xref: /netbsd-src/lib/libc/time/localtime.c (revision 6cd39ddb8550f6fa1bff3fed32053d7f19fd0453)
1 /*	$NetBSD: localtime.c,v 1.100 2015/10/29 19:18:32 christos Exp $	*/
2 
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
7 
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char	elsieid[] = "@(#)localtime.c	8.17";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.100 2015/10/29 19:18:32 christos Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16 
17 /*
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
20 */
21 
22 /*LINTLIBRARY*/
23 
24 #include "namespace.h"
25 #include <assert.h>
26 #define LOCALTIME_IMPLEMENTATION
27 #include "private.h"
28 
29 #include "tzfile.h"
30 #include "fcntl.h"
31 #include "reentrant.h"
32 
33 #if NETBSD_INSPIRED
34 # define NETBSD_INSPIRED_EXTERN
35 #else
36 # define NETBSD_INSPIRED_EXTERN static
37 #endif
38 
39 #if defined(__weak_alias)
40 __weak_alias(daylight,_daylight)
41 __weak_alias(tzname,_tzname)
42 #endif
43 
44 #ifndef TZ_ABBR_MAX_LEN
45 #define TZ_ABBR_MAX_LEN	16
46 #endif /* !defined TZ_ABBR_MAX_LEN */
47 
48 #ifndef TZ_ABBR_CHAR_SET
49 #define TZ_ABBR_CHAR_SET \
50 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
51 #endif /* !defined TZ_ABBR_CHAR_SET */
52 
53 #ifndef TZ_ABBR_ERR_CHAR
54 #define TZ_ABBR_ERR_CHAR	'_'
55 #endif /* !defined TZ_ABBR_ERR_CHAR */
56 
57 /*
58 ** SunOS 4.1.1 headers lack O_BINARY.
59 */
60 
61 #ifdef O_BINARY
62 #define OPEN_MODE	(O_RDONLY | O_BINARY | O_CLOEXEC)
63 #endif /* defined O_BINARY */
64 #ifndef O_BINARY
65 #define OPEN_MODE	(O_RDONLY | O_CLOEXEC)
66 #endif /* !defined O_BINARY */
67 
68 #ifndef WILDABBR
69 /*
70 ** Someone might make incorrect use of a time zone abbreviation:
71 **	1.	They might reference tzname[0] before calling tzset (explicitly
72 **		or implicitly).
73 **	2.	They might reference tzname[1] before calling tzset (explicitly
74 **		or implicitly).
75 **	3.	They might reference tzname[1] after setting to a time zone
76 **		in which Daylight Saving Time is never observed.
77 **	4.	They might reference tzname[0] after setting to a time zone
78 **		in which Standard Time is never observed.
79 **	5.	They might reference tm.TM_ZONE after calling offtime.
80 ** What's best to do in the above cases is open to debate;
81 ** for now, we just set things up so that in any of the five cases
82 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
83 ** string "tzname[0] used before set", and similarly for the other cases.
84 ** And another: initialize tzname[0] to "ERA", with an explanation in the
85 ** manual page of what this "time zone abbreviation" means (doing this so
86 ** that tzname[0] has the "normal" length of three characters).
87 */
88 #define WILDABBR	"   "
89 #endif /* !defined WILDABBR */
90 
91 static const char	wildabbr[] = WILDABBR;
92 
93 static const char	gmt[] = "GMT";
94 
95 /*
96 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
97 ** We default to US rules as of 1999-08-17.
98 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
99 ** implementation dependent; for historical reasons, US rules are a
100 ** common default.
101 */
102 #ifndef TZDEFRULESTRING
103 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
104 #endif /* !defined TZDEFDST */
105 
106 struct ttinfo {				/* time type information */
107 	int_fast32_t	tt_gmtoff;	/* UT offset in seconds */
108 	bool		tt_isdst;	/* used to set tm_isdst */
109 	int		tt_abbrind;	/* abbreviation list index */
110 	bool		tt_ttisstd;	/* transition is std time */
111 	bool		tt_ttisgmt;	/* transition is UT */
112 };
113 
114 struct lsinfo {				/* leap second information */
115 	time_t		ls_trans;	/* transition time */
116 	int_fast64_t	ls_corr;	/* correction to apply */
117 };
118 
119 #define SMALLEST(a, b)	(((a) < (b)) ? (a) : (b))
120 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
121 
122 #ifdef TZNAME_MAX
123 #define MY_TZNAME_MAX	TZNAME_MAX
124 #endif /* defined TZNAME_MAX */
125 #ifndef TZNAME_MAX
126 #define MY_TZNAME_MAX	255
127 #endif /* !defined TZNAME_MAX */
128 
129 #define state __state
130 struct state {
131 	int		leapcnt;
132 	int		timecnt;
133 	int		typecnt;
134 	int		charcnt;
135 	bool		goback;
136 	bool		goahead;
137 	time_t		ats[TZ_MAX_TIMES];
138 	unsigned char	types[TZ_MAX_TIMES];
139 	struct ttinfo	ttis[TZ_MAX_TYPES];
140 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
141 				sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
142 	struct lsinfo	lsis[TZ_MAX_LEAPS];
143 	int		defaulttype; /* for early times or if no transitions */
144 };
145 
146 enum r_type {
147   JULIAN_DAY,		/* Jn = Julian day */
148   DAY_OF_YEAR,		/* n = day of year */
149   MONTH_NTH_DAY_OF_WEEK	/* Mm.n.d = month, week, day of week */
150 };
151 
152 struct rule {
153 	enum r_type	r_type;		/* type of rule */
154 	int		r_day;		/* day number of rule */
155 	int		r_week;		/* week number of rule */
156 	int		r_mon;		/* month number of rule */
157 	int_fast32_t	r_time;		/* transition time of rule */
158 };
159 
160 static struct tm *gmtsub(struct state const *, time_t const *, int_fast32_t,
161 			 struct tm *);
162 static bool increment_overflow(int *, int);
163 static bool increment_overflow_time(time_t *, int_fast32_t);
164 static bool normalize_overflow32(int_fast32_t *, int *, int);
165 static struct tm *timesub(time_t const *, int_fast32_t, struct state const *,
166 			  struct tm *);
167 static bool typesequiv(struct state const *, int, int);
168 static bool tzparse(char const *, struct state *, bool);
169 
170 static timezone_t lclptr;
171 static timezone_t gmtptr;
172 
173 #ifndef TZ_STRLEN_MAX
174 #define TZ_STRLEN_MAX 255
175 #endif /* !defined TZ_STRLEN_MAX */
176 
177 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
178 static int		lcl_is_set;
179 
180 #if !defined(__LIBC12_SOURCE__)
181 
182 __aconst char *		tzname[2] = {
183 	(__aconst char *)__UNCONST(wildabbr),
184 	(__aconst char *)__UNCONST(wildabbr)
185 };
186 
187 #else
188 
189 extern __aconst char *	tzname[2];
190 
191 #endif
192 
193 #ifdef _REENTRANT
194 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
195 #endif
196 
197 /*
198 ** Section 4.12.3 of X3.159-1989 requires that
199 **	Except for the strftime function, these functions [asctime,
200 **	ctime, gmtime, localtime] return values in one of two static
201 **	objects: a broken-down time structure and an array of char.
202 ** Thanks to Paul Eggert for noting this.
203 */
204 
205 static struct tm	tm;
206 
207 #ifdef USG_COMPAT
208 #if !defined(__LIBC12_SOURCE__)
209 long 			timezone = 0;
210 int			daylight = 0;
211 #else
212 extern int		daylight;
213 extern long		timezone __RENAME(__timezone13);
214 #endif
215 #endif /* defined USG_COMPAT */
216 
217 #ifdef ALTZONE
218 long			altzone = 0;
219 #endif /* defined ALTZONE */
220 
221 /* Initialize *S to a value based on GMTOFF, ISDST, and ABBRIND.  */
222 static void
223 init_ttinfo(struct ttinfo *s, int_fast32_t gmtoff, bool isdst, int abbrind)
224 {
225 	s->tt_gmtoff = gmtoff;
226 	s->tt_isdst = isdst;
227 	s->tt_abbrind = abbrind;
228 	s->tt_ttisstd = false;
229 	s->tt_ttisgmt = false;
230 }
231 
232 static int_fast32_t
233 detzcode(const char *const codep)
234 {
235 	int_fast32_t result;
236 	int	i;
237 	int_fast32_t one = 1;
238 	int_fast32_t halfmaxval = one << (32 - 2);
239 	int_fast32_t maxval = halfmaxval - 1 + halfmaxval;
240 	int_fast32_t minval = -1 - maxval;
241 
242 	result = codep[0] & 0x7f;
243 	for (i = 1; i < 4; ++i)
244 		result = (result << 8) | (codep[i] & 0xff);
245 
246 	if (codep[0] & 0x80) {
247 	  /* Do two's-complement negation even on non-two's-complement machines.
248 	     If the result would be minval - 1, return minval.  */
249 	    result -= !TWOS_COMPLEMENT(int_fast32_t) && result != 0;
250 	    result += minval;
251 	}
252  	return result;
253 }
254 
255 static int_fast64_t
256 detzcode64(const char *const codep)
257 {
258 	int_fast64_t result;
259 	int	i;
260 	int_fast64_t one = 1;
261 	int_fast64_t halfmaxval = one << (64 - 2);
262 	int_fast64_t maxval = halfmaxval - 1 + halfmaxval;
263 	int_fast64_t minval = -TWOS_COMPLEMENT(int_fast64_t) - maxval;
264 
265 	result = codep[0] & 0x7f;
266 	for (i = 1; i < 8; ++i)
267 		result = (result << 8) | (codep[i] & 0xff);
268 
269 	if (codep[0] & 0x80) {
270 	  /* Do two's-complement negation even on non-two's-complement machines.
271 	     If the result would be minval - 1, return minval.  */
272 	  result -= !TWOS_COMPLEMENT(int_fast64_t) && result != 0;
273 	  result += minval;
274 	}
275  	return result;
276 }
277 
278 const char *
279 tzgetname(const timezone_t sp, int isdst)
280 {
281 	int i;
282 	for (i = 0; i < sp->timecnt; ++i) {
283 		const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
284 
285 		if (ttisp->tt_isdst == isdst)
286 			return &sp->chars[ttisp->tt_abbrind];
287 	}
288 	errno = ESRCH;
289 	return NULL;
290 }
291 
292 long
293 tzgetgmtoff(const timezone_t sp, int isdst)
294 {
295 	int i;
296 	long l = -1;
297 	for (i = 0; i < sp->timecnt; ++i) {
298 		const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
299 
300 		if (ttisp->tt_isdst == isdst) {
301 			l = ttisp->tt_gmtoff;
302 			if (sp->types[i] != 0)
303 				return l;
304 		}
305 	}
306 	if (l == -1)
307 		errno = ESRCH;
308 	return l;
309 }
310 
311 static void
312 scrub_abbrs(struct state *sp)
313 {
314 	int i;
315 
316 	/*
317 	** First, replace bogus characters.
318 	*/
319 	for (i = 0; i < sp->charcnt; ++i)
320 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
321 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
322 	/*
323 	** Second, truncate long abbreviations.
324 	*/
325 	for (i = 0; i < sp->typecnt; ++i) {
326 		const struct ttinfo * const	ttisp = &sp->ttis[i];
327 		char *				cp = &sp->chars[ttisp->tt_abbrind];
328 
329 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
330 			strcmp(cp, GRANDPARENTED) != 0)
331 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
332 	}
333 }
334 
335 static void
336 update_tzname_etc(const struct state *sp, const struct ttinfo *ttisp)
337 {
338 	tzname[ttisp->tt_isdst] = __UNCONST(&sp->chars[ttisp->tt_abbrind]);
339 #ifdef USG_COMPAT
340 	if (!ttisp->tt_isdst)
341 		timezone = - ttisp->tt_gmtoff;
342 #endif
343 #ifdef ALTZONE
344 	if (ttisp->tt_isdst)
345 	    altzone = - ttisp->tt_gmtoff;
346 #endif /* defined ALTZONE */
347 }
348 
349 static void
350 settzname(void)
351 {
352 	timezone_t const	sp = lclptr;
353 	int			i;
354 
355 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
356 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
357 #ifdef USG_COMPAT
358 	daylight = 0;
359 	timezone = 0;
360 #endif /* defined USG_COMPAT */
361 #ifdef ALTZONE
362 	altzone = 0;
363 #endif /* defined ALTZONE */
364 	if (sp == NULL) {
365 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
366 		return;
367 	}
368 	/*
369 	** And to get the latest zone names into tzname. . .
370 	*/
371 	for (i = 0; i < sp->typecnt; ++i)
372 		update_tzname_etc(sp, &sp->ttis[i]);
373 
374 	for (i = 0; i < sp->timecnt; ++i) {
375 		const struct ttinfo * const ttisp = &sp->ttis[sp->types[i]];
376 		update_tzname_etc(sp, ttisp);
377 #ifdef USG_COMPAT
378 		if (ttisp->tt_isdst)
379 			daylight = 1;
380 #endif /* defined USG_COMPAT */
381 	}
382 }
383 
384 static bool
385 differ_by_repeat(const time_t t1, const time_t t0)
386 {
387 	if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
388 		return 0;
389 	return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
390 }
391 
392 union input_buffer {
393 	/* The first part of the buffer, interpreted as a header.  */
394 	struct tzhead tzhead;
395 
396 	/* The entire buffer.  */
397 	char buf[2 * sizeof(struct tzhead) + 2 * sizeof (struct state)
398 	  + 4 * TZ_MAX_TIMES];
399 };
400 
401 /* Local storage needed for 'tzloadbody'.  */
402 union local_storage {
403 	/* The file name to be opened.  */
404 	char fullname[FILENAME_MAX + 1];
405 
406 	/* The results of analyzing the file's contents after it is opened.  */
407 	struct {
408 		/* The input buffer.  */
409 		union input_buffer u;
410 
411 		/* A temporary state used for parsing a TZ string in the file.  */
412 		struct state st;
413 	} u;
414 };
415 
416 /* Load tz data from the file named NAME into *SP.  Read extended
417    format if DOEXTEND.  Use *LSP for temporary storage.  Return 0 on
418    success, an errno value on failure.  */
419 static int
420 tzloadbody(char const *name, struct state *sp, bool doextend,
421   union local_storage *lsp)
422 {
423 	int			i;
424 	int			fid;
425 	int			stored;
426 	ssize_t			nread;
427 	bool			doaccess;
428 	char			*fullname = lsp->fullname;
429 	union input_buffer	*up = &lsp->u.u;
430 	size_t			tzheadsize = sizeof(struct tzhead);
431 
432 	sp->goback = sp->goahead = false;
433 
434 	if (! name) {
435 		name = TZDEFAULT;
436 		if (! name)
437 			return EINVAL;
438 	}
439 
440 	if (name[0] == ':')
441 		++name;
442 	doaccess = name[0] == '/';
443 	if (!doaccess) {
444 		char const *p = TZDIR;
445 		if (! p)
446 			return EINVAL;
447 		if (sizeof lsp->fullname - 1 <= strlen(p) + strlen(name))
448 			return ENAMETOOLONG;
449 		strcpy(fullname, p);
450 		strcat(fullname, "/");
451 		strcat(fullname, name);
452 		/* Set doaccess if '.' (as in "../") shows up in name.  */
453 		if (strchr(name, '.'))
454 			doaccess = true;
455 		name = fullname;
456 	}
457 	if (doaccess && access(name, R_OK) != 0)
458 		return errno;
459 
460 	fid = open(name, OPEN_MODE);
461 	if (fid < 0)
462 		return errno;
463 	nread = read(fid, up->buf, sizeof up->buf);
464 	if (nread < (ssize_t)tzheadsize) {
465 		int err = nread < 0 ? errno : EINVAL;
466 		close(fid);
467 		return err;
468 	}
469 	if (close(fid) < 0)
470 		return errno;
471 	for (stored = 4; stored <= 8; stored *= 2) {
472 		int_fast32_t ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt);
473 		int_fast32_t ttisgmtcnt = detzcode(up->tzhead.tzh_ttisgmtcnt);
474 		int_fast32_t leapcnt = detzcode(up->tzhead.tzh_leapcnt);
475 		int_fast32_t timecnt = detzcode(up->tzhead.tzh_timecnt);
476 		int_fast32_t typecnt = detzcode(up->tzhead.tzh_typecnt);
477 		int_fast32_t charcnt = detzcode(up->tzhead.tzh_charcnt);
478 		char const *p = up->buf + tzheadsize;
479 		if (! (0 <= leapcnt && leapcnt < TZ_MAX_LEAPS
480 		       && 0 < typecnt && typecnt < TZ_MAX_TYPES
481 		       && 0 <= timecnt && timecnt < TZ_MAX_TIMES
482 		       && 0 <= charcnt && charcnt < TZ_MAX_CHARS
483 		       && (ttisstdcnt == typecnt || ttisstdcnt == 0)
484 		       && (ttisgmtcnt == typecnt || ttisgmtcnt == 0)))
485 		  return EINVAL;
486 		if ((size_t)nread
487 		    < (tzheadsize		/* struct tzhead */
488 		       + timecnt * stored	/* ats */
489 		       + timecnt		/* types */
490 		       + typecnt * 6		/* ttinfos */
491 		       + charcnt		/* chars */
492 		       + leapcnt * (stored + 4)	/* lsinfos */
493 		       + ttisstdcnt		/* ttisstds */
494 		       + ttisgmtcnt))		/* ttisgmts */
495 		  return EINVAL;
496 		sp->leapcnt = leapcnt;
497 		sp->timecnt = timecnt;
498 		sp->typecnt = typecnt;
499 		sp->charcnt = charcnt;
500 
501 		/* Read transitions, discarding those out of time_t range.
502 		   But pretend the last transition before time_t_min
503 		   occurred at time_t_min.  */
504 		timecnt = 0;
505 		for (i = 0; i < sp->timecnt; ++i) {
506 			int_fast64_t at
507 			  = stored == 4 ? detzcode(p) : detzcode64(p);
508 			sp->types[i] = at <= time_t_max;
509 			if (sp->types[i]) {
510 				time_t attime
511 				    = ((TYPE_SIGNED(time_t) ?
512 				    at < time_t_min : at < 0)
513 				    ? time_t_min : (time_t)at);
514 				if (timecnt && attime <= sp->ats[timecnt - 1]) {
515 					if (attime < sp->ats[timecnt - 1])
516 						return EINVAL;
517 					sp->types[i - 1] = 0;
518 					timecnt--;
519 				}
520 				sp->ats[timecnt++] = attime;
521 			}
522 			p += stored;
523 		}
524 
525 		timecnt = 0;
526 		for (i = 0; i < sp->timecnt; ++i) {
527 			unsigned char typ = *p++;
528 			if (sp->typecnt <= typ)
529 			  return EINVAL;
530 			if (sp->types[i])
531 				sp->types[timecnt++] = typ;
532 		}
533 		sp->timecnt = timecnt;
534 		for (i = 0; i < sp->typecnt; ++i) {
535 			struct ttinfo *	ttisp;
536 			unsigned char isdst, abbrind;
537 
538 			ttisp = &sp->ttis[i];
539 			ttisp->tt_gmtoff = detzcode(p);
540 			p += 4;
541 			isdst = *p++;
542 			if (! (isdst < 2))
543 				return EINVAL;
544 			ttisp->tt_isdst = isdst;
545 			abbrind = *p++;
546 			if (! (abbrind < sp->charcnt))
547 				return EINVAL;
548 			ttisp->tt_abbrind = abbrind;
549 		}
550 		for (i = 0; i < sp->charcnt; ++i)
551 			sp->chars[i] = *p++;
552 		sp->chars[i] = '\0';	/* ensure '\0' at end */
553 
554 		/* Read leap seconds, discarding those out of time_t range.  */
555 		leapcnt = 0;
556 		for (i = 0; i < sp->leapcnt; ++i) {
557 			int_fast64_t tr = stored == 4 ? detzcode(p) :
558 			    detzcode64(p);
559 			int_fast32_t corr = detzcode(p + stored);
560 			p += stored + 4;
561 			if (tr <= time_t_max) {
562 				time_t trans = ((TYPE_SIGNED(time_t) ?
563 				    tr < time_t_min : tr < 0)
564 				    ? time_t_min : (time_t)tr);
565 				if (leapcnt && trans <=
566 				    sp->lsis[leapcnt - 1].ls_trans) {
567 					if (trans <
568 					    sp->lsis[leapcnt - 1].ls_trans)
569 						return EINVAL;
570 					leapcnt--;
571 				}
572 				sp->lsis[leapcnt].ls_trans = trans;
573 				sp->lsis[leapcnt].ls_corr = corr;
574 				leapcnt++;
575 			}
576 		}
577 		sp->leapcnt = leapcnt;
578 
579 		for (i = 0; i < sp->typecnt; ++i) {
580 			struct ttinfo *	ttisp;
581 
582 			ttisp = &sp->ttis[i];
583 			if (ttisstdcnt == 0)
584 				ttisp->tt_ttisstd = false;
585 			else {
586 				if (*p != true && *p != false)
587 				  return EINVAL;
588 				ttisp->tt_ttisstd = *p++;
589 			}
590 		}
591 		for (i = 0; i < sp->typecnt; ++i) {
592 			struct ttinfo *	ttisp;
593 
594 			ttisp = &sp->ttis[i];
595 			if (ttisgmtcnt == 0)
596 				ttisp->tt_ttisgmt = false;
597 			else {
598 				if (*p != true && *p != false)
599 						return EINVAL;
600 				ttisp->tt_ttisgmt = *p++;
601 			}
602 		}
603 		/*
604 		** If this is an old file, we're done.
605 		*/
606 		if (up->tzhead.tzh_version[0] == '\0')
607 			break;
608 		nread -= p - up->buf;
609 		memmove(up->buf, p, (size_t)nread);
610 	}
611 	if (doextend && nread > 2 &&
612 		up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
613 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
614 			struct state *ts = &lsp->u.st;
615 
616 			up->buf[nread - 1] = '\0';
617 			if (tzparse(&up->buf[1], ts, false)
618 			    && ts->typecnt == 2) {
619 
620 			  /* Attempt to reuse existing abbreviations.
621 			     Without this, America/Anchorage would stop
622 			     working after 2037 when TZ_MAX_CHARS is 50, as
623 			     sp->charcnt equals 42 (for LMT CAT CAWT CAPT AHST
624 			     AHDT YST AKDT AKST) and ts->charcnt equals 10
625 			     (for AKST AKDT).  Reusing means sp->charcnt can
626 			     stay 42 in this example.  */
627 			  int gotabbr = 0;
628 			  int charcnt = sp->charcnt;
629 			  for (i = 0; i < 2; i++) {
630 			    char *tsabbr = ts->chars + ts->ttis[i].tt_abbrind;
631 			    int j;
632 			    for (j = 0; j < charcnt; j++)
633 			      if (strcmp(sp->chars + j, tsabbr) == 0) {
634 				ts->ttis[i].tt_abbrind = j;
635 				gotabbr++;
636 				break;
637 			      }
638 			    if (! (j < charcnt)) {
639 			      size_t tsabbrlen = strlen(tsabbr);
640 			      if (j + tsabbrlen < TZ_MAX_CHARS) {
641 				strcpy(sp->chars + j, tsabbr);
642 				charcnt = (int_fast32_t)(j + tsabbrlen + 1);
643 				ts->ttis[i].tt_abbrind = j;
644 				gotabbr++;
645 			      }
646 			    }
647 			  }
648 			  if (gotabbr == 2) {
649 			    sp->charcnt = charcnt;
650 			    for (i = 0; i < ts->timecnt; i++)
651 			      if (sp->ats[sp->timecnt - 1] < ts->ats[i])
652 				break;
653 			    while (i < ts->timecnt
654 				   && sp->timecnt < TZ_MAX_TIMES) {
655 			      sp->ats[sp->timecnt] = ts->ats[i];
656 			      sp->types[sp->timecnt] = (sp->typecnt
657 							+ ts->types[i]);
658 			      sp->timecnt++;
659 			      i++;
660 			    }
661 			    sp->ttis[sp->typecnt++] = ts->ttis[0];
662 			    sp->ttis[sp->typecnt++] = ts->ttis[1];
663 			  }
664 			}
665 	}
666 	if (sp->timecnt > 1) {
667 		for (i = 1; i < sp->timecnt; ++i)
668 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
669 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
670 					sp->goback = true;
671 					break;
672 				}
673 		for (i = sp->timecnt - 2; i >= 0; --i)
674 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
675 				sp->types[i]) &&
676 				differ_by_repeat(sp->ats[sp->timecnt - 1],
677 				sp->ats[i])) {
678 					sp->goahead = true;
679 					break;
680 		}
681 	}
682 	/*
683 	** If type 0 is is unused in transitions,
684 	** it's the type to use for early times.
685 	*/
686 	for (i = 0; i < sp->timecnt; ++i)
687 		if (sp->types[i] == 0)
688 			break;
689 	i = i < sp->timecnt ? -1 : 0;
690 	/*
691 	** Absent the above,
692 	** if there are transition times
693 	** and the first transition is to a daylight time
694 	** find the standard type less than and closest to
695 	** the type of the first transition.
696 	*/
697 	if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
698 		i = sp->types[0];
699 		while (--i >= 0)
700 			if (!sp->ttis[i].tt_isdst)
701 				break;
702 	}
703 	/*
704 	** If no result yet, find the first standard type.
705 	** If there is none, punt to type zero.
706 	*/
707 	if (i < 0) {
708 		i = 0;
709 		while (sp->ttis[i].tt_isdst)
710 			if (++i >= sp->typecnt) {
711 				i = 0;
712 				break;
713 			}
714 	}
715 	sp->defaulttype = i;
716 	return 0;
717 }
718 
719 /* Load tz data from the file named NAME into *SP.  Read extended
720    format if DOEXTEND.  Return 0 on success, an errno value on failure.  */
721 static int
722 tzload(char const *name, struct state *sp, bool doextend)
723 {
724 	union local_storage *lsp = malloc(sizeof *lsp);
725 	if (!lsp)
726 		return errno;
727 	else {
728 		int err = tzloadbody(name, sp, doextend, lsp);
729 		free(lsp);
730 		return err;
731 	}
732 }
733 
734 static bool
735 typesequiv(const struct state *sp, int a, int b)
736 {
737 	bool result;
738 
739 	if (sp == NULL ||
740 		a < 0 || a >= sp->typecnt ||
741 		b < 0 || b >= sp->typecnt)
742 			result = false;
743 	else {
744 		const struct ttinfo *	ap = &sp->ttis[a];
745 		const struct ttinfo *	bp = &sp->ttis[b];
746 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
747 			ap->tt_isdst == bp->tt_isdst &&
748 			ap->tt_ttisstd == bp->tt_ttisstd &&
749 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
750 			strcmp(&sp->chars[ap->tt_abbrind],
751 			&sp->chars[bp->tt_abbrind]) == 0;
752 	}
753 	return result;
754 }
755 
756 static const int	mon_lengths[2][MONSPERYEAR] = {
757 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
758 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
759 };
760 
761 static const int	year_lengths[2] = {
762 	DAYSPERNYEAR, DAYSPERLYEAR
763 };
764 
765 /*
766 ** Given a pointer into a time zone string, scan until a character that is not
767 ** a valid character in a zone name is found. Return a pointer to that
768 ** character.
769 */
770 
771 static const char * ATTRIBUTE_PURE
772 getzname(const char *strp)
773 {
774 	char	c;
775 
776 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
777 		c != '+')
778 			++strp;
779 	return strp;
780 }
781 
782 /*
783 ** Given a pointer into an extended time zone string, scan until the ending
784 ** delimiter of the zone name is located. Return a pointer to the delimiter.
785 **
786 ** As with getzname above, the legal character set is actually quite
787 ** restricted, with other characters producing undefined results.
788 ** We don't do any checking here; checking is done later in common-case code.
789 */
790 
791 static const char * ATTRIBUTE_PURE
792 getqzname(const char *strp, const int delim)
793 {
794 	int	c;
795 
796 	while ((c = *strp) != '\0' && c != delim)
797 		++strp;
798 	return strp;
799 }
800 
801 /*
802 ** Given a pointer into a time zone string, extract a number from that string.
803 ** Check that the number is within a specified range; if it is not, return
804 ** NULL.
805 ** Otherwise, return a pointer to the first character not part of the number.
806 */
807 
808 static const char *
809 getnum(const char *strp, int *const nump, const int min, const int max)
810 {
811 	char	c;
812 	int	num;
813 
814 	if (strp == NULL || !is_digit(c = *strp)) {
815 		errno = EINVAL;
816 		return NULL;
817 	}
818 	num = 0;
819 	do {
820 		num = num * 10 + (c - '0');
821 		if (num > max) {
822 			errno = EOVERFLOW;
823 			return NULL;	/* illegal value */
824 		}
825 		c = *++strp;
826 	} while (is_digit(c));
827 	if (num < min) {
828 		errno = EINVAL;
829 		return NULL;		/* illegal value */
830 	}
831 	*nump = num;
832 	return strp;
833 }
834 
835 /*
836 ** Given a pointer into a time zone string, extract a number of seconds,
837 ** in hh[:mm[:ss]] form, from the string.
838 ** If any error occurs, return NULL.
839 ** Otherwise, return a pointer to the first character not part of the number
840 ** of seconds.
841 */
842 
843 static const char *
844 getsecs(const char *strp, int_fast32_t *const secsp)
845 {
846 	int	num;
847 
848 	/*
849 	** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
850 	** "M10.4.6/26", which does not conform to Posix,
851 	** but which specifies the equivalent of
852 	** "02:00 on the first Sunday on or after 23 Oct".
853 	*/
854 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
855 	if (strp == NULL)
856 		return NULL;
857 	*secsp = num * (int_fast32_t) SECSPERHOUR;
858 	if (*strp == ':') {
859 		++strp;
860 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
861 		if (strp == NULL)
862 			return NULL;
863 		*secsp += num * SECSPERMIN;
864 		if (*strp == ':') {
865 			++strp;
866 			/* 'SECSPERMIN' allows for leap seconds.  */
867 			strp = getnum(strp, &num, 0, SECSPERMIN);
868 			if (strp == NULL)
869 				return NULL;
870 			*secsp += num;
871 		}
872 	}
873 	return strp;
874 }
875 
876 /*
877 ** Given a pointer into a time zone string, extract an offset, in
878 ** [+-]hh[:mm[:ss]] form, from the string.
879 ** If any error occurs, return NULL.
880 ** Otherwise, return a pointer to the first character not part of the time.
881 */
882 
883 static const char *
884 getoffset(const char *strp, int_fast32_t *const offsetp)
885 {
886 	bool neg = false;
887 
888 	if (*strp == '-') {
889 		neg = true;
890 		++strp;
891 	} else if (*strp == '+')
892 		++strp;
893 	strp = getsecs(strp, offsetp);
894 	if (strp == NULL)
895 		return NULL;		/* illegal time */
896 	if (neg)
897 		*offsetp = -*offsetp;
898 	return strp;
899 }
900 
901 /*
902 ** Given a pointer into a time zone string, extract a rule in the form
903 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
904 ** If a valid rule is not found, return NULL.
905 ** Otherwise, return a pointer to the first character not part of the rule.
906 */
907 
908 static const char *
909 getrule(const char *strp, struct rule *const rulep)
910 {
911 	if (*strp == 'J') {
912 		/*
913 		** Julian day.
914 		*/
915 		rulep->r_type = JULIAN_DAY;
916 		++strp;
917 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
918 	} else if (*strp == 'M') {
919 		/*
920 		** Month, week, day.
921 		*/
922 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
923 		++strp;
924 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
925 		if (strp == NULL)
926 			return NULL;
927 		if (*strp++ != '.')
928 			return NULL;
929 		strp = getnum(strp, &rulep->r_week, 1, 5);
930 		if (strp == NULL)
931 			return NULL;
932 		if (*strp++ != '.')
933 			return NULL;
934 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
935 	} else if (is_digit(*strp)) {
936 		/*
937 		** Day of year.
938 		*/
939 		rulep->r_type = DAY_OF_YEAR;
940 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
941 	} else	return NULL;		/* invalid format */
942 	if (strp == NULL)
943 		return NULL;
944 	if (*strp == '/') {
945 		/*
946 		** Time specified.
947 		*/
948 		++strp;
949 		strp = getoffset(strp, &rulep->r_time);
950 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
951 	return strp;
952 }
953 
954 /*
955 ** Given a year, a rule, and the offset from UT at the time that rule takes
956 ** effect, calculate the year-relative time that rule takes effect.
957 */
958 
959 static int_fast32_t ATTRIBUTE_PURE
960 transtime(const int year, const struct rule *const rulep,
961 	  const int_fast32_t offset)
962 {
963 	bool	leapyear;
964 	int_fast32_t value;
965 	int	i;
966 	int		d, m1, yy0, yy1, yy2, dow;
967 
968 	INITIALIZE(value);
969 	leapyear = isleap(year);
970 	switch (rulep->r_type) {
971 
972 	case JULIAN_DAY:
973 		/*
974 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
975 		** years.
976 		** In non-leap years, or if the day number is 59 or less, just
977 		** add SECSPERDAY times the day number-1 to the time of
978 		** January 1, midnight, to get the day.
979 		*/
980 		value = (rulep->r_day - 1) * SECSPERDAY;
981 		if (leapyear && rulep->r_day >= 60)
982 			value += SECSPERDAY;
983 		break;
984 
985 	case DAY_OF_YEAR:
986 		/*
987 		** n - day of year.
988 		** Just add SECSPERDAY times the day number to the time of
989 		** January 1, midnight, to get the day.
990 		*/
991 		value = rulep->r_day * SECSPERDAY;
992 		break;
993 
994 	case MONTH_NTH_DAY_OF_WEEK:
995 		/*
996 		** Mm.n.d - nth "dth day" of month m.
997 		*/
998 
999 		/*
1000 		** Use Zeller's Congruence to get day-of-week of first day of
1001 		** month.
1002 		*/
1003 		m1 = (rulep->r_mon + 9) % 12 + 1;
1004 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
1005 		yy1 = yy0 / 100;
1006 		yy2 = yy0 % 100;
1007 		dow = ((26 * m1 - 2) / 10 +
1008 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
1009 		if (dow < 0)
1010 			dow += DAYSPERWEEK;
1011 
1012 		/*
1013 		** "dow" is the day-of-week of the first day of the month. Get
1014 		** the day-of-month (zero-origin) of the first "dow" day of the
1015 		** month.
1016 		*/
1017 		d = rulep->r_day - dow;
1018 		if (d < 0)
1019 			d += DAYSPERWEEK;
1020 		for (i = 1; i < rulep->r_week; ++i) {
1021 			if (d + DAYSPERWEEK >=
1022 				mon_lengths[leapyear][rulep->r_mon - 1])
1023 					break;
1024 			d += DAYSPERWEEK;
1025 		}
1026 
1027 		/*
1028 		** "d" is the day-of-month (zero-origin) of the day we want.
1029 		*/
1030 		value = d * SECSPERDAY;
1031 		for (i = 0; i < rulep->r_mon - 1; ++i)
1032 			value += mon_lengths[leapyear][i] * SECSPERDAY;
1033 		break;
1034 	}
1035 
1036 	/*
1037 	** "value" is the year-relative time of 00:00:00 UT on the day in
1038 	** question. To get the year-relative time of the specified local
1039 	** time on that day, add the transition time and the current offset
1040 	** from UT.
1041 	*/
1042 	return value + rulep->r_time + offset;
1043 }
1044 
1045 /*
1046 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
1047 ** appropriate.
1048 */
1049 
1050 static bool
1051 tzparse(const char *name, struct state *sp, bool lastditch)
1052 {
1053 	const char *	stdname;
1054 	const char *	dstname;
1055 	size_t		stdlen;
1056 	size_t		dstlen;
1057 	size_t		charcnt;
1058 	int_fast32_t	stdoffset;
1059 	int_fast32_t	dstoffset;
1060 	char *		cp;
1061 	bool		load_ok;
1062 
1063 	dstname = NULL; /* XXX gcc */
1064 	stdname = name;
1065 	if (lastditch) {
1066 		stdlen = sizeof gmt - 1;
1067 		name += stdlen;
1068 		stdoffset = 0;
1069 	} else {
1070 		if (*name == '<') {
1071 			name++;
1072 			stdname = name;
1073 			name = getqzname(name, '>');
1074 			if (*name != '>')
1075 			  return false;
1076 			stdlen = name - stdname;
1077 			name++;
1078 		} else {
1079 			name = getzname(name);
1080 			stdlen = name - stdname;
1081 		}
1082 		if (!stdlen)
1083 			return false;
1084 		name = getoffset(name, &stdoffset);
1085 		if (name == NULL)
1086 			return false;
1087 	}
1088 	charcnt = stdlen + 1;
1089 	if (sizeof sp->chars < charcnt)
1090 		return false;
1091 	load_ok = tzload(TZDEFRULES, sp, false) == 0;
1092 	if (!load_ok)
1093 		sp->leapcnt = 0;		/* so, we're off a little */
1094 	if (*name != '\0') {
1095 		if (*name == '<') {
1096 			dstname = ++name;
1097 			name = getqzname(name, '>');
1098 			if (*name != '>')
1099 				return false;
1100 			dstlen = name - dstname;
1101 			name++;
1102 		} else {
1103 			dstname = name;
1104 			name = getzname(name);
1105 			dstlen = name - dstname; /* length of DST zone name */
1106 		}
1107 		if (!dstlen)
1108 		  return false;
1109 		charcnt += dstlen + 1;
1110 		if (sizeof sp->chars < charcnt)
1111 		  return false;
1112 		if (*name != '\0' && *name != ',' && *name != ';') {
1113 			name = getoffset(name, &dstoffset);
1114 			if (name == NULL)
1115 			  return false;
1116 		} else	dstoffset = stdoffset - SECSPERHOUR;
1117 		if (*name == '\0' && !load_ok)
1118 			name = TZDEFRULESTRING;
1119 		if (*name == ',' || *name == ';') {
1120 			struct rule	start;
1121 			struct rule	end;
1122 			int		year;
1123 			int		yearlim;
1124 			int		timecnt;
1125 			time_t		janfirst;
1126 
1127 			++name;
1128 			if ((name = getrule(name, &start)) == NULL)
1129 				return false;
1130 			if (*name++ != ',')
1131 				return false;
1132 			if ((name = getrule(name, &end)) == NULL)
1133 				return false;
1134 			if (*name != '\0')
1135 				return false;
1136 			sp->typecnt = 2;	/* standard time and DST */
1137 			/*
1138 			** Two transitions per year, from EPOCH_YEAR forward.
1139 			*/
1140 			init_ttinfo(&sp->ttis[0], -dstoffset, true,
1141 			    (int)(stdlen + 1));
1142 			init_ttinfo(&sp->ttis[1], -stdoffset, false, 0);
1143 			sp->defaulttype = 0;
1144 			timecnt = 0;
1145 			janfirst = 0;
1146 			yearlim = EPOCH_YEAR + YEARSPERREPEAT;
1147 			for (year = EPOCH_YEAR; year < yearlim; year++) {
1148 				int_fast32_t
1149 				  starttime = transtime(year, &start, stdoffset),
1150 				  endtime = transtime(year, &end, dstoffset);
1151 				int_fast32_t
1152 				  yearsecs = (year_lengths[isleap(year)]
1153 					      * SECSPERDAY);
1154 				bool reversed = endtime < starttime;
1155 				if (reversed) {
1156 					int_fast32_t swap = starttime;
1157 					starttime = endtime;
1158 					endtime = swap;
1159 				}
1160 				if (reversed
1161 				    || (starttime < endtime
1162 					&& (endtime - starttime
1163 					    < (yearsecs
1164 					       + (stdoffset - dstoffset))))) {
1165 					if (TZ_MAX_TIMES - 2 < timecnt)
1166 						break;
1167 					yearlim = year + YEARSPERREPEAT + 1;
1168 					sp->ats[timecnt] = janfirst;
1169 					if (increment_overflow_time
1170 					    (&sp->ats[timecnt], starttime))
1171 						break;
1172 					sp->types[timecnt++] = reversed;
1173 					sp->ats[timecnt] = janfirst;
1174 					if (increment_overflow_time
1175 					    (&sp->ats[timecnt], endtime))
1176 						break;
1177 					sp->types[timecnt++] = !reversed;
1178 				}
1179 				if (increment_overflow_time(&janfirst, yearsecs))
1180 					break;
1181 			}
1182 			sp->timecnt = timecnt;
1183 			if (!timecnt)
1184 				sp->typecnt = 1;	/* Perpetual DST.  */
1185 		} else {
1186 			int_fast32_t	theirstdoffset;
1187 			int_fast32_t	theirdstoffset;
1188 			int_fast32_t	theiroffset;
1189 			bool		isdst;
1190 			int		i;
1191 			int		j;
1192 
1193 			if (*name != '\0')
1194 				return false;
1195 			/*
1196 			** Initial values of theirstdoffset and theirdstoffset.
1197 			*/
1198 			theirstdoffset = 0;
1199 			for (i = 0; i < sp->timecnt; ++i) {
1200 				j = sp->types[i];
1201 				if (!sp->ttis[j].tt_isdst) {
1202 					theirstdoffset =
1203 						-sp->ttis[j].tt_gmtoff;
1204 					break;
1205 				}
1206 			}
1207 			theirdstoffset = 0;
1208 			for (i = 0; i < sp->timecnt; ++i) {
1209 				j = sp->types[i];
1210 				if (sp->ttis[j].tt_isdst) {
1211 					theirdstoffset =
1212 						-sp->ttis[j].tt_gmtoff;
1213 					break;
1214 				}
1215 			}
1216 			/*
1217 			** Initially we're assumed to be in standard time.
1218 			*/
1219 			isdst = false;
1220 			theiroffset = theirstdoffset;
1221 			/*
1222 			** Now juggle transition times and types
1223 			** tracking offsets as you do.
1224 			*/
1225 			for (i = 0; i < sp->timecnt; ++i) {
1226 				j = sp->types[i];
1227 				sp->types[i] = sp->ttis[j].tt_isdst;
1228 				if (sp->ttis[j].tt_ttisgmt) {
1229 					/* No adjustment to transition time */
1230 				} else {
1231 					/*
1232 					** If summer time is in effect, and the
1233 					** transition time was not specified as
1234 					** standard time, add the summer time
1235 					** offset to the transition time;
1236 					** otherwise, add the standard time
1237 					** offset to the transition time.
1238 					*/
1239 					/*
1240 					** Transitions from DST to DDST
1241 					** will effectively disappear since
1242 					** POSIX provides for only one DST
1243 					** offset.
1244 					*/
1245 					if (isdst && !sp->ttis[j].tt_ttisstd) {
1246 						sp->ats[i] += (time_t)
1247 						    (dstoffset - theirdstoffset);
1248 					} else {
1249 						sp->ats[i] += (time_t)
1250 						    (stdoffset - theirstdoffset);
1251 					}
1252 				}
1253 				theiroffset = -sp->ttis[j].tt_gmtoff;
1254 				if (sp->ttis[j].tt_isdst)
1255 					theirstdoffset = theiroffset;
1256 				else	theirdstoffset = theiroffset;
1257 			}
1258 			/*
1259 			** Finally, fill in ttis.
1260 			*/
1261 			init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
1262 			init_ttinfo(&sp->ttis[1], -dstoffset, true,
1263 			    (int)(stdlen + 1));
1264 			sp->typecnt = 2;
1265 			sp->defaulttype = 0;
1266 		}
1267 	} else {
1268 		dstlen = 0;
1269 		sp->typecnt = 1;		/* only standard time */
1270 		sp->timecnt = 0;
1271 		init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
1272 		init_ttinfo(&sp->ttis[1], 0, false, 0);
1273 		sp->defaulttype = 0;
1274 	}
1275 	sp->charcnt = (int)charcnt;
1276 	cp = sp->chars;
1277 	(void) memcpy(cp, stdname, stdlen);
1278 	cp += stdlen;
1279 	*cp++ = '\0';
1280 	if (dstlen != 0) {
1281 		(void) memcpy(cp, dstname, dstlen);
1282 		*(cp + dstlen) = '\0';
1283 	}
1284 	return true;
1285 }
1286 
1287 static void
1288 gmtload(struct state *const sp)
1289 {
1290 	if (tzload(gmt, sp, true) != 0)
1291 		(void) tzparse(gmt, sp, true);
1292 }
1293 
1294 static int
1295 zoneinit(struct state *sp, char const *name)
1296 {
1297 	if (name && ! name[0]) {
1298 		/*
1299 		** User wants it fast rather than right.
1300 		*/
1301 		sp->leapcnt = 0;		/* so, we're off a little */
1302 		sp->timecnt = 0;
1303 		sp->typecnt = 0;
1304 		sp->charcnt = 0;
1305 		sp->goback = sp->goahead = false;
1306 		init_ttinfo(&sp->ttis[0], 0, false, 0);
1307 		strcpy(sp->chars, gmt);
1308 		sp->defaulttype = 0;
1309 		return 0;
1310 	} else {
1311 		int err = tzload(name, sp, true);
1312 		if (err != 0 && name && name[0] != ':' &&
1313 		    tzparse(name, sp, false))
1314 			err = 0;
1315 		if (err == 0)
1316 			scrub_abbrs(sp);
1317 		return err;
1318 	}
1319 }
1320 
1321 static void
1322 tzsetlcl(char const *name)
1323 {
1324 	struct state *sp = lclptr;
1325 	int lcl = name ? strlen(name) < sizeof lcl_TZname : -1;
1326 	if (lcl < 0 ? lcl_is_set < 0
1327 	    : 0 < lcl_is_set && strcmp(lcl_TZname, name) == 0)
1328 		return;
1329 
1330 	if (! sp)
1331 		lclptr = sp = malloc(sizeof *lclptr);
1332 	if (sp) {
1333 		if (zoneinit(sp, name) != 0)
1334 			zoneinit(sp, "");
1335 		if (0 < lcl)
1336 			strcpy(lcl_TZname, name);
1337 	}
1338 	settzname();
1339 	lcl_is_set = lcl;
1340 }
1341 
1342 #ifdef STD_INSPIRED
1343 void
1344 tzsetwall(void)
1345 {
1346 	rwlock_wrlock(&lcl_lock);
1347 	tzsetlcl(NULL);
1348 	rwlock_unlock(&lcl_lock);
1349 }
1350 #endif
1351 
1352 static void
1353 tzset_unlocked(void)
1354 {
1355 	tzsetlcl(getenv("TZ"));
1356 }
1357 
1358 void
1359 tzset(void)
1360 {
1361 	rwlock_wrlock(&lcl_lock);
1362 	tzset_unlocked();
1363 	rwlock_unlock(&lcl_lock);
1364 }
1365 
1366 static void
1367 gmtcheck(void)
1368 {
1369 	static bool gmt_is_set;
1370 	rwlock_wrlock(&lcl_lock);
1371 	if (! gmt_is_set) {
1372 		gmtptr = malloc(sizeof *gmtptr);
1373 		if (gmtptr)
1374 			gmtload(gmtptr);
1375 		gmt_is_set = true;
1376 	}
1377 	rwlock_unlock(&lcl_lock);
1378 }
1379 
1380 #if NETBSD_INSPIRED
1381 
1382 timezone_t
1383 tzalloc(const char *name)
1384 {
1385 	timezone_t sp = malloc(sizeof *sp);
1386 	if (sp) {
1387 		int err = zoneinit(sp, name);
1388 		if (err != 0) {
1389 			free(sp);
1390 			errno = err;
1391 			return NULL;
1392 		}
1393 	}
1394 	return sp;
1395 }
1396 
1397 void
1398 tzfree(timezone_t sp)
1399 {
1400 	free(sp);
1401 }
1402 
1403 /*
1404 ** NetBSD 6.1.4 has ctime_rz, but omit it because POSIX says ctime and
1405 ** ctime_r are obsolescent and have potential security problems that
1406 ** ctime_rz would share.  Callers can instead use localtime_rz + strftime.
1407 **
1408 ** NetBSD 6.1.4 has tzgetname, but omit it because it doesn't work
1409 ** in zones with three or more time zone abbreviations.
1410 ** Callers can instead use localtime_rz + strftime.
1411 */
1412 
1413 #endif
1414 
1415 /*
1416 ** The easy way to behave "as if no library function calls" localtime
1417 ** is to not call it, so we drop its guts into "localsub", which can be
1418 ** freely called. (And no, the PANS doesn't require the above behavior,
1419 ** but it *is* desirable.)
1420 **
1421 ** If successful and SETNAME is nonzero,
1422 ** set the applicable parts of tzname, timezone and altzone;
1423 ** however, it's OK to omit this step if the time zone is POSIX-compatible,
1424 ** since in that case tzset should have already done this step correctly.
1425 ** SETNAME's type is intfast32_t for compatibility with gmtsub,
1426 ** but it is actually a boolean and its value should be 0 or 1.
1427 */
1428 
1429 /*ARGSUSED*/
1430 static struct tm *
1431 localsub(struct state const *sp, time_t const *timep, int_fast32_t setname,
1432 	 struct tm *const tmp)
1433 {
1434 	const struct ttinfo *	ttisp;
1435 	int			i;
1436 	struct tm *		result;
1437 	const time_t			t = *timep;
1438 
1439 	if (sp == NULL) {
1440 		/* Don't bother to set tzname etc.; tzset has already done it.  */
1441 		return gmtsub(gmtptr, timep, 0, tmp);
1442 	}
1443 	if ((sp->goback && t < sp->ats[0]) ||
1444 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1445 			time_t			newt = t;
1446 			time_t		seconds;
1447 			time_t		years;
1448 
1449 			if (t < sp->ats[0])
1450 				seconds = sp->ats[0] - t;
1451 			else	seconds = t - sp->ats[sp->timecnt - 1];
1452 			--seconds;
1453 			years = (time_t)((seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT);
1454 			seconds = (time_t)(years * AVGSECSPERYEAR);
1455 			if (t < sp->ats[0])
1456 				newt += seconds;
1457 			else	newt -= seconds;
1458 			if (newt < sp->ats[0] ||
1459 				newt > sp->ats[sp->timecnt - 1]) {
1460 				errno = EINVAL;
1461 				return NULL;	/* "cannot happen" */
1462 			}
1463 			result = localsub(sp, &newt, setname, tmp);
1464 			if (result) {
1465 				int_fast64_t newy;
1466 
1467 				newy = result->tm_year;
1468 				if (t < sp->ats[0])
1469 					newy -= years;
1470 				else	newy += years;
1471 				if (! (INT_MIN <= newy && newy <= INT_MAX)) {
1472 					errno = EOVERFLOW;
1473 					return NULL;
1474 				}
1475 				result->tm_year = (int)newy;
1476 			}
1477 			return result;
1478 	}
1479 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1480 		i = sp->defaulttype;
1481 	} else {
1482 		int	lo = 1;
1483 		int	hi = sp->timecnt;
1484 
1485 		while (lo < hi) {
1486 			int	mid = (lo + hi) / 2;
1487 
1488 			if (t < sp->ats[mid])
1489 				hi = mid;
1490 			else	lo = mid + 1;
1491 		}
1492 		i = (int) sp->types[lo - 1];
1493 	}
1494 	ttisp = &sp->ttis[i];
1495 	/*
1496 	** To get (wrong) behavior that's compatible with System V Release 2.0
1497 	** you'd replace the statement below with
1498 	**	t += ttisp->tt_gmtoff;
1499 	**	timesub(&t, 0L, sp, tmp);
1500 	*/
1501 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1502 	if (result) {
1503 		result->tm_isdst = ttisp->tt_isdst;
1504 #ifdef TM_ZONE
1505 		result->TM_ZONE = __UNCONST(&sp->chars[ttisp->tt_abbrind]);
1506 #endif /* defined TM_ZONE */
1507 		if (setname)
1508 			update_tzname_etc(sp, ttisp);
1509 	}
1510 	return result;
1511 }
1512 
1513 #if NETBSD_INSPIRED
1514 
1515 struct tm *
1516 localtime_rz(timezone_t sp, time_t const *timep, struct tm *tmp)
1517 {
1518 	return localsub(sp, timep, 0, tmp);
1519 }
1520 
1521 #endif
1522 
1523 static struct tm *
1524 localtime_tzset(time_t const *timep, struct tm *tmp, bool setname)
1525 {
1526 	rwlock_wrlock(&lcl_lock);
1527 	if (setname || !lcl_is_set)
1528 		tzset_unlocked();
1529 	tmp = localsub(lclptr, timep, setname, tmp);
1530 	rwlock_unlock(&lcl_lock);
1531 	return tmp;
1532 }
1533 
1534 struct tm *
1535 localtime(const time_t *timep)
1536 {
1537 	return localtime_tzset(timep, &tm, true);
1538 }
1539 
1540 struct tm *
1541 localtime_r(const time_t * __restrict timep, struct tm *tmp)
1542 {
1543 	return localtime_tzset(timep, tmp, false);
1544 }
1545 
1546 /*
1547 ** gmtsub is to gmtime as localsub is to localtime.
1548 */
1549 
1550 static struct tm *
1551 gmtsub(struct state const *sp, const time_t *timep, int_fast32_t offset,
1552        struct tm *tmp)
1553 {
1554 	struct tm *	result;
1555 
1556 	result = timesub(timep, offset, gmtptr, tmp);
1557 #ifdef TM_ZONE
1558 	/*
1559 	** Could get fancy here and deliver something such as
1560 	** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
1561 	** but this is no time for a treasure hunt.
1562 	*/
1563 	if (result)
1564 		result->TM_ZONE = offset ? __UNCONST(wildabbr) : gmtptr ?
1565 		    gmtptr->chars : __UNCONST(gmt);
1566 #endif /* defined TM_ZONE */
1567 	return result;
1568 }
1569 
1570 
1571 /*
1572 ** Re-entrant version of gmtime.
1573 */
1574 
1575 struct tm *
1576 gmtime_r(const time_t *timep, struct tm *tmp)
1577 {
1578 	gmtcheck();
1579 	return gmtsub(NULL, timep, 0, tmp);
1580 }
1581 
1582 struct tm *
1583 gmtime(const time_t *timep)
1584 {
1585 	return gmtime_r(timep, &tm);
1586 }
1587 #ifdef STD_INSPIRED
1588 
1589 struct tm *
1590 offtime(const time_t *timep, long offset)
1591 {
1592 	gmtcheck();
1593 	return gmtsub(gmtptr, timep, (int_fast32_t)offset, &tm);
1594 }
1595 
1596 struct tm *
1597 offtime_r(const time_t *timep, long offset, struct tm *tmp)
1598 {
1599 	gmtcheck();
1600 	return gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
1601 }
1602 
1603 #endif /* defined STD_INSPIRED */
1604 
1605 /*
1606 ** Return the number of leap years through the end of the given year
1607 ** where, to make the math easy, the answer for year zero is defined as zero.
1608 */
1609 
1610 static int ATTRIBUTE_PURE
1611 leaps_thru_end_of(const int y)
1612 {
1613 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1614 		-(leaps_thru_end_of(-(y + 1)) + 1);
1615 }
1616 
1617 static struct tm *
1618 timesub(const time_t *timep, int_fast32_t offset,
1619     const struct state *sp, struct tm *tmp)
1620 {
1621 	const struct lsinfo *	lp;
1622 	time_t			tdays;
1623 	int			idays;	/* unsigned would be so 2003 */
1624 	int_fast64_t		rem;
1625 	int			y;
1626 	const int *		ip;
1627 	int_fast64_t		corr;
1628 	bool			hit;
1629 	int			i;
1630 
1631 	corr = 0;
1632 	hit = false;
1633 	i = (sp == NULL) ? 0 : sp->leapcnt;
1634 	while (--i >= 0) {
1635 		lp = &sp->lsis[i];
1636 		if (*timep >= lp->ls_trans) {
1637 			if (*timep == lp->ls_trans) {
1638 				hit = ((i == 0 && lp->ls_corr > 0) ||
1639 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1640 				if (hit)
1641 					while (i > 0 &&
1642 						sp->lsis[i].ls_trans ==
1643 						sp->lsis[i - 1].ls_trans + 1 &&
1644 						sp->lsis[i].ls_corr ==
1645 						sp->lsis[i - 1].ls_corr + 1) {
1646 							++hit;
1647 							--i;
1648 					}
1649 			}
1650 			corr = lp->ls_corr;
1651 			break;
1652 		}
1653 	}
1654 	y = EPOCH_YEAR;
1655 	tdays = (time_t)(*timep / SECSPERDAY);
1656 	rem = *timep % SECSPERDAY;
1657 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1658 		int		newy;
1659 		time_t	tdelta;
1660 		int	idelta;
1661 		int	leapdays;
1662 
1663 		tdelta = tdays / DAYSPERLYEAR;
1664 		if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
1665 		       && tdelta <= INT_MAX))
1666 			goto out_of_range;
1667 		_DIAGASSERT(__type_fit(int, tdelta));
1668 		idelta = (int)tdelta;
1669 		if (idelta == 0)
1670 			idelta = (tdays < 0) ? -1 : 1;
1671 		newy = y;
1672 		if (increment_overflow(&newy, idelta))
1673 			goto out_of_range;
1674 		leapdays = leaps_thru_end_of(newy - 1) -
1675 			leaps_thru_end_of(y - 1);
1676 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1677 		tdays -= leapdays;
1678 		y = newy;
1679 	}
1680 	/*
1681 	** Given the range, we can now fearlessly cast...
1682 	*/
1683 	idays = (int) tdays;
1684 	rem += offset - corr;
1685 	while (rem < 0) {
1686 		rem += SECSPERDAY;
1687 		--idays;
1688 	}
1689 	while (rem >= SECSPERDAY) {
1690 		rem -= SECSPERDAY;
1691 		++idays;
1692 	}
1693 	while (idays < 0) {
1694 		if (increment_overflow(&y, -1))
1695 			goto out_of_range;
1696 		idays += year_lengths[isleap(y)];
1697 	}
1698 	while (idays >= year_lengths[isleap(y)]) {
1699 		idays -= year_lengths[isleap(y)];
1700 		if (increment_overflow(&y, 1))
1701 			goto out_of_range;
1702 	}
1703 	tmp->tm_year = y;
1704 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1705 		goto out_of_range;
1706 	tmp->tm_yday = idays;
1707 	/*
1708 	** The "extra" mods below avoid overflow problems.
1709 	*/
1710 	tmp->tm_wday = EPOCH_WDAY +
1711 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
1712 		(DAYSPERNYEAR % DAYSPERWEEK) +
1713 		leaps_thru_end_of(y - 1) -
1714 		leaps_thru_end_of(EPOCH_YEAR - 1) +
1715 		idays;
1716 	tmp->tm_wday %= DAYSPERWEEK;
1717 	if (tmp->tm_wday < 0)
1718 		tmp->tm_wday += DAYSPERWEEK;
1719 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1720 	rem %= SECSPERHOUR;
1721 	tmp->tm_min = (int) (rem / SECSPERMIN);
1722 	/*
1723 	** A positive leap second requires a special
1724 	** representation. This uses "... ??:59:60" et seq.
1725 	*/
1726 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1727 	ip = mon_lengths[isleap(y)];
1728 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1729 		idays -= ip[tmp->tm_mon];
1730 	tmp->tm_mday = (int) (idays + 1);
1731 	tmp->tm_isdst = 0;
1732 #ifdef TM_GMTOFF
1733 	tmp->TM_GMTOFF = offset;
1734 #endif /* defined TM_GMTOFF */
1735 	return tmp;
1736 out_of_range:
1737 	errno = EOVERFLOW;
1738 	return NULL;
1739 }
1740 
1741 char *
1742 ctime(const time_t *timep)
1743 {
1744 /*
1745 ** Section 4.12.3.2 of X3.159-1989 requires that
1746 **	The ctime function converts the calendar time pointed to by timer
1747 **	to local time in the form of a string. It is equivalent to
1748 **		asctime(localtime(timer))
1749 */
1750 	struct tm *tmp = localtime(timep);
1751 	return tmp ? asctime(tmp) : NULL;
1752 }
1753 
1754 char *
1755 ctime_r(const time_t *timep, char *buf)
1756 {
1757 	struct tm mytm;
1758 	struct tm *tmp = localtime_r(timep, &mytm);
1759 	return tmp ? asctime_r(tmp, buf) : NULL;
1760 }
1761 
1762 char *
1763 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1764 {
1765 	struct tm	mytm, *rtm;
1766 
1767 	rtm = localtime_rz(sp, timep, &mytm);
1768 	if (rtm == NULL)
1769 		return NULL;
1770 	return asctime_r(rtm, buf);
1771 }
1772 
1773 /*
1774 ** Adapted from code provided by Robert Elz, who writes:
1775 **	The "best" way to do mktime I think is based on an idea of Bob
1776 **	Kridle's (so its said...) from a long time ago.
1777 **	It does a binary search of the time_t space. Since time_t's are
1778 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1779 **	would still be very reasonable).
1780 */
1781 
1782 #ifndef WRONG
1783 #define WRONG	((time_t)-1)
1784 #endif /* !defined WRONG */
1785 
1786 /*
1787 ** Normalize logic courtesy Paul Eggert.
1788 */
1789 
1790 static bool
1791 increment_overflow(int *ip, int j)
1792 {
1793 	int const	i = *ip;
1794 
1795 	/*
1796 	** If i >= 0 there can only be overflow if i + j > INT_MAX
1797 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1798 	** If i < 0 there can only be overflow if i + j < INT_MIN
1799 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1800 	*/
1801 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1802 		return true;
1803 	*ip += j;
1804 	return false;
1805 }
1806 
1807 static bool
1808 increment_overflow32(int_fast32_t *const lp, int const m)
1809 {
1810 	int_fast32_t const l = *lp;
1811 
1812 	if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
1813 		return true;
1814 	*lp += m;
1815 	return false;
1816 }
1817 
1818 static bool
1819 increment_overflow_time(time_t *tp, int_fast32_t j)
1820 {
1821 	/*
1822 	** This is like
1823 	** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
1824 	** except that it does the right thing even if *tp + j would overflow.
1825 	*/
1826 	if (! (j < 0
1827 	       ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
1828 	       : *tp <= time_t_max - j))
1829 		return true;
1830 	*tp += j;
1831 	return false;
1832 }
1833 
1834 static bool
1835 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1836 {
1837 	int	tensdelta;
1838 
1839 	tensdelta = (*unitsptr >= 0) ?
1840 		(*unitsptr / base) :
1841 		(-1 - (-1 - *unitsptr) / base);
1842 	*unitsptr -= tensdelta * base;
1843 	return increment_overflow(tensptr, tensdelta);
1844 }
1845 
1846 static bool
1847 normalize_overflow32(int_fast32_t *tensptr, int *unitsptr, int base)
1848 {
1849 	int	tensdelta;
1850 
1851 	tensdelta = (*unitsptr >= 0) ?
1852 		(*unitsptr / base) :
1853 		(-1 - (-1 - *unitsptr) / base);
1854 	*unitsptr -= tensdelta * base;
1855 	return increment_overflow32(tensptr, tensdelta);
1856 }
1857 
1858 static int
1859 tmcomp(const struct tm *const atmp,
1860        const struct tm *const btmp)
1861 {
1862 	int	result;
1863 
1864 	if (atmp->tm_year != btmp->tm_year)
1865 		return atmp->tm_year < btmp->tm_year ? -1 : 1;
1866 	if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1867 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1868 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1869 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1870 			result = atmp->tm_sec - btmp->tm_sec;
1871 	return result;
1872 }
1873 
1874 static time_t
1875 time2sub(struct tm *const tmp,
1876 	 struct tm *(*funcp)(struct state const *, time_t const *,
1877 			     int_fast32_t, struct tm *),
1878 	 struct state const *sp,
1879  	 const int_fast32_t offset,
1880 	 bool *okayp,
1881 	 bool do_norm_secs)
1882 {
1883 	int			dir;
1884 	int			i, j;
1885 	int			saved_seconds;
1886 	int_fast32_t		li;
1887 	time_t			lo;
1888 	time_t			hi;
1889 #ifdef NO_ERROR_IN_DST_GAP
1890 	time_t			ilo;
1891 #endif
1892 	int_fast32_t		y;
1893 	time_t			newt;
1894 	time_t			t;
1895 	struct tm		yourtm, mytm;
1896 
1897 	*okayp = false;
1898 	yourtm = *tmp;
1899 #ifdef NO_ERROR_IN_DST_GAP
1900 again:
1901 #endif
1902 	if (do_norm_secs) {
1903 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1904 		    SECSPERMIN))
1905 			goto out_of_range;
1906 	}
1907 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1908 		goto out_of_range;
1909 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1910 		goto out_of_range;
1911 	y = yourtm.tm_year;
1912 	if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
1913 		goto out_of_range;
1914 	/*
1915 	** Turn y into an actual year number for now.
1916 	** It is converted back to an offset from TM_YEAR_BASE later.
1917 	*/
1918 	if (increment_overflow32(&y, TM_YEAR_BASE))
1919 		goto out_of_range;
1920 	while (yourtm.tm_mday <= 0) {
1921 		if (increment_overflow32(&y, -1))
1922 			goto out_of_range;
1923 		li = y + (1 < yourtm.tm_mon);
1924 		yourtm.tm_mday += year_lengths[isleap(li)];
1925 	}
1926 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1927 		li = y + (1 < yourtm.tm_mon);
1928 		yourtm.tm_mday -= year_lengths[isleap(li)];
1929 		if (increment_overflow32(&y, 1))
1930 			goto out_of_range;
1931 	}
1932 	for ( ; ; ) {
1933 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1934 		if (yourtm.tm_mday <= i)
1935 			break;
1936 		yourtm.tm_mday -= i;
1937 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1938 			yourtm.tm_mon = 0;
1939 			if (increment_overflow32(&y, 1))
1940 				goto out_of_range;
1941 		}
1942 	}
1943 	if (increment_overflow32(&y, -TM_YEAR_BASE))
1944 		goto out_of_range;
1945 	if (! (INT_MIN <= y && y <= INT_MAX))
1946 		goto out_of_range;
1947 	yourtm.tm_year = (int)y;
1948 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1949 		saved_seconds = 0;
1950 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1951 		/*
1952 		** We can't set tm_sec to 0, because that might push the
1953 		** time below the minimum representable time.
1954 		** Set tm_sec to 59 instead.
1955 		** This assumes that the minimum representable time is
1956 		** not in the same minute that a leap second was deleted from,
1957 		** which is a safer assumption than using 58 would be.
1958 		*/
1959 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1960 			goto out_of_range;
1961 		saved_seconds = yourtm.tm_sec;
1962 		yourtm.tm_sec = SECSPERMIN - 1;
1963 	} else {
1964 		saved_seconds = yourtm.tm_sec;
1965 		yourtm.tm_sec = 0;
1966 	}
1967 	/*
1968 	** Do a binary search (this works whatever time_t's type is).
1969 	*/
1970 	lo = time_t_min;
1971 	hi = time_t_max;
1972 #ifdef NO_ERROR_IN_DST_GAP
1973 	ilo = lo;
1974 #endif
1975 	for ( ; ; ) {
1976 		t = lo / 2 + hi / 2;
1977 		if (t < lo)
1978 			t = lo;
1979 		else if (t > hi)
1980 			t = hi;
1981 		if (! funcp(sp, &t, offset, &mytm)) {
1982 			/*
1983 			** Assume that t is too extreme to be represented in
1984 			** a struct tm; arrange things so that it is less
1985 			** extreme on the next pass.
1986 			*/
1987 			dir = (t > 0) ? 1 : -1;
1988 		} else	dir = tmcomp(&mytm, &yourtm);
1989 		if (dir != 0) {
1990 			if (t == lo) {
1991 				if (t == time_t_max)
1992 					goto out_of_range;
1993 				++t;
1994 				++lo;
1995 			} else if (t == hi) {
1996 				if (t == time_t_min)
1997 					goto out_of_range;
1998 				--t;
1999 				--hi;
2000 			}
2001 #ifdef NO_ERROR_IN_DST_GAP
2002 			if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
2003 			    do_norm_secs) {
2004 				for (i = sp->typecnt - 1; i >= 0; --i) {
2005 					for (j = sp->typecnt - 1; j >= 0; --j) {
2006 						time_t off;
2007 						if (sp->ttis[j].tt_isdst ==
2008 						    sp->ttis[i].tt_isdst)
2009 							continue;
2010 						off = sp->ttis[j].tt_gmtoff -
2011 						    sp->ttis[i].tt_gmtoff;
2012 						yourtm.tm_sec += off < 0 ?
2013 						    -off : off;
2014 						goto again;
2015 					}
2016 				}
2017 			}
2018 #endif
2019 			if (lo > hi)
2020 				goto invalid;
2021 			if (dir > 0)
2022 				hi = t;
2023 			else	lo = t;
2024 			continue;
2025 		}
2026 #if defined TM_GMTOFF && ! UNINIT_TRAP
2027 		if (mytm.TM_GMTOFF != yourtm.TM_GMTOFF
2028 		    && (yourtm.TM_GMTOFF < 0
2029 			? (-SECSPERDAY <= yourtm.TM_GMTOFF
2030 			   && (mytm.TM_GMTOFF <=
2031 			       (/*CONSTCOND*/SMALLEST (INT_FAST32_MAX, LONG_MAX)
2032 				+ yourtm.TM_GMTOFF)))
2033 			: (yourtm.TM_GMTOFF <= SECSPERDAY
2034 			   && ((/*CONSTCOND*/BIGGEST (INT_FAST32_MIN, LONG_MIN)
2035 				+ yourtm.TM_GMTOFF)
2036 			       <= mytm.TM_GMTOFF)))) {
2037 		  /* MYTM matches YOURTM except with the wrong UTC offset.
2038 		     YOURTM.TM_GMTOFF is plausible, so try it instead.
2039 		     It's OK if YOURTM.TM_GMTOFF contains uninitialized data,
2040 		     since the guess gets checked.  */
2041 		  time_t altt = t;
2042 		  int_fast32_t diff = (int_fast32_t)
2043 		      (mytm.TM_GMTOFF - yourtm.TM_GMTOFF);
2044 		  if (!increment_overflow_time(&altt, diff)) {
2045 		    struct tm alttm;
2046 		    if (! funcp(sp, &altt, offset, &alttm)
2047 			&& alttm.tm_isdst == mytm.tm_isdst
2048 			&& alttm.TM_GMTOFF == yourtm.TM_GMTOFF
2049 			&& tmcomp(&alttm, &yourtm)) {
2050 		      t = altt;
2051 		      mytm = alttm;
2052 		    }
2053 		  }
2054 		}
2055 #endif
2056 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
2057 			break;
2058 		/*
2059 		** Right time, wrong type.
2060 		** Hunt for right time, right type.
2061 		** It's okay to guess wrong since the guess
2062 		** gets checked.
2063 		*/
2064 		if (sp == NULL)
2065 			goto invalid;
2066 		for (i = sp->typecnt - 1; i >= 0; --i) {
2067 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
2068 				continue;
2069 			for (j = sp->typecnt - 1; j >= 0; --j) {
2070 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
2071 					continue;
2072 				newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
2073 				    sp->ttis[i].tt_gmtoff);
2074 				if (! funcp(sp, &newt, offset, &mytm))
2075 					continue;
2076 				if (tmcomp(&mytm, &yourtm) != 0)
2077 					continue;
2078 				if (mytm.tm_isdst != yourtm.tm_isdst)
2079 					continue;
2080 				/*
2081 				** We have a match.
2082 				*/
2083 				t = newt;
2084 				goto label;
2085 			}
2086 		}
2087 		goto invalid;
2088 	}
2089 label:
2090 	newt = t + saved_seconds;
2091 	if ((newt < t) != (saved_seconds < 0))
2092 		goto out_of_range;
2093 	t = newt;
2094 	if (funcp(sp, &t, offset, tmp)) {
2095 		*okayp = true;
2096 		return t;
2097 	}
2098 out_of_range:
2099 	errno = EOVERFLOW;
2100 	return WRONG;
2101 invalid:
2102 	errno = EINVAL;
2103 	return WRONG;
2104 }
2105 
2106 static time_t
2107 time2(struct tm * const	tmp,
2108       struct tm *(*funcp)(struct state const *, time_t const *,
2109 			  int_fast32_t, struct tm *),
2110       struct state const *sp,
2111       const int_fast32_t offset,
2112       bool *okayp)
2113 {
2114 	time_t	t;
2115 
2116 	/*
2117 	** First try without normalization of seconds
2118 	** (in case tm_sec contains a value associated with a leap second).
2119 	** If that fails, try with normalization of seconds.
2120 	*/
2121 	t = time2sub(tmp, funcp, sp, offset, okayp, false);
2122 	return *okayp ? t : time2sub(tmp, funcp, sp, offset, okayp, true);
2123 }
2124 
2125 static time_t
2126 time1(struct tm *const tmp,
2127       struct tm *(*funcp) (struct state const *, time_t const *,
2128 			   int_fast32_t, struct tm *),
2129       struct state const *sp,
2130       const int_fast32_t offset)
2131 {
2132 	time_t			t;
2133 	int			samei, otheri;
2134 	int			sameind, otherind;
2135 	int			i;
2136 	int			nseen;
2137 	int			save_errno;
2138 	char				seen[TZ_MAX_TYPES];
2139 	unsigned char			types[TZ_MAX_TYPES];
2140 	bool				okay;
2141 
2142 	if (tmp == NULL) {
2143 		errno = EINVAL;
2144 		return WRONG;
2145 	}
2146 	if (tmp->tm_isdst > 1)
2147 		tmp->tm_isdst = 1;
2148 	save_errno = errno;
2149 	t = time2(tmp, funcp, sp, offset, &okay);
2150 	if (okay) {
2151 		errno = save_errno;
2152 		return t;
2153 	}
2154 	if (tmp->tm_isdst < 0)
2155 #ifdef PCTS
2156 		/*
2157 		** POSIX Conformance Test Suite code courtesy Grant Sullivan.
2158 		*/
2159 		tmp->tm_isdst = 0;	/* reset to std and try again */
2160 #else
2161 		return t;
2162 #endif /* !defined PCTS */
2163 	/*
2164 	** We're supposed to assume that somebody took a time of one type
2165 	** and did some math on it that yielded a "struct tm" that's bad.
2166 	** We try to divine the type they started from and adjust to the
2167 	** type they need.
2168 	*/
2169 	if (sp == NULL) {
2170 		errno = EINVAL;
2171 		return WRONG;
2172 	}
2173 	for (i = 0; i < sp->typecnt; ++i)
2174 		seen[i] = false;
2175 	nseen = 0;
2176 	for (i = sp->timecnt - 1; i >= 0; --i)
2177 		if (!seen[sp->types[i]]) {
2178 			seen[sp->types[i]] = true;
2179 			types[nseen++] = sp->types[i];
2180 		}
2181 	for (sameind = 0; sameind < nseen; ++sameind) {
2182 		samei = types[sameind];
2183 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2184 			continue;
2185 		for (otherind = 0; otherind < nseen; ++otherind) {
2186 			otheri = types[otherind];
2187 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2188 				continue;
2189 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2190 					sp->ttis[samei].tt_gmtoff);
2191 			tmp->tm_isdst = !tmp->tm_isdst;
2192 			t = time2(tmp, funcp, sp, offset, &okay);
2193 			if (okay) {
2194 				errno = save_errno;
2195 				return t;
2196 			}
2197 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2198 					sp->ttis[samei].tt_gmtoff);
2199 			tmp->tm_isdst = !tmp->tm_isdst;
2200 		}
2201 	}
2202 	errno = EOVERFLOW;
2203 	return WRONG;
2204 }
2205 
2206 static time_t
2207 mktime_tzname(timezone_t sp, struct tm *tmp, bool setname)
2208 {
2209 	if (sp)
2210 		return time1(tmp, localsub, sp, setname);
2211 	else {
2212 		gmtcheck();
2213 		return time1(tmp, gmtsub, gmtptr, 0);
2214 	}
2215 }
2216 
2217 #if NETBSD_INSPIRED
2218 
2219 time_t
2220 mktime_z(timezone_t sp, struct tm *const tmp)
2221 {
2222 	return mktime_tzname(sp, tmp, false);
2223 }
2224 
2225 #endif
2226 
2227 time_t
2228 mktime(struct tm *tmp)
2229 {
2230 	time_t t;
2231 
2232 	rwlock_wrlock(&lcl_lock);
2233 	tzset_unlocked();
2234 	t = mktime_tzname(lclptr, tmp, true);
2235 	rwlock_unlock(&lcl_lock);
2236 	return t;
2237 }
2238 
2239 #ifdef STD_INSPIRED
2240 
2241 time_t
2242 timelocal_z(const timezone_t sp, struct tm *const tmp)
2243 {
2244 	if (tmp != NULL)
2245 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
2246 	return mktime_z(sp, tmp);
2247 }
2248 
2249 time_t
2250 timelocal(struct tm *tmp)
2251 {
2252 	if (tmp != NULL)
2253 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
2254 	return mktime(tmp);
2255 }
2256 
2257 time_t
2258 timegm(struct tm *tmp)
2259 {
2260 
2261 	return timeoff(tmp, 0);
2262 }
2263 
2264 time_t
2265 timeoff(struct tm *tmp, long offset)
2266 {
2267 	if (tmp)
2268 		tmp->tm_isdst = 0;
2269 	gmtcheck();
2270 	return time1(tmp, gmtsub, gmtptr, (int_fast32_t)offset);
2271 }
2272 
2273 #endif /* defined STD_INSPIRED */
2274 
2275 /*
2276 ** XXX--is the below the right way to conditionalize??
2277 */
2278 
2279 #ifdef STD_INSPIRED
2280 
2281 /*
2282 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2283 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2284 ** is not the case if we are accounting for leap seconds.
2285 ** So, we provide the following conversion routines for use
2286 ** when exchanging timestamps with POSIX conforming systems.
2287 */
2288 
2289 static int_fast64_t
2290 leapcorr(const timezone_t sp, time_t t)
2291 {
2292 	struct lsinfo const * lp;
2293 	int		i;
2294 
2295 	i = sp->leapcnt;
2296 	while (--i >= 0) {
2297 		lp = &sp->lsis[i];
2298 		if (t >= lp->ls_trans)
2299 			return lp->ls_corr;
2300 	}
2301 	return 0;
2302 }
2303 
2304 NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE
2305 time2posix_z(timezone_t sp, time_t t)
2306 {
2307 	return (time_t)(t - leapcorr(sp, t));
2308 }
2309 
2310 time_t
2311 time2posix(time_t t)
2312 {
2313 	rwlock_wrlock(&lcl_lock);
2314 	if (!lcl_is_set)
2315 		tzset_unlocked();
2316 	if (lclptr)
2317 		t = (time_t)(t - leapcorr(lclptr, t));
2318 	rwlock_unlock(&lcl_lock);
2319 	return t;
2320 }
2321 
2322 NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE
2323 posix2time_z(timezone_t sp, time_t t)
2324 {
2325 	time_t	x;
2326 	time_t	y;
2327 
2328 	/*
2329 	** For a positive leap second hit, the result
2330 	** is not unique. For a negative leap second
2331 	** hit, the corresponding time doesn't exist,
2332 	** so we return an adjacent second.
2333 	*/
2334 	x = (time_t)(t + leapcorr(sp, t));
2335 	y = (time_t)(x - leapcorr(sp, x));
2336 	if (y < t) {
2337 		do {
2338 			x++;
2339 			y = (time_t)(x - leapcorr(sp, x));
2340 		} while (y < t);
2341 		x -= y != t;
2342 	} else if (y > t) {
2343 		do {
2344 			--x;
2345 			y = (time_t)(x - leapcorr(sp, x));
2346 		} while (y > t);
2347 		x += y != t;
2348 	}
2349 	return x;
2350 }
2351 
2352 time_t
2353 posix2time(time_t t)
2354 {
2355 	rwlock_wrlock(&lcl_lock);
2356 	if (!lcl_is_set)
2357 		tzset_unlocked();
2358 	if (lclptr)
2359 		t = posix2time_z(lclptr, t);
2360 	rwlock_unlock(&lcl_lock);
2361 	return t;
2362 }
2363 
2364 #endif /* defined STD_INSPIRED */
2365