1 /* $NetBSD: localtime.c,v 1.46 2010/02/02 19:04:37 christos Exp $ */ 2 3 /* 4 ** This file is in the public domain, so clarified as of 5 ** 1996-06-05 by Arthur David Olson. 6 */ 7 8 #include <sys/cdefs.h> 9 #if defined(LIBC_SCCS) && !defined(lint) 10 #if 0 11 static char elsieid[] = "@(#)localtime.c 8.9"; 12 #else 13 __RCSID("$NetBSD: localtime.c,v 1.46 2010/02/02 19:04:37 christos Exp $"); 14 #endif 15 #endif /* LIBC_SCCS and not lint */ 16 17 /* 18 ** Leap second handling from Bradley White. 19 ** POSIX-style TZ environment variable handling from Guy Harris. 20 */ 21 22 /*LINTLIBRARY*/ 23 24 #include "namespace.h" 25 #include "private.h" 26 #include "tzfile.h" 27 #include "fcntl.h" 28 #include "reentrant.h" 29 30 #if defined(__weak_alias) 31 __weak_alias(daylight,_daylight) 32 __weak_alias(tzname,_tzname) 33 __weak_alias(tzset,_tzset) 34 __weak_alias(tzsetwall,_tzsetwall) 35 #endif 36 37 #include "float.h" /* for FLT_MAX and DBL_MAX */ 38 39 #ifndef TZ_ABBR_MAX_LEN 40 #define TZ_ABBR_MAX_LEN 16 41 #endif /* !defined TZ_ABBR_MAX_LEN */ 42 43 #ifndef TZ_ABBR_CHAR_SET 44 #define TZ_ABBR_CHAR_SET \ 45 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._" 46 #endif /* !defined TZ_ABBR_CHAR_SET */ 47 48 #ifndef TZ_ABBR_ERR_CHAR 49 #define TZ_ABBR_ERR_CHAR '_' 50 #endif /* !defined TZ_ABBR_ERR_CHAR */ 51 52 /* 53 ** SunOS 4.1.1 headers lack O_BINARY. 54 */ 55 56 #ifdef O_BINARY 57 #define OPEN_MODE (O_RDONLY | O_BINARY) 58 #endif /* defined O_BINARY */ 59 #ifndef O_BINARY 60 #define OPEN_MODE O_RDONLY 61 #endif /* !defined O_BINARY */ 62 63 #ifndef WILDABBR 64 /* 65 ** Someone might make incorrect use of a time zone abbreviation: 66 ** 1. They might reference tzname[0] before calling tzset (explicitly 67 ** or implicitly). 68 ** 2. They might reference tzname[1] before calling tzset (explicitly 69 ** or implicitly). 70 ** 3. They might reference tzname[1] after setting to a time zone 71 ** in which Daylight Saving Time is never observed. 72 ** 4. They might reference tzname[0] after setting to a time zone 73 ** in which Standard Time is never observed. 74 ** 5. They might reference tm.TM_ZONE after calling offtime. 75 ** What's best to do in the above cases is open to debate; 76 ** for now, we just set things up so that in any of the five cases 77 ** WILDABBR is used. Another possibility: initialize tzname[0] to the 78 ** string "tzname[0] used before set", and similarly for the other cases. 79 ** And another: initialize tzname[0] to "ERA", with an explanation in the 80 ** manual page of what this "time zone abbreviation" means (doing this so 81 ** that tzname[0] has the "normal" length of three characters). 82 */ 83 #define WILDABBR " " 84 #endif /* !defined WILDABBR */ 85 86 static const char wildabbr[] = WILDABBR; 87 88 static const char gmt[] = "GMT"; 89 90 /* 91 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES. 92 ** We default to US rules as of 1999-08-17. 93 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are 94 ** implementation dependent; for historical reasons, US rules are a 95 ** common default. 96 */ 97 #ifndef TZDEFRULESTRING 98 #define TZDEFRULESTRING ",M4.1.0,M10.5.0" 99 #endif /* !defined TZDEFDST */ 100 101 struct ttinfo { /* time type information */ 102 long tt_gmtoff; /* UTC offset in seconds */ 103 int tt_isdst; /* used to set tm_isdst */ 104 int tt_abbrind; /* abbreviation list index */ 105 int tt_ttisstd; /* TRUE if transition is std time */ 106 int tt_ttisgmt; /* TRUE if transition is UTC */ 107 }; 108 109 struct lsinfo { /* leap second information */ 110 time_t ls_trans; /* transition time */ 111 long ls_corr; /* correction to apply */ 112 }; 113 114 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b)) 115 116 #ifdef TZNAME_MAX 117 #define MY_TZNAME_MAX TZNAME_MAX 118 #endif /* defined TZNAME_MAX */ 119 #ifndef TZNAME_MAX 120 #define MY_TZNAME_MAX 255 121 #endif /* !defined TZNAME_MAX */ 122 123 struct state { 124 int leapcnt; 125 int timecnt; 126 int typecnt; 127 int charcnt; 128 int goback; 129 int goahead; 130 time_t ats[TZ_MAX_TIMES]; 131 unsigned char types[TZ_MAX_TIMES]; 132 struct ttinfo ttis[TZ_MAX_TYPES]; 133 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt), 134 (2 * (MY_TZNAME_MAX + 1)))]; 135 struct lsinfo lsis[TZ_MAX_LEAPS]; 136 }; 137 138 struct rule { 139 int r_type; /* type of rule--see below */ 140 int r_day; /* day number of rule */ 141 int r_week; /* week number of rule */ 142 int r_mon; /* month number of rule */ 143 long r_time; /* transition time of rule */ 144 }; 145 146 #define JULIAN_DAY 0 /* Jn - Julian day */ 147 #define DAY_OF_YEAR 1 /* n - day of year */ 148 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */ 149 150 /* 151 ** Prototypes for static functions. 152 */ 153 154 static long detzcode(const char * codep); 155 static time_t detzcode64(const char * codep); 156 static int differ_by_repeat(time_t t1, time_t t0); 157 static const char * getzname(const char * strp); 158 static const char * getqzname(const char * strp, const int delim); 159 static const char * getnum(const char * strp, int * nump, int min, 160 int max); 161 static const char * getsecs(const char * strp, long * secsp); 162 static const char * getoffset(const char * strp, long * offsetp); 163 static const char * getrule(const char * strp, struct rule * rulep); 164 static void gmtload(struct state * sp); 165 static struct tm * gmtsub(const time_t * timep, long offset, 166 struct tm * tmp); 167 static struct tm * localsub(const time_t * timep, long offset, 168 struct tm * tmp); 169 static int increment_overflow(int * number, int delta); 170 static int leaps_thru_end_of(int y); 171 static int long_increment_overflow(long * number, int delta); 172 static int long_normalize_overflow(long * tensptr, 173 int * unitsptr, int base); 174 static int normalize_overflow(int * tensptr, int * unitsptr, 175 int base); 176 static void settzname(void); 177 static time_t time1(struct tm * tmp, 178 struct tm * (*funcp)(const time_t *, 179 long, struct tm *), 180 long offset); 181 static time_t time2(struct tm *tmp, 182 struct tm * (*funcp)(const time_t *, 183 long, struct tm*), 184 long offset, int * okayp); 185 static time_t time2sub(struct tm *tmp, 186 struct tm * (*funcp)(const time_t *, 187 long, struct tm*), 188 long offset, int * okayp, int do_norm_secs); 189 static struct tm * timesub(const time_t * timep, long offset, 190 const struct state * sp, struct tm * tmp); 191 static int tmcomp(const struct tm * atmp, 192 const struct tm * btmp); 193 static time_t transtime(time_t janfirst, int year, 194 const struct rule * rulep, long offset); 195 static int typesequiv(const struct state * sp, int a, int b); 196 static int tzload(const char * name, struct state * sp, 197 int doextend); 198 static int tzparse(const char * name, struct state * sp, 199 int lastditch); 200 static void tzset_unlocked(void); 201 static void tzsetwall_unlocked(void); 202 static long leapcorr(time_t * timep); 203 204 #ifdef ALL_STATE 205 static struct state * lclptr; 206 static struct state * gmtptr; 207 #endif /* defined ALL_STATE */ 208 209 #ifndef ALL_STATE 210 static struct state lclmem; 211 static struct state gmtmem; 212 #define lclptr (&lclmem) 213 #define gmtptr (&gmtmem) 214 #endif /* State Farm */ 215 216 #ifndef TZ_STRLEN_MAX 217 #define TZ_STRLEN_MAX 255 218 #endif /* !defined TZ_STRLEN_MAX */ 219 220 static char lcl_TZname[TZ_STRLEN_MAX + 1]; 221 static int lcl_is_set; 222 static int gmt_is_set; 223 224 #if !defined(__LIBC12_SOURCE__) 225 226 __aconst char * tzname[2] = { 227 (__aconst char *)__UNCONST(wildabbr), 228 (__aconst char *)__UNCONST(wildabbr) 229 }; 230 231 #else 232 233 extern __aconst char * tzname[2]; 234 235 #endif 236 237 #ifdef _REENTRANT 238 static rwlock_t lcl_lock = RWLOCK_INITIALIZER; 239 #endif 240 241 /* 242 ** Section 4.12.3 of X3.159-1989 requires that 243 ** Except for the strftime function, these functions [asctime, 244 ** ctime, gmtime, localtime] return values in one of two static 245 ** objects: a broken-down time structure and an array of char. 246 ** Thanks to Paul Eggert for noting this. 247 */ 248 249 static struct tm tm; 250 251 #ifdef USG_COMPAT 252 #if !defined(__LIBC12_SOURCE__) 253 long timezone = 0; 254 int daylight = 0; 255 #else 256 extern int daylight; 257 extern long timezone __RENAME(__timezone13); 258 #endif 259 #endif /* defined USG_COMPAT */ 260 261 #ifdef ALTZONE 262 time_t altzone = 0; 263 #endif /* defined ALTZONE */ 264 265 static long 266 detzcode(codep) 267 const char * const codep; 268 { 269 register long result; 270 register int i; 271 272 result = (codep[0] & 0x80) ? ~0L : 0; 273 for (i = 0; i < 4; ++i) 274 result = (result << 8) | (codep[i] & 0xff); 275 return result; 276 } 277 278 static time_t 279 detzcode64(codep) 280 const char * const codep; 281 { 282 register time_t result; 283 register int i; 284 285 result = (codep[0] & 0x80) ? -1 : 0; 286 for (i = 0; i < 8; ++i) 287 result = result * 256 + (codep[i] & 0xff); 288 return result; 289 } 290 291 static void 292 settzname(void) 293 { 294 register struct state * const sp = lclptr; 295 register int i; 296 297 tzname[0] = (__aconst char *)__UNCONST(wildabbr); 298 tzname[1] = (__aconst char *)__UNCONST(wildabbr); 299 #ifdef USG_COMPAT 300 daylight = 0; 301 timezone = 0; 302 #endif /* defined USG_COMPAT */ 303 #ifdef ALTZONE 304 altzone = 0; 305 #endif /* defined ALTZONE */ 306 #ifdef ALL_STATE 307 if (sp == NULL) { 308 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt); 309 return; 310 } 311 #endif /* defined ALL_STATE */ 312 for (i = 0; i < sp->typecnt; ++i) { 313 register const struct ttinfo * const ttisp = &sp->ttis[i]; 314 315 tzname[ttisp->tt_isdst] = 316 &sp->chars[ttisp->tt_abbrind]; 317 #ifdef USG_COMPAT 318 if (ttisp->tt_isdst) 319 daylight = 1; 320 if (i == 0 || !ttisp->tt_isdst) 321 timezone = -(ttisp->tt_gmtoff); 322 #endif /* defined USG_COMPAT */ 323 #ifdef ALTZONE 324 if (i == 0 || ttisp->tt_isdst) 325 altzone = -(ttisp->tt_gmtoff); 326 #endif /* defined ALTZONE */ 327 } 328 /* 329 ** And to get the latest zone names into tzname. . . 330 */ 331 for (i = 0; i < sp->timecnt; ++i) { 332 register const struct ttinfo * const ttisp = 333 &sp->ttis[ 334 sp->types[i]]; 335 336 tzname[ttisp->tt_isdst] = 337 &sp->chars[ttisp->tt_abbrind]; 338 } 339 /* 340 ** Finally, scrub the abbreviations. 341 ** First, replace bogus characters. 342 */ 343 for (i = 0; i < sp->charcnt; ++i) 344 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL) 345 sp->chars[i] = TZ_ABBR_ERR_CHAR; 346 /* 347 ** Second, truncate long abbreviations. 348 */ 349 for (i = 0; i < sp->typecnt; ++i) { 350 register const struct ttinfo * const ttisp = &sp->ttis[i]; 351 register char * cp = &sp->chars[ttisp->tt_abbrind]; 352 353 if (strlen(cp) > TZ_ABBR_MAX_LEN && 354 strcmp(cp, GRANDPARENTED) != 0) 355 *(cp + TZ_ABBR_MAX_LEN) = '\0'; 356 } 357 } 358 359 static int 360 differ_by_repeat(t1, t0) 361 const time_t t1; 362 const time_t t0; 363 { 364 /* CONSTCOND */ 365 if (TYPE_INTEGRAL(time_t) && 366 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS) 367 return 0; 368 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT; 369 } 370 371 static int 372 tzload(name, sp, doextend) 373 register const char * name; 374 register struct state * const sp; 375 register const int doextend; 376 { 377 register const char * p; 378 register int i; 379 register int fid; 380 register int stored; 381 register int nread; 382 union { 383 struct tzhead tzhead; 384 char buf[2 * sizeof(struct tzhead) + 385 2 * sizeof *sp + 386 4 * TZ_MAX_TIMES]; 387 } u; 388 389 if (name == NULL && (name = TZDEFAULT) == NULL) 390 return -1; 391 { 392 register int doaccess; 393 /* 394 ** Section 4.9.1 of the C standard says that 395 ** "FILENAME_MAX expands to an integral constant expression 396 ** that is the size needed for an array of char large enough 397 ** to hold the longest file name string that the implementation 398 ** guarantees can be opened." 399 */ 400 char fullname[FILENAME_MAX + 1]; 401 402 if (name[0] == ':') 403 ++name; 404 doaccess = name[0] == '/'; 405 if (!doaccess) { 406 if ((p = TZDIR) == NULL) 407 return -1; 408 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) 409 return -1; 410 (void) strcpy(fullname, p); /* XXX strcpy is safe */ 411 (void) strcat(fullname, "/"); /* XXX strcat is safe */ 412 (void) strcat(fullname, name); /* XXX strcat is safe */ 413 /* 414 ** Set doaccess if '.' (as in "../") shows up in name. 415 */ 416 if (strchr(name, '.') != NULL) 417 doaccess = TRUE; 418 name = fullname; 419 } 420 if (doaccess && access(name, R_OK) != 0) 421 return -1; 422 /* 423 * XXX potential security problem here if user of a set-id 424 * program has set TZ (which is passed in as name) here, 425 * and uses a race condition trick to defeat the access(2) 426 * above. 427 */ 428 if ((fid = open(name, OPEN_MODE)) == -1) 429 return -1; 430 } 431 nread = read(fid, u.buf, sizeof u.buf); 432 if (close(fid) < 0 || nread <= 0) 433 return -1; 434 for (stored = 4; stored <= 8; stored *= 2) { 435 int ttisstdcnt; 436 int ttisgmtcnt; 437 438 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt); 439 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt); 440 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt); 441 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt); 442 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt); 443 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt); 444 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt; 445 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS || 446 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES || 447 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES || 448 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS || 449 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || 450 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) 451 return -1; 452 if (nread - (p - u.buf) < 453 sp->timecnt * stored + /* ats */ 454 sp->timecnt + /* types */ 455 sp->typecnt * 6 + /* ttinfos */ 456 sp->charcnt + /* chars */ 457 sp->leapcnt * (stored + 4) + /* lsinfos */ 458 ttisstdcnt + /* ttisstds */ 459 ttisgmtcnt) /* ttisgmts */ 460 return -1; 461 for (i = 0; i < sp->timecnt; ++i) { 462 sp->ats[i] = (stored == 4) ? 463 detzcode(p) : detzcode64(p); 464 p += stored; 465 } 466 for (i = 0; i < sp->timecnt; ++i) { 467 sp->types[i] = (unsigned char) *p++; 468 if (sp->types[i] >= sp->typecnt) 469 return -1; 470 } 471 for (i = 0; i < sp->typecnt; ++i) { 472 register struct ttinfo * ttisp; 473 474 ttisp = &sp->ttis[i]; 475 ttisp->tt_gmtoff = detzcode(p); 476 p += 4; 477 ttisp->tt_isdst = (unsigned char) *p++; 478 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) 479 return -1; 480 ttisp->tt_abbrind = (unsigned char) *p++; 481 if (ttisp->tt_abbrind < 0 || 482 ttisp->tt_abbrind > sp->charcnt) 483 return -1; 484 } 485 for (i = 0; i < sp->charcnt; ++i) 486 sp->chars[i] = *p++; 487 sp->chars[i] = '\0'; /* ensure '\0' at end */ 488 for (i = 0; i < sp->leapcnt; ++i) { 489 register struct lsinfo * lsisp; 490 491 lsisp = &sp->lsis[i]; 492 lsisp->ls_trans = (stored == 4) ? 493 detzcode(p) : detzcode64(p); 494 p += stored; 495 lsisp->ls_corr = detzcode(p); 496 p += 4; 497 } 498 for (i = 0; i < sp->typecnt; ++i) { 499 register struct ttinfo * ttisp; 500 501 ttisp = &sp->ttis[i]; 502 if (ttisstdcnt == 0) 503 ttisp->tt_ttisstd = FALSE; 504 else { 505 ttisp->tt_ttisstd = *p++; 506 if (ttisp->tt_ttisstd != TRUE && 507 ttisp->tt_ttisstd != FALSE) 508 return -1; 509 } 510 } 511 for (i = 0; i < sp->typecnt; ++i) { 512 register struct ttinfo * ttisp; 513 514 ttisp = &sp->ttis[i]; 515 if (ttisgmtcnt == 0) 516 ttisp->tt_ttisgmt = FALSE; 517 else { 518 ttisp->tt_ttisgmt = *p++; 519 if (ttisp->tt_ttisgmt != TRUE && 520 ttisp->tt_ttisgmt != FALSE) 521 return -1; 522 } 523 } 524 /* 525 ** Out-of-sort ats should mean we're running on a 526 ** signed time_t system but using a data file with 527 ** unsigned values (or vice versa). 528 */ 529 for (i = 0; i < sp->timecnt - 2; ++i) 530 if (sp->ats[i] > sp->ats[i + 1]) { 531 ++i; 532 /* CONSTCOND */ 533 if (TYPE_SIGNED(time_t)) { 534 /* 535 ** Ignore the end (easy). 536 */ 537 sp->timecnt = i; 538 } else { 539 /* 540 ** Ignore the beginning (harder). 541 */ 542 register int j; 543 544 for (j = 0; j + i < sp->timecnt; ++j) { 545 sp->ats[j] = sp->ats[j + i]; 546 sp->types[j] = sp->types[j + i]; 547 } 548 sp->timecnt = j; 549 } 550 break; 551 } 552 /* 553 ** If this is an old file, we're done. 554 */ 555 if (u.tzhead.tzh_version[0] == '\0') 556 break; 557 nread -= p - u.buf; 558 for (i = 0; i < nread; ++i) 559 u.buf[i] = p[i]; 560 /* 561 ** If this is a narrow integer time_t system, we're done. 562 */ 563 if (stored >= (int) sizeof(time_t) 564 /* CONSTCOND */ 565 && TYPE_INTEGRAL(time_t)) 566 break; 567 } 568 if (doextend && nread > 2 && 569 u.buf[0] == '\n' && u.buf[nread - 1] == '\n' && 570 sp->typecnt + 2 <= TZ_MAX_TYPES) { 571 struct state ts; 572 register int result; 573 574 u.buf[nread - 1] = '\0'; 575 result = tzparse(&u.buf[1], &ts, FALSE); 576 if (result == 0 && ts.typecnt == 2 && 577 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) { 578 for (i = 0; i < 2; ++i) 579 ts.ttis[i].tt_abbrind += 580 sp->charcnt; 581 for (i = 0; i < ts.charcnt; ++i) 582 sp->chars[sp->charcnt++] = 583 ts.chars[i]; 584 i = 0; 585 while (i < ts.timecnt && 586 ts.ats[i] <= 587 sp->ats[sp->timecnt - 1]) 588 ++i; 589 while (i < ts.timecnt && 590 sp->timecnt < TZ_MAX_TIMES) { 591 sp->ats[sp->timecnt] = 592 ts.ats[i]; 593 sp->types[sp->timecnt] = 594 sp->typecnt + 595 ts.types[i]; 596 ++sp->timecnt; 597 ++i; 598 } 599 sp->ttis[sp->typecnt++] = ts.ttis[0]; 600 sp->ttis[sp->typecnt++] = ts.ttis[1]; 601 } 602 } 603 sp->goback = sp->goahead = FALSE; 604 if (sp->timecnt > 1) { 605 for (i = 1; i < sp->timecnt; ++i) 606 if (typesequiv(sp, sp->types[i], sp->types[0]) && 607 differ_by_repeat(sp->ats[i], sp->ats[0])) { 608 sp->goback = TRUE; 609 break; 610 } 611 for (i = sp->timecnt - 2; i >= 0; --i) 612 if (typesequiv(sp, sp->types[sp->timecnt - 1], 613 sp->types[i]) && 614 differ_by_repeat(sp->ats[sp->timecnt - 1], 615 sp->ats[i])) { 616 sp->goahead = TRUE; 617 break; 618 } 619 } 620 return 0; 621 } 622 623 static int 624 typesequiv(sp, a, b) 625 const struct state * const sp; 626 const int a; 627 const int b; 628 { 629 register int result; 630 631 if (sp == NULL || 632 a < 0 || a >= sp->typecnt || 633 b < 0 || b >= sp->typecnt) 634 result = FALSE; 635 else { 636 register const struct ttinfo * ap = &sp->ttis[a]; 637 register const struct ttinfo * bp = &sp->ttis[b]; 638 result = ap->tt_gmtoff == bp->tt_gmtoff && 639 ap->tt_isdst == bp->tt_isdst && 640 ap->tt_ttisstd == bp->tt_ttisstd && 641 ap->tt_ttisgmt == bp->tt_ttisgmt && 642 strcmp(&sp->chars[ap->tt_abbrind], 643 &sp->chars[bp->tt_abbrind]) == 0; 644 } 645 return result; 646 } 647 648 static const int mon_lengths[2][MONSPERYEAR] = { 649 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, 650 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } 651 }; 652 653 static const int year_lengths[2] = { 654 DAYSPERNYEAR, DAYSPERLYEAR 655 }; 656 657 /* 658 ** Given a pointer into a time zone string, scan until a character that is not 659 ** a valid character in a zone name is found. Return a pointer to that 660 ** character. 661 */ 662 663 static const char * 664 getzname(strp) 665 register const char * strp; 666 { 667 register char c; 668 669 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && 670 c != '+') 671 ++strp; 672 return strp; 673 } 674 675 /* 676 ** Given a pointer into an extended time zone string, scan until the ending 677 ** delimiter of the zone name is located. Return a pointer to the delimiter. 678 ** 679 ** As with getzname above, the legal character set is actually quite 680 ** restricted, with other characters producing undefined results. 681 ** We don't do any checking here; checking is done later in common-case code. 682 */ 683 684 static const char * 685 getqzname(register const char *strp, const int delim) 686 { 687 register int c; 688 689 while ((c = *strp) != '\0' && c != delim) 690 ++strp; 691 return strp; 692 } 693 694 /* 695 ** Given a pointer into a time zone string, extract a number from that string. 696 ** Check that the number is within a specified range; if it is not, return 697 ** NULL. 698 ** Otherwise, return a pointer to the first character not part of the number. 699 */ 700 701 static const char * 702 getnum(strp, nump, min, max) 703 register const char * strp; 704 int * const nump; 705 const int min; 706 const int max; 707 { 708 register char c; 709 register int num; 710 711 if (strp == NULL || !is_digit(c = *strp)) { 712 errno = EINVAL; 713 return NULL; 714 } 715 num = 0; 716 do { 717 num = num * 10 + (c - '0'); 718 if (num > max) { 719 errno = EOVERFLOW; 720 return NULL; /* illegal value */ 721 } 722 c = *++strp; 723 } while (is_digit(c)); 724 if (num < min) { 725 errno = EINVAL; 726 return NULL; /* illegal value */ 727 } 728 *nump = num; 729 return strp; 730 } 731 732 /* 733 ** Given a pointer into a time zone string, extract a number of seconds, 734 ** in hh[:mm[:ss]] form, from the string. 735 ** If any error occurs, return NULL. 736 ** Otherwise, return a pointer to the first character not part of the number 737 ** of seconds. 738 */ 739 740 static const char * 741 getsecs(strp, secsp) 742 register const char * strp; 743 long * const secsp; 744 { 745 int num; 746 747 /* 748 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like 749 ** "M10.4.6/26", which does not conform to Posix, 750 ** but which specifies the equivalent of 751 ** ``02:00 on the first Sunday on or after 23 Oct''. 752 */ 753 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); 754 if (strp == NULL) 755 return NULL; 756 *secsp = num * (long) SECSPERHOUR; 757 if (*strp == ':') { 758 ++strp; 759 strp = getnum(strp, &num, 0, MINSPERHOUR - 1); 760 if (strp == NULL) 761 return NULL; 762 *secsp += num * SECSPERMIN; 763 if (*strp == ':') { 764 ++strp; 765 /* `SECSPERMIN' allows for leap seconds. */ 766 strp = getnum(strp, &num, 0, SECSPERMIN); 767 if (strp == NULL) 768 return NULL; 769 *secsp += num; 770 } 771 } 772 return strp; 773 } 774 775 /* 776 ** Given a pointer into a time zone string, extract an offset, in 777 ** [+-]hh[:mm[:ss]] form, from the string. 778 ** If any error occurs, return NULL. 779 ** Otherwise, return a pointer to the first character not part of the time. 780 */ 781 782 static const char * 783 getoffset(strp, offsetp) 784 register const char * strp; 785 long * const offsetp; 786 { 787 register int neg = 0; 788 789 if (*strp == '-') { 790 neg = 1; 791 ++strp; 792 } else if (*strp == '+') 793 ++strp; 794 strp = getsecs(strp, offsetp); 795 if (strp == NULL) 796 return NULL; /* illegal time */ 797 if (neg) 798 *offsetp = -*offsetp; 799 return strp; 800 } 801 802 /* 803 ** Given a pointer into a time zone string, extract a rule in the form 804 ** date[/time]. See POSIX section 8 for the format of "date" and "time". 805 ** If a valid rule is not found, return NULL. 806 ** Otherwise, return a pointer to the first character not part of the rule. 807 */ 808 809 static const char * 810 getrule(strp, rulep) 811 const char * strp; 812 register struct rule * const rulep; 813 { 814 if (*strp == 'J') { 815 /* 816 ** Julian day. 817 */ 818 rulep->r_type = JULIAN_DAY; 819 ++strp; 820 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); 821 } else if (*strp == 'M') { 822 /* 823 ** Month, week, day. 824 */ 825 rulep->r_type = MONTH_NTH_DAY_OF_WEEK; 826 ++strp; 827 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); 828 if (strp == NULL) 829 return NULL; 830 if (*strp++ != '.') 831 return NULL; 832 strp = getnum(strp, &rulep->r_week, 1, 5); 833 if (strp == NULL) 834 return NULL; 835 if (*strp++ != '.') 836 return NULL; 837 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); 838 } else if (is_digit(*strp)) { 839 /* 840 ** Day of year. 841 */ 842 rulep->r_type = DAY_OF_YEAR; 843 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); 844 } else return NULL; /* invalid format */ 845 if (strp == NULL) 846 return NULL; 847 if (*strp == '/') { 848 /* 849 ** Time specified. 850 */ 851 ++strp; 852 strp = getsecs(strp, &rulep->r_time); 853 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ 854 return strp; 855 } 856 857 /* 858 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the 859 ** year, a rule, and the offset from UTC at the time that rule takes effect, 860 ** calculate the Epoch-relative time that rule takes effect. 861 */ 862 863 static time_t 864 transtime(janfirst, year, rulep, offset) 865 const time_t janfirst; 866 const int year; 867 register const struct rule * const rulep; 868 const long offset; 869 { 870 register int leapyear; 871 register time_t value; 872 register int i; 873 int d, m1, yy0, yy1, yy2, dow; 874 875 INITIALIZE(value); 876 leapyear = isleap(year); 877 switch (rulep->r_type) { 878 879 case JULIAN_DAY: 880 /* 881 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap 882 ** years. 883 ** In non-leap years, or if the day number is 59 or less, just 884 ** add SECSPERDAY times the day number-1 to the time of 885 ** January 1, midnight, to get the day. 886 */ 887 value = janfirst + (rulep->r_day - 1) * SECSPERDAY; 888 if (leapyear && rulep->r_day >= 60) 889 value += SECSPERDAY; 890 break; 891 892 case DAY_OF_YEAR: 893 /* 894 ** n - day of year. 895 ** Just add SECSPERDAY times the day number to the time of 896 ** January 1, midnight, to get the day. 897 */ 898 value = janfirst + rulep->r_day * SECSPERDAY; 899 break; 900 901 case MONTH_NTH_DAY_OF_WEEK: 902 /* 903 ** Mm.n.d - nth "dth day" of month m. 904 */ 905 value = janfirst; 906 for (i = 0; i < rulep->r_mon - 1; ++i) 907 value += mon_lengths[leapyear][i] * SECSPERDAY; 908 909 /* 910 ** Use Zeller's Congruence to get day-of-week of first day of 911 ** month. 912 */ 913 m1 = (rulep->r_mon + 9) % 12 + 1; 914 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; 915 yy1 = yy0 / 100; 916 yy2 = yy0 % 100; 917 dow = ((26 * m1 - 2) / 10 + 918 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; 919 if (dow < 0) 920 dow += DAYSPERWEEK; 921 922 /* 923 ** "dow" is the day-of-week of the first day of the month. Get 924 ** the day-of-month (zero-origin) of the first "dow" day of the 925 ** month. 926 */ 927 d = rulep->r_day - dow; 928 if (d < 0) 929 d += DAYSPERWEEK; 930 for (i = 1; i < rulep->r_week; ++i) { 931 if (d + DAYSPERWEEK >= 932 mon_lengths[leapyear][rulep->r_mon - 1]) 933 break; 934 d += DAYSPERWEEK; 935 } 936 937 /* 938 ** "d" is the day-of-month (zero-origin) of the day we want. 939 */ 940 value += d * SECSPERDAY; 941 break; 942 } 943 944 /* 945 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in 946 ** question. To get the Epoch-relative time of the specified local 947 ** time on that day, add the transition time and the current offset 948 ** from UTC. 949 */ 950 return value + rulep->r_time + offset; 951 } 952 953 /* 954 ** Given a POSIX section 8-style TZ string, fill in the rule tables as 955 ** appropriate. 956 */ 957 958 static int 959 tzparse(name, sp, lastditch) 960 const char * name; 961 register struct state * const sp; 962 const int lastditch; 963 { 964 const char * stdname; 965 const char * dstname; 966 size_t stdlen; 967 size_t dstlen; 968 long stdoffset; 969 long dstoffset; 970 register time_t * atp; 971 register unsigned char * typep; 972 register char * cp; 973 register int load_result; 974 975 INITIALIZE(dstname); 976 stdname = name; 977 if (lastditch) { 978 stdlen = strlen(name); /* length of standard zone name */ 979 name += stdlen; 980 if (stdlen >= sizeof sp->chars) 981 stdlen = (sizeof sp->chars) - 1; 982 stdoffset = 0; 983 } else { 984 if (*name == '<') { 985 name++; 986 stdname = name; 987 name = getqzname(name, '>'); 988 if (*name != '>') 989 return (-1); 990 stdlen = name - stdname; 991 name++; 992 } else { 993 name = getzname(name); 994 stdlen = name - stdname; 995 } 996 if (*name == '\0') 997 return -1; 998 name = getoffset(name, &stdoffset); 999 if (name == NULL) 1000 return -1; 1001 } 1002 load_result = tzload(TZDEFRULES, sp, FALSE); 1003 if (load_result != 0) 1004 sp->leapcnt = 0; /* so, we're off a little */ 1005 if (*name != '\0') { 1006 if (*name == '<') { 1007 dstname = ++name; 1008 name = getqzname(name, '>'); 1009 if (*name != '>') 1010 return -1; 1011 dstlen = name - dstname; 1012 name++; 1013 } else { 1014 dstname = name; 1015 name = getzname(name); 1016 dstlen = name - dstname; /* length of DST zone name */ 1017 } 1018 if (*name != '\0' && *name != ',' && *name != ';') { 1019 name = getoffset(name, &dstoffset); 1020 if (name == NULL) 1021 return -1; 1022 } else dstoffset = stdoffset - SECSPERHOUR; 1023 if (*name == '\0' && load_result != 0) 1024 name = TZDEFRULESTRING; 1025 if (*name == ',' || *name == ';') { 1026 struct rule start; 1027 struct rule end; 1028 register int year; 1029 register time_t janfirst; 1030 time_t starttime; 1031 time_t endtime; 1032 1033 ++name; 1034 if ((name = getrule(name, &start)) == NULL) 1035 return -1; 1036 if (*name++ != ',') 1037 return -1; 1038 if ((name = getrule(name, &end)) == NULL) 1039 return -1; 1040 if (*name != '\0') 1041 return -1; 1042 sp->typecnt = 2; /* standard time and DST */ 1043 /* 1044 ** Two transitions per year, from EPOCH_YEAR forward. 1045 */ 1046 sp->ttis[0].tt_gmtoff = -dstoffset; 1047 sp->ttis[0].tt_isdst = 1; 1048 sp->ttis[0].tt_abbrind = stdlen + 1; 1049 sp->ttis[1].tt_gmtoff = -stdoffset; 1050 sp->ttis[1].tt_isdst = 0; 1051 sp->ttis[1].tt_abbrind = 0; 1052 atp = sp->ats; 1053 typep = sp->types; 1054 janfirst = 0; 1055 sp->timecnt = 0; 1056 for (year = EPOCH_YEAR; 1057 sp->timecnt + 2 <= TZ_MAX_TIMES; 1058 ++year) { 1059 time_t newfirst; 1060 1061 starttime = transtime(janfirst, year, &start, 1062 stdoffset); 1063 endtime = transtime(janfirst, year, &end, 1064 dstoffset); 1065 if (starttime > endtime) { 1066 *atp++ = endtime; 1067 *typep++ = 1; /* DST ends */ 1068 *atp++ = starttime; 1069 *typep++ = 0; /* DST begins */ 1070 } else { 1071 *atp++ = starttime; 1072 *typep++ = 0; /* DST begins */ 1073 *atp++ = endtime; 1074 *typep++ = 1; /* DST ends */ 1075 } 1076 sp->timecnt += 2; 1077 newfirst = janfirst; 1078 newfirst += year_lengths[isleap(year)] * 1079 SECSPERDAY; 1080 if (newfirst <= janfirst) 1081 break; 1082 janfirst = newfirst; 1083 } 1084 } else { 1085 register long theirstdoffset; 1086 register long theirdstoffset; 1087 register long theiroffset; 1088 register int isdst; 1089 register int i; 1090 register int j; 1091 1092 if (*name != '\0') 1093 return -1; 1094 /* 1095 ** Initial values of theirstdoffset 1096 */ 1097 theirstdoffset = 0; 1098 for (i = 0; i < sp->timecnt; ++i) { 1099 j = sp->types[i]; 1100 if (!sp->ttis[j].tt_isdst) { 1101 theirstdoffset = 1102 -sp->ttis[j].tt_gmtoff; 1103 break; 1104 } 1105 } 1106 theirdstoffset = 0; 1107 for (i = 0; i < sp->timecnt; ++i) { 1108 j = sp->types[i]; 1109 if (sp->ttis[j].tt_isdst) { 1110 theirdstoffset = 1111 -sp->ttis[j].tt_gmtoff; 1112 break; 1113 } 1114 } 1115 /* 1116 ** Initially we're assumed to be in standard time. 1117 */ 1118 isdst = FALSE; 1119 theiroffset = theirstdoffset; 1120 /* 1121 ** Now juggle transition times and types 1122 ** tracking offsets as you do. 1123 */ 1124 for (i = 0; i < sp->timecnt; ++i) { 1125 j = sp->types[i]; 1126 sp->types[i] = sp->ttis[j].tt_isdst; 1127 if (sp->ttis[j].tt_ttisgmt) { 1128 /* No adjustment to transition time */ 1129 } else { 1130 /* 1131 ** If summer time is in effect, and the 1132 ** transition time was not specified as 1133 ** standard time, add the summer time 1134 ** offset to the transition time; 1135 ** otherwise, add the standard time 1136 ** offset to the transition time. 1137 */ 1138 /* 1139 ** Transitions from DST to DDST 1140 ** will effectively disappear since 1141 ** POSIX provides for only one DST 1142 ** offset. 1143 */ 1144 if (isdst && !sp->ttis[j].tt_ttisstd) { 1145 sp->ats[i] += dstoffset - 1146 theirdstoffset; 1147 } else { 1148 sp->ats[i] += stdoffset - 1149 theirstdoffset; 1150 } 1151 } 1152 theiroffset = -sp->ttis[j].tt_gmtoff; 1153 if (!sp->ttis[j].tt_isdst) 1154 theirstdoffset = theiroffset; 1155 else theirdstoffset = theiroffset; 1156 } 1157 /* 1158 ** Finally, fill in ttis. 1159 ** ttisstd and ttisgmt need not be handled. 1160 */ 1161 sp->ttis[0].tt_gmtoff = -stdoffset; 1162 sp->ttis[0].tt_isdst = FALSE; 1163 sp->ttis[0].tt_abbrind = 0; 1164 sp->ttis[1].tt_gmtoff = -dstoffset; 1165 sp->ttis[1].tt_isdst = TRUE; 1166 sp->ttis[1].tt_abbrind = stdlen + 1; 1167 sp->typecnt = 2; 1168 } 1169 } else { 1170 dstlen = 0; 1171 sp->typecnt = 1; /* only standard time */ 1172 sp->timecnt = 0; 1173 sp->ttis[0].tt_gmtoff = -stdoffset; 1174 sp->ttis[0].tt_isdst = 0; 1175 sp->ttis[0].tt_abbrind = 0; 1176 } 1177 sp->charcnt = stdlen + 1; 1178 if (dstlen != 0) 1179 sp->charcnt += dstlen + 1; 1180 if ((size_t) sp->charcnt > sizeof sp->chars) 1181 return -1; 1182 cp = sp->chars; 1183 (void) strncpy(cp, stdname, stdlen); 1184 cp += stdlen; 1185 *cp++ = '\0'; 1186 if (dstlen != 0) { 1187 (void) strncpy(cp, dstname, dstlen); 1188 *(cp + dstlen) = '\0'; 1189 } 1190 return 0; 1191 } 1192 1193 static void 1194 gmtload(sp) 1195 struct state * const sp; 1196 { 1197 if (tzload(gmt, sp, TRUE) != 0) 1198 (void) tzparse(gmt, sp, TRUE); 1199 } 1200 1201 static void 1202 tzsetwall_unlocked(void) 1203 { 1204 if (lcl_is_set < 0) 1205 return; 1206 lcl_is_set = -1; 1207 1208 #ifdef ALL_STATE 1209 if (lclptr == NULL) { 1210 int saveerrno = errno; 1211 lclptr = (struct state *) malloc(sizeof *lclptr); 1212 errno = saveerrno; 1213 if (lclptr == NULL) { 1214 settzname(); /* all we can do */ 1215 return; 1216 } 1217 } 1218 #endif /* defined ALL_STATE */ 1219 if (tzload((char *) NULL, lclptr, TRUE) != 0) 1220 gmtload(lclptr); 1221 settzname(); 1222 } 1223 1224 #ifndef STD_INSPIRED 1225 /* 1226 ** A non-static declaration of tzsetwall in a system header file 1227 ** may cause a warning about this upcoming static declaration... 1228 */ 1229 static 1230 #endif /* !defined STD_INSPIRED */ 1231 void 1232 tzsetwall(void) 1233 { 1234 rwlock_wrlock(&lcl_lock); 1235 tzsetwall_unlocked(); 1236 rwlock_unlock(&lcl_lock); 1237 } 1238 1239 #ifndef STD_INSPIRED 1240 /* 1241 ** A non-static declaration of tzsetwall in a system header file 1242 ** may cause a warning about this upcoming static declaration... 1243 */ 1244 static 1245 #endif /* !defined STD_INSPIRED */ 1246 void 1247 tzset_unlocked(void) 1248 { 1249 register const char * name; 1250 int saveerrno; 1251 1252 saveerrno = errno; 1253 name = getenv("TZ"); 1254 errno = saveerrno; 1255 if (name == NULL) { 1256 tzsetwall_unlocked(); 1257 return; 1258 } 1259 1260 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) 1261 return; 1262 lcl_is_set = strlen(name) < sizeof lcl_TZname; 1263 if (lcl_is_set) 1264 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname)); 1265 1266 #ifdef ALL_STATE 1267 if (lclptr == NULL) { 1268 saveerrno = errno; 1269 lclptr = (struct state *) malloc(sizeof *lclptr); 1270 errno = saveerrno; 1271 if (lclptr == NULL) { 1272 settzname(); /* all we can do */ 1273 return; 1274 } 1275 } 1276 #endif /* defined ALL_STATE */ 1277 if (*name == '\0') { 1278 /* 1279 ** User wants it fast rather than right. 1280 */ 1281 lclptr->leapcnt = 0; /* so, we're off a little */ 1282 lclptr->timecnt = 0; 1283 lclptr->typecnt = 0; 1284 lclptr->ttis[0].tt_isdst = 0; 1285 lclptr->ttis[0].tt_gmtoff = 0; 1286 lclptr->ttis[0].tt_abbrind = 0; 1287 (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars)); 1288 } else if (tzload(name, lclptr, TRUE) != 0) 1289 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0) 1290 (void) gmtload(lclptr); 1291 settzname(); 1292 } 1293 1294 void 1295 tzset(void) 1296 { 1297 rwlock_wrlock(&lcl_lock); 1298 tzset_unlocked(); 1299 rwlock_unlock(&lcl_lock); 1300 } 1301 1302 /* 1303 ** The easy way to behave "as if no library function calls" localtime 1304 ** is to not call it--so we drop its guts into "localsub", which can be 1305 ** freely called. (And no, the PANS doesn't require the above behavior-- 1306 ** but it *is* desirable.) 1307 ** 1308 ** The unused offset argument is for the benefit of mktime variants. 1309 */ 1310 1311 /*ARGSUSED*/ 1312 static struct tm * 1313 localsub(timep, offset, tmp) 1314 const time_t * const timep; 1315 const long offset; 1316 struct tm * const tmp; 1317 { 1318 register struct state * sp; 1319 register const struct ttinfo * ttisp; 1320 register int i; 1321 register struct tm * result; 1322 const time_t t = *timep; 1323 1324 sp = lclptr; 1325 #ifdef ALL_STATE 1326 if (sp == NULL) 1327 return gmtsub(timep, offset, tmp); 1328 #endif /* defined ALL_STATE */ 1329 if ((sp->goback && t < sp->ats[0]) || 1330 (sp->goahead && t > sp->ats[sp->timecnt - 1])) { 1331 time_t newt = t; 1332 register time_t seconds; 1333 register time_t tcycles; 1334 register int_fast64_t icycles; 1335 1336 if (t < sp->ats[0]) 1337 seconds = sp->ats[0] - t; 1338 else seconds = t - sp->ats[sp->timecnt - 1]; 1339 --seconds; 1340 tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR; 1341 ++tcycles; 1342 icycles = tcycles; 1343 if (tcycles - icycles >= 1 || icycles - tcycles >= 1) 1344 return NULL; 1345 seconds = (time_t) icycles; 1346 seconds *= YEARSPERREPEAT; 1347 seconds *= AVGSECSPERYEAR; 1348 if (t < sp->ats[0]) 1349 newt += seconds; 1350 else newt -= seconds; 1351 if (newt < sp->ats[0] || 1352 newt > sp->ats[sp->timecnt - 1]) { 1353 errno = EOVERFLOW; 1354 return NULL; /* "cannot happen" */ 1355 } 1356 result = localsub(&newt, offset, tmp); 1357 if (result == tmp) { 1358 register time_t newy; 1359 1360 newy = tmp->tm_year; 1361 if (t < sp->ats[0]) 1362 newy -= (time_t)icycles * YEARSPERREPEAT; 1363 else newy += (time_t)icycles * YEARSPERREPEAT; 1364 tmp->tm_year = (int)newy; 1365 if (tmp->tm_year != newy) { 1366 errno = EOVERFLOW; 1367 return NULL; 1368 } 1369 } 1370 return result; 1371 } 1372 if (sp->timecnt == 0 || t < sp->ats[0]) { 1373 i = 0; 1374 while (sp->ttis[i].tt_isdst) 1375 if (++i >= sp->typecnt) { 1376 i = 0; 1377 break; 1378 } 1379 } else { 1380 register int lo = 1; 1381 register int hi = sp->timecnt; 1382 1383 while (lo < hi) { 1384 register int mid = (lo + hi) / 2; 1385 1386 if (t < sp->ats[mid]) 1387 hi = mid; 1388 else lo = mid + 1; 1389 } 1390 i = (int) sp->types[lo - 1]; 1391 } 1392 ttisp = &sp->ttis[i]; 1393 /* 1394 ** To get (wrong) behavior that's compatible with System V Release 2.0 1395 ** you'd replace the statement below with 1396 ** t += ttisp->tt_gmtoff; 1397 ** timesub(&t, 0L, sp, tmp); 1398 */ 1399 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp); 1400 tmp->tm_isdst = ttisp->tt_isdst; 1401 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind]; 1402 #ifdef TM_ZONE 1403 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind]; 1404 #endif /* defined TM_ZONE */ 1405 return result; 1406 } 1407 1408 struct tm * 1409 localtime(timep) 1410 const time_t * const timep; 1411 { 1412 struct tm *result; 1413 1414 rwlock_wrlock(&lcl_lock); 1415 tzset_unlocked(); 1416 result = localsub(timep, 0L, &tm); 1417 rwlock_unlock(&lcl_lock); 1418 return result; 1419 } 1420 1421 /* 1422 ** Re-entrant version of localtime. 1423 */ 1424 1425 struct tm * 1426 localtime_r(timep, tmp) 1427 const time_t * const timep; 1428 struct tm * tmp; 1429 { 1430 struct tm *result; 1431 1432 rwlock_rdlock(&lcl_lock); 1433 tzset_unlocked(); 1434 result = localsub(timep, 0L, tmp); 1435 rwlock_unlock(&lcl_lock); 1436 return result; 1437 } 1438 1439 /* 1440 ** gmtsub is to gmtime as localsub is to localtime. 1441 */ 1442 1443 static struct tm * 1444 gmtsub(timep, offset, tmp) 1445 const time_t * const timep; 1446 const long offset; 1447 struct tm * const tmp; 1448 { 1449 register struct tm * result; 1450 #ifdef _REENTRANT 1451 static mutex_t gmt_mutex = MUTEX_INITIALIZER; 1452 #endif 1453 1454 mutex_lock(&gmt_mutex); 1455 if (!gmt_is_set) { 1456 #ifdef ALL_STATE 1457 int saveerrno; 1458 #endif 1459 gmt_is_set = TRUE; 1460 #ifdef ALL_STATE 1461 saveerrno = errno; 1462 gmtptr = (struct state *) malloc(sizeof *gmtptr); 1463 errno = saveerrno; 1464 if (gmtptr != NULL) 1465 #endif /* defined ALL_STATE */ 1466 gmtload(gmtptr); 1467 } 1468 mutex_unlock(&gmt_mutex); 1469 result = timesub(timep, offset, gmtptr, tmp); 1470 #ifdef TM_ZONE 1471 /* 1472 ** Could get fancy here and deliver something such as 1473 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero, 1474 ** but this is no time for a treasure hunt. 1475 */ 1476 if (offset != 0) 1477 tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr); 1478 else { 1479 #ifdef ALL_STATE 1480 if (gmtptr == NULL) 1481 tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt); 1482 else tmp->TM_ZONE = gmtptr->chars; 1483 #endif /* defined ALL_STATE */ 1484 #ifndef ALL_STATE 1485 tmp->TM_ZONE = gmtptr->chars; 1486 #endif /* State Farm */ 1487 } 1488 #endif /* defined TM_ZONE */ 1489 return result; 1490 } 1491 1492 struct tm * 1493 gmtime(timep) 1494 const time_t * const timep; 1495 { 1496 return gmtsub(timep, 0L, &tm); 1497 } 1498 1499 /* 1500 ** Re-entrant version of gmtime. 1501 */ 1502 1503 struct tm * 1504 gmtime_r(timep, tmp) 1505 const time_t * const timep; 1506 struct tm * tmp; 1507 { 1508 return gmtsub(timep, 0L, tmp); 1509 } 1510 1511 #ifdef STD_INSPIRED 1512 1513 struct tm * 1514 offtime(timep, offset) 1515 const time_t * const timep; 1516 const long offset; 1517 { 1518 return gmtsub(timep, offset, &tm); 1519 } 1520 1521 #endif /* defined STD_INSPIRED */ 1522 1523 /* 1524 ** Return the number of leap years through the end of the given year 1525 ** where, to make the math easy, the answer for year zero is defined as zero. 1526 */ 1527 1528 static int 1529 leaps_thru_end_of(y) 1530 register const int y; 1531 { 1532 return (y >= 0) ? (y / 4 - y / 100 + y / 400) : 1533 -(leaps_thru_end_of(-(y + 1)) + 1); 1534 } 1535 1536 static struct tm * 1537 timesub(timep, offset, sp, tmp) 1538 const time_t * const timep; 1539 const long offset; 1540 register const struct state * const sp; 1541 register struct tm * const tmp; 1542 { 1543 register const struct lsinfo * lp; 1544 register time_t tdays; 1545 register int idays; /* unsigned would be so 2003 */ 1546 register long rem; 1547 int y; 1548 register const int * ip; 1549 register long corr; 1550 register int hit; 1551 register int i; 1552 1553 corr = 0; 1554 hit = 0; 1555 #ifdef ALL_STATE 1556 i = (sp == NULL) ? 0 : sp->leapcnt; 1557 #endif /* defined ALL_STATE */ 1558 #ifndef ALL_STATE 1559 i = sp->leapcnt; 1560 #endif /* State Farm */ 1561 while (--i >= 0) { 1562 lp = &sp->lsis[i]; 1563 if (*timep >= lp->ls_trans) { 1564 if (*timep == lp->ls_trans) { 1565 hit = ((i == 0 && lp->ls_corr > 0) || 1566 lp->ls_corr > sp->lsis[i - 1].ls_corr); 1567 if (hit) 1568 while (i > 0 && 1569 sp->lsis[i].ls_trans == 1570 sp->lsis[i - 1].ls_trans + 1 && 1571 sp->lsis[i].ls_corr == 1572 sp->lsis[i - 1].ls_corr + 1) { 1573 ++hit; 1574 --i; 1575 } 1576 } 1577 corr = lp->ls_corr; 1578 break; 1579 } 1580 } 1581 y = EPOCH_YEAR; 1582 tdays = *timep / SECSPERDAY; 1583 rem = (long) (*timep - tdays * SECSPERDAY); 1584 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) { 1585 int newy; 1586 register time_t tdelta; 1587 register int idelta; 1588 register int leapdays; 1589 1590 tdelta = tdays / DAYSPERLYEAR; 1591 idelta = (int) tdelta; 1592 if (tdelta - idelta >= 1 || idelta - tdelta >= 1) { 1593 errno = EOVERFLOW; 1594 return NULL; 1595 } 1596 if (idelta == 0) 1597 idelta = (tdays < 0) ? -1 : 1; 1598 newy = y; 1599 if (increment_overflow(&newy, idelta)) { 1600 errno = EOVERFLOW; 1601 return NULL; 1602 } 1603 leapdays = leaps_thru_end_of(newy - 1) - 1604 leaps_thru_end_of(y - 1); 1605 tdays -= ((time_t) newy - y) * DAYSPERNYEAR; 1606 tdays -= leapdays; 1607 y = newy; 1608 } 1609 { 1610 register long seconds; 1611 1612 seconds = tdays * SECSPERDAY + 0.5; 1613 tdays = seconds / SECSPERDAY; 1614 rem += (long) (seconds - tdays * SECSPERDAY); 1615 } 1616 /* 1617 ** Given the range, we can now fearlessly cast... 1618 */ 1619 idays = (int) tdays; 1620 rem += offset - corr; 1621 while (rem < 0) { 1622 rem += SECSPERDAY; 1623 --idays; 1624 } 1625 while (rem >= SECSPERDAY) { 1626 rem -= SECSPERDAY; 1627 ++idays; 1628 } 1629 while (idays < 0) { 1630 if (increment_overflow(&y, -1)) { 1631 errno = EOVERFLOW; 1632 return NULL; 1633 } 1634 idays += year_lengths[isleap(y)]; 1635 } 1636 while (idays >= year_lengths[isleap(y)]) { 1637 idays -= year_lengths[isleap(y)]; 1638 if (increment_overflow(&y, 1)) { 1639 errno = EOVERFLOW; 1640 return NULL; 1641 } 1642 } 1643 tmp->tm_year = y; 1644 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) { 1645 errno = EOVERFLOW; 1646 return NULL; 1647 } 1648 tmp->tm_yday = idays; 1649 /* 1650 ** The "extra" mods below avoid overflow problems. 1651 */ 1652 tmp->tm_wday = EPOCH_WDAY + 1653 ((y - EPOCH_YEAR) % DAYSPERWEEK) * 1654 (DAYSPERNYEAR % DAYSPERWEEK) + 1655 leaps_thru_end_of(y - 1) - 1656 leaps_thru_end_of(EPOCH_YEAR - 1) + 1657 idays; 1658 tmp->tm_wday %= DAYSPERWEEK; 1659 if (tmp->tm_wday < 0) 1660 tmp->tm_wday += DAYSPERWEEK; 1661 tmp->tm_hour = (int) (rem / SECSPERHOUR); 1662 rem %= SECSPERHOUR; 1663 tmp->tm_min = (int) (rem / SECSPERMIN); 1664 /* 1665 ** A positive leap second requires a special 1666 ** representation. This uses "... ??:59:60" et seq. 1667 */ 1668 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; 1669 ip = mon_lengths[isleap(y)]; 1670 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) 1671 idays -= ip[tmp->tm_mon]; 1672 tmp->tm_mday = (int) (idays + 1); 1673 tmp->tm_isdst = 0; 1674 #ifdef TM_GMTOFF 1675 tmp->TM_GMTOFF = offset; 1676 #endif /* defined TM_GMTOFF */ 1677 return tmp; 1678 } 1679 1680 char * 1681 ctime(timep) 1682 const time_t * const timep; 1683 { 1684 /* 1685 ** Section 4.12.3.2 of X3.159-1989 requires that 1686 ** The ctime function converts the calendar time pointed to by timer 1687 ** to local time in the form of a string. It is equivalent to 1688 ** asctime(localtime(timer)) 1689 */ 1690 struct tm *rtm = localtime(timep); 1691 if (rtm == NULL) 1692 return NULL; 1693 return asctime(rtm); 1694 } 1695 1696 char * 1697 ctime_r(timep, buf) 1698 const time_t * const timep; 1699 char * buf; 1700 { 1701 struct tm mytm, *rtm; 1702 1703 rtm = localtime_r(timep, &mytm); 1704 if (rtm == NULL) 1705 return NULL; 1706 return asctime_r(rtm, buf); 1707 } 1708 1709 /* 1710 ** Adapted from code provided by Robert Elz, who writes: 1711 ** The "best" way to do mktime I think is based on an idea of Bob 1712 ** Kridle's (so its said...) from a long time ago. 1713 ** It does a binary search of the time_t space. Since time_t's are 1714 ** just 32 bits, its a max of 32 iterations (even at 64 bits it 1715 ** would still be very reasonable). 1716 */ 1717 1718 #ifndef WRONG 1719 #define WRONG (-1) 1720 #endif /* !defined WRONG */ 1721 1722 /* 1723 ** Simplified normalize logic courtesy Paul Eggert. 1724 */ 1725 1726 static int 1727 increment_overflow(number, delta) 1728 int * number; 1729 int delta; 1730 { 1731 int number0; 1732 1733 number0 = *number; 1734 *number += delta; 1735 return (*number < number0) != (delta < 0); 1736 } 1737 1738 static int 1739 long_increment_overflow(number, delta) 1740 long * number; 1741 int delta; 1742 { 1743 long number0; 1744 1745 number0 = *number; 1746 *number += delta; 1747 return (*number < number0) != (delta < 0); 1748 } 1749 1750 static int 1751 normalize_overflow(tensptr, unitsptr, base) 1752 int * const tensptr; 1753 int * const unitsptr; 1754 const int base; 1755 { 1756 register int tensdelta; 1757 1758 tensdelta = (*unitsptr >= 0) ? 1759 (*unitsptr / base) : 1760 (-1 - (-1 - *unitsptr) / base); 1761 *unitsptr -= tensdelta * base; 1762 return increment_overflow(tensptr, tensdelta); 1763 } 1764 1765 static int 1766 long_normalize_overflow(tensptr, unitsptr, base) 1767 long * const tensptr; 1768 int * const unitsptr; 1769 const int base; 1770 { 1771 register int tensdelta; 1772 1773 tensdelta = (*unitsptr >= 0) ? 1774 (*unitsptr / base) : 1775 (-1 - (-1 - *unitsptr) / base); 1776 *unitsptr -= tensdelta * base; 1777 return long_increment_overflow(tensptr, tensdelta); 1778 } 1779 1780 static int 1781 tmcomp(atmp, btmp) 1782 register const struct tm * const atmp; 1783 register const struct tm * const btmp; 1784 { 1785 register int result; 1786 1787 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 && 1788 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 && 1789 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && 1790 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && 1791 (result = (atmp->tm_min - btmp->tm_min)) == 0) 1792 result = atmp->tm_sec - btmp->tm_sec; 1793 return result; 1794 } 1795 1796 static time_t 1797 time2sub(tmp, funcp, offset, okayp, do_norm_secs) 1798 struct tm * const tmp; 1799 struct tm * (* const funcp)(const time_t*, long, struct tm*); 1800 const long offset; 1801 int * const okayp; 1802 const int do_norm_secs; 1803 { 1804 register const struct state * sp; 1805 register int dir; 1806 register int i, j; 1807 register int saved_seconds; 1808 register long li; 1809 register time_t lo; 1810 register time_t hi; 1811 long y; 1812 time_t newt; 1813 time_t t; 1814 struct tm yourtm, mytm; 1815 1816 *okayp = FALSE; 1817 yourtm = *tmp; 1818 if (do_norm_secs) { 1819 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, 1820 SECSPERMIN)) 1821 return WRONG; 1822 } 1823 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) 1824 return WRONG; 1825 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) 1826 return WRONG; 1827 y = yourtm.tm_year; 1828 if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR)) 1829 return WRONG; 1830 /* 1831 ** Turn y into an actual year number for now. 1832 ** It is converted back to an offset from TM_YEAR_BASE later. 1833 */ 1834 if (long_increment_overflow(&y, TM_YEAR_BASE)) 1835 return WRONG; 1836 while (yourtm.tm_mday <= 0) { 1837 if (long_increment_overflow(&y, -1)) 1838 return WRONG; 1839 li = y + (1 < yourtm.tm_mon); 1840 yourtm.tm_mday += year_lengths[isleap(li)]; 1841 } 1842 while (yourtm.tm_mday > DAYSPERLYEAR) { 1843 li = y + (1 < yourtm.tm_mon); 1844 yourtm.tm_mday -= year_lengths[isleap(li)]; 1845 if (long_increment_overflow(&y, 1)) 1846 return WRONG; 1847 } 1848 for ( ; ; ) { 1849 i = mon_lengths[isleap(y)][yourtm.tm_mon]; 1850 if (yourtm.tm_mday <= i) 1851 break; 1852 yourtm.tm_mday -= i; 1853 if (++yourtm.tm_mon >= MONSPERYEAR) { 1854 yourtm.tm_mon = 0; 1855 if (long_increment_overflow(&y, 1)) 1856 return WRONG; 1857 } 1858 } 1859 if (long_increment_overflow(&y, -TM_YEAR_BASE)) 1860 return WRONG; 1861 yourtm.tm_year = y; 1862 if (yourtm.tm_year != y) 1863 return WRONG; 1864 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) 1865 saved_seconds = 0; 1866 else if (y + TM_YEAR_BASE < EPOCH_YEAR) { 1867 /* 1868 ** We can't set tm_sec to 0, because that might push the 1869 ** time below the minimum representable time. 1870 ** Set tm_sec to 59 instead. 1871 ** This assumes that the minimum representable time is 1872 ** not in the same minute that a leap second was deleted from, 1873 ** which is a safer assumption than using 58 would be. 1874 */ 1875 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) 1876 return WRONG; 1877 saved_seconds = yourtm.tm_sec; 1878 yourtm.tm_sec = SECSPERMIN - 1; 1879 } else { 1880 saved_seconds = yourtm.tm_sec; 1881 yourtm.tm_sec = 0; 1882 } 1883 /* 1884 ** Do a binary search (this works whatever time_t's type is). 1885 */ 1886 /* LINTED constant */ 1887 if (!TYPE_SIGNED(time_t)) { 1888 lo = 0; 1889 hi = lo - 1; 1890 /* LINTED constant */ 1891 } else if (!TYPE_INTEGRAL(time_t)) { 1892 /* CONSTCOND */ 1893 if (sizeof(time_t) > sizeof(float)) 1894 /* LINTED assumed double */ 1895 hi = (time_t) DBL_MAX; 1896 /* LINTED assumed float */ 1897 else hi = (time_t) FLT_MAX; 1898 lo = -hi; 1899 } else { 1900 lo = 1; 1901 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i) 1902 lo *= 2; 1903 hi = -(lo + 1); 1904 } 1905 for ( ; ; ) { 1906 t = lo / 2 + hi / 2; 1907 if (t < lo) 1908 t = lo; 1909 else if (t > hi) 1910 t = hi; 1911 if ((*funcp)(&t, offset, &mytm) == NULL) { 1912 /* 1913 ** Assume that t is too extreme to be represented in 1914 ** a struct tm; arrange things so that it is less 1915 ** extreme on the next pass. 1916 */ 1917 dir = (t > 0) ? 1 : -1; 1918 } else dir = tmcomp(&mytm, &yourtm); 1919 if (dir != 0) { 1920 if (t == lo) { 1921 ++t; 1922 if (t <= lo) 1923 return WRONG; 1924 ++lo; 1925 } else if (t == hi) { 1926 --t; 1927 if (t >= hi) 1928 return WRONG; 1929 --hi; 1930 } 1931 if (lo > hi) 1932 return WRONG; 1933 if (dir > 0) 1934 hi = t; 1935 else lo = t; 1936 continue; 1937 } 1938 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) 1939 break; 1940 /* 1941 ** Right time, wrong type. 1942 ** Hunt for right time, right type. 1943 ** It's okay to guess wrong since the guess 1944 ** gets checked. 1945 */ 1946 sp = (const struct state *) 1947 ((funcp == localsub) ? lclptr : gmtptr); 1948 #ifdef ALL_STATE 1949 if (sp == NULL) 1950 return WRONG; 1951 #endif /* defined ALL_STATE */ 1952 for (i = sp->typecnt - 1; i >= 0; --i) { 1953 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) 1954 continue; 1955 for (j = sp->typecnt - 1; j >= 0; --j) { 1956 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) 1957 continue; 1958 newt = t + sp->ttis[j].tt_gmtoff - 1959 sp->ttis[i].tt_gmtoff; 1960 if ((*funcp)(&newt, offset, &mytm) == NULL) 1961 continue; 1962 if (tmcomp(&mytm, &yourtm) != 0) 1963 continue; 1964 if (mytm.tm_isdst != yourtm.tm_isdst) 1965 continue; 1966 /* 1967 ** We have a match. 1968 */ 1969 t = newt; 1970 goto label; 1971 } 1972 } 1973 return WRONG; 1974 } 1975 label: 1976 newt = t + saved_seconds; 1977 if ((newt < t) != (saved_seconds < 0)) 1978 return WRONG; 1979 t = newt; 1980 if ((*funcp)(&t, offset, tmp)) 1981 *okayp = TRUE; 1982 return t; 1983 } 1984 1985 static time_t 1986 time2(tmp, funcp, offset, okayp) 1987 struct tm * const tmp; 1988 struct tm * (* const funcp)(const time_t*, long, struct tm*); 1989 const long offset; 1990 int * const okayp; 1991 { 1992 time_t t; 1993 1994 /* 1995 ** First try without normalization of seconds 1996 ** (in case tm_sec contains a value associated with a leap second). 1997 ** If that fails, try with normalization of seconds. 1998 */ 1999 t = time2sub(tmp, funcp, offset, okayp, FALSE); 2000 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE); 2001 } 2002 2003 static time_t 2004 time1(tmp, funcp, offset) 2005 struct tm * const tmp; 2006 struct tm * (* const funcp)(const time_t *, long, struct tm *); 2007 const long offset; 2008 { 2009 register time_t t; 2010 register const struct state * sp; 2011 register int samei, otheri; 2012 register int sameind, otherind; 2013 register int i; 2014 register int nseen; 2015 int seen[TZ_MAX_TYPES]; 2016 int types[TZ_MAX_TYPES]; 2017 int okay; 2018 2019 if (tmp->tm_isdst > 1) 2020 tmp->tm_isdst = 1; 2021 t = time2(tmp, funcp, offset, &okay); 2022 #ifdef PCTS 2023 /* 2024 ** PCTS code courtesy Grant Sullivan. 2025 */ 2026 if (okay) 2027 return t; 2028 if (tmp->tm_isdst < 0) 2029 tmp->tm_isdst = 0; /* reset to std and try again */ 2030 #endif /* defined PCTS */ 2031 #ifndef PCTS 2032 if (okay || tmp->tm_isdst < 0) 2033 return t; 2034 #endif /* !defined PCTS */ 2035 /* 2036 ** We're supposed to assume that somebody took a time of one type 2037 ** and did some math on it that yielded a "struct tm" that's bad. 2038 ** We try to divine the type they started from and adjust to the 2039 ** type they need. 2040 */ 2041 sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr); 2042 #ifdef ALL_STATE 2043 if (sp == NULL) 2044 return WRONG; 2045 #endif /* defined ALL_STATE */ 2046 for (i = 0; i < sp->typecnt; ++i) 2047 seen[i] = FALSE; 2048 nseen = 0; 2049 for (i = sp->timecnt - 1; i >= 0; --i) 2050 if (!seen[sp->types[i]]) { 2051 seen[sp->types[i]] = TRUE; 2052 types[nseen++] = sp->types[i]; 2053 } 2054 for (sameind = 0; sameind < nseen; ++sameind) { 2055 samei = types[sameind]; 2056 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) 2057 continue; 2058 for (otherind = 0; otherind < nseen; ++otherind) { 2059 otheri = types[otherind]; 2060 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) 2061 continue; 2062 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff - 2063 sp->ttis[samei].tt_gmtoff); 2064 tmp->tm_isdst = !tmp->tm_isdst; 2065 t = time2(tmp, funcp, offset, &okay); 2066 if (okay) 2067 return t; 2068 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff - 2069 sp->ttis[samei].tt_gmtoff); 2070 tmp->tm_isdst = !tmp->tm_isdst; 2071 } 2072 } 2073 return WRONG; 2074 } 2075 2076 time_t 2077 mktime(tmp) 2078 struct tm * const tmp; 2079 { 2080 time_t result; 2081 2082 rwlock_wrlock(&lcl_lock); 2083 tzset_unlocked(); 2084 result = time1(tmp, localsub, 0L); 2085 rwlock_unlock(&lcl_lock); 2086 return (result); 2087 } 2088 2089 #ifdef STD_INSPIRED 2090 2091 time_t 2092 timelocal(tmp) 2093 struct tm * const tmp; 2094 { 2095 tmp->tm_isdst = -1; /* in case it wasn't initialized */ 2096 return mktime(tmp); 2097 } 2098 2099 time_t 2100 timegm(tmp) 2101 struct tm * const tmp; 2102 { 2103 tmp->tm_isdst = 0; 2104 return time1(tmp, gmtsub, 0L); 2105 } 2106 2107 time_t 2108 timeoff(tmp, offset) 2109 struct tm * const tmp; 2110 const long offset; 2111 { 2112 tmp->tm_isdst = 0; 2113 return time1(tmp, gmtsub, offset); 2114 } 2115 2116 #endif /* defined STD_INSPIRED */ 2117 2118 #ifdef CMUCS 2119 2120 /* 2121 ** The following is supplied for compatibility with 2122 ** previous versions of the CMUCS runtime library. 2123 */ 2124 2125 long 2126 gtime(tmp) 2127 struct tm * const tmp; 2128 { 2129 const time_t t = mktime(tmp); 2130 2131 if (t == WRONG) 2132 return -1; 2133 return t; 2134 } 2135 2136 #endif /* defined CMUCS */ 2137 2138 /* 2139 ** XXX--is the below the right way to conditionalize?? 2140 */ 2141 2142 #ifdef STD_INSPIRED 2143 2144 /* 2145 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599 2146 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which 2147 ** is not the case if we are accounting for leap seconds. 2148 ** So, we provide the following conversion routines for use 2149 ** when exchanging timestamps with POSIX conforming systems. 2150 */ 2151 2152 static long 2153 leapcorr(timep) 2154 time_t * timep; 2155 { 2156 register struct state * sp; 2157 register struct lsinfo * lp; 2158 register int i; 2159 2160 sp = lclptr; 2161 i = sp->leapcnt; 2162 while (--i >= 0) { 2163 lp = &sp->lsis[i]; 2164 if (*timep >= lp->ls_trans) 2165 return lp->ls_corr; 2166 } 2167 return 0; 2168 } 2169 2170 time_t 2171 time2posix(t) 2172 time_t t; 2173 { 2174 time_t result; 2175 2176 rwlock_wrlock(&lcl_lock); 2177 tzset_unlocked(); 2178 result = t - leapcorr(&t); 2179 rwlock_unlock(&lcl_lock); 2180 return (result); 2181 } 2182 2183 time_t 2184 posix2time(t) 2185 time_t t; 2186 { 2187 time_t x; 2188 time_t y; 2189 2190 rwlock_wrlock(&lcl_lock); 2191 tzset_unlocked(); 2192 /* 2193 ** For a positive leap second hit, the result 2194 ** is not unique. For a negative leap second 2195 ** hit, the corresponding time doesn't exist, 2196 ** so we return an adjacent second. 2197 */ 2198 x = t + leapcorr(&t); 2199 y = x - leapcorr(&x); 2200 if (y < t) { 2201 do { 2202 x++; 2203 y = x - leapcorr(&x); 2204 } while (y < t); 2205 if (t != y) { 2206 rwlock_unlock(&lcl_lock); 2207 return x - 1; 2208 } 2209 } else if (y > t) { 2210 do { 2211 --x; 2212 y = x - leapcorr(&x); 2213 } while (y > t); 2214 if (t != y) { 2215 rwlock_unlock(&lcl_lock); 2216 return x + 1; 2217 } 2218 } 2219 rwlock_unlock(&lcl_lock); 2220 return x; 2221 } 2222 2223 #endif /* defined STD_INSPIRED */ 2224