337 timezone = 0; 338 #endif /* defined USG_COMPAT */ 339 #ifdef ALTZONE 340 altzone = 0; 341 #endif /* defined ALTZONE */ 342 if (sp == NULL) { 343 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt); 344 return; 345 } 346 /* 347 ** And to get the latest zone names into tzname. . . 348 */ 349 for (i = 0; i < sp->typecnt; ++i) { 350 const struct ttinfo * const ttisp = &sp->ttis[i]; 351 352 tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind]; 353 #ifdef USG_COMPAT 354 if (ttisp->tt_isdst) 355 daylight = 1; 356 if (!ttisp->tt_isdst) 357 timezone = -(ttisp->tt_gmtoff); 358 #endif /* defined USG_COMPAT */ 359 #ifdef ALTZONE 360 if (ttisp->tt_isdst) 361 altzone = -(ttisp->tt_gmtoff); 362 #endif /* defined ALTZONE */ 363 } 364 settzname_z(sp); 365 } 366 367 static int 368 differ_by_repeat(const time_t t1, const time_t t0) 369 { 370 if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS) 371 return 0; 372 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT; 373 } 374 375 static int 376 tzload(timezone_t sp, const char *name, const int doextend) 377 { 378 const char * p; 379 int i; 380 int fid; 381 int stored; 382 ssize_t nread; 383 typedef union { 384 struct tzhead tzhead; 385 char buf[2 * sizeof(struct tzhead) + 386 2 * sizeof *sp + 387 4 * TZ_MAX_TIMES]; 388 } u_t; 389 union local_storage { 390 /* 391 ** Section 4.9.1 of the C standard says that 392 ** "FILENAME_MAX expands to an integral constant expression 393 ** that is the size needed for an array of char large enough 394 ** to hold the longest file name string that the implementation 395 ** guarantees can be opened." 396 */ 397 char fullname[FILENAME_MAX + 1]; 398 399 /* The main part of the storage for this function. */ 400 struct { 401 u_t u; 402 struct __state st; 403 } u; 404 }; 405 char *fullname; 406 u_t *up; 407 int doaccess; 408 union local_storage *lsp; 409 lsp = malloc(sizeof *lsp); 410 if (!lsp) 411 return -1; 412 fullname = lsp->fullname; 413 up = &lsp->u.u; 414 415 sp->goback = sp->goahead = FALSE; 416 417 if (! name) { 418 name = TZDEFAULT; 419 if (! name) 420 goto oops; 421 } 422 423 if (name[0] == ':') 424 ++name; 425 doaccess = name[0] == '/'; 426 if (!doaccess) { 427 p = TZDIR; 428 if (! p || sizeof lsp->fullname - 1 <= strlen(p) + strlen(name)) 429 goto oops; 430 strcpy(fullname, p); 431 strcat(fullname, "/"); 432 strcat(fullname, name); 433 /* Set doaccess if '.' (as in "../") shows up in name. */ 434 if (strchr(name, '.')) 435 doaccess = TRUE; 436 name = fullname; 437 } 438 if (doaccess && access(name, R_OK) != 0) 439 goto oops; 440 441 fid = open(name, OPEN_MODE); 442 if (fid < 0) 443 goto oops; 444 nread = read(fid, up->buf, sizeof up->buf); 445 if (close(fid) < 0 || nread <= 0) 446 goto oops; 447 for (stored = 4; stored <= 8; stored *= 2) { 448 int ttisstdcnt; 449 int ttisgmtcnt; 450 int timecnt; 451 452 ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt); 453 ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt); 454 sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt); 455 sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt); 456 sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt); 457 sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt); 458 p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt; 459 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS || 460 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES || 461 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES || 462 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS || 463 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || 464 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) 465 goto oops; 466 if (nread - (p - up->buf) < 467 sp->timecnt * stored + /* ats */ 468 sp->timecnt + /* types */ 469 sp->typecnt * 6 + /* ttinfos */ 470 sp->charcnt + /* chars */ 471 sp->leapcnt * (stored + 4) + /* lsinfos */ 472 ttisstdcnt + /* ttisstds */ 473 ttisgmtcnt) /* ttisgmts */ 474 goto oops; 475 timecnt = 0; 476 for (i = 0; i < sp->timecnt; ++i) { 477 int_fast64_t at 478 = stored == 4 ? detzcode(p) : detzcode64(p); 479 sp->types[i] = ((TYPE_SIGNED(time_t) 480 ? time_t_min <= at 481 : 0 <= at) 482 && at <= time_t_max); 483 if (sp->types[i]) { 484 if (i && !timecnt && at != time_t_min) { 485 /* 486 ** Keep the earlier record, but tweak 487 ** it so that it starts with the 488 ** minimum time_t value. 489 */ 490 sp->types[i - 1] = 1; 491 sp->ats[timecnt++] = time_t_min; 492 } 493 _DIAGASSERT(__type_fit(time_t, at)); 494 sp->ats[timecnt++] = (time_t)at; 495 } 496 p += stored; 497 } 498 timecnt = 0; 499 for (i = 0; i < sp->timecnt; ++i) { 500 unsigned char typ = *p++; 501 if (sp->typecnt <= typ) 502 goto oops; 503 if (sp->types[i]) 504 sp->types[timecnt++] = typ; 505 } 506 for (i = 0; i < sp->typecnt; ++i) { 507 struct ttinfo * ttisp; 508 509 ttisp = &sp->ttis[i]; 510 ttisp->tt_gmtoff = detzcode(p); 511 p += 4; 512 ttisp->tt_isdst = (unsigned char) *p++; 513 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) 514 goto oops; 515 ttisp->tt_abbrind = (unsigned char) *p++; 516 if (ttisp->tt_abbrind < 0 || 517 ttisp->tt_abbrind > sp->charcnt) 518 goto oops; 519 } 520 for (i = 0; i < sp->charcnt; ++i) 521 sp->chars[i] = *p++; 522 sp->chars[i] = '\0'; /* ensure '\0' at end */ 523 for (i = 0; i < sp->leapcnt; ++i) { 524 struct lsinfo * lsisp; 525 526 lsisp = &sp->lsis[i]; 527 lsisp->ls_trans = (time_t)((stored == 4) ? 528 detzcode(p) : detzcode64(p)); 529 p += stored; 530 lsisp->ls_corr = detzcode(p); 531 p += 4; 532 } 533 for (i = 0; i < sp->typecnt; ++i) { 534 struct ttinfo * ttisp; 535 536 ttisp = &sp->ttis[i]; 537 if (ttisstdcnt == 0) 538 ttisp->tt_ttisstd = FALSE; 539 else { 540 ttisp->tt_ttisstd = *p++; 541 if (ttisp->tt_ttisstd != TRUE && 542 ttisp->tt_ttisstd != FALSE) 543 goto oops; 544 } 545 } 546 for (i = 0; i < sp->typecnt; ++i) { 547 struct ttinfo * ttisp; 548 549 ttisp = &sp->ttis[i]; 550 if (ttisgmtcnt == 0) 551 ttisp->tt_ttisgmt = FALSE; 552 else { 553 ttisp->tt_ttisgmt = *p++; 554 if (ttisp->tt_ttisgmt != TRUE && 555 ttisp->tt_ttisgmt != FALSE) 556 goto oops; 557 } 558 } 559 /* 560 ** If this is an old file, we're done. 561 */ 562 if (up->tzhead.tzh_version[0] == '\0') 563 break; 564 nread -= p - up->buf; 565 for (i = 0; i < nread; ++i) 566 up->buf[i] = p[i]; 567 /* 568 ** If this is a signed narrow time_t system, we're done. 569 */ 570 if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t)) 571 break; 572 } 573 if (doextend && nread > 2 && 574 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' && 575 sp->typecnt + 2 <= TZ_MAX_TYPES) { 576 struct __state *ts = &lsp->u.st; 577 int result; 578 579 up->buf[nread - 1] = '\0'; 580 result = tzparse(ts, &up->buf[1], FALSE); 581 if (result == 0 && ts->typecnt == 2 && 582 sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) { 583 for (i = 0; i < 2; ++i) 584 ts->ttis[i].tt_abbrind += 585 sp->charcnt; 586 for (i = 0; i < ts->charcnt; ++i) 587 sp->chars[sp->charcnt++] = 588 ts->chars[i]; 589 i = 0; 590 while (i < ts->timecnt && 591 ts->ats[i] <= 592 sp->ats[sp->timecnt - 1]) 593 ++i; 594 while (i < ts->timecnt && 595 sp->timecnt < TZ_MAX_TIMES) { 596 sp->ats[sp->timecnt] = 597 ts->ats[i]; 598 sp->types[sp->timecnt] = 599 sp->typecnt + 600 ts->types[i]; 601 ++sp->timecnt; 602 ++i; 603 } 604 sp->ttis[sp->typecnt++] = ts->ttis[0]; 605 sp->ttis[sp->typecnt++] = ts->ttis[1]; 606 } 607 } 608 if (sp->timecnt > 1) { 609 for (i = 1; i < sp->timecnt; ++i) 610 if (typesequiv(sp, sp->types[i], sp->types[0]) && 611 differ_by_repeat(sp->ats[i], sp->ats[0])) { 612 sp->goback = TRUE; 613 break; 614 } 615 for (i = sp->timecnt - 2; i >= 0; --i) 616 if (typesequiv(sp, sp->types[sp->timecnt - 1], 617 sp->types[i]) && 618 differ_by_repeat(sp->ats[sp->timecnt - 1], 619 sp->ats[i])) { 620 sp->goahead = TRUE; 621 break; 622 } 623 } 624 /* 625 ** If type 0 is is unused in transitions, 626 ** it's the type to use for early times. 627 */ 628 for (i = 0; i < sp->typecnt; ++i) 629 if (sp->types[i] == 0) 630 break; 631 i = (i >= sp->typecnt) ? 0 : -1; 632 /* 633 ** Absent the above, 634 ** if there are transition times 635 ** and the first transition is to a daylight time 636 ** find the standard type less than and closest to 637 ** the type of the first transition. 638 */ 639 if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) { 640 i = sp->types[0]; 641 while (--i >= 0) 642 if (!sp->ttis[i].tt_isdst) 643 break; 644 } 645 /* 646 ** If no result yet, find the first standard type. 647 ** If there is none, punt to type zero. 648 */ 649 if (i < 0) { 650 i = 0; 651 while (sp->ttis[i].tt_isdst) 652 if (++i >= sp->typecnt) { 653 i = 0; 654 break; 655 } 656 } 657 sp->defaulttype = i; 658 free(up); 659 return 0; 660 oops: 661 free(up); 662 return -1; 663 } 664 665 static int 666 typesequiv(const timezone_t sp, const int a, const int b) 667 { 668 int result; 669 670 if (sp == NULL || 671 a < 0 || a >= sp->typecnt || 672 b < 0 || b >= sp->typecnt) 673 result = FALSE; 674 else { 675 const struct ttinfo * ap = &sp->ttis[a]; 676 const struct ttinfo * bp = &sp->ttis[b]; 677 result = ap->tt_gmtoff == bp->tt_gmtoff && 678 ap->tt_isdst == bp->tt_isdst && 679 ap->tt_ttisstd == bp->tt_ttisstd && 680 ap->tt_ttisgmt == bp->tt_ttisgmt && 681 strcmp(&sp->chars[ap->tt_abbrind], 682 &sp->chars[bp->tt_abbrind]) == 0; 683 } 684 return result; 685 } 686 687 static const int mon_lengths[2][MONSPERYEAR] = { 688 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, 689 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } 690 }; 691 692 static const int year_lengths[2] = { 693 DAYSPERNYEAR, DAYSPERLYEAR 694 }; 695 696 /* 697 ** Given a pointer into a time zone string, scan until a character that is not 698 ** a valid character in a zone name is found. Return a pointer to that 699 ** character. 700 */ 701 702 static const char * 703 getzname(const char *strp) 704 { 705 char c; 706 707 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && 708 c != '+') 709 ++strp; 710 return strp; 711 } 712 713 /* 714 ** Given a pointer into an extended time zone string, scan until the ending 715 ** delimiter of the zone name is located. Return a pointer to the delimiter. 716 ** 717 ** As with getzname above, the legal character set is actually quite 718 ** restricted, with other characters producing undefined results. 719 ** We don't do any checking here; checking is done later in common-case code. 720 */ 721 722 static const char * 723 getqzname(const char *strp, const int delim) 724 { 725 int c; 726 727 while ((c = *strp) != '\0' && c != delim) 728 ++strp; 729 return strp; 730 } 731 732 /* 733 ** Given a pointer into a time zone string, extract a number from that string. 734 ** Check that the number is within a specified range; if it is not, return 735 ** NULL. 736 ** Otherwise, return a pointer to the first character not part of the number. 737 */ 738 739 static const char * 740 getnum(const char *strp, int *const nump, const int min, const int max) 741 { 742 char c; 743 int num; 744 745 if (strp == NULL || !is_digit(c = *strp)) { 746 errno = EINVAL; 747 return NULL; 748 } 749 num = 0; 750 do { 751 num = num * 10 + (c - '0'); 752 if (num > max) { 753 errno = EOVERFLOW; 754 return NULL; /* illegal value */ 755 } 756 c = *++strp; 757 } while (is_digit(c)); 758 if (num < min) { 759 errno = EINVAL; 760 return NULL; /* illegal value */ 761 } 762 *nump = num; 763 return strp; 764 } 765 766 /* 767 ** Given a pointer into a time zone string, extract a number of seconds, 768 ** in hh[:mm[:ss]] form, from the string. 769 ** If any error occurs, return NULL. 770 ** Otherwise, return a pointer to the first character not part of the number 771 ** of seconds. 772 */ 773 774 static const char * 775 getsecs(const char *strp, int_fast32_t *const secsp) 776 { 777 int num; 778 779 /* 780 ** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like 781 ** "M10.4.6/26", which does not conform to Posix, 782 ** but which specifies the equivalent of 783 ** "02:00 on the first Sunday on or after 23 Oct". 784 */ 785 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); 786 if (strp == NULL) 787 return NULL; 788 *secsp = num * (int_fast32_t) SECSPERHOUR; 789 if (*strp == ':') { 790 ++strp; 791 strp = getnum(strp, &num, 0, MINSPERHOUR - 1); 792 if (strp == NULL) 793 return NULL; 794 *secsp += num * SECSPERMIN; 795 if (*strp == ':') { 796 ++strp; 797 /* 'SECSPERMIN' allows for leap seconds. */ 798 strp = getnum(strp, &num, 0, SECSPERMIN); 799 if (strp == NULL) 800 return NULL; 801 *secsp += num; 802 } 803 } 804 return strp; 805 } 806 807 /* 808 ** Given a pointer into a time zone string, extract an offset, in 809 ** [+-]hh[:mm[:ss]] form, from the string. 810 ** If any error occurs, return NULL. 811 ** Otherwise, return a pointer to the first character not part of the time. 812 */ 813 814 static const char * 815 getoffset(const char *strp, int_fast32_t *const offsetp) 816 { 817 int neg = 0; 818 819 if (*strp == '-') { 820 neg = 1; 821 ++strp; 822 } else if (*strp == '+') 823 ++strp; 824 strp = getsecs(strp, offsetp); 825 if (strp == NULL) 826 return NULL; /* illegal time */ 827 if (neg) 828 *offsetp = -*offsetp; 829 return strp; 830 } 831 832 /* 833 ** Given a pointer into a time zone string, extract a rule in the form 834 ** date[/time]. See POSIX section 8 for the format of "date" and "time". 835 ** If a valid rule is not found, return NULL. 836 ** Otherwise, return a pointer to the first character not part of the rule. 837 */ 838 839 static const char * 840 getrule(const char *strp, struct rule *const rulep) 841 { 842 if (*strp == 'J') { 843 /* 844 ** Julian day. 845 */ 846 rulep->r_type = JULIAN_DAY; 847 ++strp; 848 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); 849 } else if (*strp == 'M') { 850 /* 851 ** Month, week, day. 852 */ 853 rulep->r_type = MONTH_NTH_DAY_OF_WEEK; 854 ++strp; 855 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); 856 if (strp == NULL) 857 return NULL; 858 if (*strp++ != '.') 859 return NULL; 860 strp = getnum(strp, &rulep->r_week, 1, 5); 861 if (strp == NULL) 862 return NULL; 863 if (*strp++ != '.') 864 return NULL; 865 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); 866 } else if (is_digit(*strp)) { 867 /* 868 ** Day of year. 869 */ 870 rulep->r_type = DAY_OF_YEAR; 871 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); 872 } else return NULL; /* invalid format */ 873 if (strp == NULL) 874 return NULL; 875 if (*strp == '/') { 876 /* 877 ** Time specified. 878 */ 879 ++strp; 880 strp = getoffset(strp, &rulep->r_time); 881 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ 882 return strp; 883 } 884 885 /* 886 ** Given a year, a rule, and the offset from UT at the time that rule takes 887 ** effect, calculate the year-relative time that rule takes effect. 888 */ 889 890 static int_fast32_t 891 transtime(const int year, const struct rule *const rulep, 892 const int_fast32_t offset) 893 { 894 int leapyear; 895 int_fast32_t value; 896 int i; 897 int d, m1, yy0, yy1, yy2, dow; 898 899 INITIALIZE(value); 900 leapyear = isleap(year); 901 switch (rulep->r_type) { 902 903 case JULIAN_DAY: 904 /* 905 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap 906 ** years. 907 ** In non-leap years, or if the day number is 59 or less, just 908 ** add SECSPERDAY times the day number-1 to the time of 909 ** January 1, midnight, to get the day. 910 */ 911 value = (rulep->r_day - 1) * SECSPERDAY; 912 if (leapyear && rulep->r_day >= 60) 913 value += SECSPERDAY; 914 break; 915 916 case DAY_OF_YEAR: 917 /* 918 ** n - day of year. 919 ** Just add SECSPERDAY times the day number to the time of 920 ** January 1, midnight, to get the day. 921 */ 922 value = rulep->r_day * SECSPERDAY; 923 break; 924 925 case MONTH_NTH_DAY_OF_WEEK: 926 /* 927 ** Mm.n.d - nth "dth day" of month m. 928 */ 929 930 /* 931 ** Use Zeller's Congruence to get day-of-week of first day of 932 ** month. 933 */ 934 m1 = (rulep->r_mon + 9) % 12 + 1; 935 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; 936 yy1 = yy0 / 100; 937 yy2 = yy0 % 100; 938 dow = ((26 * m1 - 2) / 10 + 939 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; 940 if (dow < 0) 941 dow += DAYSPERWEEK; 942 943 /* 944 ** "dow" is the day-of-week of the first day of the month. Get 945 ** the day-of-month (zero-origin) of the first "dow" day of the 946 ** month. 947 */ 948 d = rulep->r_day - dow; 949 if (d < 0) 950 d += DAYSPERWEEK; 951 for (i = 1; i < rulep->r_week; ++i) { 952 if (d + DAYSPERWEEK >= 953 mon_lengths[leapyear][rulep->r_mon - 1]) 954 break; 955 d += DAYSPERWEEK; 956 } 957 958 /* 959 ** "d" is the day-of-month (zero-origin) of the day we want. 960 */ 961 value = d * SECSPERDAY; 962 for (i = 0; i < rulep->r_mon - 1; ++i) 963 value += mon_lengths[leapyear][i] * SECSPERDAY; 964 break; 965 } 966 967 /* 968 ** "value" is the year-relative time of 00:00:00 UT on the day in 969 ** question. To get the year-relative time of the specified local 970 ** time on that day, add the transition time and the current offset 971 ** from UT. 972 */ 973 return value + rulep->r_time + offset; 974 } 975 976 /* 977 ** Given a POSIX section 8-style TZ string, fill in the rule tables as 978 ** appropriate. 979 */ 980 981 static int 982 tzparse(timezone_t sp, const char *name, const int lastditch) 983 { 984 const char * stdname; 985 const char * dstname; 986 size_t stdlen; 987 size_t dstlen; 988 int_fast32_t stdoffset; 989 int_fast32_t dstoffset; 990 char * cp; 991 int load_result; 992 993 dstname = NULL; /* XXX gcc */ 994 stdname = name; 995 if (lastditch) { 996 stdlen = strlen(name); /* length of standard zone name */ 997 name += stdlen; 998 if (stdlen >= sizeof sp->chars) 999 stdlen = (sizeof sp->chars) - 1; 1000 stdoffset = 0; 1001 } else { 1002 if (*name == '<') { 1003 name++; 1004 stdname = name; 1005 name = getqzname(name, '>'); 1006 if (*name != '>') 1007 return (-1); 1008 stdlen = name - stdname; 1009 name++; 1010 } else { 1011 name = getzname(name); 1012 stdlen = name - stdname; 1013 } 1014 if (*name == '\0') 1015 return -1; 1016 name = getoffset(name, &stdoffset); 1017 if (name == NULL) 1018 return -1; 1019 } 1020 load_result = tzload(sp, TZDEFRULES, FALSE); 1021 if (load_result != 0) 1022 sp->leapcnt = 0; /* so, we're off a little */ 1023 if (*name != '\0') { 1024 if (*name == '<') { 1025 dstname = ++name; 1026 name = getqzname(name, '>'); 1027 if (*name != '>') 1028 return -1; 1029 dstlen = name - dstname; 1030 name++; 1031 } else { 1032 dstname = name; 1033 name = getzname(name); 1034 dstlen = name - dstname; /* length of DST zone name */ 1035 } 1036 if (*name != '\0' && *name != ',' && *name != ';') { 1037 name = getoffset(name, &dstoffset); 1038 if (name == NULL) 1039 return -1; 1040 } else dstoffset = stdoffset - SECSPERHOUR; 1041 if (*name == '\0' && load_result != 0) 1042 name = TZDEFRULESTRING; 1043 if (*name == ',' || *name == ';') { 1044 struct rule start; 1045 struct rule end; 1046 int year; 1047 int yearlim; 1048 int timecnt; 1049 time_t janfirst; 1050 1051 ++name; 1052 if ((name = getrule(name, &start)) == NULL) 1053 return -1; 1054 if (*name++ != ',') 1055 return -1; 1056 if ((name = getrule(name, &end)) == NULL) 1057 return -1; 1058 if (*name != '\0') 1059 return -1; 1060 sp->typecnt = 2; /* standard time and DST */ 1061 /* 1062 ** Two transitions per year, from EPOCH_YEAR forward. 1063 */ 1064 memset(sp->ttis, 0, sizeof(sp->ttis)); 1065 sp->ttis[0].tt_gmtoff = -dstoffset; 1066 sp->ttis[0].tt_isdst = 1; 1067 sp->ttis[0].tt_abbrind = (int)(stdlen + 1); 1068 sp->ttis[1].tt_gmtoff = -stdoffset; 1069 sp->ttis[1].tt_isdst = 0; 1070 sp->ttis[1].tt_abbrind = 0; 1071 sp->defaulttype = 0; 1072 timecnt = 0; 1073 janfirst = 0; 1074 sp->timecnt = 0; 1075 yearlim = EPOCH_YEAR + YEARSPERREPEAT; 1076 for (year = EPOCH_YEAR; year < yearlim; year++) { 1077 int_fast32_t 1078 starttime = transtime(year, &start, stdoffset), 1079 endtime = transtime(year, &end, dstoffset); 1080 int_fast32_t 1081 yearsecs = (year_lengths[isleap(year)] 1082 * SECSPERDAY); 1083 int reversed = endtime < starttime; 1084 if (reversed) { 1085 int_fast32_t swap = starttime; 1086 starttime = endtime; 1087 endtime = swap; 1088 } 1089 if (reversed 1090 || (starttime < endtime 1091 && (endtime - starttime 1092 < (yearsecs 1093 + (stdoffset - dstoffset))))) { 1094 if (TZ_MAX_TIMES - 2 < timecnt) 1095 break; 1096 yearlim = year + YEARSPERREPEAT + 1; 1097 sp->ats[timecnt] = janfirst; 1098 if (increment_overflow_time 1099 (&sp->ats[timecnt], starttime)) 1100 break; 1101 sp->types[timecnt++] = reversed; 1102 sp->ats[timecnt] = janfirst; 1103 if (increment_overflow_time 1104 (&sp->ats[timecnt], endtime)) 1105 break; 1106 sp->types[timecnt++] = !reversed; 1107 } 1108 if (increment_overflow_time(&janfirst, yearsecs)) 1109 break; 1110 } 1111 sp->timecnt = timecnt; 1112 if (!timecnt) 1113 sp->typecnt = 1; /* Perpetual DST. */ 1114 } else { 1115 int_fast32_t theirstdoffset; 1116 int_fast32_t theirdstoffset; 1117 int_fast32_t theiroffset; 1118 int isdst; 1119 int i; 1120 int j; 1121 1122 if (*name != '\0') 1123 return -1; 1124 /* 1125 ** Initial values of theirstdoffset and theirdstoffset. 1126 */ 1127 theirstdoffset = 0; 1128 for (i = 0; i < sp->timecnt; ++i) { 1129 j = sp->types[i]; 1130 if (!sp->ttis[j].tt_isdst) { 1131 theirstdoffset = 1132 -sp->ttis[j].tt_gmtoff; 1133 break; 1134 } 1135 } 1136 theirdstoffset = 0; 1137 for (i = 0; i < sp->timecnt; ++i) { 1138 j = sp->types[i]; 1139 if (sp->ttis[j].tt_isdst) { 1140 theirdstoffset = 1141 -sp->ttis[j].tt_gmtoff; 1142 break; 1143 } 1144 } 1145 /* 1146 ** Initially we're assumed to be in standard time. 1147 */ 1148 isdst = FALSE; 1149 theiroffset = theirstdoffset; 1150 /* 1151 ** Now juggle transition times and types 1152 ** tracking offsets as you do. 1153 */ 1154 for (i = 0; i < sp->timecnt; ++i) { 1155 j = sp->types[i]; 1156 sp->types[i] = sp->ttis[j].tt_isdst; 1157 if (sp->ttis[j].tt_ttisgmt) { 1158 /* No adjustment to transition time */ 1159 } else { 1160 /* 1161 ** If summer time is in effect, and the 1162 ** transition time was not specified as 1163 ** standard time, add the summer time 1164 ** offset to the transition time; 1165 ** otherwise, add the standard time 1166 ** offset to the transition time. 1167 */ 1168 /* 1169 ** Transitions from DST to DDST 1170 ** will effectively disappear since 1171 ** POSIX provides for only one DST 1172 ** offset. 1173 */ 1174 if (isdst && !sp->ttis[j].tt_ttisstd) { 1175 sp->ats[i] += (time_t) 1176 (dstoffset - theirdstoffset); 1177 } else { 1178 sp->ats[i] += (time_t) 1179 (stdoffset - theirstdoffset); 1180 } 1181 } 1182 theiroffset = -sp->ttis[j].tt_gmtoff; 1183 if (!sp->ttis[j].tt_isdst) 1184 theirstdoffset = theiroffset; 1185 else theirdstoffset = theiroffset; 1186 } 1187 /* 1188 ** Finally, fill in ttis. 1189 ** ttisstd and ttisgmt need not be handled 1190 */ 1191 memset(sp->ttis, 0, sizeof(sp->ttis)); 1192 sp->ttis[0].tt_gmtoff = -stdoffset; 1193 sp->ttis[0].tt_isdst = FALSE; 1194 sp->ttis[0].tt_abbrind = 0; 1195 sp->ttis[1].tt_gmtoff = -dstoffset; 1196 sp->ttis[1].tt_isdst = TRUE; 1197 sp->ttis[1].tt_abbrind = (int)(stdlen + 1); 1198 sp->typecnt = 2; 1199 sp->defaulttype = 0; 1200 } 1201 } else { 1202 dstlen = 0; 1203 sp->typecnt = 1; /* only standard time */ 1204 sp->timecnt = 0; 1205 memset(sp->ttis, 0, sizeof(sp->ttis)); 1206 sp->ttis[0].tt_gmtoff = -stdoffset; 1207 sp->ttis[0].tt_isdst = 0; 1208 sp->ttis[0].tt_abbrind = 0; 1209 sp->defaulttype = 0; 1210 } 1211 sp->charcnt = (int)(stdlen + 1); 1212 if (dstlen != 0) 1213 sp->charcnt += (int)(dstlen + 1); 1214 if ((size_t) sp->charcnt > sizeof sp->chars) 1215 return -1; 1216 cp = sp->chars; 1217 (void) strncpy(cp, stdname, stdlen); 1218 cp += stdlen; 1219 *cp++ = '\0'; 1220 if (dstlen != 0) { 1221 (void) strncpy(cp, dstname, dstlen); 1222 *(cp + dstlen) = '\0'; 1223 } 1224 return 0; 1225 } 1226 1227 static void 1228 gmtload(timezone_t sp) 1229 { 1230 if (tzload(sp, gmt, TRUE) != 0) 1231 (void) tzparse(sp, gmt, TRUE); 1232 } 1233 1234 timezone_t 1235 tzalloc(const char *name) 1236 { 1237 timezone_t sp = malloc(sizeof *sp); 1238 if (sp == NULL) 1239 return NULL; 1240 if (tzload(sp, name, TRUE) != 0) { 1241 free(sp); 1242 return NULL; 1243 } 1244 settzname_z(sp); 1245 return sp; 1246 } 1247 1248 void 1249 tzfree(const timezone_t sp) 1250 { 1251 free(sp); 1252 } 1253 1254 static void 1255 tzsetwall_unlocked(void) 1256 { 1257 if (lcl_is_set < 0) 1258 return; 1259 lcl_is_set = -1; 1260 1261 if (lclptr == NULL) { 1262 int saveerrno = errno; 1263 lclptr = malloc(sizeof *lclptr); 1264 errno = saveerrno; 1265 if (lclptr == NULL) { 1266 settzname(); /* all we can do */ 1267 return; 1268 } 1269 } 1270 if (tzload(lclptr, NULL, TRUE) != 0) 1271 gmtload(lclptr); 1272 settzname(); 1273 } 1274 1275 #ifndef STD_INSPIRED 1276 /* 1277 ** A non-static declaration of tzsetwall in a system header file 1278 ** may cause a warning about this upcoming static declaration... 1279 */ 1280 static 1281 #endif /* !defined STD_INSPIRED */ 1282 void 1283 tzsetwall(void) 1284 { 1285 rwlock_wrlock(&lcl_lock); 1286 tzsetwall_unlocked(); 1287 rwlock_unlock(&lcl_lock); 1288 } 1289 1290 #ifndef STD_INSPIRED 1291 /* 1292 ** A non-static declaration of tzsetwall in a system header file 1293 ** may cause a warning about this upcoming static declaration... 1294 */ 1295 static 1296 #endif /* !defined STD_INSPIRED */ 1297 void 1298 tzset_unlocked(void) 1299 { 1300 const char * name; 1301 1302 name = getenv("TZ"); 1303 if (name == NULL) { 1304 tzsetwall_unlocked(); 1305 return; 1306 } 1307 1308 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) 1309 return; 1310 lcl_is_set = strlen(name) < sizeof lcl_TZname; 1311 if (lcl_is_set) 1312 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname)); 1313 1314 if (lclptr == NULL) { 1315 int saveerrno = errno; 1316 lclptr = malloc(sizeof *lclptr); 1317 errno = saveerrno; 1318 if (lclptr == NULL) { 1319 settzname(); /* all we can do */ 1320 return; 1321 } 1322 } 1323 if (*name == '\0') { 1324 /* 1325 ** User wants it fast rather than right. 1326 */ 1327 lclptr->leapcnt = 0; /* so, we're off a little */ 1328 lclptr->timecnt = 0; 1329 lclptr->typecnt = 0; 1330 lclptr->ttis[0].tt_isdst = 0; 1331 lclptr->ttis[0].tt_gmtoff = 0; 1332 lclptr->ttis[0].tt_abbrind = 0; 1333 (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars)); 1334 } else if (tzload(lclptr, name, TRUE) != 0) 1335 if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0) 1336 (void) gmtload(lclptr); 1337 settzname(); 1338 } 1339 1340 void 1341 tzset(void) 1342 { 1343 rwlock_wrlock(&lcl_lock); 1344 tzset_unlocked(); 1345 rwlock_unlock(&lcl_lock); 1346 } 1347 1348 /* 1349 ** The easy way to behave "as if no library function calls" localtime 1350 ** is to not call it, so we drop its guts into "localsub", which can be 1351 ** freely called. (And no, the PANS doesn't require the above behavior, 1352 ** but it *is* desirable.) 1353 ** 1354 ** The unused offset argument is for the benefit of mktime variants. 1355 */ 1356 1357 /*ARGSUSED*/ 1358 static struct tm * 1359 localsub(const timezone_t sp, const time_t * const timep, const int_fast32_t offset, 1360 struct tm *const tmp) 1361 { 1362 const struct ttinfo * ttisp; 1363 int i; 1364 struct tm * result; 1365 const time_t t = *timep; 1366 1367 if ((sp->goback && t < sp->ats[0]) || 1368 (sp->goahead && t > sp->ats[sp->timecnt - 1])) { 1369 time_t newt = t; 1370 time_t seconds; 1371 time_t years; 1372 1373 if (t < sp->ats[0]) 1374 seconds = sp->ats[0] - t; 1375 else seconds = t - sp->ats[sp->timecnt - 1]; 1376 --seconds; 1377 years = (time_t)((seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT); 1378 seconds = (time_t)(years * AVGSECSPERYEAR); 1379 if (t < sp->ats[0]) 1380 newt += seconds; 1381 else newt -= seconds; 1382 if (newt < sp->ats[0] || 1383 newt > sp->ats[sp->timecnt - 1]) 1384 return NULL; /* "cannot happen" */ 1385 result = localsub(sp, &newt, offset, tmp); 1386 if (result == tmp) { 1387 time_t newy; 1388 1389 newy = tmp->tm_year; 1390 if (t < sp->ats[0]) 1391 newy -= years; 1392 else newy += years; 1393 tmp->tm_year = (int)newy; 1394 if (tmp->tm_year != newy) 1395 return NULL; 1396 } 1397 return result; 1398 } 1399 if (sp->timecnt == 0 || t < sp->ats[0]) { 1400 i = sp->defaulttype; 1401 } else { 1402 int lo = 1; 1403 int hi = sp->timecnt; 1404 1405 while (lo < hi) { 1406 int mid = (lo + hi) / 2; 1407 1408 if (t < sp->ats[mid]) 1409 hi = mid; 1410 else lo = mid + 1; 1411 } 1412 i = (int) sp->types[lo - 1]; 1413 } 1414 ttisp = &sp->ttis[i]; 1415 /* 1416 ** To get (wrong) behavior that's compatible with System V Release 2.0 1417 ** you'd replace the statement below with 1418 ** t += ttisp->tt_gmtoff; 1419 ** timesub(&t, 0L, sp, tmp); 1420 */ 1421 result = timesub(sp, &t, ttisp->tt_gmtoff, tmp); 1422 tmp->tm_isdst = ttisp->tt_isdst; 1423 if (sp == lclptr) 1424 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind]; 1425 #ifdef TM_ZONE 1426 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind]; 1427 #endif /* defined TM_ZONE */ 1428 return result; 1429 } 1430 1431 /* 1432 ** Re-entrant version of localtime. 1433 */ 1434 1435 struct tm * 1436 localtime_r(const time_t * __restrict timep, struct tm *tmp) 1437 { 1438 rwlock_rdlock(&lcl_lock); 1439 tzset_unlocked(); 1440 tmp = localtime_rz(lclptr, timep, tmp); 1441 rwlock_unlock(&lcl_lock); 1442 return tmp; 1443 } 1444 1445 struct tm * 1446 localtime(const time_t *const timep) 1447 { 1448 return localtime_r(timep, &tm); 1449 } 1450 1451 struct tm * 1452 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp) 1453 { 1454 if (sp == NULL) 1455 tmp = gmtsub(NULL, timep, 0, tmp); 1456 else 1457 tmp = localsub(sp, timep, 0, tmp); 1458 if (tmp == NULL) 1459 errno = EOVERFLOW; 1460 return tmp; 1461 } 1462 1463 /* 1464 ** gmtsub is to gmtime as localsub is to localtime. 1465 */ 1466 1467 static struct tm * 1468 gmtsub(const timezone_t sp, const time_t *const timep, 1469 const int_fast32_t offset, struct tm *const tmp) 1470 { 1471 struct tm * result; 1472 #ifdef _REENTRANT 1473 static mutex_t gmt_mutex = MUTEX_INITIALIZER; 1474 #endif 1475 1476 mutex_lock(&gmt_mutex); 1477 if (!gmt_is_set) { 1478 int saveerrno; 1479 gmt_is_set = TRUE; 1480 saveerrno = errno; 1481 gmtptr = malloc(sizeof *gmtptr); 1482 gmt_is_set = gmtptr != NULL; 1483 errno = saveerrno; 1484 if (gmt_is_set) 1485 gmtload(gmtptr); 1486 } 1487 mutex_unlock(&gmt_mutex); 1488 result = timesub(gmtptr, timep, offset, tmp); 1489 #ifdef TM_ZONE 1490 /* 1491 ** Could get fancy here and deliver something such as 1492 ** "UT+xxxx" or "UT-xxxx" if offset is non-zero, 1493 ** but this is no time for a treasure hunt. 1494 */ 1495 tmp->TM_ZONE = offset ? __UNCONST(wildabbr) : gmtptr ? gmtptr->chars : 1496 __UNCONST(gmt); 1497 #endif /* defined TM_ZONE */ 1498 return result; 1499 } 1500 1501 struct tm * 1502 gmtime(const time_t *const timep) 1503 { 1504 struct tm *tmp = gmtsub(NULL, timep, 0, &tm); 1505 1506 if (tmp == NULL) 1507 errno = EOVERFLOW; 1508 1509 return tmp; 1510 } 1511 1512 /* 1513 ** Re-entrant version of gmtime. 1514 */ 1515 1516 struct tm * 1517 gmtime_r(const time_t * const timep, struct tm *tmp) 1518 { 1519 tmp = gmtsub(NULL, timep, 0, tmp); 1520 1521 if (tmp == NULL) 1522 errno = EOVERFLOW; 1523 1524 return tmp; 1525 } 1526 1527 #ifdef STD_INSPIRED 1528 1529 struct tm * 1530 offtime(const time_t *const timep, long offset) 1531 { 1532 struct tm *tmp; 1533 1534 if ((offset > 0 && offset > INT_FAST32_MAX) || 1535 (offset < 0 && offset < INT_FAST32_MIN)) { 1536 errno = EOVERFLOW; 1537 return NULL; 1538 } 1539 tmp = gmtsub(NULL, timep, (int_fast32_t)offset, &tm); 1540 1541 if (tmp == NULL) 1542 errno = EOVERFLOW; 1543 1544 return tmp; 1545 } 1546 1547 struct tm * 1548 offtime_r(const time_t *timep, long offset, struct tm *tmp) 1549 { 1550 if ((offset > 0 && offset > INT_FAST32_MAX) || 1551 (offset < 0 && offset < INT_FAST32_MIN)) { 1552 errno = EOVERFLOW; 1553 return NULL; 1554 } 1555 tmp = gmtsub(NULL, timep, (int_fast32_t)offset, tmp); 1556 1557 if (tmp == NULL) 1558 errno = EOVERFLOW; 1559 1560 return tmp; 1561 } 1562 1563 #endif /* defined STD_INSPIRED */ 1564 1565 /* 1566 ** Return the number of leap years through the end of the given year 1567 ** where, to make the math easy, the answer for year zero is defined as zero. 1568 */ 1569 1570 static int 1571 leaps_thru_end_of(const int y) 1572 { 1573 return (y >= 0) ? (y / 4 - y / 100 + y / 400) : 1574 -(leaps_thru_end_of(-(y + 1)) + 1); 1575 } 1576 1577 static struct tm * 1578 timesub(const timezone_t sp, const time_t *const timep, 1579 const int_fast32_t offset, struct tm *const tmp) 1580 { 1581 const struct lsinfo * lp; 1582 time_t tdays; 1583 int idays; /* unsigned would be so 2003 */ 1584 int_fast64_t rem; 1585 int y; 1586 const int * ip; 1587 int_fast64_t corr; 1588 int hit; 1589 int i; 1590 1591 corr = 0; 1592 hit = 0; 1593 i = (sp == NULL) ? 0 : sp->leapcnt; 1594 while (--i >= 0) { 1595 lp = &sp->lsis[i]; 1596 if (*timep >= lp->ls_trans) { 1597 if (*timep == lp->ls_trans) { 1598 hit = ((i == 0 && lp->ls_corr > 0) || 1599 lp->ls_corr > sp->lsis[i - 1].ls_corr); 1600 if (hit) 1601 while (i > 0 && 1602 sp->lsis[i].ls_trans == 1603 sp->lsis[i - 1].ls_trans + 1 && 1604 sp->lsis[i].ls_corr == 1605 sp->lsis[i - 1].ls_corr + 1) { 1606 ++hit; 1607 --i; 1608 } 1609 } 1610 corr = lp->ls_corr; 1611 break; 1612 } 1613 } 1614 y = EPOCH_YEAR; 1615 tdays = (time_t)(*timep / SECSPERDAY); 1616 rem = (int_fast64_t) (*timep - tdays * SECSPERDAY); 1617 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) { 1618 int newy; 1619 time_t tdelta; 1620 int idelta; 1621 int leapdays; 1622 1623 tdelta = tdays / DAYSPERLYEAR; 1624 if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta) 1625 && tdelta <= INT_MAX)) 1626 return NULL; 1627 _DIAGASSERT(__type_fit(int, tdelta)); 1628 idelta = (int)tdelta; 1629 if (idelta == 0) 1630 idelta = (tdays < 0) ? -1 : 1; 1631 newy = y; 1632 if (increment_overflow(&newy, idelta)) 1633 return NULL; 1634 leapdays = leaps_thru_end_of(newy - 1) - 1635 leaps_thru_end_of(y - 1); 1636 tdays -= ((time_t) newy - y) * DAYSPERNYEAR; 1637 tdays -= leapdays; 1638 y = newy; 1639 } 1640 { 1641 int_fast32_t seconds; 1642 1643 seconds = (int_fast32_t)(tdays * SECSPERDAY); 1644 tdays = (time_t)(seconds / SECSPERDAY); 1645 rem += (int_fast64_t)(seconds - tdays * SECSPERDAY); 1646 } 1647 /* 1648 ** Given the range, we can now fearlessly cast... 1649 */ 1650 idays = (int) tdays; 1651 rem += offset - corr; 1652 while (rem < 0) { 1653 rem += SECSPERDAY; 1654 --idays; 1655 } 1656 while (rem >= SECSPERDAY) { 1657 rem -= SECSPERDAY; 1658 ++idays; 1659 } 1660 while (idays < 0) { 1661 if (increment_overflow(&y, -1)) 1662 return NULL; 1663 idays += year_lengths[isleap(y)]; 1664 } 1665 while (idays >= year_lengths[isleap(y)]) { 1666 idays -= year_lengths[isleap(y)]; 1667 if (increment_overflow(&y, 1)) 1668 return NULL; 1669 } 1670 tmp->tm_year = y; 1671 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) 1672 return NULL; 1673 tmp->tm_yday = idays; 1674 /* 1675 ** The "extra" mods below avoid overflow problems. 1676 */ 1677 tmp->tm_wday = EPOCH_WDAY + 1678 ((y - EPOCH_YEAR) % DAYSPERWEEK) * 1679 (DAYSPERNYEAR % DAYSPERWEEK) + 1680 leaps_thru_end_of(y - 1) - 1681 leaps_thru_end_of(EPOCH_YEAR - 1) + 1682 idays; 1683 tmp->tm_wday %= DAYSPERWEEK; 1684 if (tmp->tm_wday < 0) 1685 tmp->tm_wday += DAYSPERWEEK; 1686 tmp->tm_hour = (int) (rem / SECSPERHOUR); 1687 rem %= SECSPERHOUR; 1688 tmp->tm_min = (int) (rem / SECSPERMIN); 1689 /* 1690 ** A positive leap second requires a special 1691 ** representation. This uses "... ??:59:60" et seq. 1692 */ 1693 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; 1694 ip = mon_lengths[isleap(y)]; 1695 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) 1696 idays -= ip[tmp->tm_mon]; 1697 tmp->tm_mday = (int) (idays + 1); 1698 tmp->tm_isdst = 0; 1699 #ifdef TM_GMTOFF 1700 tmp->TM_GMTOFF = offset; 1701 #endif /* defined TM_GMTOFF */ 1702 return tmp; 1703 } 1704 1705 char * 1706 ctime(const time_t *const timep) 1707 { 1708 /* 1709 ** Section 4.12.3.2 of X3.159-1989 requires that 1710 ** The ctime function converts the calendar time pointed to by timer 1711 ** to local time in the form of a string. It is equivalent to 1712 ** asctime(localtime(timer)) 1713 */ 1714 struct tm *rtm = localtime(timep); 1715 if (rtm == NULL) 1716 return NULL; 1717 return asctime(rtm); 1718 } 1719 1720 char * 1721 ctime_r(const time_t *const timep, char *buf) 1722 { 1723 struct tm mytm, *rtm; 1724 1725 rtm = localtime_r(timep, &mytm); 1726 if (rtm == NULL) 1727 return NULL; 1728 return asctime_r(rtm, buf); 1729 } 1730 1731 char * 1732 ctime_rz(const timezone_t sp, const time_t * timep, char *buf) 1733 { 1734 struct tm mytm, *rtm; 1735 1736 rtm = localtime_rz(sp, timep, &mytm); 1737 if (rtm == NULL) 1738 return NULL; 1739 return asctime_r(rtm, buf); 1740 } 1741 1742 /* 1743 ** Adapted from code provided by Robert Elz, who writes: 1744 ** The "best" way to do mktime I think is based on an idea of Bob 1745 ** Kridle's (so its said...) from a long time ago. 1746 ** It does a binary search of the time_t space. Since time_t's are 1747 ** just 32 bits, its a max of 32 iterations (even at 64 bits it 1748 ** would still be very reasonable). 1749 */ 1750 1751 #ifndef WRONG 1752 #define WRONG ((time_t)-1) 1753 #endif /* !defined WRONG */ 1754 1755 /* 1756 ** Simplified normalize logic courtesy Paul Eggert. 1757 */ 1758 1759 static int 1760 increment_overflow(int *const ip, int j) 1761 { 1762 int i = *ip; 1763 1764 /* 1765 ** If i >= 0 there can only be overflow if i + j > INT_MAX 1766 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow. 1767 ** If i < 0 there can only be overflow if i + j < INT_MIN 1768 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow. 1769 */ 1770 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i)) 1771 return TRUE; 1772 *ip += j; 1773 return FALSE; 1774 } 1775 1776 static int 1777 increment_overflow32(int_fast32_t *const lp, int const m) 1778 { 1779 int_fast32_t l = *lp; 1780 1781 if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l)) 1782 return TRUE; 1783 *lp += m; 1784 return FALSE; 1785 } 1786 1787 static int 1788 increment_overflow_time(time_t *tp, int_fast32_t j) 1789 { 1790 /* 1791 ** This is like 1792 ** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...', 1793 ** except that it does the right thing even if *tp + j would overflow. 1794 */ 1795 if (! (j < 0 1796 ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp) 1797 : *tp <= time_t_max - j)) 1798 return TRUE; 1799 *tp += j; 1800 return FALSE; 1801 } 1802 1803 static int 1804 normalize_overflow(int *const tensptr, int *const unitsptr, const int base) 1805 { 1806 int tensdelta; 1807 1808 tensdelta = (*unitsptr >= 0) ? 1809 (*unitsptr / base) : 1810 (-1 - (-1 - *unitsptr) / base); 1811 *unitsptr -= tensdelta * base; 1812 return increment_overflow(tensptr, tensdelta); 1813 } 1814 1815 static int 1816 normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr, 1817 const int base) 1818 { 1819 int tensdelta; 1820 1821 tensdelta = (*unitsptr >= 0) ? 1822 (*unitsptr / base) : 1823 (-1 - (-1 - *unitsptr) / base); 1824 *unitsptr -= tensdelta * base; 1825 return increment_overflow32(tensptr, tensdelta); 1826 } 1827 1828 static int 1829 tmcomp(const struct tm *const atmp, const struct tm *const btmp) 1830 { 1831 int result; 1832 1833 if (atmp->tm_year != btmp->tm_year) 1834 return atmp->tm_year < btmp->tm_year ? -1 : 1; 1835 if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 && 1836 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && 1837 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && 1838 (result = (atmp->tm_min - btmp->tm_min)) == 0) 1839 result = atmp->tm_sec - btmp->tm_sec; 1840 return result; 1841 } 1842 1843 static time_t 1844 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp, 1845 const int_fast32_t offset, int *const okayp, const int do_norm_secs) 1846 { 1847 int dir; 1848 int i, j; 1849 int saved_seconds; 1850 int_fast32_t li; 1851 time_t lo; 1852 time_t hi; 1853 #ifdef NO_ERROR_IN_DST_GAP 1854 time_t ilo; 1855 #endif 1856 int_fast32_t y; 1857 time_t newt; 1858 time_t t; 1859 struct tm yourtm, mytm; 1860 1861 *okayp = FALSE; 1862 yourtm = *tmp; 1863 #ifdef NO_ERROR_IN_DST_GAP 1864 again: 1865 #endif 1866 if (do_norm_secs) { 1867 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, 1868 SECSPERMIN)) 1869 goto overflow; 1870 } 1871 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) 1872 goto overflow; 1873 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) 1874 goto overflow; 1875 y = yourtm.tm_year; 1876 if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR)) 1877 goto overflow; 1878 /* 1879 ** Turn y into an actual year number for now. 1880 ** It is converted back to an offset from TM_YEAR_BASE later. 1881 */ 1882 if (increment_overflow32(&y, TM_YEAR_BASE)) 1883 goto overflow; 1884 while (yourtm.tm_mday <= 0) { 1885 if (increment_overflow32(&y, -1)) 1886 goto overflow; 1887 li = y + (1 < yourtm.tm_mon); 1888 yourtm.tm_mday += year_lengths[isleap(li)]; 1889 } 1890 while (yourtm.tm_mday > DAYSPERLYEAR) { 1891 li = y + (1 < yourtm.tm_mon); 1892 yourtm.tm_mday -= year_lengths[isleap(li)]; 1893 if (increment_overflow32(&y, 1)) 1894 goto overflow; 1895 } 1896 for ( ; ; ) { 1897 i = mon_lengths[isleap(y)][yourtm.tm_mon]; 1898 if (yourtm.tm_mday <= i) 1899 break; 1900 yourtm.tm_mday -= i; 1901 if (++yourtm.tm_mon >= MONSPERYEAR) { 1902 yourtm.tm_mon = 0; 1903 if (increment_overflow32(&y, 1)) 1904 goto overflow; 1905 } 1906 } 1907 if (increment_overflow32(&y, -TM_YEAR_BASE)) 1908 goto overflow; 1909 yourtm.tm_year = (int)y; 1910 if (yourtm.tm_year != y) 1911 goto overflow; 1912 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) 1913 saved_seconds = 0; 1914 else if (y + TM_YEAR_BASE < EPOCH_YEAR) { 1915 /* 1916 ** We can't set tm_sec to 0, because that might push the 1917 ** time below the minimum representable time. 1918 ** Set tm_sec to 59 instead. 1919 ** This assumes that the minimum representable time is 1920 ** not in the same minute that a leap second was deleted from, 1921 ** which is a safer assumption than using 58 would be. 1922 */ 1923 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) 1924 goto overflow; 1925 saved_seconds = yourtm.tm_sec; 1926 yourtm.tm_sec = SECSPERMIN - 1; 1927 } else { 1928 saved_seconds = yourtm.tm_sec; 1929 yourtm.tm_sec = 0; 1930 } 1931 /* 1932 ** Do a binary search (this works whatever time_t's type is). 1933 */ 1934 /* LINTED const not */ 1935 if (!TYPE_SIGNED(time_t)) { 1936 lo = 0; 1937 hi = lo - 1; 1938 } else { 1939 lo = 1; 1940 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i) 1941 lo *= 2; 1942 hi = -(lo + 1); 1943 } 1944 #ifdef NO_ERROR_IN_DST_GAP 1945 ilo = lo; 1946 #endif 1947 for ( ; ; ) { 1948 t = lo / 2 + hi / 2; 1949 if (t < lo) 1950 t = lo; 1951 else if (t > hi) 1952 t = hi; 1953 if ((*funcp)(sp, &t, offset, &mytm) == NULL) { 1954 /* 1955 ** Assume that t is too extreme to be represented in 1956 ** a struct tm; arrange things so that it is less 1957 ** extreme on the next pass. 1958 */ 1959 dir = (t > 0) ? 1 : -1; 1960 } else dir = tmcomp(&mytm, &yourtm); 1961 if (dir != 0) { 1962 if (t == lo) { 1963 if (t == time_t_max) 1964 goto overflow; 1965 ++t; 1966 ++lo; 1967 } else if (t == hi) { 1968 if (t == time_t_min) 1969 goto overflow; 1970 --t; 1971 --hi; 1972 } 1973 #ifdef NO_ERROR_IN_DST_GAP 1974 if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 && 1975 do_norm_secs) { 1976 for (i = sp->typecnt - 1; i >= 0; --i) { 1977 for (j = sp->typecnt - 1; j >= 0; --j) { 1978 time_t off; 1979 if (sp->ttis[j].tt_isdst == 1980 sp->ttis[i].tt_isdst) 1981 continue; 1982 off = sp->ttis[j].tt_gmtoff - 1983 sp->ttis[i].tt_gmtoff; 1984 yourtm.tm_sec += off < 0 ? 1985 -off : off; 1986 goto again; 1987 } 1988 } 1989 } 1990 #endif 1991 if (lo > hi) 1992 goto invalid; 1993 if (dir > 0) 1994 hi = t; 1995 else lo = t; 1996 continue; 1997 } 1998 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) 1999 break; 2000 /* 2001 ** Right time, wrong type. 2002 ** Hunt for right time, right type. 2003 ** It's okay to guess wrong since the guess 2004 ** gets checked. 2005 */ 2006 if (sp == NULL) 2007 goto invalid; 2008 for (i = sp->typecnt - 1; i >= 0; --i) { 2009 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) 2010 continue; 2011 for (j = sp->typecnt - 1; j >= 0; --j) { 2012 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) 2013 continue; 2014 newt = (time_t)(t + sp->ttis[j].tt_gmtoff - 2015 sp->ttis[i].tt_gmtoff); 2016 if ((*funcp)(sp, &newt, offset, &mytm) == NULL) 2017 continue; 2018 if (tmcomp(&mytm, &yourtm) != 0) 2019 continue; 2020 if (mytm.tm_isdst != yourtm.tm_isdst) 2021 continue; 2022 /* 2023 ** We have a match. 2024 */ 2025 t = newt; 2026 goto label; 2027 } 2028 } 2029 goto invalid; 2030 } 2031 label: 2032 newt = t + saved_seconds; 2033 if ((newt < t) != (saved_seconds < 0)) 2034 goto overflow; 2035 t = newt; 2036 if ((*funcp)(sp, &t, offset, tmp)) { 2037 *okayp = TRUE; 2038 return t; 2039 } 2040 overflow: 2041 errno = EOVERFLOW; 2042 return WRONG; 2043 invalid: 2044 errno = EINVAL; 2045 return WRONG; 2046 } 2047 2048 static time_t 2049 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp, 2050 const int_fast32_t offset, int *const okayp) 2051 { 2052 time_t t; 2053 2054 /* 2055 ** First try without normalization of seconds 2056 ** (in case tm_sec contains a value associated with a leap second). 2057 ** If that fails, try with normalization of seconds. 2058 */ 2059 t = time2sub(sp, tmp, funcp, offset, okayp, FALSE); 2060 return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE); 2061 } 2062 2063 static time_t 2064 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp, 2065 const int_fast32_t offset) 2066 { 2067 time_t t; 2068 int samei, otheri; 2069 int sameind, otherind; 2070 int i; 2071 int nseen; 2072 char seen[TZ_MAX_TYPES]; 2073 unsigned char types[TZ_MAX_TYPES]; 2074 int okay; 2075 2076 if (tmp == NULL) { 2077 errno = EINVAL; 2078 return WRONG; 2079 } 2080 if (tmp->tm_isdst > 1) 2081 tmp->tm_isdst = 1; 2082 t = time2(sp, tmp, funcp, offset, &okay); 2083 if (okay) 2084 return t; 2085 if (tmp->tm_isdst < 0) 2086 #ifdef PCTS 2087 /* 2088 ** POSIX Conformance Test Suite code courtesy Grant Sullivan. 2089 */ 2090 tmp->tm_isdst = 0; /* reset to std and try again */ 2091 #else 2092 return t; 2093 #endif /* !defined PCTS */ 2094 /* 2095 ** We're supposed to assume that somebody took a time of one type 2096 ** and did some math on it that yielded a "struct tm" that's bad. 2097 ** We try to divine the type they started from and adjust to the 2098 ** type they need. 2099 */ 2100 if (sp == NULL) { 2101 errno = EINVAL; 2102 return WRONG; 2103 } 2104 for (i = 0; i < sp->typecnt; ++i) 2105 seen[i] = FALSE; 2106 nseen = 0; 2107 for (i = sp->timecnt - 1; i >= 0; --i) 2108 if (!seen[sp->types[i]]) { 2109 seen[sp->types[i]] = TRUE; 2110 types[nseen++] = sp->types[i]; 2111 } 2112 for (sameind = 0; sameind < nseen; ++sameind) { 2113 samei = types[sameind]; 2114 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) 2115 continue; 2116 for (otherind = 0; otherind < nseen; ++otherind) { 2117 otheri = types[otherind]; 2118 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) 2119 continue; 2120 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff - 2121 sp->ttis[samei].tt_gmtoff); 2122 tmp->tm_isdst = !tmp->tm_isdst; 2123 t = time2(sp, tmp, funcp, offset, &okay); 2124 if (okay) 2125 return t; 2126 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff - 2127 sp->ttis[samei].tt_gmtoff); 2128 tmp->tm_isdst = !tmp->tm_isdst; 2129 } 2130 } 2131 errno = EOVERFLOW; 2132 return WRONG; 2133 } 2134 2135 time_t 2136 mktime_z(const timezone_t sp, struct tm *const tmp) 2137 { 2138 time_t t; 2139 if (sp == NULL) 2140 t = time1(NULL, tmp, gmtsub, 0); 2141 else 2142 t = time1(sp, tmp, localsub, 0); 2143 return t; 2144 } 2145 2146 time_t 2147 mktime(struct tm *const tmp) 2148 { 2149 time_t result; 2150 2151 rwlock_wrlock(&lcl_lock); 2152 tzset_unlocked(); 2153 result = mktime_z(lclptr, tmp); 2154 rwlock_unlock(&lcl_lock); 2155 return result; 2156 } 2157 2158 #ifdef STD_INSPIRED 2159 2160 time_t 2161 timelocal_z(const timezone_t sp, struct tm *const tmp) 2162 { 2163 if (tmp != NULL) 2164 tmp->tm_isdst = -1; /* in case it wasn't initialized */ 2165 return mktime_z(sp, tmp); 2166 } 2167 2168 time_t 2169 timelocal(struct tm *const tmp) 2170 { 2171 if (tmp != NULL) 2172 tmp->tm_isdst = -1; /* in case it wasn't initialized */ 2173 return mktime(tmp); 2174 } 2175 2176 time_t 2177 timegm(struct tm *const tmp) 2178 { 2179 time_t t; 2180 2181 if (tmp != NULL) 2182 tmp->tm_isdst = 0; 2183 t = time1(gmtptr, tmp, gmtsub, 0); 2184 return t; 2185 } 2186 2187 time_t 2188 timeoff(struct tm *const tmp, long offset) 2189 { 2190 time_t t; 2191 2192 if ((offset > 0 && offset > INT_FAST32_MAX) || 2193 (offset < 0 && offset < INT_FAST32_MIN)) { 2194 errno = EOVERFLOW; 2195 return -1; 2196 } 2197 if (tmp != NULL) 2198 tmp->tm_isdst = 0; 2199 t = time1(gmtptr, tmp, gmtsub, (int_fast32_t)offset); 2200 return t; 2201 } 2202 2203 #endif /* defined STD_INSPIRED */ 2204 2205 #ifdef CMUCS 2206 2207 /* 2208 ** The following is supplied for compatibility with 2209 ** previous versions of the CMUCS runtime library. 2210 */ 2211 2212 long 2213 gtime(struct tm *const tmp) 2214 { 2215 const time_t t = mktime(tmp); 2216 2217 if (t == WRONG) 2218 return -1; 2219 return t; 2220 } 2221 2222 #endif /* defined CMUCS */ 2223 2224 /* 2225 ** XXX--is the below the right way to conditionalize?? 2226 */ 2227 2228 #ifdef STD_INSPIRED 2229 2230 /* 2231 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599 2232 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which 2233 ** is not the case if we are accounting for leap seconds. 2234 ** So, we provide the following conversion routines for use 2235 ** when exchanging timestamps with POSIX conforming systems. 2236 */ 2237 2238 static int_fast64_t 2239 leapcorr(const timezone_t sp, time_t *timep) 2240 { 2241 struct lsinfo * lp; 2242 int i; 2243 2244 i = sp->leapcnt; 2245 while (--i >= 0) { 2246 lp = &sp->lsis[i]; 2247 if (*timep >= lp->ls_trans) 2248 return lp->ls_corr; 2249 } 2250 return 0; 2251 } 2252 2253 time_t 2254 time2posix_z(const timezone_t sp, time_t t) 2255 { 2256 return (time_t)(t - leapcorr(sp, &t)); 2257 } 2258 2259 time_t 2260 time2posix(time_t t) 2261 { 2262 time_t result; 2263 rwlock_wrlock(&lcl_lock); 2264 tzset_unlocked(); 2265 result = (time_t)(t - leapcorr(lclptr, &t)); 2266 rwlock_unlock(&lcl_lock); 2267 return (result); 2268 } 2269 2270 time_t 2271 posix2time_z(const timezone_t sp, time_t t) 2272 { 2273 time_t x; 2274 time_t y; 2275 2276 /* 2277 ** For a positive leap second hit, the result 2278 ** is not unique. For a negative leap second 2279 ** hit, the corresponding time doesn't exist, 2280 ** so we return an adjacent second. 2281 */ 2282 x = (time_t)(t + leapcorr(sp, &t)); 2283 y = (time_t)(x - leapcorr(sp, &x)); 2284 if (y < t) { 2285 do { 2286 x++; 2287 y = (time_t)(x - leapcorr(sp, &x)); 2288 } while (y < t); 2289 if (t != y) { 2290 return x - 1; 2291 } 2292 } else if (y > t) { 2293 do { 2294 --x; 2295 y = (time_t)(x - leapcorr(sp, &x)); 2296 } while (y > t); 2297 if (t != y) { 2298 return x + 1; 2299 } 2300 } 2301 return x; 2302 } 2303 2304 2305 2306 time_t 2307 posix2time(time_t t) 2308 { 2309 time_t result; 2310 2311 rwlock_wrlock(&lcl_lock); 2312 tzset_unlocked(); 2313 result = posix2time_z(lclptr, t); 2314 rwlock_unlock(&lcl_lock); 2315 return result; 2316 } 2317 2318 #endif /* defined STD_INSPIRED */ 2319