xref: /netbsd-src/lib/libc/time/localtime.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: localtime.c,v 1.81 2013/12/26 18:34:28 christos Exp $	*/
2 
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
7 
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char	elsieid[] = "@(#)localtime.c	8.17";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.81 2013/12/26 18:34:28 christos Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16 
17 /*
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
20 */
21 
22 /*LINTLIBRARY*/
23 
24 #include "namespace.h"
25 #include <assert.h>
26 #include "private.h"
27 #include "tzfile.h"
28 #include "fcntl.h"
29 #include "reentrant.h"
30 
31 #if defined(__weak_alias)
32 __weak_alias(daylight,_daylight)
33 __weak_alias(tzname,_tzname)
34 #endif
35 
36 #ifndef TZ_ABBR_MAX_LEN
37 #define TZ_ABBR_MAX_LEN	16
38 #endif /* !defined TZ_ABBR_MAX_LEN */
39 
40 #ifndef TZ_ABBR_CHAR_SET
41 #define TZ_ABBR_CHAR_SET \
42 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
43 #endif /* !defined TZ_ABBR_CHAR_SET */
44 
45 #ifndef TZ_ABBR_ERR_CHAR
46 #define TZ_ABBR_ERR_CHAR	'_'
47 #endif /* !defined TZ_ABBR_ERR_CHAR */
48 
49 /* The minimum and maximum finite time values.  */
50 static time_t const time_t_min =
51   (TYPE_SIGNED(time_t)
52    ? (time_t) -1 << (int)(CHAR_BIT * sizeof (time_t) - 1)
53    : 0);
54 static time_t const time_t_max =
55   (TYPE_SIGNED(time_t)
56    ? - (~ 0 < 0) - ((time_t) -1 << (int)(CHAR_BIT * sizeof (time_t) - 1))
57    : -1);
58 
59 /*
60 ** SunOS 4.1.1 headers lack O_BINARY.
61 */
62 
63 #ifdef O_BINARY
64 #define OPEN_MODE	(O_RDONLY | O_BINARY)
65 #endif /* defined O_BINARY */
66 #ifndef O_BINARY
67 #define OPEN_MODE	O_RDONLY
68 #endif /* !defined O_BINARY */
69 
70 #ifndef WILDABBR
71 /*
72 ** Someone might make incorrect use of a time zone abbreviation:
73 **	1.	They might reference tzname[0] before calling tzset (explicitly
74 **		or implicitly).
75 **	2.	They might reference tzname[1] before calling tzset (explicitly
76 **		or implicitly).
77 **	3.	They might reference tzname[1] after setting to a time zone
78 **		in which Daylight Saving Time is never observed.
79 **	4.	They might reference tzname[0] after setting to a time zone
80 **		in which Standard Time is never observed.
81 **	5.	They might reference tm.TM_ZONE after calling offtime.
82 ** What's best to do in the above cases is open to debate;
83 ** for now, we just set things up so that in any of the five cases
84 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
85 ** string "tzname[0] used before set", and similarly for the other cases.
86 ** And another: initialize tzname[0] to "ERA", with an explanation in the
87 ** manual page of what this "time zone abbreviation" means (doing this so
88 ** that tzname[0] has the "normal" length of three characters).
89 */
90 #define WILDABBR	"   "
91 #endif /* !defined WILDABBR */
92 
93 static const char	wildabbr[] = WILDABBR;
94 
95 static const char	gmt[] = "GMT";
96 
97 /*
98 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
99 ** We default to US rules as of 1999-08-17.
100 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
101 ** implementation dependent; for historical reasons, US rules are a
102 ** common default.
103 */
104 #ifndef TZDEFRULESTRING
105 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
106 #endif /* !defined TZDEFDST */
107 
108 struct ttinfo {				/* time type information */
109 	int_fast32_t	tt_gmtoff;	/* UT offset in seconds */
110 	int		tt_isdst;	/* used to set tm_isdst */
111 	int		tt_abbrind;	/* abbreviation list index */
112 	int		tt_ttisstd;	/* TRUE if transition is std time */
113 	int		tt_ttisgmt;	/* TRUE if transition is UT */
114 };
115 
116 struct lsinfo {				/* leap second information */
117 	time_t		ls_trans;	/* transition time */
118 	int_fast64_t	ls_corr;	/* correction to apply */
119 };
120 
121 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
122 
123 #ifdef TZNAME_MAX
124 #define MY_TZNAME_MAX	TZNAME_MAX
125 #endif /* defined TZNAME_MAX */
126 #ifndef TZNAME_MAX
127 #define MY_TZNAME_MAX	255
128 #endif /* !defined TZNAME_MAX */
129 
130 struct __state {
131 	int		leapcnt;
132 	int		timecnt;
133 	int		typecnt;
134 	int		charcnt;
135 	int		goback;
136 	int		goahead;
137 	time_t		ats[TZ_MAX_TIMES];
138 	unsigned char	types[TZ_MAX_TIMES];
139 	struct ttinfo	ttis[TZ_MAX_TYPES];
140 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
141 				sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
142 	struct lsinfo	lsis[TZ_MAX_LEAPS];
143 	int		defaulttype; /* for early times or if no transitions */
144 };
145 
146 struct rule {
147 	int		r_type;		/* type of rule--see below */
148 	int		r_day;		/* day number of rule */
149 	int		r_week;		/* week number of rule */
150 	int		r_mon;		/* month number of rule */
151 	int_fast32_t	r_time;		/* transition time of rule */
152 };
153 
154 #define JULIAN_DAY		0	/* Jn - Julian day */
155 #define DAY_OF_YEAR		1	/* n - day of year */
156 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
157 
158 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
159 			       const int_fast32_t offset, struct tm *tmp);
160 
161 /*
162 ** Prototypes for static functions.
163 */
164 
165 static int_fast32_t	detzcode(const char * codep);
166 static int_fast64_t	detzcode64(const char * codep);
167 static int		differ_by_repeat(time_t t1, time_t t0);
168 static const char *	getzname(const char * strp) ATTRIBUTE_PURE;
169 static const char *	getqzname(const char * strp, const int delim) ATTRIBUTE_PURE;
170 static const char *	getnum(const char * strp, int * nump, int min,
171 				int max);
172 static const char *	getsecs(const char * strp, int_fast32_t * secsp);
173 static const char *	getoffset(const char * strp, int_fast32_t * offsetp);
174 static const char *	getrule(const char * strp, struct rule * rulep);
175 static void		gmtload(timezone_t sp);
176 static struct tm *	gmtsub(const timezone_t sp, const time_t *timep,
177 				const int_fast32_t offset, struct tm * tmp);
178 static struct tm *	localsub(const timezone_t sp, const time_t *timep,
179 				const int_fast32_t offset, struct tm *tmp);
180 static int		increment_overflow(int * number, int delta);
181 static int		increment_overflow32(int_fast32_t * number, int delta);
182 static int		increment_overflow_time(time_t *t, int_fast32_t delta);
183 static int		leaps_thru_end_of(int y) ATTRIBUTE_PURE;
184 static int		normalize_overflow(int * tensptr, int * unitsptr,
185 				int base);
186 static int		normalize_overflow32(int_fast32_t * tensptr,
187 				int * unitsptr, int base);
188 static void		settzname(void);
189 static time_t		time1(const timezone_t sp, struct tm * const tmp,
190 				subfun_t funcp, const int_fast32_t offset);
191 static time_t		time2(const timezone_t sp, struct tm * const tmp,
192 				subfun_t funcp,
193 				const int_fast32_t offset, int *const okayp);
194 static time_t		time2sub(const timezone_t sp, struct tm * const tmp,
195 				subfun_t funcp, const int_fast32_t offset,
196 				int *const okayp, const int do_norm_secs);
197 static struct tm *	timesub(const timezone_t sp, const time_t * timep,
198 				const int_fast32_t offset, struct tm * tmp);
199 static int		tmcomp(const struct tm * atmp,
200 				const struct tm * btmp);
201 static int_fast32_t	transtime(int year, const struct rule * rulep,
202 				  int_fast32_t offset)
203   ATTRIBUTE_PURE;
204 static int		typesequiv(const timezone_t sp, int a, int b);
205 static int		tzload(timezone_t sp, const char * name,
206 				int doextend);
207 static int		tzparse(timezone_t sp, const char * name,
208 				int lastditch);
209 static void		tzset_unlocked(void);
210 static void		tzsetwall_unlocked(void);
211 static int_fast64_t	leapcorr(const timezone_t sp, time_t * timep);
212 
213 static timezone_t lclptr;
214 static timezone_t gmtptr;
215 
216 #ifndef TZ_STRLEN_MAX
217 #define TZ_STRLEN_MAX 255
218 #endif /* !defined TZ_STRLEN_MAX */
219 
220 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
221 static int		lcl_is_set;
222 static int		gmt_is_set;
223 
224 #if !defined(__LIBC12_SOURCE__)
225 
226 __aconst char *		tzname[2] = {
227 	(__aconst char *)__UNCONST(wildabbr),
228 	(__aconst char *)__UNCONST(wildabbr)
229 };
230 
231 #else
232 
233 extern __aconst char *	tzname[2];
234 
235 #endif
236 
237 #ifdef _REENTRANT
238 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
239 #endif
240 
241 /*
242 ** Section 4.12.3 of X3.159-1989 requires that
243 **	Except for the strftime function, these functions [asctime,
244 **	ctime, gmtime, localtime] return values in one of two static
245 **	objects: a broken-down time structure and an array of char.
246 ** Thanks to Paul Eggert for noting this.
247 */
248 
249 static struct tm	tm;
250 
251 #ifdef USG_COMPAT
252 #if !defined(__LIBC12_SOURCE__)
253 long 			timezone = 0;
254 int			daylight = 0;
255 #else
256 extern int		daylight;
257 extern long		timezone __RENAME(__timezone13);
258 #endif
259 #endif /* defined USG_COMPAT */
260 
261 #ifdef ALTZONE
262 long			altzone = 0;
263 #endif /* defined ALTZONE */
264 
265 static int_fast32_t
266 detzcode(const char *const codep)
267 {
268 	int_fast32_t	result;
269 	int	i;
270 
271 	result = (codep[0] & 0x80) ? -1 : 0;
272 	for (i = 0; i < 4; ++i)
273 		result = (result << 8) | (codep[i] & 0xff);
274 	return result;
275 }
276 
277 static int_fast64_t
278 detzcode64(const char *const codep)
279 {
280 	int_fast64_t	result;
281 	int	i;
282 
283 	result = (codep[0] & 0x80) ? -1 : 0;
284 	for (i = 0; i < 8; ++i)
285 		result = (result << 8) | (codep[i] & 0xff);
286 	return result;
287 }
288 
289 const char *
290 tzgetname(const timezone_t sp, int isdst)
291 {
292 	int i;
293 	for (i = 0; i < sp->timecnt; ++i) {
294 		const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
295 
296 		if (ttisp->tt_isdst == isdst)
297 			return &sp->chars[ttisp->tt_abbrind];
298 	}
299 	return NULL;
300 }
301 
302 static void
303 settzname_z(timezone_t sp)
304 {
305 	int			i;
306 
307 	/*
308 	** Scrub the abbreviations.
309 	** First, replace bogus characters.
310 	*/
311 	for (i = 0; i < sp->charcnt; ++i)
312 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
313 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
314 	/*
315 	** Second, truncate long abbreviations.
316 	*/
317 	for (i = 0; i < sp->typecnt; ++i) {
318 		const struct ttinfo * const	ttisp = &sp->ttis[i];
319 		char *				cp = &sp->chars[ttisp->tt_abbrind];
320 
321 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
322 			strcmp(cp, GRANDPARENTED) != 0)
323 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
324 	}
325 }
326 
327 static void
328 settzname(void)
329 {
330 	timezone_t const	sp = lclptr;
331 	int			i;
332 
333 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
334 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
335 #ifdef USG_COMPAT
336 	daylight = 0;
337 	timezone = 0;
338 #endif /* defined USG_COMPAT */
339 #ifdef ALTZONE
340 	altzone = 0;
341 #endif /* defined ALTZONE */
342 	if (sp == NULL) {
343 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
344 		return;
345 	}
346 	/*
347 	** And to get the latest zone names into tzname. . .
348 	*/
349 	for (i = 0; i < sp->typecnt; ++i) {
350 		const struct ttinfo * const	ttisp = &sp->ttis[i];
351 
352 		tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
353 #ifdef USG_COMPAT
354 		if (ttisp->tt_isdst)
355 			daylight = 1;
356 		if (!ttisp->tt_isdst)
357 			timezone = -(ttisp->tt_gmtoff);
358 #endif /* defined USG_COMPAT */
359 #ifdef ALTZONE
360 		if (ttisp->tt_isdst)
361 			altzone = -(ttisp->tt_gmtoff);
362 #endif /* defined ALTZONE */
363 	}
364 	settzname_z(sp);
365 }
366 
367 static int
368 differ_by_repeat(const time_t t1, const time_t t0)
369 {
370 	if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
371 		return 0;
372 	return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
373 }
374 
375 static int
376 tzload(timezone_t sp, const char *name, const int doextend)
377 {
378 	const char *		p;
379 	int			i;
380 	int			fid;
381 	int			stored;
382 	ssize_t			nread;
383 	typedef union {
384 		struct tzhead	tzhead;
385 		char		buf[2 * sizeof(struct tzhead) +
386 					2 * sizeof *sp +
387 					4 * TZ_MAX_TIMES];
388 	} u_t;
389 	u_t *			up;
390 
391 	up = calloc(1, sizeof *up);
392 	if (up == NULL)
393 		return -1;
394 
395 	sp->goback = sp->goahead = FALSE;
396 	if (name == NULL && (name = TZDEFAULT) == NULL)
397 		goto oops;
398 	{
399 		int	doaccess;
400 		/*
401 		** Section 4.9.1 of the C standard says that
402 		** "FILENAME_MAX expands to an integral constant expression
403 		** that is the size needed for an array of char large enough
404 		** to hold the longest file name string that the implementation
405 		** guarantees can be opened."
406 		*/
407 		char		fullname[FILENAME_MAX + 1];
408 
409 		if (name[0] == ':')
410 			++name;
411 		doaccess = name[0] == '/';
412 		if (!doaccess) {
413 			if ((p = TZDIR) == NULL)
414 				goto oops;
415 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
416 				goto oops;
417 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
418 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
419 			(void) strcat(fullname, name);	/* XXX strcat is safe */
420 			/*
421 			** Set doaccess if '.' (as in "../") shows up in name.
422 			*/
423 			if (strchr(name, '.') != NULL)
424 				doaccess = TRUE;
425 			name = fullname;
426 		}
427 		if (doaccess && access(name, R_OK) != 0)
428 			goto oops;
429 		/*
430 		 * XXX potential security problem here if user of a set-id
431 		 * program has set TZ (which is passed in as name) here,
432 		 * and uses a race condition trick to defeat the access(2)
433 		 * above.
434 		 */
435 		if ((fid = open(name, OPEN_MODE)) == -1)
436 			goto oops;
437 	}
438 	nread = read(fid, up->buf, sizeof up->buf);
439 	if (close(fid) < 0 || nread <= 0)
440 		goto oops;
441 	for (stored = 4; stored <= 8; stored *= 2) {
442 		int		ttisstdcnt;
443 		int		ttisgmtcnt;
444 		int		timecnt;
445 
446 		ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
447 		ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
448 		sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
449 		sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
450 		sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
451 		sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
452 		p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
453 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
454 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
455 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
456 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
457 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
458 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
459 				goto oops;
460 		if (nread - (p - up->buf) <
461 			sp->timecnt * stored +		/* ats */
462 			sp->timecnt +			/* types */
463 			sp->typecnt * 6 +		/* ttinfos */
464 			sp->charcnt +			/* chars */
465 			sp->leapcnt * (stored + 4) +	/* lsinfos */
466 			ttisstdcnt +			/* ttisstds */
467 			ttisgmtcnt)			/* ttisgmts */
468 				goto oops;
469 		timecnt = 0;
470 		for (i = 0; i < sp->timecnt; ++i) {
471 			int_fast64_t at
472 			  = stored == 4 ? detzcode(p) : detzcode64(p);
473 			sp->types[i] = ((TYPE_SIGNED(time_t)
474 					 ? time_t_min <= at
475 					 : 0 <= at)
476 					&& at <= time_t_max);
477 			if (sp->types[i]) {
478 				if (i && !timecnt && at != time_t_min) {
479 					/*
480 					** Keep the earlier record, but tweak
481 					** it so that it starts with the
482 					** minimum time_t value.
483 					*/
484 					sp->types[i - 1] = 1;
485 					sp->ats[timecnt++] = time_t_min;
486 				}
487 				_DIAGASSERT(__type_fit(time_t, at));
488 				sp->ats[timecnt++] = (time_t)at;
489 			}
490 			p += stored;
491 		}
492 		timecnt = 0;
493 		for (i = 0; i < sp->timecnt; ++i) {
494 			unsigned char typ = *p++;
495 			if (sp->typecnt <= typ)
496 				goto oops;
497 			if (sp->types[i])
498 				sp->types[timecnt++] = typ;
499 		}
500 		for (i = 0; i < sp->typecnt; ++i) {
501 			struct ttinfo *	ttisp;
502 
503 			ttisp = &sp->ttis[i];
504 			ttisp->tt_gmtoff = detzcode(p);
505 			p += 4;
506 			ttisp->tt_isdst = (unsigned char) *p++;
507 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
508 				goto oops;
509 			ttisp->tt_abbrind = (unsigned char) *p++;
510 			if (ttisp->tt_abbrind < 0 ||
511 				ttisp->tt_abbrind > sp->charcnt)
512 					goto oops;
513 		}
514 		for (i = 0; i < sp->charcnt; ++i)
515 			sp->chars[i] = *p++;
516 		sp->chars[i] = '\0';	/* ensure '\0' at end */
517 		for (i = 0; i < sp->leapcnt; ++i) {
518 			struct lsinfo *	lsisp;
519 
520 			lsisp = &sp->lsis[i];
521 			lsisp->ls_trans = (time_t)((stored == 4) ?
522 			    detzcode(p) : detzcode64(p));
523 			p += stored;
524 			lsisp->ls_corr = detzcode(p);
525 			p += 4;
526 		}
527 		for (i = 0; i < sp->typecnt; ++i) {
528 			struct ttinfo *	ttisp;
529 
530 			ttisp = &sp->ttis[i];
531 			if (ttisstdcnt == 0)
532 				ttisp->tt_ttisstd = FALSE;
533 			else {
534 				ttisp->tt_ttisstd = *p++;
535 				if (ttisp->tt_ttisstd != TRUE &&
536 					ttisp->tt_ttisstd != FALSE)
537 						goto oops;
538 			}
539 		}
540 		for (i = 0; i < sp->typecnt; ++i) {
541 			struct ttinfo *	ttisp;
542 
543 			ttisp = &sp->ttis[i];
544 			if (ttisgmtcnt == 0)
545 				ttisp->tt_ttisgmt = FALSE;
546 			else {
547 				ttisp->tt_ttisgmt = *p++;
548 				if (ttisp->tt_ttisgmt != TRUE &&
549 					ttisp->tt_ttisgmt != FALSE)
550 						goto oops;
551 			}
552 		}
553 		/*
554 		** If this is an old file, we're done.
555 		*/
556 		if (up->tzhead.tzh_version[0] == '\0')
557 			break;
558 		nread -= p - up->buf;
559 		for (i = 0; i < nread; ++i)
560 			up->buf[i] = p[i];
561 		/*
562 		** If this is a signed narrow time_t system, we're done.
563 		*/
564 		if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
565 			break;
566 	}
567 	if (doextend && nread > 2 &&
568 		up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
569 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
570 			struct __state ts;
571 			int	result;
572 
573 			up->buf[nread - 1] = '\0';
574 			result = tzparse(&ts, &up->buf[1], FALSE);
575 			if (result == 0 && ts.typecnt == 2 &&
576 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
577 					for (i = 0; i < 2; ++i)
578 						ts.ttis[i].tt_abbrind +=
579 							sp->charcnt;
580 					for (i = 0; i < ts.charcnt; ++i)
581 						sp->chars[sp->charcnt++] =
582 							ts.chars[i];
583 					i = 0;
584 					while (i < ts.timecnt &&
585 						ts.ats[i] <=
586 						sp->ats[sp->timecnt - 1])
587 							++i;
588 					while (i < ts.timecnt &&
589 					    sp->timecnt < TZ_MAX_TIMES) {
590 						sp->ats[sp->timecnt] =
591 							ts.ats[i];
592 						sp->types[sp->timecnt] =
593 							sp->typecnt +
594 							ts.types[i];
595 						++sp->timecnt;
596 						++i;
597 					}
598 					sp->ttis[sp->typecnt++] = ts.ttis[0];
599 					sp->ttis[sp->typecnt++] = ts.ttis[1];
600 			}
601 	}
602 	if (sp->timecnt > 1) {
603 		for (i = 1; i < sp->timecnt; ++i)
604 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
605 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
606 					sp->goback = TRUE;
607 					break;
608 				}
609 		for (i = sp->timecnt - 2; i >= 0; --i)
610 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
611 				sp->types[i]) &&
612 				differ_by_repeat(sp->ats[sp->timecnt - 1],
613 				sp->ats[i])) {
614 					sp->goahead = TRUE;
615 					break;
616 		}
617 	}
618 	/*
619 	** If type 0 is is unused in transitions,
620 	** it's the type to use for early times.
621 	*/
622 	for (i = 0; i < sp->typecnt; ++i)
623 		if (sp->types[i] == 0)
624 			break;
625 	i = (i >= sp->typecnt) ? 0 : -1;
626 	/*
627 	** Absent the above,
628 	** if there are transition times
629 	** and the first transition is to a daylight time
630 	** find the standard type less than and closest to
631 	** the type of the first transition.
632 	*/
633 	if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
634 		i = sp->types[0];
635 		while (--i >= 0)
636 			if (!sp->ttis[i].tt_isdst)
637 				break;
638 	}
639 	/*
640 	** If no result yet, find the first standard type.
641 	** If there is none, punt to type zero.
642 	*/
643 	if (i < 0) {
644 		i = 0;
645 		while (sp->ttis[i].tt_isdst)
646 			if (++i >= sp->typecnt) {
647 				i = 0;
648 				break;
649 			}
650 	}
651 	sp->defaulttype = i;
652 	free(up);
653 	return 0;
654 oops:
655 	free(up);
656 	return -1;
657 }
658 
659 static int
660 typesequiv(const timezone_t sp, const int a, const int b)
661 {
662 	int	result;
663 
664 	if (sp == NULL ||
665 		a < 0 || a >= sp->typecnt ||
666 		b < 0 || b >= sp->typecnt)
667 			result = FALSE;
668 	else {
669 		const struct ttinfo *	ap = &sp->ttis[a];
670 		const struct ttinfo *	bp = &sp->ttis[b];
671 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
672 			ap->tt_isdst == bp->tt_isdst &&
673 			ap->tt_ttisstd == bp->tt_ttisstd &&
674 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
675 			strcmp(&sp->chars[ap->tt_abbrind],
676 			&sp->chars[bp->tt_abbrind]) == 0;
677 	}
678 	return result;
679 }
680 
681 static const int	mon_lengths[2][MONSPERYEAR] = {
682 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
683 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
684 };
685 
686 static const int	year_lengths[2] = {
687 	DAYSPERNYEAR, DAYSPERLYEAR
688 };
689 
690 /*
691 ** Given a pointer into a time zone string, scan until a character that is not
692 ** a valid character in a zone name is found. Return a pointer to that
693 ** character.
694 */
695 
696 static const char *
697 getzname(const char *strp)
698 {
699 	char	c;
700 
701 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
702 		c != '+')
703 			++strp;
704 	return strp;
705 }
706 
707 /*
708 ** Given a pointer into an extended time zone string, scan until the ending
709 ** delimiter of the zone name is located. Return a pointer to the delimiter.
710 **
711 ** As with getzname above, the legal character set is actually quite
712 ** restricted, with other characters producing undefined results.
713 ** We don't do any checking here; checking is done later in common-case code.
714 */
715 
716 static const char *
717 getqzname(const char *strp, const int delim)
718 {
719 	int	c;
720 
721 	while ((c = *strp) != '\0' && c != delim)
722 		++strp;
723 	return strp;
724 }
725 
726 /*
727 ** Given a pointer into a time zone string, extract a number from that string.
728 ** Check that the number is within a specified range; if it is not, return
729 ** NULL.
730 ** Otherwise, return a pointer to the first character not part of the number.
731 */
732 
733 static const char *
734 getnum(const char *strp, int *const nump, const int min, const int max)
735 {
736 	char	c;
737 	int	num;
738 
739 	if (strp == NULL || !is_digit(c = *strp)) {
740 		errno = EINVAL;
741 		return NULL;
742 	}
743 	num = 0;
744 	do {
745 		num = num * 10 + (c - '0');
746 		if (num > max) {
747 			errno = EOVERFLOW;
748 			return NULL;	/* illegal value */
749 		}
750 		c = *++strp;
751 	} while (is_digit(c));
752 	if (num < min) {
753 		errno = EINVAL;
754 		return NULL;		/* illegal value */
755 	}
756 	*nump = num;
757 	return strp;
758 }
759 
760 /*
761 ** Given a pointer into a time zone string, extract a number of seconds,
762 ** in hh[:mm[:ss]] form, from the string.
763 ** If any error occurs, return NULL.
764 ** Otherwise, return a pointer to the first character not part of the number
765 ** of seconds.
766 */
767 
768 static const char *
769 getsecs(const char *strp, int_fast32_t *const secsp)
770 {
771 	int	num;
772 
773 	/*
774 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
775 	** "M10.4.6/26", which does not conform to Posix,
776 	** but which specifies the equivalent of
777 	** ``02:00 on the first Sunday on or after 23 Oct''.
778 	*/
779 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
780 	if (strp == NULL)
781 		return NULL;
782 	*secsp = num * (int_fast32_t) SECSPERHOUR;
783 	if (*strp == ':') {
784 		++strp;
785 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
786 		if (strp == NULL)
787 			return NULL;
788 		*secsp += num * SECSPERMIN;
789 		if (*strp == ':') {
790 			++strp;
791 			/* `SECSPERMIN' allows for leap seconds. */
792 			strp = getnum(strp, &num, 0, SECSPERMIN);
793 			if (strp == NULL)
794 				return NULL;
795 			*secsp += num;
796 		}
797 	}
798 	return strp;
799 }
800 
801 /*
802 ** Given a pointer into a time zone string, extract an offset, in
803 ** [+-]hh[:mm[:ss]] form, from the string.
804 ** If any error occurs, return NULL.
805 ** Otherwise, return a pointer to the first character not part of the time.
806 */
807 
808 static const char *
809 getoffset(const char *strp, int_fast32_t *const offsetp)
810 {
811 	int	neg = 0;
812 
813 	if (*strp == '-') {
814 		neg = 1;
815 		++strp;
816 	} else if (*strp == '+')
817 		++strp;
818 	strp = getsecs(strp, offsetp);
819 	if (strp == NULL)
820 		return NULL;		/* illegal time */
821 	if (neg)
822 		*offsetp = -*offsetp;
823 	return strp;
824 }
825 
826 /*
827 ** Given a pointer into a time zone string, extract a rule in the form
828 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
829 ** If a valid rule is not found, return NULL.
830 ** Otherwise, return a pointer to the first character not part of the rule.
831 */
832 
833 static const char *
834 getrule(const char *strp, struct rule *const rulep)
835 {
836 	if (*strp == 'J') {
837 		/*
838 		** Julian day.
839 		*/
840 		rulep->r_type = JULIAN_DAY;
841 		++strp;
842 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
843 	} else if (*strp == 'M') {
844 		/*
845 		** Month, week, day.
846 		*/
847 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
848 		++strp;
849 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
850 		if (strp == NULL)
851 			return NULL;
852 		if (*strp++ != '.')
853 			return NULL;
854 		strp = getnum(strp, &rulep->r_week, 1, 5);
855 		if (strp == NULL)
856 			return NULL;
857 		if (*strp++ != '.')
858 			return NULL;
859 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
860 	} else if (is_digit(*strp)) {
861 		/*
862 		** Day of year.
863 		*/
864 		rulep->r_type = DAY_OF_YEAR;
865 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
866 	} else	return NULL;		/* invalid format */
867 	if (strp == NULL)
868 		return NULL;
869 	if (*strp == '/') {
870 		/*
871 		** Time specified.
872 		*/
873 		++strp;
874 		strp = getoffset(strp, &rulep->r_time);
875 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
876 	return strp;
877 }
878 
879 /*
880 ** Given a year, a rule, and the offset from UT at the time that rule takes
881 ** effect, calculate the year-relative time that rule takes effect.
882 */
883 
884 static int_fast32_t
885 transtime(const int year, const struct rule *const rulep,
886 	  const int_fast32_t offset)
887 {
888 	int	leapyear;
889 	int_fast32_t	value;
890 	int	i;
891 	int		d, m1, yy0, yy1, yy2, dow;
892 
893 	INITIALIZE(value);
894 	leapyear = isleap(year);
895 	switch (rulep->r_type) {
896 
897 	case JULIAN_DAY:
898 		/*
899 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
900 		** years.
901 		** In non-leap years, or if the day number is 59 or less, just
902 		** add SECSPERDAY times the day number-1 to the time of
903 		** January 1, midnight, to get the day.
904 		*/
905 		value = (rulep->r_day - 1) * SECSPERDAY;
906 		if (leapyear && rulep->r_day >= 60)
907 			value += SECSPERDAY;
908 		break;
909 
910 	case DAY_OF_YEAR:
911 		/*
912 		** n - day of year.
913 		** Just add SECSPERDAY times the day number to the time of
914 		** January 1, midnight, to get the day.
915 		*/
916 		value = rulep->r_day * SECSPERDAY;
917 		break;
918 
919 	case MONTH_NTH_DAY_OF_WEEK:
920 		/*
921 		** Mm.n.d - nth "dth day" of month m.
922 		*/
923 
924 		/*
925 		** Use Zeller's Congruence to get day-of-week of first day of
926 		** month.
927 		*/
928 		m1 = (rulep->r_mon + 9) % 12 + 1;
929 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
930 		yy1 = yy0 / 100;
931 		yy2 = yy0 % 100;
932 		dow = ((26 * m1 - 2) / 10 +
933 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
934 		if (dow < 0)
935 			dow += DAYSPERWEEK;
936 
937 		/*
938 		** "dow" is the day-of-week of the first day of the month. Get
939 		** the day-of-month (zero-origin) of the first "dow" day of the
940 		** month.
941 		*/
942 		d = rulep->r_day - dow;
943 		if (d < 0)
944 			d += DAYSPERWEEK;
945 		for (i = 1; i < rulep->r_week; ++i) {
946 			if (d + DAYSPERWEEK >=
947 				mon_lengths[leapyear][rulep->r_mon - 1])
948 					break;
949 			d += DAYSPERWEEK;
950 		}
951 
952 		/*
953 		** "d" is the day-of-month (zero-origin) of the day we want.
954 		*/
955 		value = d * SECSPERDAY;
956 		for (i = 0; i < rulep->r_mon - 1; ++i)
957 			value += mon_lengths[leapyear][i] * SECSPERDAY;
958 		break;
959 	}
960 
961 	/*
962 	** "value" is the year-relative time of 00:00:00 UT on the day in
963 	** question. To get the year-relative time of the specified local
964 	** time on that day, add the transition time and the current offset
965 	** from UT.
966 	*/
967 	return value + rulep->r_time + offset;
968 }
969 
970 /*
971 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
972 ** appropriate.
973 */
974 
975 static int
976 tzparse(timezone_t sp, const char *name, const int lastditch)
977 {
978 	const char *		stdname;
979 	const char *		dstname;
980 	size_t			stdlen;
981 	size_t			dstlen;
982 	int_fast32_t		stdoffset;
983 	int_fast32_t		dstoffset;
984 	char *			cp;
985 	int			load_result;
986 
987 	INITIALIZE(dstname);
988 	stdname = name;
989 	if (lastditch) {
990 		stdlen = strlen(name);	/* length of standard zone name */
991 		name += stdlen;
992 		if (stdlen >= sizeof sp->chars)
993 			stdlen = (sizeof sp->chars) - 1;
994 		stdoffset = 0;
995 	} else {
996 		if (*name == '<') {
997 			name++;
998 			stdname = name;
999 			name = getqzname(name, '>');
1000 			if (*name != '>')
1001 				return (-1);
1002 			stdlen = name - stdname;
1003 			name++;
1004 		} else {
1005 			name = getzname(name);
1006 			stdlen = name - stdname;
1007 		}
1008 		if (*name == '\0')
1009 			return -1;
1010 		name = getoffset(name, &stdoffset);
1011 		if (name == NULL)
1012 			return -1;
1013 	}
1014 	load_result = tzload(sp, TZDEFRULES, FALSE);
1015 	if (load_result != 0)
1016 		sp->leapcnt = 0;		/* so, we're off a little */
1017 	if (*name != '\0') {
1018 		if (*name == '<') {
1019 			dstname = ++name;
1020 			name = getqzname(name, '>');
1021 			if (*name != '>')
1022 				return -1;
1023 			dstlen = name - dstname;
1024 			name++;
1025 		} else {
1026 			dstname = name;
1027 			name = getzname(name);
1028 			dstlen = name - dstname; /* length of DST zone name */
1029 		}
1030 		if (*name != '\0' && *name != ',' && *name != ';') {
1031 			name = getoffset(name, &dstoffset);
1032 			if (name == NULL)
1033 				return -1;
1034 		} else	dstoffset = stdoffset - SECSPERHOUR;
1035 		if (*name == '\0' && load_result != 0)
1036 			name = TZDEFRULESTRING;
1037 		if (*name == ',' || *name == ';') {
1038 			struct rule	start;
1039 			struct rule	end;
1040 			int		year;
1041 			int		yearlim;
1042 			int		timecnt;
1043 			time_t		janfirst;
1044 
1045 			++name;
1046 			if ((name = getrule(name, &start)) == NULL)
1047 				return -1;
1048 			if (*name++ != ',')
1049 				return -1;
1050 			if ((name = getrule(name, &end)) == NULL)
1051 				return -1;
1052 			if (*name != '\0')
1053 				return -1;
1054 			sp->typecnt = 2;	/* standard time and DST */
1055 			/*
1056 			** Two transitions per year, from EPOCH_YEAR forward.
1057 			*/
1058 			memset(sp->ttis, 0, sizeof(sp->ttis));
1059 			sp->ttis[0].tt_gmtoff = -dstoffset;
1060 			sp->ttis[0].tt_isdst = 1;
1061 			sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
1062 			sp->ttis[1].tt_gmtoff = -stdoffset;
1063 			sp->ttis[1].tt_isdst = 0;
1064 			sp->ttis[1].tt_abbrind = 0;
1065 			timecnt = 0;
1066 			janfirst = 0;
1067 			sp->timecnt = 0;
1068 			yearlim = EPOCH_YEAR + YEARSPERREPEAT;
1069 			for (year = EPOCH_YEAR; year < yearlim; year++) {
1070 				int_fast32_t
1071 				  starttime = transtime(year, &start, stdoffset),
1072 				  endtime = transtime(year, &end, dstoffset);
1073 				int_fast32_t
1074 				  yearsecs = (year_lengths[isleap(year)]
1075 					      * SECSPERDAY);
1076 				int reversed = endtime < starttime;
1077 				if (reversed) {
1078 					int_fast32_t swap = starttime;
1079 					starttime = endtime;
1080 					endtime = swap;
1081 				}
1082 				if (reversed
1083 				    || (starttime < endtime
1084 					&& (endtime - starttime
1085 					    < (yearsecs
1086 					       + (stdoffset - dstoffset))))) {
1087 					if (TZ_MAX_TIMES - 2 < timecnt)
1088 						break;
1089 					yearlim = year + YEARSPERREPEAT + 1;
1090 					sp->ats[timecnt] = janfirst;
1091 					if (increment_overflow_time
1092 					    (&sp->ats[timecnt], starttime))
1093 						break;
1094 					sp->types[timecnt++] = reversed;
1095 					sp->ats[timecnt] = janfirst;
1096 					if (increment_overflow_time
1097 					    (&sp->ats[timecnt], endtime))
1098 						break;
1099 					sp->types[timecnt++] = !reversed;
1100 				}
1101 				if (increment_overflow_time(&janfirst, yearsecs))
1102 					break;
1103 			}
1104 			sp->timecnt = timecnt;
1105 			if (!timecnt)
1106 				sp->typecnt = 1;	/* Perpetual DST.  */
1107 		} else {
1108 			int_fast32_t	theirstdoffset;
1109 			int_fast32_t	theirdstoffset;
1110 			int_fast32_t	theiroffset;
1111 			int		isdst;
1112 			int		i;
1113 			int		j;
1114 
1115 			if (*name != '\0')
1116 				return -1;
1117 			/*
1118 			** Initial values of theirstdoffset and theirdstoffset.
1119 			*/
1120 			theirstdoffset = 0;
1121 			for (i = 0; i < sp->timecnt; ++i) {
1122 				j = sp->types[i];
1123 				if (!sp->ttis[j].tt_isdst) {
1124 					theirstdoffset =
1125 						-sp->ttis[j].tt_gmtoff;
1126 					break;
1127 				}
1128 			}
1129 			theirdstoffset = 0;
1130 			for (i = 0; i < sp->timecnt; ++i) {
1131 				j = sp->types[i];
1132 				if (sp->ttis[j].tt_isdst) {
1133 					theirdstoffset =
1134 						-sp->ttis[j].tt_gmtoff;
1135 					break;
1136 				}
1137 			}
1138 			/*
1139 			** Initially we're assumed to be in standard time.
1140 			*/
1141 			isdst = FALSE;
1142 			theiroffset = theirstdoffset;
1143 			/*
1144 			** Now juggle transition times and types
1145 			** tracking offsets as you do.
1146 			*/
1147 			for (i = 0; i < sp->timecnt; ++i) {
1148 				j = sp->types[i];
1149 				sp->types[i] = sp->ttis[j].tt_isdst;
1150 				if (sp->ttis[j].tt_ttisgmt) {
1151 					/* No adjustment to transition time */
1152 				} else {
1153 					/*
1154 					** If summer time is in effect, and the
1155 					** transition time was not specified as
1156 					** standard time, add the summer time
1157 					** offset to the transition time;
1158 					** otherwise, add the standard time
1159 					** offset to the transition time.
1160 					*/
1161 					/*
1162 					** Transitions from DST to DDST
1163 					** will effectively disappear since
1164 					** POSIX provides for only one DST
1165 					** offset.
1166 					*/
1167 					if (isdst && !sp->ttis[j].tt_ttisstd) {
1168 						sp->ats[i] += (time_t)
1169 						    (dstoffset - theirdstoffset);
1170 					} else {
1171 						sp->ats[i] += (time_t)
1172 						    (stdoffset - theirstdoffset);
1173 					}
1174 				}
1175 				theiroffset = -sp->ttis[j].tt_gmtoff;
1176 				if (!sp->ttis[j].tt_isdst)
1177 					theirstdoffset = theiroffset;
1178 				else	theirdstoffset = theiroffset;
1179 			}
1180 			/*
1181 			** Finally, fill in ttis.
1182 			** ttisstd and ttisgmt need not be handled
1183 			*/
1184 			memset(sp->ttis, 0, sizeof(sp->ttis));
1185 			sp->ttis[0].tt_gmtoff = -stdoffset;
1186 			sp->ttis[0].tt_isdst = FALSE;
1187 			sp->ttis[0].tt_abbrind = 0;
1188 			sp->ttis[1].tt_gmtoff = -dstoffset;
1189 			sp->ttis[1].tt_isdst = TRUE;
1190 			sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
1191 			sp->typecnt = 2;
1192 		}
1193 	} else {
1194 		dstlen = 0;
1195 		sp->typecnt = 1;		/* only standard time */
1196 		sp->timecnt = 0;
1197 		memset(sp->ttis, 0, sizeof(sp->ttis));
1198 		sp->ttis[0].tt_gmtoff = -stdoffset;
1199 		sp->ttis[0].tt_isdst = 0;
1200 		sp->ttis[0].tt_abbrind = 0;
1201 	}
1202 	sp->charcnt = (int)(stdlen + 1);
1203 	if (dstlen != 0)
1204 		sp->charcnt += (int)(dstlen + 1);
1205 	if ((size_t) sp->charcnt > sizeof sp->chars)
1206 		return -1;
1207 	cp = sp->chars;
1208 	(void) strncpy(cp, stdname, stdlen);
1209 	cp += stdlen;
1210 	*cp++ = '\0';
1211 	if (dstlen != 0) {
1212 		(void) strncpy(cp, dstname, dstlen);
1213 		*(cp + dstlen) = '\0';
1214 	}
1215 	return 0;
1216 }
1217 
1218 static void
1219 gmtload(timezone_t sp)
1220 {
1221 	if (tzload(sp, gmt, TRUE) != 0)
1222 		(void) tzparse(sp, gmt, TRUE);
1223 }
1224 
1225 timezone_t
1226 tzalloc(const char *name)
1227 {
1228 	timezone_t sp = calloc(1, sizeof *sp);
1229 	if (sp == NULL)
1230 		return NULL;
1231 	if (tzload(sp, name, TRUE) != 0) {
1232 		free(sp);
1233 		return NULL;
1234 	}
1235 	settzname_z(sp);
1236 	return sp;
1237 }
1238 
1239 void
1240 tzfree(const timezone_t sp)
1241 {
1242 	free(sp);
1243 }
1244 
1245 static void
1246 tzsetwall_unlocked(void)
1247 {
1248 	if (lcl_is_set < 0)
1249 		return;
1250 	lcl_is_set = -1;
1251 
1252 	if (lclptr == NULL) {
1253 		int saveerrno = errno;
1254 		lclptr = calloc(1, sizeof *lclptr);
1255 		errno = saveerrno;
1256 		if (lclptr == NULL) {
1257 			settzname();	/* all we can do */
1258 			return;
1259 		}
1260 	}
1261 	if (tzload(lclptr, NULL, TRUE) != 0)
1262 		gmtload(lclptr);
1263 	settzname();
1264 }
1265 
1266 #ifndef STD_INSPIRED
1267 /*
1268 ** A non-static declaration of tzsetwall in a system header file
1269 ** may cause a warning about this upcoming static declaration...
1270 */
1271 static
1272 #endif /* !defined STD_INSPIRED */
1273 void
1274 tzsetwall(void)
1275 {
1276 	rwlock_wrlock(&lcl_lock);
1277 	tzsetwall_unlocked();
1278 	rwlock_unlock(&lcl_lock);
1279 }
1280 
1281 #ifndef STD_INSPIRED
1282 /*
1283 ** A non-static declaration of tzsetwall in a system header file
1284 ** may cause a warning about this upcoming static declaration...
1285 */
1286 static
1287 #endif /* !defined STD_INSPIRED */
1288 void
1289 tzset_unlocked(void)
1290 {
1291 	const char *	name;
1292 
1293 	name = getenv("TZ");
1294 	if (name == NULL) {
1295 		tzsetwall_unlocked();
1296 		return;
1297 	}
1298 
1299 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1300 		return;
1301 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1302 	if (lcl_is_set)
1303 		(void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1304 
1305 	if (lclptr == NULL) {
1306 		int saveerrno = errno;
1307 		lclptr = calloc(1, sizeof *lclptr);
1308 		errno = saveerrno;
1309 		if (lclptr == NULL) {
1310 			settzname();	/* all we can do */
1311 			return;
1312 		}
1313 	}
1314 	if (*name == '\0') {
1315 		/*
1316 		** User wants it fast rather than right.
1317 		*/
1318 		lclptr->leapcnt = 0;		/* so, we're off a little */
1319 		lclptr->timecnt = 0;
1320 		lclptr->typecnt = 0;
1321 		lclptr->ttis[0].tt_isdst = 0;
1322 		lclptr->ttis[0].tt_gmtoff = 0;
1323 		lclptr->ttis[0].tt_abbrind = 0;
1324 		(void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1325 	} else if (tzload(lclptr, name, TRUE) != 0)
1326 		if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
1327 			(void) gmtload(lclptr);
1328 	settzname();
1329 }
1330 
1331 void
1332 tzset(void)
1333 {
1334 	rwlock_wrlock(&lcl_lock);
1335 	tzset_unlocked();
1336 	rwlock_unlock(&lcl_lock);
1337 }
1338 
1339 /*
1340 ** The easy way to behave "as if no library function calls" localtime
1341 ** is to not call it--so we drop its guts into "localsub", which can be
1342 ** freely called. (And no, the PANS doesn't require the above behavior--
1343 ** but it *is* desirable.)
1344 **
1345 ** The unused offset argument is for the benefit of mktime variants.
1346 */
1347 
1348 /*ARGSUSED*/
1349 static struct tm *
1350 localsub(const timezone_t sp, const time_t * const timep, const int_fast32_t offset,
1351     struct tm *const tmp)
1352 {
1353 	const struct ttinfo *	ttisp;
1354 	int			i;
1355 	struct tm *		result;
1356 	const time_t			t = *timep;
1357 
1358 	if ((sp->goback && t < sp->ats[0]) ||
1359 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1360 			time_t			newt = t;
1361 			time_t		seconds;
1362 			time_t		years;
1363 
1364 			if (t < sp->ats[0])
1365 				seconds = sp->ats[0] - t;
1366 			else	seconds = t - sp->ats[sp->timecnt - 1];
1367 			--seconds;
1368 			years = (time_t)((seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT);
1369 			seconds = (time_t)(years * AVGSECSPERYEAR);
1370 			if (t < sp->ats[0])
1371 				newt += seconds;
1372 			else	newt -= seconds;
1373 			if (newt < sp->ats[0] ||
1374 				newt > sp->ats[sp->timecnt - 1])
1375 					return NULL;	/* "cannot happen" */
1376 			result = localsub(sp, &newt, offset, tmp);
1377 			if (result == tmp) {
1378 				time_t	newy;
1379 
1380 				newy = tmp->tm_year;
1381 				if (t < sp->ats[0])
1382 					newy -= years;
1383 				else	newy += years;
1384 				tmp->tm_year = (int)newy;
1385 				if (tmp->tm_year != newy)
1386 					return NULL;
1387 			}
1388 			return result;
1389 	}
1390 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1391 		i = sp->defaulttype;
1392 	} else {
1393 		int	lo = 1;
1394 		int	hi = sp->timecnt;
1395 
1396 		while (lo < hi) {
1397 			int	mid = (lo + hi) / 2;
1398 
1399 			if (t < sp->ats[mid])
1400 				hi = mid;
1401 			else	lo = mid + 1;
1402 		}
1403 		i = (int) sp->types[lo - 1];
1404 	}
1405 	ttisp = &sp->ttis[i];
1406 	/*
1407 	** To get (wrong) behavior that's compatible with System V Release 2.0
1408 	** you'd replace the statement below with
1409 	**	t += ttisp->tt_gmtoff;
1410 	**	timesub(&t, 0L, sp, tmp);
1411 	*/
1412 	result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
1413 	tmp->tm_isdst = ttisp->tt_isdst;
1414 	if (sp == lclptr)
1415 		tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1416 #ifdef TM_ZONE
1417 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1418 #endif /* defined TM_ZONE */
1419 	return result;
1420 }
1421 
1422 /*
1423 ** Re-entrant version of localtime.
1424 */
1425 
1426 struct tm *
1427 localtime_r(const time_t * __restrict timep, struct tm *tmp)
1428 {
1429 	rwlock_rdlock(&lcl_lock);
1430 	tzset_unlocked();
1431 	tmp = localtime_rz(lclptr, timep, tmp);
1432 	rwlock_unlock(&lcl_lock);
1433 	return tmp;
1434 }
1435 
1436 struct tm *
1437 localtime(const time_t *const timep)
1438 {
1439 	return localtime_r(timep, &tm);
1440 }
1441 
1442 struct tm *
1443 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
1444 {
1445 	if (sp == NULL)
1446 		tmp = gmtsub(NULL, timep, 0, tmp);
1447 	else
1448 		tmp = localsub(sp, timep, 0, tmp);
1449 	if (tmp == NULL)
1450 		errno = EOVERFLOW;
1451 	return tmp;
1452 }
1453 
1454 /*
1455 ** gmtsub is to gmtime as localsub is to localtime.
1456 */
1457 
1458 static struct tm *
1459 gmtsub(const timezone_t sp, const time_t *const timep,
1460     const int_fast32_t offset, struct tm *const tmp)
1461 {
1462 	struct tm *	result;
1463 #ifdef _REENTRANT
1464 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1465 #endif
1466 
1467 	mutex_lock(&gmt_mutex);
1468 	if (!gmt_is_set) {
1469 		int saveerrno;
1470 		gmt_is_set = TRUE;
1471 		saveerrno = errno;
1472 		gmtptr = calloc(1, sizeof *gmtptr);
1473 		errno = saveerrno;
1474 		if (gmtptr != NULL)
1475 			gmtload(gmtptr);
1476 	}
1477 	mutex_unlock(&gmt_mutex);
1478 	result = timesub(gmtptr, timep, offset, tmp);
1479 #ifdef TM_ZONE
1480 	/*
1481 	** Could get fancy here and deliver something such as
1482 	** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
1483 	** but this is no time for a treasure hunt.
1484 	*/
1485 	if (offset != 0)
1486 		tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1487 	else {
1488 		if (gmtptr == NULL)
1489 			tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1490 		else	tmp->TM_ZONE = gmtptr->chars;
1491 	}
1492 #endif /* defined TM_ZONE */
1493 	return result;
1494 }
1495 
1496 struct tm *
1497 gmtime(const time_t *const timep)
1498 {
1499 	struct tm *tmp = gmtsub(NULL, timep, 0, &tm);
1500 
1501 	if (tmp == NULL)
1502 		errno = EOVERFLOW;
1503 
1504 	return tmp;
1505 }
1506 
1507 /*
1508 ** Re-entrant version of gmtime.
1509 */
1510 
1511 struct tm *
1512 gmtime_r(const time_t * const timep, struct tm *tmp)
1513 {
1514 	tmp = gmtsub(NULL, timep, 0, tmp);
1515 
1516 	if (tmp == NULL)
1517 		errno = EOVERFLOW;
1518 
1519 	return tmp;
1520 }
1521 
1522 #ifdef STD_INSPIRED
1523 
1524 struct tm *
1525 offtime(const time_t *const timep, long offset)
1526 {
1527 	struct tm *tmp;
1528 
1529 	if ((offset > 0 && offset > INT_FAST32_MAX) ||
1530 	    (offset < 0 && offset < INT_FAST32_MIN)) {
1531 		errno = EOVERFLOW;
1532 		return NULL;
1533 	}
1534 	tmp = gmtsub(NULL, timep, (int_fast32_t)offset, &tm);
1535 
1536 	if (tmp == NULL)
1537 		errno = EOVERFLOW;
1538 
1539 	return tmp;
1540 }
1541 
1542 struct tm *
1543 offtime_r(const time_t *timep, long offset, struct tm *tmp)
1544 {
1545 	if ((offset > 0 && offset > INT_FAST32_MAX) ||
1546 	    (offset < 0 && offset < INT_FAST32_MIN)) {
1547 		errno = EOVERFLOW;
1548 		return NULL;
1549 	}
1550 	tmp = gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
1551 
1552 	if (tmp == NULL)
1553 		errno = EOVERFLOW;
1554 
1555 	return tmp;
1556 }
1557 
1558 #endif /* defined STD_INSPIRED */
1559 
1560 /*
1561 ** Return the number of leap years through the end of the given year
1562 ** where, to make the math easy, the answer for year zero is defined as zero.
1563 */
1564 
1565 static int
1566 leaps_thru_end_of(const int y)
1567 {
1568 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1569 		-(leaps_thru_end_of(-(y + 1)) + 1);
1570 }
1571 
1572 static struct tm *
1573 timesub(const timezone_t sp, const time_t *const timep,
1574     const int_fast32_t offset, struct tm *const tmp)
1575 {
1576 	const struct lsinfo *	lp;
1577 	time_t			tdays;
1578 	int			idays;	/* unsigned would be so 2003 */
1579 	int_fast64_t		rem;
1580 	int			y;
1581 	const int *		ip;
1582 	int_fast64_t		corr;
1583 	int			hit;
1584 	int			i;
1585 
1586 	corr = 0;
1587 	hit = 0;
1588 	i = (sp == NULL) ? 0 : sp->leapcnt;
1589 	while (--i >= 0) {
1590 		lp = &sp->lsis[i];
1591 		if (*timep >= lp->ls_trans) {
1592 			if (*timep == lp->ls_trans) {
1593 				hit = ((i == 0 && lp->ls_corr > 0) ||
1594 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1595 				if (hit)
1596 					while (i > 0 &&
1597 						sp->lsis[i].ls_trans ==
1598 						sp->lsis[i - 1].ls_trans + 1 &&
1599 						sp->lsis[i].ls_corr ==
1600 						sp->lsis[i - 1].ls_corr + 1) {
1601 							++hit;
1602 							--i;
1603 					}
1604 			}
1605 			corr = lp->ls_corr;
1606 			break;
1607 		}
1608 	}
1609 	y = EPOCH_YEAR;
1610 	tdays = (time_t)(*timep / SECSPERDAY);
1611 	rem = (int_fast64_t) (*timep - tdays * SECSPERDAY);
1612 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1613 		int		newy;
1614 		time_t	tdelta;
1615 		int	idelta;
1616 		int	leapdays;
1617 
1618 		tdelta = tdays / DAYSPERLYEAR;
1619 		if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
1620 		       && tdelta <= INT_MAX))
1621 			return NULL;
1622 		_DIAGASSERT(__type_fit(int, tdelta));
1623 		idelta = (int)tdelta;
1624 		if (idelta == 0)
1625 			idelta = (tdays < 0) ? -1 : 1;
1626 		newy = y;
1627 		if (increment_overflow(&newy, idelta))
1628 			return NULL;
1629 		leapdays = leaps_thru_end_of(newy - 1) -
1630 			leaps_thru_end_of(y - 1);
1631 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1632 		tdays -= leapdays;
1633 		y = newy;
1634 	}
1635 	{
1636 		int_fast32_t seconds;
1637 
1638 		seconds = (int_fast32_t)(tdays * SECSPERDAY);
1639 		tdays = (time_t)(seconds / SECSPERDAY);
1640 		rem += (int_fast64_t)(seconds - tdays * SECSPERDAY);
1641 	}
1642 	/*
1643 	** Given the range, we can now fearlessly cast...
1644 	*/
1645 	idays = (int) tdays;
1646 	rem += offset - corr;
1647 	while (rem < 0) {
1648 		rem += SECSPERDAY;
1649 		--idays;
1650 	}
1651 	while (rem >= SECSPERDAY) {
1652 		rem -= SECSPERDAY;
1653 		++idays;
1654 	}
1655 	while (idays < 0) {
1656 		if (increment_overflow(&y, -1))
1657 			return NULL;
1658 		idays += year_lengths[isleap(y)];
1659 	}
1660 	while (idays >= year_lengths[isleap(y)]) {
1661 		idays -= year_lengths[isleap(y)];
1662 		if (increment_overflow(&y, 1))
1663 			return NULL;
1664 	}
1665 	tmp->tm_year = y;
1666 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1667 		return NULL;
1668 	tmp->tm_yday = idays;
1669 	/*
1670 	** The "extra" mods below avoid overflow problems.
1671 	*/
1672 	tmp->tm_wday = EPOCH_WDAY +
1673 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
1674 		(DAYSPERNYEAR % DAYSPERWEEK) +
1675 		leaps_thru_end_of(y - 1) -
1676 		leaps_thru_end_of(EPOCH_YEAR - 1) +
1677 		idays;
1678 	tmp->tm_wday %= DAYSPERWEEK;
1679 	if (tmp->tm_wday < 0)
1680 		tmp->tm_wday += DAYSPERWEEK;
1681 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1682 	rem %= SECSPERHOUR;
1683 	tmp->tm_min = (int) (rem / SECSPERMIN);
1684 	/*
1685 	** A positive leap second requires a special
1686 	** representation. This uses "... ??:59:60" et seq.
1687 	*/
1688 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1689 	ip = mon_lengths[isleap(y)];
1690 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1691 		idays -= ip[tmp->tm_mon];
1692 	tmp->tm_mday = (int) (idays + 1);
1693 	tmp->tm_isdst = 0;
1694 #ifdef TM_GMTOFF
1695 	tmp->TM_GMTOFF = offset;
1696 #endif /* defined TM_GMTOFF */
1697 	return tmp;
1698 }
1699 
1700 char *
1701 ctime(const time_t *const timep)
1702 {
1703 /*
1704 ** Section 4.12.3.2 of X3.159-1989 requires that
1705 **	The ctime function converts the calendar time pointed to by timer
1706 **	to local time in the form of a string. It is equivalent to
1707 **		asctime(localtime(timer))
1708 */
1709 	struct tm *rtm = localtime(timep);
1710 	if (rtm == NULL)
1711 		return NULL;
1712 	return asctime(rtm);
1713 }
1714 
1715 char *
1716 ctime_r(const time_t *const timep, char *buf)
1717 {
1718 	struct tm	mytm, *rtm;
1719 
1720 	rtm = localtime_r(timep, &mytm);
1721 	if (rtm == NULL)
1722 		return NULL;
1723 	return asctime_r(rtm, buf);
1724 }
1725 
1726 char *
1727 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1728 {
1729 	struct tm	mytm, *rtm;
1730 
1731 	rtm = localtime_rz(sp, timep, &mytm);
1732 	if (rtm == NULL)
1733 		return NULL;
1734 	return asctime_r(rtm, buf);
1735 }
1736 
1737 /*
1738 ** Adapted from code provided by Robert Elz, who writes:
1739 **	The "best" way to do mktime I think is based on an idea of Bob
1740 **	Kridle's (so its said...) from a long time ago.
1741 **	It does a binary search of the time_t space. Since time_t's are
1742 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1743 **	would still be very reasonable).
1744 */
1745 
1746 #ifndef WRONG
1747 #define WRONG	((time_t)-1)
1748 #endif /* !defined WRONG */
1749 
1750 /*
1751 ** Simplified normalize logic courtesy Paul Eggert.
1752 */
1753 
1754 static int
1755 increment_overflow(int *const ip, int j)
1756 {
1757 	int	i = *ip;
1758 
1759 	/*
1760 	** If i >= 0 there can only be overflow if i + j > INT_MAX
1761 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1762 	** If i < 0 there can only be overflow if i + j < INT_MIN
1763 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1764 	*/
1765 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1766 		return TRUE;
1767 	*ip += j;
1768 	return FALSE;
1769 }
1770 
1771 static int
1772 increment_overflow32(int_fast32_t *const lp, int const m)
1773 {
1774 	int_fast32_t l = *lp;
1775 
1776 	if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
1777 		return TRUE;
1778 	*lp += m;
1779 	return FALSE;
1780 }
1781 
1782 static int
1783 increment_overflow_time(time_t *tp, int_fast32_t j)
1784 {
1785 	/*
1786 	** This is like
1787 	** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
1788 	** except that it does the right thing even if *tp + j would overflow.
1789 	*/
1790 	if (! (j < 0
1791 	       ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
1792 	       : *tp <= time_t_max - j))
1793 		return TRUE;
1794 	*tp += j;
1795 	return FALSE;
1796 }
1797 
1798 static int
1799 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1800 {
1801 	int	tensdelta;
1802 
1803 	tensdelta = (*unitsptr >= 0) ?
1804 		(*unitsptr / base) :
1805 		(-1 - (-1 - *unitsptr) / base);
1806 	*unitsptr -= tensdelta * base;
1807 	return increment_overflow(tensptr, tensdelta);
1808 }
1809 
1810 static int
1811 normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
1812     const int base)
1813 {
1814 	int	tensdelta;
1815 
1816 	tensdelta = (*unitsptr >= 0) ?
1817 		(*unitsptr / base) :
1818 		(-1 - (-1 - *unitsptr) / base);
1819 	*unitsptr -= tensdelta * base;
1820 	return increment_overflow32(tensptr, tensdelta);
1821 }
1822 
1823 static int
1824 tmcomp(const struct tm *const atmp, const struct tm *const btmp)
1825 {
1826 	int	result;
1827 
1828 	if (atmp->tm_year != btmp->tm_year)
1829 		return atmp->tm_year < btmp->tm_year ? -1 : 1;
1830 	if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1831 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1832 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1833 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1834 			result = atmp->tm_sec - btmp->tm_sec;
1835 	return result;
1836 }
1837 
1838 static time_t
1839 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1840     const int_fast32_t offset, int *const okayp, const int do_norm_secs)
1841 {
1842 	int			dir;
1843 	int			i, j;
1844 	int			saved_seconds;
1845 	int_fast32_t		li;
1846 	time_t			lo;
1847 	time_t			hi;
1848 #ifdef NO_ERROR_IN_DST_GAP
1849 	time_t			ilo;
1850 #endif
1851 	int_fast32_t		y;
1852 	time_t			newt;
1853 	time_t			t;
1854 	struct tm		yourtm, mytm;
1855 
1856 	*okayp = FALSE;
1857 	yourtm = *tmp;
1858 #ifdef NO_ERROR_IN_DST_GAP
1859 again:
1860 #endif
1861 	if (do_norm_secs) {
1862 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1863 		    SECSPERMIN))
1864 			goto overflow;
1865 	}
1866 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1867 		goto overflow;
1868 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1869 		goto overflow;
1870 	y = yourtm.tm_year;
1871 	if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
1872 		goto overflow;
1873 	/*
1874 	** Turn y into an actual year number for now.
1875 	** It is converted back to an offset from TM_YEAR_BASE later.
1876 	*/
1877 	if (increment_overflow32(&y, TM_YEAR_BASE))
1878 		goto overflow;
1879 	while (yourtm.tm_mday <= 0) {
1880 		if (increment_overflow32(&y, -1))
1881 			goto overflow;
1882 		li = y + (1 < yourtm.tm_mon);
1883 		yourtm.tm_mday += year_lengths[isleap(li)];
1884 	}
1885 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1886 		li = y + (1 < yourtm.tm_mon);
1887 		yourtm.tm_mday -= year_lengths[isleap(li)];
1888 		if (increment_overflow32(&y, 1))
1889 			goto overflow;
1890 	}
1891 	for ( ; ; ) {
1892 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1893 		if (yourtm.tm_mday <= i)
1894 			break;
1895 		yourtm.tm_mday -= i;
1896 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1897 			yourtm.tm_mon = 0;
1898 			if (increment_overflow32(&y, 1))
1899 				goto overflow;
1900 		}
1901 	}
1902 	if (increment_overflow32(&y, -TM_YEAR_BASE))
1903 		goto overflow;
1904 	yourtm.tm_year = (int)y;
1905 	if (yourtm.tm_year != y)
1906 		goto overflow;
1907 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1908 		saved_seconds = 0;
1909 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1910 		/*
1911 		** We can't set tm_sec to 0, because that might push the
1912 		** time below the minimum representable time.
1913 		** Set tm_sec to 59 instead.
1914 		** This assumes that the minimum representable time is
1915 		** not in the same minute that a leap second was deleted from,
1916 		** which is a safer assumption than using 58 would be.
1917 		*/
1918 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1919 			goto overflow;
1920 		saved_seconds = yourtm.tm_sec;
1921 		yourtm.tm_sec = SECSPERMIN - 1;
1922 	} else {
1923 		saved_seconds = yourtm.tm_sec;
1924 		yourtm.tm_sec = 0;
1925 	}
1926 	/*
1927 	** Do a binary search (this works whatever time_t's type is).
1928 	*/
1929 	/* LINTED const not */
1930 	if (!TYPE_SIGNED(time_t)) {
1931 		lo = 0;
1932 		hi = lo - 1;
1933 	} else {
1934 		lo = 1;
1935 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1936 			lo *= 2;
1937 		hi = -(lo + 1);
1938 	}
1939 #ifdef NO_ERROR_IN_DST_GAP
1940 	ilo = lo;
1941 #endif
1942 	for ( ; ; ) {
1943 		t = lo / 2 + hi / 2;
1944 		if (t < lo)
1945 			t = lo;
1946 		else if (t > hi)
1947 			t = hi;
1948 		if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
1949 			/*
1950 			** Assume that t is too extreme to be represented in
1951 			** a struct tm; arrange things so that it is less
1952 			** extreme on the next pass.
1953 			*/
1954 			dir = (t > 0) ? 1 : -1;
1955 		} else	dir = tmcomp(&mytm, &yourtm);
1956 		if (dir != 0) {
1957 			if (t == lo) {
1958 				if (t == time_t_max)
1959 					goto overflow;
1960 				++t;
1961 				++lo;
1962 			} else if (t == hi) {
1963 				if (t == time_t_min)
1964 					goto overflow;
1965 				--t;
1966 				--hi;
1967 			}
1968 #ifdef NO_ERROR_IN_DST_GAP
1969 			if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
1970 			    do_norm_secs) {
1971 				for (i = sp->typecnt - 1; i >= 0; --i) {
1972 					for (j = sp->typecnt - 1; j >= 0; --j) {
1973 						time_t off;
1974 						if (sp->ttis[j].tt_isdst ==
1975 						    sp->ttis[i].tt_isdst)
1976 							continue;
1977 						off = sp->ttis[j].tt_gmtoff -
1978 						    sp->ttis[i].tt_gmtoff;
1979 						yourtm.tm_sec += off < 0 ?
1980 						    -off : off;
1981 						goto again;
1982 					}
1983 				}
1984 			}
1985 #endif
1986 			if (lo > hi)
1987 				goto invalid;
1988 			if (dir > 0)
1989 				hi = t;
1990 			else	lo = t;
1991 			continue;
1992 		}
1993 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1994 			break;
1995 		/*
1996 		** Right time, wrong type.
1997 		** Hunt for right time, right type.
1998 		** It's okay to guess wrong since the guess
1999 		** gets checked.
2000 		*/
2001 		if (sp == NULL)
2002 			goto invalid;
2003 		for (i = sp->typecnt - 1; i >= 0; --i) {
2004 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
2005 				continue;
2006 			for (j = sp->typecnt - 1; j >= 0; --j) {
2007 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
2008 					continue;
2009 				newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
2010 				    sp->ttis[i].tt_gmtoff);
2011 				if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
2012 					continue;
2013 				if (tmcomp(&mytm, &yourtm) != 0)
2014 					continue;
2015 				if (mytm.tm_isdst != yourtm.tm_isdst)
2016 					continue;
2017 				/*
2018 				** We have a match.
2019 				*/
2020 				t = newt;
2021 				goto label;
2022 			}
2023 		}
2024 		goto invalid;
2025 	}
2026 label:
2027 	newt = t + saved_seconds;
2028 	if ((newt < t) != (saved_seconds < 0))
2029 		goto overflow;
2030 	t = newt;
2031 	if ((*funcp)(sp, &t, offset, tmp)) {
2032 		*okayp = TRUE;
2033 		return t;
2034 	}
2035 overflow:
2036 	errno = EOVERFLOW;
2037 	return WRONG;
2038 invalid:
2039 	errno = EINVAL;
2040 	return WRONG;
2041 }
2042 
2043 static time_t
2044 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2045     const int_fast32_t offset, int *const okayp)
2046 {
2047 	time_t	t;
2048 
2049 	/*
2050 	** First try without normalization of seconds
2051 	** (in case tm_sec contains a value associated with a leap second).
2052 	** If that fails, try with normalization of seconds.
2053 	*/
2054 	t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
2055 	return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
2056 }
2057 
2058 static time_t
2059 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2060     const int_fast32_t offset)
2061 {
2062 	time_t			t;
2063 	int			samei, otheri;
2064 	int			sameind, otherind;
2065 	int			i;
2066 	int			nseen;
2067 	int				seen[TZ_MAX_TYPES];
2068 	int				types[TZ_MAX_TYPES];
2069 	int				okay;
2070 
2071 	if (tmp == NULL) {
2072 		errno = EINVAL;
2073 		return WRONG;
2074 	}
2075 	if (tmp->tm_isdst > 1)
2076 		tmp->tm_isdst = 1;
2077 	t = time2(sp, tmp, funcp, offset, &okay);
2078 #ifdef PCTS
2079 	/*
2080 	** PCTS code courtesy Grant Sullivan.
2081 	*/
2082 	if (okay)
2083 		return t;
2084 	if (tmp->tm_isdst < 0)
2085 		tmp->tm_isdst = 0;	/* reset to std and try again */
2086 #endif /* defined PCTS */
2087 #ifndef PCTS
2088 	if (okay || tmp->tm_isdst < 0)
2089 		return t;
2090 #endif /* !defined PCTS */
2091 	/*
2092 	** We're supposed to assume that somebody took a time of one type
2093 	** and did some math on it that yielded a "struct tm" that's bad.
2094 	** We try to divine the type they started from and adjust to the
2095 	** type they need.
2096 	*/
2097 	if (sp == NULL) {
2098 		errno = EINVAL;
2099 		return WRONG;
2100 	}
2101 	for (i = 0; i < sp->typecnt; ++i)
2102 		seen[i] = FALSE;
2103 	nseen = 0;
2104 	for (i = sp->timecnt - 1; i >= 0; --i)
2105 		if (!seen[sp->types[i]]) {
2106 			seen[sp->types[i]] = TRUE;
2107 			types[nseen++] = sp->types[i];
2108 		}
2109 	for (sameind = 0; sameind < nseen; ++sameind) {
2110 		samei = types[sameind];
2111 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2112 			continue;
2113 		for (otherind = 0; otherind < nseen; ++otherind) {
2114 			otheri = types[otherind];
2115 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2116 				continue;
2117 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2118 					sp->ttis[samei].tt_gmtoff);
2119 			tmp->tm_isdst = !tmp->tm_isdst;
2120 			t = time2(sp, tmp, funcp, offset, &okay);
2121 			if (okay)
2122 				return t;
2123 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2124 					sp->ttis[samei].tt_gmtoff);
2125 			tmp->tm_isdst = !tmp->tm_isdst;
2126 		}
2127 	}
2128 	errno = EOVERFLOW;
2129 	return WRONG;
2130 }
2131 
2132 time_t
2133 mktime_z(const timezone_t sp, struct tm *const tmp)
2134 {
2135 	time_t t;
2136 	if (sp == NULL)
2137 		t = time1(NULL, tmp, gmtsub, 0);
2138 	else
2139 		t = time1(sp, tmp, localsub, 0);
2140 	return t;
2141 }
2142 
2143 time_t
2144 mktime(struct tm *const tmp)
2145 {
2146 	time_t result;
2147 
2148 	rwlock_wrlock(&lcl_lock);
2149 	tzset_unlocked();
2150 	result = mktime_z(lclptr, tmp);
2151 	rwlock_unlock(&lcl_lock);
2152 	return result;
2153 }
2154 
2155 #ifdef STD_INSPIRED
2156 
2157 time_t
2158 timelocal_z(const timezone_t sp, struct tm *const tmp)
2159 {
2160 	if (tmp != NULL)
2161 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
2162 	return mktime_z(sp, tmp);
2163 }
2164 
2165 time_t
2166 timelocal(struct tm *const tmp)
2167 {
2168 	if (tmp != NULL)
2169 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
2170 	return mktime(tmp);
2171 }
2172 
2173 time_t
2174 timegm(struct tm *const tmp)
2175 {
2176 	time_t t;
2177 
2178 	if (tmp != NULL)
2179 		tmp->tm_isdst = 0;
2180 	t = time1(gmtptr, tmp, gmtsub, 0);
2181 	return t;
2182 }
2183 
2184 time_t
2185 timeoff(struct tm *const tmp, long offset)
2186 {
2187 	time_t t;
2188 
2189 	if ((offset > 0 && offset > INT_FAST32_MAX) ||
2190 	    (offset < 0 && offset < INT_FAST32_MIN)) {
2191 		errno = EOVERFLOW;
2192 		return -1;
2193 	}
2194 	if (tmp != NULL)
2195 		tmp->tm_isdst = 0;
2196 	t = time1(gmtptr, tmp, gmtsub, (int_fast32_t)offset);
2197 	return t;
2198 }
2199 
2200 #endif /* defined STD_INSPIRED */
2201 
2202 #ifdef CMUCS
2203 
2204 /*
2205 ** The following is supplied for compatibility with
2206 ** previous versions of the CMUCS runtime library.
2207 */
2208 
2209 long
2210 gtime(struct tm *const tmp)
2211 {
2212 	const time_t t = mktime(tmp);
2213 
2214 	if (t == WRONG)
2215 		return -1;
2216 	return t;
2217 }
2218 
2219 #endif /* defined CMUCS */
2220 
2221 /*
2222 ** XXX--is the below the right way to conditionalize??
2223 */
2224 
2225 #ifdef STD_INSPIRED
2226 
2227 /*
2228 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2229 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2230 ** is not the case if we are accounting for leap seconds.
2231 ** So, we provide the following conversion routines for use
2232 ** when exchanging timestamps with POSIX conforming systems.
2233 */
2234 
2235 static int_fast64_t
2236 leapcorr(const timezone_t sp, time_t *timep)
2237 {
2238 	struct lsinfo * lp;
2239 	int		i;
2240 
2241 	i = sp->leapcnt;
2242 	while (--i >= 0) {
2243 		lp = &sp->lsis[i];
2244 		if (*timep >= lp->ls_trans)
2245 			return lp->ls_corr;
2246 	}
2247 	return 0;
2248 }
2249 
2250 time_t
2251 time2posix_z(const timezone_t sp, time_t t)
2252 {
2253 	return (time_t)(t - leapcorr(sp, &t));
2254 }
2255 
2256 time_t
2257 time2posix(time_t t)
2258 {
2259 	time_t result;
2260 	rwlock_wrlock(&lcl_lock);
2261 	tzset_unlocked();
2262 	result = (time_t)(t - leapcorr(lclptr, &t));
2263 	rwlock_unlock(&lcl_lock);
2264 	return (result);
2265 }
2266 
2267 time_t
2268 posix2time_z(const timezone_t sp, time_t t)
2269 {
2270 	time_t	x;
2271 	time_t	y;
2272 
2273 	/*
2274 	** For a positive leap second hit, the result
2275 	** is not unique. For a negative leap second
2276 	** hit, the corresponding time doesn't exist,
2277 	** so we return an adjacent second.
2278 	*/
2279 	x = (time_t)(t + leapcorr(sp, &t));
2280 	y = (time_t)(x - leapcorr(sp, &x));
2281 	if (y < t) {
2282 		do {
2283 			x++;
2284 			y = (time_t)(x - leapcorr(sp, &x));
2285 		} while (y < t);
2286 		if (t != y) {
2287 			return x - 1;
2288 		}
2289 	} else if (y > t) {
2290 		do {
2291 			--x;
2292 			y = (time_t)(x - leapcorr(sp, &x));
2293 		} while (y > t);
2294 		if (t != y) {
2295 			return x + 1;
2296 		}
2297 	}
2298 	return x;
2299 }
2300 
2301 
2302 
2303 time_t
2304 posix2time(time_t t)
2305 {
2306 	time_t result;
2307 
2308 	rwlock_wrlock(&lcl_lock);
2309 	tzset_unlocked();
2310 	result = posix2time_z(lclptr, t);
2311 	rwlock_unlock(&lcl_lock);
2312 	return result;
2313 }
2314 
2315 #endif /* defined STD_INSPIRED */
2316