xref: /netbsd-src/lib/libc/time/localtime.c (revision 5bbd2a12505d72a8177929a37b5cee489d0a1cfd)
1 /*	$NetBSD: localtime.c,v 1.67 2012/03/20 16:39:08 matt Exp $	*/
2 
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
7 
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char	elsieid[] = "@(#)localtime.c	8.17";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.67 2012/03/20 16:39:08 matt Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16 
17 /*
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
20 */
21 
22 /*LINTLIBRARY*/
23 
24 #include "namespace.h"
25 #include "private.h"
26 #include "tzfile.h"
27 #include "fcntl.h"
28 #include "reentrant.h"
29 
30 #if defined(__weak_alias)
31 __weak_alias(daylight,_daylight)
32 __weak_alias(tzname,_tzname)
33 #endif
34 
35 #include "float.h"	/* for FLT_MAX and DBL_MAX */
36 
37 #ifndef TZ_ABBR_MAX_LEN
38 #define TZ_ABBR_MAX_LEN	16
39 #endif /* !defined TZ_ABBR_MAX_LEN */
40 
41 #ifndef TZ_ABBR_CHAR_SET
42 #define TZ_ABBR_CHAR_SET \
43 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
44 #endif /* !defined TZ_ABBR_CHAR_SET */
45 
46 #ifndef TZ_ABBR_ERR_CHAR
47 #define TZ_ABBR_ERR_CHAR	'_'
48 #endif /* !defined TZ_ABBR_ERR_CHAR */
49 
50 /*
51 ** SunOS 4.1.1 headers lack O_BINARY.
52 */
53 
54 #ifdef O_BINARY
55 #define OPEN_MODE	(O_RDONLY | O_BINARY)
56 #endif /* defined O_BINARY */
57 #ifndef O_BINARY
58 #define OPEN_MODE	O_RDONLY
59 #endif /* !defined O_BINARY */
60 
61 #ifndef WILDABBR
62 /*
63 ** Someone might make incorrect use of a time zone abbreviation:
64 **	1.	They might reference tzname[0] before calling tzset (explicitly
65 **		or implicitly).
66 **	2.	They might reference tzname[1] before calling tzset (explicitly
67 **		or implicitly).
68 **	3.	They might reference tzname[1] after setting to a time zone
69 **		in which Daylight Saving Time is never observed.
70 **	4.	They might reference tzname[0] after setting to a time zone
71 **		in which Standard Time is never observed.
72 **	5.	They might reference tm.TM_ZONE after calling offtime.
73 ** What's best to do in the above cases is open to debate;
74 ** for now, we just set things up so that in any of the five cases
75 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
76 ** string "tzname[0] used before set", and similarly for the other cases.
77 ** And another: initialize tzname[0] to "ERA", with an explanation in the
78 ** manual page of what this "time zone abbreviation" means (doing this so
79 ** that tzname[0] has the "normal" length of three characters).
80 */
81 #define WILDABBR	"   "
82 #endif /* !defined WILDABBR */
83 
84 static const char	wildabbr[] = WILDABBR;
85 
86 static char		gmt[] = "GMT";
87 
88 /*
89 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
90 ** We default to US rules as of 1999-08-17.
91 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
92 ** implementation dependent; for historical reasons, US rules are a
93 ** common default.
94 */
95 #ifndef TZDEFRULESTRING
96 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
97 #endif /* !defined TZDEFDST */
98 
99 struct ttinfo {				/* time type information */
100 	long		tt_gmtoff;	/* UTC offset in seconds */
101 	int		tt_isdst;	/* used to set tm_isdst */
102 	int		tt_abbrind;	/* abbreviation list index */
103 	int		tt_ttisstd;	/* TRUE if transition is std time */
104 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
105 };
106 
107 struct lsinfo {				/* leap second information */
108 	time_t		ls_trans;	/* transition time */
109 	long		ls_corr;	/* correction to apply */
110 };
111 
112 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
113 
114 #ifdef TZNAME_MAX
115 #define MY_TZNAME_MAX	TZNAME_MAX
116 #endif /* defined TZNAME_MAX */
117 #ifndef TZNAME_MAX
118 #define MY_TZNAME_MAX	255
119 #endif /* !defined TZNAME_MAX */
120 
121 struct __state {
122 	int		leapcnt;
123 	int		timecnt;
124 	int		typecnt;
125 	int		charcnt;
126 	int		goback;
127 	int		goahead;
128 	time_t		ats[TZ_MAX_TIMES];
129 	unsigned char	types[TZ_MAX_TIMES];
130 	struct ttinfo	ttis[TZ_MAX_TYPES];
131 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
132 				(2 * (MY_TZNAME_MAX + 1)))];
133 	struct lsinfo	lsis[TZ_MAX_LEAPS];
134 };
135 
136 struct rule {
137 	int		r_type;		/* type of rule--see below */
138 	int		r_day;		/* day number of rule */
139 	int		r_week;		/* week number of rule */
140 	int		r_mon;		/* month number of rule */
141 	long		r_time;		/* transition time of rule */
142 };
143 
144 #define JULIAN_DAY		0	/* Jn - Julian day */
145 #define DAY_OF_YEAR		1	/* n - day of year */
146 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
147 
148 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
149 			       long offset, struct tm *tmp);
150 
151 /*
152 ** Prototypes for static functions.
153 */
154 
155 static long		detzcode(const char * codep);
156 static time_t		detzcode64(const char * codep);
157 static int		differ_by_repeat(time_t t1, time_t t0);
158 static const char *	getzname(const char * strp);
159 static const char *	getqzname(const char * strp, const int delim);
160 static const char *	getnum(const char * strp, int * nump, int min,
161 				int max);
162 static const char *	getsecs(const char * strp, long * secsp);
163 static const char *	getoffset(const char * strp, long * offsetp);
164 static const char *	getrule(const char * strp, struct rule * rulep);
165 static void		gmtload(timezone_t sp);
166 static struct tm *	gmtsub(const timezone_t sp, const time_t *timep,
167 				long offset, struct tm * tmp);
168 static struct tm *	localsub(const timezone_t sp, const time_t *timep,
169 				long offset, struct tm *tmp);
170 static int		increment_overflow(int * number, int delta);
171 static int		leaps_thru_end_of(int y);
172 static int		long_increment_overflow(long * number, int delta);
173 static int		long_normalize_overflow(long * tensptr,
174 				int * unitsptr, int base);
175 static int		normalize_overflow(int * tensptr, int * unitsptr,
176 				int base);
177 static void		settzname(void);
178 static time_t		time1(const timezone_t sp, struct tm * const tmp,
179 				subfun_t funcp, long offset);
180 static time_t		time2(const timezone_t sp, struct tm * const tmp,
181 				subfun_t funcp,
182 				const long offset, int *const okayp);
183 static time_t		time2sub(const timezone_t sp, struct tm * consttmp,
184 				subfun_t funcp, const long offset,
185 				int *const okayp, const int do_norm_secs);
186 static struct tm *	timesub(const timezone_t sp, const time_t * timep,
187 				long offset, struct tm * tmp);
188 static int		tmcomp(const struct tm * atmp,
189 				const struct tm * btmp);
190 static time_t		transtime(time_t janfirst, int year,
191 				const struct rule * rulep, long offset);
192 static int		typesequiv(const timezone_t sp, int a, int b);
193 static int		tzload(timezone_t sp, const char * name,
194 				int doextend);
195 static int		tzparse(timezone_t sp, const char * name,
196 				int lastditch);
197 static void		tzset_unlocked(void);
198 static void		tzsetwall_unlocked(void);
199 static long		leapcorr(const timezone_t sp, time_t * timep);
200 
201 static timezone_t lclptr;
202 static timezone_t gmtptr;
203 
204 #ifndef TZ_STRLEN_MAX
205 #define TZ_STRLEN_MAX 255
206 #endif /* !defined TZ_STRLEN_MAX */
207 
208 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
209 static int		lcl_is_set;
210 static int		gmt_is_set;
211 
212 #if !defined(__LIBC12_SOURCE__)
213 
214 __aconst char *		tzname[2] = {
215 	(__aconst char *)__UNCONST(wildabbr),
216 	(__aconst char *)__UNCONST(wildabbr)
217 };
218 
219 #else
220 
221 extern __aconst char *	tzname[2];
222 
223 #endif
224 
225 #ifdef _REENTRANT
226 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
227 #endif
228 
229 /*
230 ** Section 4.12.3 of X3.159-1989 requires that
231 **	Except for the strftime function, these functions [asctime,
232 **	ctime, gmtime, localtime] return values in one of two static
233 **	objects: a broken-down time structure and an array of char.
234 ** Thanks to Paul Eggert for noting this.
235 */
236 
237 static struct tm	tm;
238 
239 #ifdef USG_COMPAT
240 #if !defined(__LIBC12_SOURCE__)
241 long 			timezone = 0;
242 int			daylight = 0;
243 #else
244 extern int		daylight;
245 extern long		timezone __RENAME(__timezone13);
246 #endif
247 #endif /* defined USG_COMPAT */
248 
249 #ifdef ALTZONE
250 time_t			altzone = 0;
251 #endif /* defined ALTZONE */
252 
253 static long
254 detzcode(const char *const codep)
255 {
256 	long	result;
257 	int	i;
258 
259 	result = (codep[0] & 0x80) ? ~0L : 0;
260 	for (i = 0; i < 4; ++i)
261 		result = (result << 8) | (codep[i] & 0xff);
262 	return result;
263 }
264 
265 static time_t
266 detzcode64(const char *const codep)
267 {
268 	time_t	result;
269 	int	i;
270 
271 	result = (codep[0] & 0x80) ? -1 : 0;
272 	for (i = 0; i < 8; ++i)
273 		result = result * 256 + (codep[i] & 0xff);
274 	return result;
275 }
276 
277 const char *
278 tzgetname(const timezone_t sp, int isdst)
279 {
280 	int i;
281 	for (i = 0; i < sp->timecnt; ++i) {
282 		const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
283 
284 		if (ttisp->tt_isdst == isdst)
285 			return &sp->chars[ttisp->tt_abbrind];
286 	}
287 	return NULL;
288 }
289 
290 static void
291 settzname_z(timezone_t sp)
292 {
293 	int			i;
294 
295 	/*
296 	** Scrub the abbreviations.
297 	** First, replace bogus characters.
298 	*/
299 	for (i = 0; i < sp->charcnt; ++i)
300 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
301 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
302 	/*
303 	** Second, truncate long abbreviations.
304 	*/
305 	for (i = 0; i < sp->typecnt; ++i) {
306 		const struct ttinfo * const	ttisp = &sp->ttis[i];
307 		char *				cp = &sp->chars[ttisp->tt_abbrind];
308 
309 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
310 			strcmp(cp, GRANDPARENTED) != 0)
311 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
312 	}
313 }
314 
315 static void
316 settzname(void)
317 {
318 	timezone_t const	sp = lclptr;
319 	int			i;
320 
321 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
322 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
323 #ifdef USG_COMPAT
324 	daylight = 0;
325 	timezone = 0;
326 #endif /* defined USG_COMPAT */
327 #ifdef ALTZONE
328 	altzone = 0;
329 #endif /* defined ALTZONE */
330 	if (sp == NULL) {
331 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
332 		return;
333 	}
334 	/*
335 	** And to get the latest zone names into tzname. . .
336 	*/
337 	for (i = 0; i < sp->typecnt; ++i) {
338 		const struct ttinfo * const	ttisp = &sp->ttis[i];
339 
340 		tzname[ttisp->tt_isdst] =
341 			&sp->chars[ttisp->tt_abbrind];
342 #ifdef USG_COMPAT
343 		if (ttisp->tt_isdst)
344 			daylight = 1;
345 		if (!ttisp->tt_isdst)
346 			timezone = -(ttisp->tt_gmtoff);
347 #endif /* defined USG_COMPAT */
348 #ifdef ALTZONE
349 		if (i == 0 || ttisp->tt_isdst)
350 			altzone = -(ttisp->tt_gmtoff);
351 #endif /* defined ALTZONE */
352 	}
353 	settzname_z(sp);
354 }
355 
356 static int
357 differ_by_repeat(const time_t t1, const time_t t0)
358 {
359 /* CONSTCOND */
360 	if (TYPE_INTEGRAL(time_t) &&
361 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
362 			return 0;
363 	return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
364 }
365 
366 static int
367 tzload(timezone_t sp, const char *name, const int doextend)
368 {
369 	const char *		p;
370 	int			i;
371 	int			fid;
372 	int			stored;
373 	ssize_t			nread;
374 	typedef union {
375 		struct tzhead	tzhead;
376 		char		buf[2 * sizeof(struct tzhead) +
377 					2 * sizeof *sp +
378 					4 * TZ_MAX_TIMES];
379 	} u_t;
380 	u_t *			up;
381 
382 	up = calloc(1, sizeof *up);
383 	if (up == NULL)
384 		return -1;
385 
386 	sp->goback = sp->goahead = FALSE;
387 	if (name == NULL && (name = TZDEFAULT) == NULL)
388 		goto oops;
389 	{
390 		int	doaccess;
391 		/*
392 		** Section 4.9.1 of the C standard says that
393 		** "FILENAME_MAX expands to an integral constant expression
394 		** that is the size needed for an array of char large enough
395 		** to hold the longest file name string that the implementation
396 		** guarantees can be opened."
397 		*/
398 		char		fullname[FILENAME_MAX + 1];
399 
400 		if (name[0] == ':')
401 			++name;
402 		doaccess = name[0] == '/';
403 		if (!doaccess) {
404 			if ((p = TZDIR) == NULL)
405 				goto oops;
406 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
407 				goto oops;
408 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
409 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
410 			(void) strcat(fullname, name);	/* XXX strcat is safe */
411 			/*
412 			** Set doaccess if '.' (as in "../") shows up in name.
413 			*/
414 			if (strchr(name, '.') != NULL)
415 				doaccess = TRUE;
416 			name = fullname;
417 		}
418 		if (doaccess && access(name, R_OK) != 0)
419 			goto oops;
420 		/*
421 		 * XXX potential security problem here if user of a set-id
422 		 * program has set TZ (which is passed in as name) here,
423 		 * and uses a race condition trick to defeat the access(2)
424 		 * above.
425 		 */
426 		if ((fid = open(name, OPEN_MODE)) == -1)
427 			goto oops;
428 	}
429 	nread = read(fid, up->buf, sizeof up->buf);
430 	if (close(fid) < 0 || nread <= 0)
431 		goto oops;
432 	for (stored = 4; stored <= 8; stored *= 2) {
433 		int		ttisstdcnt;
434 		int		ttisgmtcnt;
435 
436 		ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
437 		ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
438 		sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
439 		sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
440 		sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
441 		sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
442 		p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
443 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
444 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
445 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
446 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
447 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
448 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
449 				goto oops;
450 		if (nread - (p - up->buf) <
451 			sp->timecnt * stored +		/* ats */
452 			sp->timecnt +			/* types */
453 			sp->typecnt * 6 +		/* ttinfos */
454 			sp->charcnt +			/* chars */
455 			sp->leapcnt * (stored + 4) +	/* lsinfos */
456 			ttisstdcnt +			/* ttisstds */
457 			ttisgmtcnt)			/* ttisgmts */
458 				goto oops;
459 		for (i = 0; i < sp->timecnt; ++i) {
460 			sp->ats[i] = (time_t)((stored == 4) ?
461 				detzcode(p) : detzcode64(p));
462 			p += stored;
463 		}
464 		for (i = 0; i < sp->timecnt; ++i) {
465 			sp->types[i] = (unsigned char) *p++;
466 			if (sp->types[i] >= sp->typecnt)
467 				goto oops;
468 		}
469 		for (i = 0; i < sp->typecnt; ++i) {
470 			struct ttinfo *	ttisp;
471 
472 			ttisp = &sp->ttis[i];
473 			ttisp->tt_gmtoff = detzcode(p);
474 			p += 4;
475 			ttisp->tt_isdst = (unsigned char) *p++;
476 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
477 				goto oops;
478 			ttisp->tt_abbrind = (unsigned char) *p++;
479 			if (ttisp->tt_abbrind < 0 ||
480 				ttisp->tt_abbrind > sp->charcnt)
481 					goto oops;
482 		}
483 		for (i = 0; i < sp->charcnt; ++i)
484 			sp->chars[i] = *p++;
485 		sp->chars[i] = '\0';	/* ensure '\0' at end */
486 		for (i = 0; i < sp->leapcnt; ++i) {
487 			struct lsinfo *	lsisp;
488 
489 			lsisp = &sp->lsis[i];
490 			lsisp->ls_trans = (time_t)((stored == 4) ?
491 			    detzcode(p) : detzcode64(p));
492 			p += stored;
493 			lsisp->ls_corr = detzcode(p);
494 			p += 4;
495 		}
496 		for (i = 0; i < sp->typecnt; ++i) {
497 			struct ttinfo *	ttisp;
498 
499 			ttisp = &sp->ttis[i];
500 			if (ttisstdcnt == 0)
501 				ttisp->tt_ttisstd = FALSE;
502 			else {
503 				ttisp->tt_ttisstd = *p++;
504 				if (ttisp->tt_ttisstd != TRUE &&
505 					ttisp->tt_ttisstd != FALSE)
506 						goto oops;
507 			}
508 		}
509 		for (i = 0; i < sp->typecnt; ++i) {
510 			struct ttinfo *	ttisp;
511 
512 			ttisp = &sp->ttis[i];
513 			if (ttisgmtcnt == 0)
514 				ttisp->tt_ttisgmt = FALSE;
515 			else {
516 				ttisp->tt_ttisgmt = *p++;
517 				if (ttisp->tt_ttisgmt != TRUE &&
518 					ttisp->tt_ttisgmt != FALSE)
519 						goto oops;
520 			}
521 		}
522 		/*
523 		** Out-of-sort ats should mean we're running on a
524 		** signed time_t system but using a data file with
525 		** unsigned values (or vice versa).
526 		*/
527 		for (i = 0; i < sp->timecnt - 2; ++i)
528 			if (sp->ats[i] > sp->ats[i + 1]) {
529 				++i;
530 /* CONSTCOND */
531 				if (TYPE_SIGNED(time_t)) {
532 					/*
533 					** Ignore the end (easy).
534 					*/
535 					sp->timecnt = i;
536 				} else {
537 					/*
538 					** Ignore the beginning (harder).
539 					*/
540 					int	j;
541 
542 					for (j = 0; j + i < sp->timecnt; ++j) {
543 						sp->ats[j] = sp->ats[j + i];
544 						sp->types[j] = sp->types[j + i];
545 					}
546 					sp->timecnt = j;
547 				}
548 				break;
549 			}
550 		/*
551 		** If this is an old file, we're done.
552 		*/
553 		if (up->tzhead.tzh_version[0] == '\0')
554 			break;
555 		nread -= p - up->buf;
556 		for (i = 0; i < nread; ++i)
557 			up->buf[i] = p[i];
558 		/*
559 		** If this is a narrow integer time_t system, we're done.
560 		*/
561 		if (stored >= (int) sizeof(time_t)
562 /* CONSTCOND */
563 				&& TYPE_INTEGRAL(time_t))
564 			break;
565 	}
566 	if (doextend && nread > 2 &&
567 		up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
568 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
569 			struct __state ts;
570 			int	result;
571 
572 			up->buf[nread - 1] = '\0';
573 			result = tzparse(&ts, &up->buf[1], FALSE);
574 			if (result == 0 && ts.typecnt == 2 &&
575 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
576 					for (i = 0; i < 2; ++i)
577 						ts.ttis[i].tt_abbrind +=
578 							sp->charcnt;
579 					for (i = 0; i < ts.charcnt; ++i)
580 						sp->chars[sp->charcnt++] =
581 							ts.chars[i];
582 					i = 0;
583 					while (i < ts.timecnt &&
584 						ts.ats[i] <=
585 						sp->ats[sp->timecnt - 1])
586 							++i;
587 					while (i < ts.timecnt &&
588 					    sp->timecnt < TZ_MAX_TIMES) {
589 						sp->ats[sp->timecnt] =
590 							ts.ats[i];
591 						sp->types[sp->timecnt] =
592 							sp->typecnt +
593 							ts.types[i];
594 						++sp->timecnt;
595 						++i;
596 					}
597 					sp->ttis[sp->typecnt++] = ts.ttis[0];
598 					sp->ttis[sp->typecnt++] = ts.ttis[1];
599 			}
600 	}
601 	if (sp->timecnt > 1) {
602 		for (i = 1; i < sp->timecnt; ++i)
603 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
604 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
605 					sp->goback = TRUE;
606 					break;
607 				}
608 		for (i = sp->timecnt - 2; i >= 0; --i)
609 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
610 				sp->types[i]) &&
611 				differ_by_repeat(sp->ats[sp->timecnt - 1],
612 				sp->ats[i])) {
613 					sp->goahead = TRUE;
614 					break;
615 		}
616 	}
617 	free(up);
618 	return 0;
619 oops:
620 	free(up);
621 	return -1;
622 }
623 
624 static int
625 typesequiv(const timezone_t sp, const int a, const int b)
626 {
627 	int	result;
628 
629 	if (sp == NULL ||
630 		a < 0 || a >= sp->typecnt ||
631 		b < 0 || b >= sp->typecnt)
632 			result = FALSE;
633 	else {
634 		const struct ttinfo *	ap = &sp->ttis[a];
635 		const struct ttinfo *	bp = &sp->ttis[b];
636 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
637 			ap->tt_isdst == bp->tt_isdst &&
638 			ap->tt_ttisstd == bp->tt_ttisstd &&
639 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
640 			strcmp(&sp->chars[ap->tt_abbrind],
641 			&sp->chars[bp->tt_abbrind]) == 0;
642 	}
643 	return result;
644 }
645 
646 static const int	mon_lengths[2][MONSPERYEAR] = {
647 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
648 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
649 };
650 
651 static const int	year_lengths[2] = {
652 	DAYSPERNYEAR, DAYSPERLYEAR
653 };
654 
655 /*
656 ** Given a pointer into a time zone string, scan until a character that is not
657 ** a valid character in a zone name is found. Return a pointer to that
658 ** character.
659 */
660 
661 static const char *
662 getzname(const char *strp)
663 {
664 	char	c;
665 
666 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
667 		c != '+')
668 			++strp;
669 	return strp;
670 }
671 
672 /*
673 ** Given a pointer into an extended time zone string, scan until the ending
674 ** delimiter of the zone name is located. Return a pointer to the delimiter.
675 **
676 ** As with getzname above, the legal character set is actually quite
677 ** restricted, with other characters producing undefined results.
678 ** We don't do any checking here; checking is done later in common-case code.
679 */
680 
681 static const char *
682 getqzname(const char *strp, const int delim)
683 {
684 	int	c;
685 
686 	while ((c = *strp) != '\0' && c != delim)
687 		++strp;
688 	return strp;
689 }
690 
691 /*
692 ** Given a pointer into a time zone string, extract a number from that string.
693 ** Check that the number is within a specified range; if it is not, return
694 ** NULL.
695 ** Otherwise, return a pointer to the first character not part of the number.
696 */
697 
698 static const char *
699 getnum(const char *strp, int * const nump, const int min, const int max)
700 {
701 	char	c;
702 	int	num;
703 
704 	if (strp == NULL || !is_digit(c = *strp)) {
705 		errno = EINVAL;
706 		return NULL;
707 	}
708 	num = 0;
709 	do {
710 		num = num * 10 + (c - '0');
711 		if (num > max) {
712 			errno = EOVERFLOW;
713 			return NULL;	/* illegal value */
714 		}
715 		c = *++strp;
716 	} while (is_digit(c));
717 	if (num < min) {
718 		errno = EINVAL;
719 		return NULL;		/* illegal value */
720 	}
721 	*nump = num;
722 	return strp;
723 }
724 
725 /*
726 ** Given a pointer into a time zone string, extract a number of seconds,
727 ** in hh[:mm[:ss]] form, from the string.
728 ** If any error occurs, return NULL.
729 ** Otherwise, return a pointer to the first character not part of the number
730 ** of seconds.
731 */
732 
733 static const char *
734 getsecs(const char *strp, long *const secsp)
735 {
736 	int	num;
737 
738 	/*
739 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
740 	** "M10.4.6/26", which does not conform to Posix,
741 	** but which specifies the equivalent of
742 	** ``02:00 on the first Sunday on or after 23 Oct''.
743 	*/
744 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
745 	if (strp == NULL)
746 		return NULL;
747 	*secsp = num * (long) SECSPERHOUR;
748 	if (*strp == ':') {
749 		++strp;
750 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
751 		if (strp == NULL)
752 			return NULL;
753 		*secsp += num * SECSPERMIN;
754 		if (*strp == ':') {
755 			++strp;
756 			/* `SECSPERMIN' allows for leap seconds. */
757 			strp = getnum(strp, &num, 0, SECSPERMIN);
758 			if (strp == NULL)
759 				return NULL;
760 			*secsp += num;
761 		}
762 	}
763 	return strp;
764 }
765 
766 /*
767 ** Given a pointer into a time zone string, extract an offset, in
768 ** [+-]hh[:mm[:ss]] form, from the string.
769 ** If any error occurs, return NULL.
770 ** Otherwise, return a pointer to the first character not part of the time.
771 */
772 
773 static const char *
774 getoffset(const char *strp, long *const offsetp)
775 {
776 	int	neg = 0;
777 
778 	if (*strp == '-') {
779 		neg = 1;
780 		++strp;
781 	} else if (*strp == '+')
782 		++strp;
783 	strp = getsecs(strp, offsetp);
784 	if (strp == NULL)
785 		return NULL;		/* illegal time */
786 	if (neg)
787 		*offsetp = -*offsetp;
788 	return strp;
789 }
790 
791 /*
792 ** Given a pointer into a time zone string, extract a rule in the form
793 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
794 ** If a valid rule is not found, return NULL.
795 ** Otherwise, return a pointer to the first character not part of the rule.
796 */
797 
798 static const char *
799 getrule(const char *strp, struct rule *const rulep)
800 {
801 	if (*strp == 'J') {
802 		/*
803 		** Julian day.
804 		*/
805 		rulep->r_type = JULIAN_DAY;
806 		++strp;
807 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
808 	} else if (*strp == 'M') {
809 		/*
810 		** Month, week, day.
811 		*/
812 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
813 		++strp;
814 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
815 		if (strp == NULL)
816 			return NULL;
817 		if (*strp++ != '.')
818 			return NULL;
819 		strp = getnum(strp, &rulep->r_week, 1, 5);
820 		if (strp == NULL)
821 			return NULL;
822 		if (*strp++ != '.')
823 			return NULL;
824 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
825 	} else if (is_digit(*strp)) {
826 		/*
827 		** Day of year.
828 		*/
829 		rulep->r_type = DAY_OF_YEAR;
830 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
831 	} else	return NULL;		/* invalid format */
832 	if (strp == NULL)
833 		return NULL;
834 	if (*strp == '/') {
835 		/*
836 		** Time specified.
837 		*/
838 		++strp;
839 		strp = getsecs(strp, &rulep->r_time);
840 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
841 	return strp;
842 }
843 
844 /*
845 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
846 ** year, a rule, and the offset from UTC at the time that rule takes effect,
847 ** calculate the Epoch-relative time that rule takes effect.
848 */
849 
850 static time_t
851 transtime(const time_t janfirst, const int year, const struct rule *const rulep,
852     const long offset)
853 {
854 	int	leapyear;
855 	time_t	value;
856 	int	i;
857 	int		d, m1, yy0, yy1, yy2, dow;
858 
859 	INITIALIZE(value);
860 	leapyear = isleap(year);
861 	switch (rulep->r_type) {
862 
863 	case JULIAN_DAY:
864 		/*
865 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
866 		** years.
867 		** In non-leap years, or if the day number is 59 or less, just
868 		** add SECSPERDAY times the day number-1 to the time of
869 		** January 1, midnight, to get the day.
870 		*/
871 		value = (time_t)(janfirst + (rulep->r_day - 1) * SECSPERDAY);
872 		if (leapyear && rulep->r_day >= 60)
873 			value += SECSPERDAY;
874 		break;
875 
876 	case DAY_OF_YEAR:
877 		/*
878 		** n - day of year.
879 		** Just add SECSPERDAY times the day number to the time of
880 		** January 1, midnight, to get the day.
881 		*/
882 		value = (time_t)(janfirst + rulep->r_day * SECSPERDAY);
883 		break;
884 
885 	case MONTH_NTH_DAY_OF_WEEK:
886 		/*
887 		** Mm.n.d - nth "dth day" of month m.
888 		*/
889 		value = janfirst;
890 		for (i = 0; i < rulep->r_mon - 1; ++i)
891 			value += (time_t)(mon_lengths[leapyear][i] * SECSPERDAY);
892 
893 		/*
894 		** Use Zeller's Congruence to get day-of-week of first day of
895 		** month.
896 		*/
897 		m1 = (rulep->r_mon + 9) % 12 + 1;
898 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
899 		yy1 = yy0 / 100;
900 		yy2 = yy0 % 100;
901 		dow = ((26 * m1 - 2) / 10 +
902 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
903 		if (dow < 0)
904 			dow += DAYSPERWEEK;
905 
906 		/*
907 		** "dow" is the day-of-week of the first day of the month. Get
908 		** the day-of-month (zero-origin) of the first "dow" day of the
909 		** month.
910 		*/
911 		d = rulep->r_day - dow;
912 		if (d < 0)
913 			d += DAYSPERWEEK;
914 		for (i = 1; i < rulep->r_week; ++i) {
915 			if (d + DAYSPERWEEK >=
916 				mon_lengths[leapyear][rulep->r_mon - 1])
917 					break;
918 			d += DAYSPERWEEK;
919 		}
920 
921 		/*
922 		** "d" is the day-of-month (zero-origin) of the day we want.
923 		*/
924 		value += (time_t)(d * SECSPERDAY);
925 		break;
926 	}
927 
928 	/*
929 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
930 	** question. To get the Epoch-relative time of the specified local
931 	** time on that day, add the transition time and the current offset
932 	** from UTC.
933 	*/
934 	return (time_t)(value + rulep->r_time + offset);
935 }
936 
937 /*
938 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
939 ** appropriate.
940 */
941 
942 static int
943 tzparse(timezone_t sp, const char *name, const int lastditch)
944 {
945 	const char *			stdname;
946 	const char *			dstname;
947 	size_t				stdlen;
948 	size_t				dstlen;
949 	long				stdoffset;
950 	long				dstoffset;
951 	time_t *		atp;
952 	unsigned char *	typep;
953 	char *			cp;
954 	int			load_result;
955 
956 	INITIALIZE(dstname);
957 	stdname = name;
958 	if (lastditch) {
959 		stdlen = strlen(name);	/* length of standard zone name */
960 		name += stdlen;
961 		if (stdlen >= sizeof sp->chars)
962 			stdlen = (sizeof sp->chars) - 1;
963 		stdoffset = 0;
964 	} else {
965 		if (*name == '<') {
966 			name++;
967 			stdname = name;
968 			name = getqzname(name, '>');
969 			if (*name != '>')
970 				return (-1);
971 			stdlen = name - stdname;
972 			name++;
973 		} else {
974 			name = getzname(name);
975 			stdlen = name - stdname;
976 		}
977 		if (*name == '\0')
978 			return -1;
979 		name = getoffset(name, &stdoffset);
980 		if (name == NULL)
981 			return -1;
982 	}
983 	load_result = tzload(sp, TZDEFRULES, FALSE);
984 	if (load_result != 0)
985 		sp->leapcnt = 0;		/* so, we're off a little */
986 	if (*name != '\0') {
987 		if (*name == '<') {
988 			dstname = ++name;
989 			name = getqzname(name, '>');
990 			if (*name != '>')
991 				return -1;
992 			dstlen = name - dstname;
993 			name++;
994 		} else {
995 			dstname = name;
996 			name = getzname(name);
997 			dstlen = name - dstname; /* length of DST zone name */
998 		}
999 		if (*name != '\0' && *name != ',' && *name != ';') {
1000 			name = getoffset(name, &dstoffset);
1001 			if (name == NULL)
1002 				return -1;
1003 		} else	dstoffset = stdoffset - SECSPERHOUR;
1004 		if (*name == '\0' && load_result != 0)
1005 			name = TZDEFRULESTRING;
1006 		if (*name == ',' || *name == ';') {
1007 			struct rule	start;
1008 			struct rule	end;
1009 			int	year;
1010 			time_t	janfirst;
1011 			time_t		starttime;
1012 			time_t		endtime;
1013 
1014 			++name;
1015 			if ((name = getrule(name, &start)) == NULL)
1016 				return -1;
1017 			if (*name++ != ',')
1018 				return -1;
1019 			if ((name = getrule(name, &end)) == NULL)
1020 				return -1;
1021 			if (*name != '\0')
1022 				return -1;
1023 			sp->typecnt = 2;	/* standard time and DST */
1024 			/*
1025 			** Two transitions per year, from EPOCH_YEAR forward.
1026 			*/
1027 			memset(sp->ttis, 0, sizeof(sp->ttis));
1028 			sp->ttis[0].tt_gmtoff = -dstoffset;
1029 			sp->ttis[0].tt_isdst = 1;
1030 			sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
1031 			sp->ttis[1].tt_gmtoff = -stdoffset;
1032 			sp->ttis[1].tt_isdst = 0;
1033 			sp->ttis[1].tt_abbrind = 0;
1034 			atp = sp->ats;
1035 			typep = sp->types;
1036 			janfirst = 0;
1037 			sp->timecnt = 0;
1038 			for (year = EPOCH_YEAR;
1039 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
1040 			    ++year) {
1041 			    	time_t	newfirst;
1042 
1043 				starttime = transtime(janfirst, year, &start,
1044 					stdoffset);
1045 				endtime = transtime(janfirst, year, &end,
1046 					dstoffset);
1047 				if (starttime > endtime) {
1048 					*atp++ = endtime;
1049 					*typep++ = 1;	/* DST ends */
1050 					*atp++ = starttime;
1051 					*typep++ = 0;	/* DST begins */
1052 				} else {
1053 					*atp++ = starttime;
1054 					*typep++ = 0;	/* DST begins */
1055 					*atp++ = endtime;
1056 					*typep++ = 1;	/* DST ends */
1057 				}
1058 				sp->timecnt += 2;
1059 				newfirst = janfirst;
1060 				newfirst += (time_t)
1061 				    (year_lengths[isleap(year)] * SECSPERDAY);
1062 				if (newfirst <= janfirst)
1063 					break;
1064 				janfirst = newfirst;
1065 			}
1066 		} else {
1067 			long	theirstdoffset;
1068 			long	theirdstoffset;
1069 			long	theiroffset;
1070 			int	isdst;
1071 			int	i;
1072 			int	j;
1073 
1074 			if (*name != '\0')
1075 				return -1;
1076 			/*
1077 			** Initial values of theirstdoffset
1078 			*/
1079 			theirstdoffset = 0;
1080 			for (i = 0; i < sp->timecnt; ++i) {
1081 				j = sp->types[i];
1082 				if (!sp->ttis[j].tt_isdst) {
1083 					theirstdoffset =
1084 						-sp->ttis[j].tt_gmtoff;
1085 					break;
1086 				}
1087 			}
1088 			theirdstoffset = 0;
1089 			for (i = 0; i < sp->timecnt; ++i) {
1090 				j = sp->types[i];
1091 				if (sp->ttis[j].tt_isdst) {
1092 					theirdstoffset =
1093 						-sp->ttis[j].tt_gmtoff;
1094 					break;
1095 				}
1096 			}
1097 			/*
1098 			** Initially we're assumed to be in standard time.
1099 			*/
1100 			isdst = FALSE;
1101 			theiroffset = theirstdoffset;
1102 			/*
1103 			** Now juggle transition times and types
1104 			** tracking offsets as you do.
1105 			*/
1106 			for (i = 0; i < sp->timecnt; ++i) {
1107 				j = sp->types[i];
1108 				sp->types[i] = sp->ttis[j].tt_isdst;
1109 				if (sp->ttis[j].tt_ttisgmt) {
1110 					/* No adjustment to transition time */
1111 				} else {
1112 					/*
1113 					** If summer time is in effect, and the
1114 					** transition time was not specified as
1115 					** standard time, add the summer time
1116 					** offset to the transition time;
1117 					** otherwise, add the standard time
1118 					** offset to the transition time.
1119 					*/
1120 					/*
1121 					** Transitions from DST to DDST
1122 					** will effectively disappear since
1123 					** POSIX provides for only one DST
1124 					** offset.
1125 					*/
1126 					if (isdst && !sp->ttis[j].tt_ttisstd) {
1127 						sp->ats[i] += (time_t)
1128 						    (dstoffset - theirdstoffset);
1129 					} else {
1130 						sp->ats[i] += (time_t)
1131 						    (stdoffset - theirstdoffset);
1132 					}
1133 				}
1134 				theiroffset = -sp->ttis[j].tt_gmtoff;
1135 				if (!sp->ttis[j].tt_isdst)
1136 					theirstdoffset = theiroffset;
1137 				else	theirdstoffset = theiroffset;
1138 			}
1139 			/*
1140 			** Finally, fill in ttis.
1141 			*/
1142 			memset(sp->ttis, 0, sizeof(sp->ttis));
1143 			sp->ttis[0].tt_gmtoff = -stdoffset;
1144 			sp->ttis[0].tt_isdst = FALSE;
1145 			sp->ttis[0].tt_abbrind = 0;
1146 			sp->ttis[1].tt_gmtoff = -dstoffset;
1147 			sp->ttis[1].tt_isdst = TRUE;
1148 			sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
1149 			sp->typecnt = 2;
1150 		}
1151 	} else {
1152 		dstlen = 0;
1153 		sp->typecnt = 1;		/* only standard time */
1154 		sp->timecnt = 0;
1155 		memset(sp->ttis, 0, sizeof(sp->ttis));
1156 		sp->ttis[0].tt_gmtoff = -stdoffset;
1157 		sp->ttis[0].tt_isdst = 0;
1158 		sp->ttis[0].tt_abbrind = 0;
1159 	}
1160 	sp->charcnt = (int)(stdlen + 1);
1161 	if (dstlen != 0)
1162 		sp->charcnt += (int)(dstlen + 1);
1163 	if ((size_t) sp->charcnt > sizeof sp->chars)
1164 		return -1;
1165 	cp = sp->chars;
1166 	(void) strncpy(cp, stdname, stdlen);
1167 	cp += stdlen;
1168 	*cp++ = '\0';
1169 	if (dstlen != 0) {
1170 		(void) strncpy(cp, dstname, dstlen);
1171 		*(cp + dstlen) = '\0';
1172 	}
1173 	return 0;
1174 }
1175 
1176 static void
1177 gmtload(timezone_t sp)
1178 {
1179 	if (tzload(sp, gmt, TRUE) != 0)
1180 		(void) tzparse(sp, gmt, TRUE);
1181 }
1182 
1183 timezone_t
1184 tzalloc(const char *name)
1185 {
1186 	timezone_t sp = calloc(1, sizeof *sp);
1187 	if (sp == NULL)
1188 		return NULL;
1189 	if (tzload(sp, name, TRUE) != 0) {
1190 		free(sp);
1191 		return NULL;
1192 	}
1193 	settzname_z(sp);
1194 	return sp;
1195 }
1196 
1197 void
1198 tzfree(const timezone_t sp)
1199 {
1200 	free(sp);
1201 }
1202 
1203 static void
1204 tzsetwall_unlocked(void)
1205 {
1206 	if (lcl_is_set < 0)
1207 		return;
1208 	lcl_is_set = -1;
1209 
1210 	if (lclptr == NULL) {
1211 		int saveerrno = errno;
1212 		lclptr = calloc(1, sizeof *lclptr);
1213 		errno = saveerrno;
1214 		if (lclptr == NULL) {
1215 			settzname();	/* all we can do */
1216 			return;
1217 		}
1218 	}
1219 	if (tzload(lclptr, NULL, TRUE) != 0)
1220 		gmtload(lclptr);
1221 	settzname();
1222 }
1223 
1224 #ifndef STD_INSPIRED
1225 /*
1226 ** A non-static declaration of tzsetwall in a system header file
1227 ** may cause a warning about this upcoming static declaration...
1228 */
1229 static
1230 #endif /* !defined STD_INSPIRED */
1231 void
1232 tzsetwall(void)
1233 {
1234 	rwlock_wrlock(&lcl_lock);
1235 	tzsetwall_unlocked();
1236 	rwlock_unlock(&lcl_lock);
1237 }
1238 
1239 #ifndef STD_INSPIRED
1240 /*
1241 ** A non-static declaration of tzsetwall in a system header file
1242 ** may cause a warning about this upcoming static declaration...
1243 */
1244 static
1245 #endif /* !defined STD_INSPIRED */
1246 void
1247 tzset_unlocked(void)
1248 {
1249 	const char *	name;
1250 	int saveerrno;
1251 
1252 	saveerrno = errno;
1253 	name = getenv("TZ");
1254 	errno = saveerrno;
1255 	if (name == NULL) {
1256 		tzsetwall_unlocked();
1257 		return;
1258 	}
1259 
1260 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1261 		return;
1262 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1263 	if (lcl_is_set)
1264 		(void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1265 
1266 	if (lclptr == NULL) {
1267 		saveerrno = errno;
1268 		lclptr = calloc(1, sizeof *lclptr);
1269 		errno = saveerrno;
1270 		if (lclptr == NULL) {
1271 			settzname();	/* all we can do */
1272 			return;
1273 		}
1274 	}
1275 	if (*name == '\0') {
1276 		/*
1277 		** User wants it fast rather than right.
1278 		*/
1279 		lclptr->leapcnt = 0;		/* so, we're off a little */
1280 		lclptr->timecnt = 0;
1281 		lclptr->typecnt = 0;
1282 		lclptr->ttis[0].tt_isdst = 0;
1283 		lclptr->ttis[0].tt_gmtoff = 0;
1284 		lclptr->ttis[0].tt_abbrind = 0;
1285 		(void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1286 	} else if (tzload(lclptr, name, TRUE) != 0)
1287 		if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
1288 			(void) gmtload(lclptr);
1289 	settzname();
1290 }
1291 
1292 void
1293 tzset(void)
1294 {
1295 	rwlock_wrlock(&lcl_lock);
1296 	tzset_unlocked();
1297 	rwlock_unlock(&lcl_lock);
1298 }
1299 
1300 /*
1301 ** The easy way to behave "as if no library function calls" localtime
1302 ** is to not call it--so we drop its guts into "localsub", which can be
1303 ** freely called. (And no, the PANS doesn't require the above behavior--
1304 ** but it *is* desirable.)
1305 **
1306 ** The unused offset argument is for the benefit of mktime variants.
1307 */
1308 
1309 /*ARGSUSED*/
1310 static struct tm *
1311 localsub(const timezone_t sp, const time_t * const timep, const long offset,
1312     struct tm *const tmp)
1313 {
1314 	const struct ttinfo *	ttisp;
1315 	int			i;
1316 	struct tm *		result;
1317 	const time_t			t = *timep;
1318 
1319 	if ((sp->goback && t < sp->ats[0]) ||
1320 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1321 			time_t			newt = t;
1322 			time_t		seconds;
1323 			time_t		tcycles;
1324 			int_fast64_t	icycles;
1325 
1326 			if (t < sp->ats[0])
1327 				seconds = sp->ats[0] - t;
1328 			else	seconds = t - sp->ats[sp->timecnt - 1];
1329 			--seconds;
1330 			tcycles = (time_t)
1331 			    (seconds / YEARSPERREPEAT / AVGSECSPERYEAR);
1332 			++tcycles;
1333 			icycles = tcycles;
1334 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1335 				return NULL;
1336 			seconds = (time_t) icycles;
1337 			seconds *= YEARSPERREPEAT;
1338 			seconds *= AVGSECSPERYEAR;
1339 			if (t < sp->ats[0])
1340 				newt += seconds;
1341 			else	newt -= seconds;
1342 			if (newt < sp->ats[0] ||
1343 				newt > sp->ats[sp->timecnt - 1])
1344 					return NULL;	/* "cannot happen" */
1345 			result = localsub(sp, &newt, offset, tmp);
1346 			if (result == tmp) {
1347 				time_t	newy;
1348 
1349 				newy = tmp->tm_year;
1350 				if (t < sp->ats[0])
1351 					newy -= (time_t)icycles * YEARSPERREPEAT;
1352 				else	newy += (time_t)icycles * YEARSPERREPEAT;
1353 				tmp->tm_year = (int)newy;
1354 				if (tmp->tm_year != newy)
1355 					return NULL;
1356 			}
1357 			return result;
1358 	}
1359 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1360 		i = 0;
1361 		while (sp->ttis[i].tt_isdst)
1362 			if (++i >= sp->typecnt) {
1363 				i = 0;
1364 				break;
1365 			}
1366 	} else {
1367 		int	lo = 1;
1368 		int	hi = sp->timecnt;
1369 
1370 		while (lo < hi) {
1371 			int	mid = (lo + hi) / 2;
1372 
1373 			if (t < sp->ats[mid])
1374 				hi = mid;
1375 			else	lo = mid + 1;
1376 		}
1377 		i = (int) sp->types[lo - 1];
1378 	}
1379 	ttisp = &sp->ttis[i];
1380 	/*
1381 	** To get (wrong) behavior that's compatible with System V Release 2.0
1382 	** you'd replace the statement below with
1383 	**	t += ttisp->tt_gmtoff;
1384 	**	timesub(&t, 0L, sp, tmp);
1385 	*/
1386 	result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
1387 	tmp->tm_isdst = ttisp->tt_isdst;
1388 	if (sp == lclptr)
1389 		tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1390 #ifdef TM_ZONE
1391 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1392 #endif /* defined TM_ZONE */
1393 	return result;
1394 }
1395 
1396 /*
1397 ** Re-entrant version of localtime.
1398 */
1399 
1400 struct tm *
1401 localtime_r(const time_t * __restrict timep, struct tm *tmp)
1402 {
1403 	rwlock_rdlock(&lcl_lock);
1404 	tzset_unlocked();
1405 	tmp = localtime_rz(lclptr, timep, tmp);
1406 	rwlock_unlock(&lcl_lock);
1407 	return tmp;
1408 }
1409 
1410 struct tm *
1411 localtime(const time_t *const timep)
1412 {
1413 	return localtime_r(timep, &tm);
1414 }
1415 
1416 struct tm *
1417 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
1418 {
1419 	if (sp == NULL)
1420 		tmp = gmtsub(NULL, timep, 0L, tmp);
1421 	else
1422 		tmp = localsub(sp, timep, 0L, tmp);
1423 	if (tmp == NULL)
1424 		errno = EOVERFLOW;
1425 	return tmp;
1426 }
1427 
1428 /*
1429 ** gmtsub is to gmtime as localsub is to localtime.
1430 */
1431 
1432 static struct tm *
1433 gmtsub(const timezone_t sp, const time_t * const timep, const long offset,
1434     struct tm *const tmp)
1435 {
1436 	struct tm *	result;
1437 #ifdef _REENTRANT
1438 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1439 #endif
1440 
1441 	mutex_lock(&gmt_mutex);
1442 	if (!gmt_is_set) {
1443 		int saveerrno;
1444 		gmt_is_set = TRUE;
1445 		saveerrno = errno;
1446 		gmtptr = calloc(1, sizeof *gmtptr);
1447 		errno = saveerrno;
1448 		if (gmtptr != NULL)
1449 			gmtload(gmtptr);
1450 	}
1451 	mutex_unlock(&gmt_mutex);
1452 	result = timesub(gmtptr, timep, offset, tmp);
1453 #ifdef TM_ZONE
1454 	/*
1455 	** Could get fancy here and deliver something such as
1456 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1457 	** but this is no time for a treasure hunt.
1458 	*/
1459 	if (offset != 0)
1460 		tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1461 	else {
1462 		if (gmtptr == NULL)
1463 			tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1464 		else	tmp->TM_ZONE = gmtptr->chars;
1465 	}
1466 #endif /* defined TM_ZONE */
1467 	return result;
1468 }
1469 
1470 struct tm *
1471 gmtime(const time_t *const timep)
1472 {
1473 	struct tm *tmp = gmtsub(NULL, timep, 0L, &tm);
1474 
1475 	if (tmp == NULL)
1476 		errno = EOVERFLOW;
1477 
1478 	return tmp;
1479 }
1480 
1481 /*
1482 ** Re-entrant version of gmtime.
1483 */
1484 
1485 struct tm *
1486 gmtime_r(const time_t * const timep, struct tm *tmp)
1487 {
1488 	tmp = gmtsub(NULL, timep, 0L, tmp);
1489 
1490 	if (tmp == NULL)
1491 		errno = EOVERFLOW;
1492 
1493 	return tmp;
1494 }
1495 
1496 #ifdef STD_INSPIRED
1497 
1498 struct tm *
1499 offtime(const time_t *const timep, long offset)
1500 {
1501 	struct tm *tmp = gmtsub(NULL, timep, offset, &tm);
1502 
1503 	if (tmp == NULL)
1504 		errno = EOVERFLOW;
1505 
1506 	return tmp;
1507 }
1508 
1509 struct tm *
1510 offtime_r(const time_t *timep, long offset, struct tm *tmp)
1511 {
1512 	tmp = gmtsub(NULL, timep, offset, tmp);
1513 
1514 	if (tmp == NULL)
1515 		errno = EOVERFLOW;
1516 
1517 	return tmp;
1518 }
1519 
1520 #endif /* defined STD_INSPIRED */
1521 
1522 /*
1523 ** Return the number of leap years through the end of the given year
1524 ** where, to make the math easy, the answer for year zero is defined as zero.
1525 */
1526 
1527 static int
1528 leaps_thru_end_of(const int y)
1529 {
1530 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1531 		-(leaps_thru_end_of(-(y + 1)) + 1);
1532 }
1533 
1534 static struct tm *
1535 timesub(const timezone_t sp, const time_t *const timep, const long offset,
1536     struct tm *const tmp)
1537 {
1538 	const struct lsinfo *	lp;
1539 	time_t			tdays;
1540 	int			idays;	/* unsigned would be so 2003 */
1541 	long			rem;
1542 	int			y;
1543 	const int *		ip;
1544 	long			corr;
1545 	int			hit;
1546 	int			i;
1547 
1548 	corr = 0;
1549 	hit = 0;
1550 	i = (sp == NULL) ? 0 : sp->leapcnt;
1551 	while (--i >= 0) {
1552 		lp = &sp->lsis[i];
1553 		if (*timep >= lp->ls_trans) {
1554 			if (*timep == lp->ls_trans) {
1555 				hit = ((i == 0 && lp->ls_corr > 0) ||
1556 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1557 				if (hit)
1558 					while (i > 0 &&
1559 						sp->lsis[i].ls_trans ==
1560 						sp->lsis[i - 1].ls_trans + 1 &&
1561 						sp->lsis[i].ls_corr ==
1562 						sp->lsis[i - 1].ls_corr + 1) {
1563 							++hit;
1564 							--i;
1565 					}
1566 			}
1567 			corr = lp->ls_corr;
1568 			break;
1569 		}
1570 	}
1571 	y = EPOCH_YEAR;
1572 	tdays = (time_t)(*timep / SECSPERDAY);
1573 	rem = (long) (*timep - tdays * SECSPERDAY);
1574 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1575 		int		newy;
1576 		time_t	tdelta;
1577 		int	idelta;
1578 		int	leapdays;
1579 
1580 		tdelta = tdays / DAYSPERLYEAR;
1581 		idelta = (int) tdelta;
1582 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1583 			return NULL;
1584 		if (idelta == 0)
1585 			idelta = (tdays < 0) ? -1 : 1;
1586 		newy = y;
1587 		if (increment_overflow(&newy, idelta))
1588 			return NULL;
1589 		leapdays = leaps_thru_end_of(newy - 1) -
1590 			leaps_thru_end_of(y - 1);
1591 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1592 		tdays -= leapdays;
1593 		y = newy;
1594 	}
1595 	{
1596 		long	seconds;
1597 
1598 		seconds = tdays * SECSPERDAY + 0.5;
1599 		tdays = (time_t)(seconds / SECSPERDAY);
1600 		rem += (long) (seconds - tdays * SECSPERDAY);
1601 	}
1602 	/*
1603 	** Given the range, we can now fearlessly cast...
1604 	*/
1605 	idays = (int) tdays;
1606 	rem += offset - corr;
1607 	while (rem < 0) {
1608 		rem += SECSPERDAY;
1609 		--idays;
1610 	}
1611 	while (rem >= SECSPERDAY) {
1612 		rem -= SECSPERDAY;
1613 		++idays;
1614 	}
1615 	while (idays < 0) {
1616 		if (increment_overflow(&y, -1))
1617 			return NULL;
1618 		idays += year_lengths[isleap(y)];
1619 	}
1620 	while (idays >= year_lengths[isleap(y)]) {
1621 		idays -= year_lengths[isleap(y)];
1622 		if (increment_overflow(&y, 1))
1623 			return NULL;
1624 	}
1625 	tmp->tm_year = y;
1626 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1627 		return NULL;
1628 	tmp->tm_yday = idays;
1629 	/*
1630 	** The "extra" mods below avoid overflow problems.
1631 	*/
1632 	tmp->tm_wday = EPOCH_WDAY +
1633 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
1634 		(DAYSPERNYEAR % DAYSPERWEEK) +
1635 		leaps_thru_end_of(y - 1) -
1636 		leaps_thru_end_of(EPOCH_YEAR - 1) +
1637 		idays;
1638 	tmp->tm_wday %= DAYSPERWEEK;
1639 	if (tmp->tm_wday < 0)
1640 		tmp->tm_wday += DAYSPERWEEK;
1641 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1642 	rem %= SECSPERHOUR;
1643 	tmp->tm_min = (int) (rem / SECSPERMIN);
1644 	/*
1645 	** A positive leap second requires a special
1646 	** representation. This uses "... ??:59:60" et seq.
1647 	*/
1648 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1649 	ip = mon_lengths[isleap(y)];
1650 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1651 		idays -= ip[tmp->tm_mon];
1652 	tmp->tm_mday = (int) (idays + 1);
1653 	tmp->tm_isdst = 0;
1654 #ifdef TM_GMTOFF
1655 	tmp->TM_GMTOFF = offset;
1656 #endif /* defined TM_GMTOFF */
1657 	return tmp;
1658 }
1659 
1660 char *
1661 ctime(const time_t *const timep)
1662 {
1663 /*
1664 ** Section 4.12.3.2 of X3.159-1989 requires that
1665 **	The ctime function converts the calendar time pointed to by timer
1666 **	to local time in the form of a string. It is equivalent to
1667 **		asctime(localtime(timer))
1668 */
1669 	struct tm *rtm = localtime(timep);
1670 	if (rtm == NULL)
1671 		return NULL;
1672 	return asctime(rtm);
1673 }
1674 
1675 char *
1676 ctime_r(const time_t *const timep, char *buf)
1677 {
1678 	struct tm	mytm, *rtm;
1679 
1680 	rtm = localtime_r(timep, &mytm);
1681 	if (rtm == NULL)
1682 		return NULL;
1683 	return asctime_r(rtm, buf);
1684 }
1685 
1686 char *
1687 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1688 {
1689 	struct tm	mytm, *rtm;
1690 
1691 	rtm = localtime_rz(sp, timep, &mytm);
1692 	if (rtm == NULL)
1693 		return NULL;
1694 	return asctime_r(rtm, buf);
1695 }
1696 
1697 /*
1698 ** Adapted from code provided by Robert Elz, who writes:
1699 **	The "best" way to do mktime I think is based on an idea of Bob
1700 **	Kridle's (so its said...) from a long time ago.
1701 **	It does a binary search of the time_t space. Since time_t's are
1702 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1703 **	would still be very reasonable).
1704 */
1705 
1706 #ifndef WRONG
1707 #define WRONG	((time_t)-1)
1708 #endif /* !defined WRONG */
1709 
1710 /*
1711 ** Simplified normalize logic courtesy Paul Eggert.
1712 */
1713 
1714 static int
1715 increment_overflow(int *ip, int j)
1716 {
1717 	int	i = *ip;
1718 
1719 	/*
1720 	** If i >= 0 there can only be overflow if i + j > INT_MAX
1721 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1722 	** If i < 0 there can only be overflow if i + j < INT_MIN
1723 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1724 	*/
1725 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1726 		return TRUE;
1727 	*ip += j;
1728 	return FALSE;
1729 }
1730 
1731 static int
1732 long_increment_overflow(long *lp, int m)
1733 {
1734 	long l = *lp;
1735 
1736 	if ((l >= 0) ? (m > LONG_MAX - l) : (m < LONG_MIN - l))
1737 		return TRUE;
1738 	*lp += m;
1739 	return FALSE;
1740 }
1741 
1742 static int
1743 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1744 {
1745 	int	tensdelta;
1746 
1747 	tensdelta = (*unitsptr >= 0) ?
1748 		(*unitsptr / base) :
1749 		(-1 - (-1 - *unitsptr) / base);
1750 	*unitsptr -= tensdelta * base;
1751 	return increment_overflow(tensptr, tensdelta);
1752 }
1753 
1754 static int
1755 long_normalize_overflow(long *const tensptr, int *const unitsptr,
1756     const int base)
1757 {
1758 	int	tensdelta;
1759 
1760 	tensdelta = (*unitsptr >= 0) ?
1761 		(*unitsptr / base) :
1762 		(-1 - (-1 - *unitsptr) / base);
1763 	*unitsptr -= tensdelta * base;
1764 	return long_increment_overflow(tensptr, tensdelta);
1765 }
1766 
1767 static int
1768 tmcomp(const struct tm *const atmp, const struct tm *const btmp)
1769 {
1770 	int	result;
1771 
1772 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1773 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1774 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1775 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1776 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1777 			result = atmp->tm_sec - btmp->tm_sec;
1778 	return result;
1779 }
1780 
1781 static time_t
1782 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1783     const long offset, int *const okayp, const int do_norm_secs)
1784 {
1785 	int			dir;
1786 	int			i, j;
1787 	int			saved_seconds;
1788 	long			li;
1789 	time_t			lo;
1790 	time_t			hi;
1791 #ifdef NO_ERROR_IN_DST_GAP
1792 	time_t			ilo;
1793 #endif
1794 	long				y;
1795 	time_t				newt;
1796 	time_t				t;
1797 	struct tm			yourtm, mytm;
1798 
1799 	*okayp = FALSE;
1800 	yourtm = *tmp;
1801 #ifdef NO_ERROR_IN_DST_GAP
1802 again:
1803 #endif
1804 	if (do_norm_secs) {
1805 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1806 		    SECSPERMIN))
1807 			goto overflow;
1808 	}
1809 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1810 		goto overflow;
1811 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1812 		goto overflow;
1813 	y = yourtm.tm_year;
1814 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1815 		goto overflow;
1816 	/*
1817 	** Turn y into an actual year number for now.
1818 	** It is converted back to an offset from TM_YEAR_BASE later.
1819 	*/
1820 	if (long_increment_overflow(&y, TM_YEAR_BASE))
1821 		goto overflow;
1822 	while (yourtm.tm_mday <= 0) {
1823 		if (long_increment_overflow(&y, -1))
1824 			goto overflow;
1825 		li = y + (1 < yourtm.tm_mon);
1826 		yourtm.tm_mday += year_lengths[isleap(li)];
1827 	}
1828 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1829 		li = y + (1 < yourtm.tm_mon);
1830 		yourtm.tm_mday -= year_lengths[isleap(li)];
1831 		if (long_increment_overflow(&y, 1))
1832 			goto overflow;
1833 	}
1834 	for ( ; ; ) {
1835 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1836 		if (yourtm.tm_mday <= i)
1837 			break;
1838 		yourtm.tm_mday -= i;
1839 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1840 			yourtm.tm_mon = 0;
1841 			if (long_increment_overflow(&y, 1))
1842 				goto overflow;
1843 		}
1844 	}
1845 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
1846 		goto overflow;
1847 	yourtm.tm_year = (int)y;
1848 	if (yourtm.tm_year != y)
1849 		goto overflow;
1850 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1851 		saved_seconds = 0;
1852 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1853 		/*
1854 		** We can't set tm_sec to 0, because that might push the
1855 		** time below the minimum representable time.
1856 		** Set tm_sec to 59 instead.
1857 		** This assumes that the minimum representable time is
1858 		** not in the same minute that a leap second was deleted from,
1859 		** which is a safer assumption than using 58 would be.
1860 		*/
1861 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1862 			goto overflow;
1863 		saved_seconds = yourtm.tm_sec;
1864 		yourtm.tm_sec = SECSPERMIN - 1;
1865 	} else {
1866 		saved_seconds = yourtm.tm_sec;
1867 		yourtm.tm_sec = 0;
1868 	}
1869 	/*
1870 	** Do a binary search (this works whatever time_t's type is).
1871 	*/
1872 /* LINTED constant */
1873 	if (!TYPE_SIGNED(time_t)) {
1874 		lo = 0;
1875 		hi = lo - 1;
1876 /* LINTED constant */
1877 	} else if (!TYPE_INTEGRAL(time_t)) {
1878 /* CONSTCOND */
1879 		if (sizeof(time_t) > sizeof(float))
1880 /* LINTED assumed double */
1881 			hi = (time_t) DBL_MAX;
1882 /* LINTED assumed float */
1883 		else	hi = (time_t) FLT_MAX;
1884 		lo = -hi;
1885 	} else {
1886 		lo = 1;
1887 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1888 			lo *= 2;
1889 		hi = -(lo + 1);
1890 	}
1891 #ifdef NO_ERROR_IN_DST_GAP
1892 	ilo = lo;
1893 #endif
1894 	for ( ; ; ) {
1895 		t = lo / 2 + hi / 2;
1896 		if (t < lo)
1897 			t = lo;
1898 		else if (t > hi)
1899 			t = hi;
1900 		if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
1901 			/*
1902 			** Assume that t is too extreme to be represented in
1903 			** a struct tm; arrange things so that it is less
1904 			** extreme on the next pass.
1905 			*/
1906 			dir = (t > 0) ? 1 : -1;
1907 		} else	dir = tmcomp(&mytm, &yourtm);
1908 		if (dir != 0) {
1909 			if (t == lo) {
1910 				++t;
1911 				if (t <= lo)
1912 					goto overflow;
1913 				++lo;
1914 			} else if (t == hi) {
1915 				--t;
1916 				if (t >= hi)
1917 					goto overflow;
1918 				--hi;
1919 			}
1920 #ifdef NO_ERROR_IN_DST_GAP
1921 			if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
1922 			    do_norm_secs) {
1923 				for (i = sp->typecnt - 1; i >= 0; --i) {
1924 					for (j = sp->typecnt - 1; j >= 0; --j) {
1925 						time_t off;
1926 						if (sp->ttis[j].tt_isdst ==
1927 						    sp->ttis[i].tt_isdst)
1928 							continue;
1929 						off = sp->ttis[j].tt_gmtoff -
1930 						    sp->ttis[i].tt_gmtoff;
1931 						yourtm.tm_sec += off < 0 ?
1932 						    -off : off;
1933 						goto again;
1934 					}
1935 				}
1936 			}
1937 #endif
1938 			if (lo > hi)
1939 				goto invalid;
1940 			if (dir > 0)
1941 				hi = t;
1942 			else	lo = t;
1943 			continue;
1944 		}
1945 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1946 			break;
1947 		/*
1948 		** Right time, wrong type.
1949 		** Hunt for right time, right type.
1950 		** It's okay to guess wrong since the guess
1951 		** gets checked.
1952 		*/
1953 		if (sp == NULL)
1954 			goto invalid;
1955 		for (i = sp->typecnt - 1; i >= 0; --i) {
1956 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1957 				continue;
1958 			for (j = sp->typecnt - 1; j >= 0; --j) {
1959 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1960 					continue;
1961 				newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
1962 				    sp->ttis[i].tt_gmtoff);
1963 				if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
1964 					continue;
1965 				if (tmcomp(&mytm, &yourtm) != 0)
1966 					continue;
1967 				if (mytm.tm_isdst != yourtm.tm_isdst)
1968 					continue;
1969 				/*
1970 				** We have a match.
1971 				*/
1972 				t = newt;
1973 				goto label;
1974 			}
1975 		}
1976 		goto invalid;
1977 	}
1978 label:
1979 	newt = t + saved_seconds;
1980 	if ((newt < t) != (saved_seconds < 0))
1981 		goto overflow;
1982 	t = newt;
1983 	if ((*funcp)(sp, &t, offset, tmp)) {
1984 		*okayp = TRUE;
1985 		return t;
1986 	}
1987 overflow:
1988 	errno = EOVERFLOW;
1989 	return WRONG;
1990 invalid:
1991 	errno = EINVAL;
1992 	return WRONG;
1993 }
1994 
1995 static time_t
1996 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1997     const long offset, int *const okayp)
1998 {
1999 	time_t	t;
2000 
2001 	/*
2002 	** First try without normalization of seconds
2003 	** (in case tm_sec contains a value associated with a leap second).
2004 	** If that fails, try with normalization of seconds.
2005 	*/
2006 	t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
2007 	return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
2008 }
2009 
2010 static time_t
2011 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2012     long offset)
2013 {
2014 	time_t			t;
2015 	int			samei, otheri;
2016 	int			sameind, otherind;
2017 	int			i;
2018 	int			nseen;
2019 	int				seen[TZ_MAX_TYPES];
2020 	int				types[TZ_MAX_TYPES];
2021 	int				okay;
2022 
2023 	if (tmp == NULL) {
2024 		errno = EINVAL;
2025 		return WRONG;
2026 	}
2027 	if (tmp->tm_isdst > 1)
2028 		tmp->tm_isdst = 1;
2029 	t = time2(sp, tmp, funcp, offset, &okay);
2030 #ifdef PCTS
2031 	/*
2032 	** PCTS code courtesy Grant Sullivan.
2033 	*/
2034 	if (okay)
2035 		return t;
2036 	if (tmp->tm_isdst < 0)
2037 		tmp->tm_isdst = 0;	/* reset to std and try again */
2038 #endif /* defined PCTS */
2039 #ifndef PCTS
2040 	if (okay || tmp->tm_isdst < 0)
2041 		return t;
2042 #endif /* !defined PCTS */
2043 	/*
2044 	** We're supposed to assume that somebody took a time of one type
2045 	** and did some math on it that yielded a "struct tm" that's bad.
2046 	** We try to divine the type they started from and adjust to the
2047 	** type they need.
2048 	*/
2049 	if (sp == NULL) {
2050 		errno = EINVAL;
2051 		return WRONG;
2052 	}
2053 	for (i = 0; i < sp->typecnt; ++i)
2054 		seen[i] = FALSE;
2055 	nseen = 0;
2056 	for (i = sp->timecnt - 1; i >= 0; --i)
2057 		if (!seen[sp->types[i]]) {
2058 			seen[sp->types[i]] = TRUE;
2059 			types[nseen++] = sp->types[i];
2060 		}
2061 	for (sameind = 0; sameind < nseen; ++sameind) {
2062 		samei = types[sameind];
2063 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2064 			continue;
2065 		for (otherind = 0; otherind < nseen; ++otherind) {
2066 			otheri = types[otherind];
2067 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2068 				continue;
2069 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2070 					sp->ttis[samei].tt_gmtoff);
2071 			tmp->tm_isdst = !tmp->tm_isdst;
2072 			t = time2(sp, tmp, funcp, offset, &okay);
2073 			if (okay)
2074 				return t;
2075 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2076 					sp->ttis[samei].tt_gmtoff);
2077 			tmp->tm_isdst = !tmp->tm_isdst;
2078 		}
2079 	}
2080 	errno = EOVERFLOW;
2081 	return WRONG;
2082 }
2083 
2084 time_t
2085 mktime_z(const timezone_t sp, struct tm *tmp)
2086 {
2087 	time_t t;
2088 	if (sp == NULL)
2089 		t = time1(NULL, tmp, gmtsub, 0L);
2090 	else
2091 		t = time1(sp, tmp, localsub, 0L);
2092 	return t;
2093 }
2094 
2095 time_t
2096 mktime(struct tm * const	tmp)
2097 {
2098 	time_t result;
2099 
2100 	rwlock_wrlock(&lcl_lock);
2101 	tzset_unlocked();
2102 	result = mktime_z(lclptr, tmp);
2103 	rwlock_unlock(&lcl_lock);
2104 	return result;
2105 }
2106 
2107 #ifdef STD_INSPIRED
2108 
2109 time_t
2110 timelocal_z(const timezone_t sp, struct tm *tmp)
2111 {
2112 	if (tmp != NULL)
2113 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
2114 	return mktime_z(sp, tmp);
2115 }
2116 
2117 time_t
2118 timelocal(struct tm *const tmp)
2119 {
2120 	if (tmp != NULL)
2121 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
2122 	return mktime(tmp);
2123 }
2124 
2125 time_t
2126 timegm(struct tm *const tmp)
2127 {
2128 	time_t t;
2129 
2130 	if (tmp != NULL)
2131 		tmp->tm_isdst = 0;
2132 	t = time1(gmtptr, tmp, gmtsub, 0L);
2133 	return t;
2134 }
2135 
2136 time_t
2137 timeoff(struct tm *const tmp, const long offset)
2138 {
2139 	time_t t;
2140 
2141 	if (tmp != NULL)
2142 		tmp->tm_isdst = 0;
2143 	t = time1(gmtptr, tmp, gmtsub, offset);
2144 	return t;
2145 }
2146 
2147 #endif /* defined STD_INSPIRED */
2148 
2149 #ifdef CMUCS
2150 
2151 /*
2152 ** The following is supplied for compatibility with
2153 ** previous versions of the CMUCS runtime library.
2154 */
2155 
2156 long
2157 gtime(struct tm *const tmp)
2158 {
2159 	const time_t t = mktime(tmp);
2160 
2161 	if (t == WRONG)
2162 		return -1;
2163 	return t;
2164 }
2165 
2166 #endif /* defined CMUCS */
2167 
2168 /*
2169 ** XXX--is the below the right way to conditionalize??
2170 */
2171 
2172 #ifdef STD_INSPIRED
2173 
2174 /*
2175 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2176 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2177 ** is not the case if we are accounting for leap seconds.
2178 ** So, we provide the following conversion routines for use
2179 ** when exchanging timestamps with POSIX conforming systems.
2180 */
2181 
2182 static long
2183 leapcorr(const timezone_t sp, time_t *timep)
2184 {
2185 	struct lsinfo * lp;
2186 	int		i;
2187 
2188 	i = sp->leapcnt;
2189 	while (--i >= 0) {
2190 		lp = &sp->lsis[i];
2191 		if (*timep >= lp->ls_trans)
2192 			return lp->ls_corr;
2193 	}
2194 	return 0;
2195 }
2196 
2197 time_t
2198 time2posix_z(const timezone_t sp, time_t t)
2199 {
2200 	return (time_t)(t - leapcorr(sp, &t));
2201 }
2202 
2203 time_t
2204 time2posix(time_t t)
2205 {
2206 	time_t result;
2207 	rwlock_wrlock(&lcl_lock);
2208 	tzset_unlocked();
2209 	result = (time_t)(t - leapcorr(lclptr, &t));
2210 	rwlock_unlock(&lcl_lock);
2211 	return (result);
2212 }
2213 
2214 time_t
2215 posix2time_z(const timezone_t sp, time_t t)
2216 {
2217 	time_t	x;
2218 	time_t	y;
2219 
2220 	/*
2221 	** For a positive leap second hit, the result
2222 	** is not unique. For a negative leap second
2223 	** hit, the corresponding time doesn't exist,
2224 	** so we return an adjacent second.
2225 	*/
2226 	x = (time_t)(t + leapcorr(sp, &t));
2227 	y = (time_t)(x - leapcorr(sp, &x));
2228 	if (y < t) {
2229 		do {
2230 			x++;
2231 			y = (time_t)(x - leapcorr(sp, &x));
2232 		} while (y < t);
2233 		if (t != y) {
2234 			return x - 1;
2235 		}
2236 	} else if (y > t) {
2237 		do {
2238 			--x;
2239 			y = (time_t)(x - leapcorr(sp, &x));
2240 		} while (y > t);
2241 		if (t != y) {
2242 			return x + 1;
2243 		}
2244 	}
2245 	return x;
2246 }
2247 
2248 
2249 
2250 time_t
2251 posix2time(time_t t)
2252 {
2253 	time_t result;
2254 
2255 	rwlock_wrlock(&lcl_lock);
2256 	tzset_unlocked();
2257 	result = posix2time_z(lclptr, t);
2258 	rwlock_unlock(&lcl_lock);
2259 	return result;
2260 }
2261 
2262 #endif /* defined STD_INSPIRED */
2263