1 /* $NetBSD: localtime.c,v 1.45 2009/12/31 22:49:16 mlelstv Exp $ */ 2 3 /* 4 ** This file is in the public domain, so clarified as of 5 ** 1996-06-05 by Arthur David Olson. 6 */ 7 8 #include <sys/cdefs.h> 9 #if defined(LIBC_SCCS) && !defined(lint) 10 #if 0 11 static char elsieid[] = "@(#)localtime.c 8.9"; 12 #else 13 __RCSID("$NetBSD: localtime.c,v 1.45 2009/12/31 22:49:16 mlelstv Exp $"); 14 #endif 15 #endif /* LIBC_SCCS and not lint */ 16 17 /* 18 ** Leap second handling from Bradley White. 19 ** POSIX-style TZ environment variable handling from Guy Harris. 20 */ 21 22 /*LINTLIBRARY*/ 23 24 #include "namespace.h" 25 #include "private.h" 26 #include "tzfile.h" 27 #include "fcntl.h" 28 #include "reentrant.h" 29 30 #if defined(__weak_alias) 31 __weak_alias(daylight,_daylight) 32 __weak_alias(tzname,_tzname) 33 __weak_alias(tzset,_tzset) 34 __weak_alias(tzsetwall,_tzsetwall) 35 #endif 36 37 #include "float.h" /* for FLT_MAX and DBL_MAX */ 38 39 #ifndef TZ_ABBR_MAX_LEN 40 #define TZ_ABBR_MAX_LEN 16 41 #endif /* !defined TZ_ABBR_MAX_LEN */ 42 43 #ifndef TZ_ABBR_CHAR_SET 44 #define TZ_ABBR_CHAR_SET \ 45 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._" 46 #endif /* !defined TZ_ABBR_CHAR_SET */ 47 48 #ifndef TZ_ABBR_ERR_CHAR 49 #define TZ_ABBR_ERR_CHAR '_' 50 #endif /* !defined TZ_ABBR_ERR_CHAR */ 51 52 /* 53 ** SunOS 4.1.1 headers lack O_BINARY. 54 */ 55 56 #ifdef O_BINARY 57 #define OPEN_MODE (O_RDONLY | O_BINARY) 58 #endif /* defined O_BINARY */ 59 #ifndef O_BINARY 60 #define OPEN_MODE O_RDONLY 61 #endif /* !defined O_BINARY */ 62 63 #ifndef WILDABBR 64 /* 65 ** Someone might make incorrect use of a time zone abbreviation: 66 ** 1. They might reference tzname[0] before calling tzset (explicitly 67 ** or implicitly). 68 ** 2. They might reference tzname[1] before calling tzset (explicitly 69 ** or implicitly). 70 ** 3. They might reference tzname[1] after setting to a time zone 71 ** in which Daylight Saving Time is never observed. 72 ** 4. They might reference tzname[0] after setting to a time zone 73 ** in which Standard Time is never observed. 74 ** 5. They might reference tm.TM_ZONE after calling offtime. 75 ** What's best to do in the above cases is open to debate; 76 ** for now, we just set things up so that in any of the five cases 77 ** WILDABBR is used. Another possibility: initialize tzname[0] to the 78 ** string "tzname[0] used before set", and similarly for the other cases. 79 ** And another: initialize tzname[0] to "ERA", with an explanation in the 80 ** manual page of what this "time zone abbreviation" means (doing this so 81 ** that tzname[0] has the "normal" length of three characters). 82 */ 83 #define WILDABBR " " 84 #endif /* !defined WILDABBR */ 85 86 static const char wildabbr[] = WILDABBR; 87 88 static const char gmt[] = "GMT"; 89 90 /* 91 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES. 92 ** We default to US rules as of 1999-08-17. 93 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are 94 ** implementation dependent; for historical reasons, US rules are a 95 ** common default. 96 */ 97 #ifndef TZDEFRULESTRING 98 #define TZDEFRULESTRING ",M4.1.0,M10.5.0" 99 #endif /* !defined TZDEFDST */ 100 101 struct ttinfo { /* time type information */ 102 long tt_gmtoff; /* UTC offset in seconds */ 103 int tt_isdst; /* used to set tm_isdst */ 104 int tt_abbrind; /* abbreviation list index */ 105 int tt_ttisstd; /* TRUE if transition is std time */ 106 int tt_ttisgmt; /* TRUE if transition is UTC */ 107 }; 108 109 struct lsinfo { /* leap second information */ 110 time_t ls_trans; /* transition time */ 111 long ls_corr; /* correction to apply */ 112 }; 113 114 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b)) 115 116 #ifdef TZNAME_MAX 117 #define MY_TZNAME_MAX TZNAME_MAX 118 #endif /* defined TZNAME_MAX */ 119 #ifndef TZNAME_MAX 120 #define MY_TZNAME_MAX 255 121 #endif /* !defined TZNAME_MAX */ 122 123 struct state { 124 int leapcnt; 125 int timecnt; 126 int typecnt; 127 int charcnt; 128 int goback; 129 int goahead; 130 time_t ats[TZ_MAX_TIMES]; 131 unsigned char types[TZ_MAX_TIMES]; 132 struct ttinfo ttis[TZ_MAX_TYPES]; 133 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt), 134 (2 * (MY_TZNAME_MAX + 1)))]; 135 struct lsinfo lsis[TZ_MAX_LEAPS]; 136 }; 137 138 struct rule { 139 int r_type; /* type of rule--see below */ 140 int r_day; /* day number of rule */ 141 int r_week; /* week number of rule */ 142 int r_mon; /* month number of rule */ 143 long r_time; /* transition time of rule */ 144 }; 145 146 #define JULIAN_DAY 0 /* Jn - Julian day */ 147 #define DAY_OF_YEAR 1 /* n - day of year */ 148 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */ 149 150 /* 151 ** Prototypes for static functions. 152 */ 153 154 static long detzcode(const char * codep); 155 static time_t detzcode64(const char * codep); 156 static int differ_by_repeat(time_t t1, time_t t0); 157 static const char * getzname(const char * strp); 158 static const char * getqzname(const char * strp, const int delim); 159 static const char * getnum(const char * strp, int * nump, int min, 160 int max); 161 static const char * getsecs(const char * strp, long * secsp); 162 static const char * getoffset(const char * strp, long * offsetp); 163 static const char * getrule(const char * strp, struct rule * rulep); 164 static void gmtload(struct state * sp); 165 static struct tm * gmtsub(const time_t * timep, long offset, 166 struct tm * tmp); 167 static struct tm * localsub(const time_t * timep, long offset, 168 struct tm * tmp); 169 static int increment_overflow(int * number, int delta); 170 static int leaps_thru_end_of(int y); 171 static int long_increment_overflow(long * number, int delta); 172 static int long_normalize_overflow(long * tensptr, 173 int * unitsptr, int base); 174 static int normalize_overflow(int * tensptr, int * unitsptr, 175 int base); 176 static void settzname(void); 177 static time_t time1(struct tm * tmp, 178 struct tm * (*funcp)(const time_t *, 179 long, struct tm *), 180 long offset); 181 static time_t time2(struct tm *tmp, 182 struct tm * (*funcp)(const time_t *, 183 long, struct tm*), 184 long offset, int * okayp); 185 static time_t time2sub(struct tm *tmp, 186 struct tm * (*funcp)(const time_t *, 187 long, struct tm*), 188 long offset, int * okayp, int do_norm_secs); 189 static struct tm * timesub(const time_t * timep, long offset, 190 const struct state * sp, struct tm * tmp); 191 static int tmcomp(const struct tm * atmp, 192 const struct tm * btmp); 193 static time_t transtime(time_t janfirst, int year, 194 const struct rule * rulep, long offset); 195 static int typesequiv(const struct state * sp, int a, int b); 196 static int tzload(const char * name, struct state * sp, 197 int doextend); 198 static int tzparse(const char * name, struct state * sp, 199 int lastditch); 200 static void tzset_unlocked(void); 201 static void tzsetwall_unlocked(void); 202 static long leapcorr(time_t * timep); 203 204 #ifdef ALL_STATE 205 static struct state * lclptr; 206 static struct state * gmtptr; 207 #endif /* defined ALL_STATE */ 208 209 #ifndef ALL_STATE 210 static struct state lclmem; 211 static struct state gmtmem; 212 #define lclptr (&lclmem) 213 #define gmtptr (&gmtmem) 214 #endif /* State Farm */ 215 216 #ifndef TZ_STRLEN_MAX 217 #define TZ_STRLEN_MAX 255 218 #endif /* !defined TZ_STRLEN_MAX */ 219 220 static char lcl_TZname[TZ_STRLEN_MAX + 1]; 221 static int lcl_is_set; 222 static int gmt_is_set; 223 224 #if !defined(__LIBC12_SOURCE__) 225 226 __aconst char * tzname[2] = { 227 (__aconst char *)__UNCONST(wildabbr), 228 (__aconst char *)__UNCONST(wildabbr) 229 }; 230 231 #else 232 233 extern __aconst char * tzname[2]; 234 235 #endif 236 237 #ifdef _REENTRANT 238 static rwlock_t lcl_lock = RWLOCK_INITIALIZER; 239 #endif 240 241 /* 242 ** Section 4.12.3 of X3.159-1989 requires that 243 ** Except for the strftime function, these functions [asctime, 244 ** ctime, gmtime, localtime] return values in one of two static 245 ** objects: a broken-down time structure and an array of char. 246 ** Thanks to Paul Eggert for noting this. 247 */ 248 249 static struct tm tm; 250 251 #ifdef USG_COMPAT 252 #if !defined(__LIBC12_SOURCE__) 253 long timezone = 0; 254 int daylight = 0; 255 #else 256 extern int daylight; 257 extern long timezone __RENAME(__timezone13); 258 #endif 259 #endif /* defined USG_COMPAT */ 260 261 #ifdef ALTZONE 262 time_t altzone = 0; 263 #endif /* defined ALTZONE */ 264 265 static long 266 detzcode(codep) 267 const char * const codep; 268 { 269 register long result; 270 register int i; 271 272 result = (codep[0] & 0x80) ? ~0L : 0; 273 for (i = 0; i < 4; ++i) 274 result = (result << 8) | (codep[i] & 0xff); 275 return result; 276 } 277 278 static time_t 279 detzcode64(codep) 280 const char * const codep; 281 { 282 register time_t result; 283 register int i; 284 285 result = (codep[0] & 0x80) ? -1 : 0; 286 for (i = 0; i < 8; ++i) 287 result = result * 256 + (codep[i] & 0xff); 288 return result; 289 } 290 291 static void 292 settzname(void) 293 { 294 register struct state * const sp = lclptr; 295 register int i; 296 297 tzname[0] = (__aconst char *)__UNCONST(wildabbr); 298 tzname[1] = (__aconst char *)__UNCONST(wildabbr); 299 #ifdef USG_COMPAT 300 daylight = 0; 301 timezone = 0; 302 #endif /* defined USG_COMPAT */ 303 #ifdef ALTZONE 304 altzone = 0; 305 #endif /* defined ALTZONE */ 306 #ifdef ALL_STATE 307 if (sp == NULL) { 308 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt); 309 return; 310 } 311 #endif /* defined ALL_STATE */ 312 for (i = 0; i < sp->typecnt; ++i) { 313 register const struct ttinfo * const ttisp = &sp->ttis[i]; 314 315 tzname[ttisp->tt_isdst] = 316 &sp->chars[ttisp->tt_abbrind]; 317 #ifdef USG_COMPAT 318 if (ttisp->tt_isdst) 319 daylight = 1; 320 if (i == 0 || !ttisp->tt_isdst) 321 timezone = -(ttisp->tt_gmtoff); 322 #endif /* defined USG_COMPAT */ 323 #ifdef ALTZONE 324 if (i == 0 || ttisp->tt_isdst) 325 altzone = -(ttisp->tt_gmtoff); 326 #endif /* defined ALTZONE */ 327 } 328 /* 329 ** And to get the latest zone names into tzname. . . 330 */ 331 for (i = 0; i < sp->timecnt; ++i) { 332 register const struct ttinfo * const ttisp = 333 &sp->ttis[ 334 sp->types[i]]; 335 336 tzname[ttisp->tt_isdst] = 337 &sp->chars[ttisp->tt_abbrind]; 338 } 339 /* 340 ** Finally, scrub the abbreviations. 341 ** First, replace bogus characters. 342 */ 343 for (i = 0; i < sp->charcnt; ++i) 344 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL) 345 sp->chars[i] = TZ_ABBR_ERR_CHAR; 346 /* 347 ** Second, truncate long abbreviations. 348 */ 349 for (i = 0; i < sp->typecnt; ++i) { 350 register const struct ttinfo * const ttisp = &sp->ttis[i]; 351 register char * cp = &sp->chars[ttisp->tt_abbrind]; 352 353 if (strlen(cp) > TZ_ABBR_MAX_LEN && 354 strcmp(cp, GRANDPARENTED) != 0) 355 *(cp + TZ_ABBR_MAX_LEN) = '\0'; 356 } 357 } 358 359 static int 360 differ_by_repeat(t1, t0) 361 const time_t t1; 362 const time_t t0; 363 { 364 /* CONSTCOND */ 365 if (TYPE_INTEGRAL(time_t) && 366 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS) 367 return 0; 368 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT; 369 } 370 371 static int 372 tzload(name, sp, doextend) 373 register const char * name; 374 register struct state * const sp; 375 register const int doextend; 376 { 377 register const char * p; 378 register int i; 379 register int fid; 380 register int stored; 381 register int nread; 382 union { 383 struct tzhead tzhead; 384 char buf[2 * sizeof(struct tzhead) + 385 2 * sizeof *sp + 386 4 * TZ_MAX_TIMES]; 387 } u; 388 389 if (name == NULL && (name = TZDEFAULT) == NULL) 390 return -1; 391 { 392 register int doaccess; 393 /* 394 ** Section 4.9.1 of the C standard says that 395 ** "FILENAME_MAX expands to an integral constant expression 396 ** that is the size needed for an array of char large enough 397 ** to hold the longest file name string that the implementation 398 ** guarantees can be opened." 399 */ 400 char fullname[FILENAME_MAX + 1]; 401 402 if (name[0] == ':') 403 ++name; 404 doaccess = name[0] == '/'; 405 if (!doaccess) { 406 if ((p = TZDIR) == NULL) 407 return -1; 408 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) 409 return -1; 410 (void) strcpy(fullname, p); /* XXX strcpy is safe */ 411 (void) strcat(fullname, "/"); /* XXX strcat is safe */ 412 (void) strcat(fullname, name); /* XXX strcat is safe */ 413 /* 414 ** Set doaccess if '.' (as in "../") shows up in name. 415 */ 416 if (strchr(name, '.') != NULL) 417 doaccess = TRUE; 418 name = fullname; 419 } 420 if (doaccess && access(name, R_OK) != 0) 421 return -1; 422 /* 423 * XXX potential security problem here if user of a set-id 424 * program has set TZ (which is passed in as name) here, 425 * and uses a race condition trick to defeat the access(2) 426 * above. 427 */ 428 if ((fid = open(name, OPEN_MODE)) == -1) 429 return -1; 430 } 431 nread = read(fid, u.buf, sizeof u.buf); 432 if (close(fid) < 0 || nread <= 0) 433 return -1; 434 for (stored = 4; stored <= 8; stored *= 2) { 435 int ttisstdcnt; 436 int ttisgmtcnt; 437 438 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt); 439 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt); 440 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt); 441 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt); 442 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt); 443 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt); 444 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt; 445 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS || 446 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES || 447 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES || 448 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS || 449 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || 450 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) 451 return -1; 452 if (nread - (p - u.buf) < 453 sp->timecnt * stored + /* ats */ 454 sp->timecnt + /* types */ 455 sp->typecnt * 6 + /* ttinfos */ 456 sp->charcnt + /* chars */ 457 sp->leapcnt * (stored + 4) + /* lsinfos */ 458 ttisstdcnt + /* ttisstds */ 459 ttisgmtcnt) /* ttisgmts */ 460 return -1; 461 for (i = 0; i < sp->timecnt; ++i) { 462 sp->ats[i] = (stored == 4) ? 463 detzcode(p) : detzcode64(p); 464 p += stored; 465 } 466 for (i = 0; i < sp->timecnt; ++i) { 467 sp->types[i] = (unsigned char) *p++; 468 if (sp->types[i] >= sp->typecnt) 469 return -1; 470 } 471 for (i = 0; i < sp->typecnt; ++i) { 472 register struct ttinfo * ttisp; 473 474 ttisp = &sp->ttis[i]; 475 ttisp->tt_gmtoff = detzcode(p); 476 p += 4; 477 ttisp->tt_isdst = (unsigned char) *p++; 478 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) 479 return -1; 480 ttisp->tt_abbrind = (unsigned char) *p++; 481 if (ttisp->tt_abbrind < 0 || 482 ttisp->tt_abbrind > sp->charcnt) 483 return -1; 484 } 485 for (i = 0; i < sp->charcnt; ++i) 486 sp->chars[i] = *p++; 487 sp->chars[i] = '\0'; /* ensure '\0' at end */ 488 for (i = 0; i < sp->leapcnt; ++i) { 489 register struct lsinfo * lsisp; 490 491 lsisp = &sp->lsis[i]; 492 lsisp->ls_trans = (stored == 4) ? 493 detzcode(p) : detzcode64(p); 494 p += stored; 495 lsisp->ls_corr = detzcode(p); 496 p += 4; 497 } 498 for (i = 0; i < sp->typecnt; ++i) { 499 register struct ttinfo * ttisp; 500 501 ttisp = &sp->ttis[i]; 502 if (ttisstdcnt == 0) 503 ttisp->tt_ttisstd = FALSE; 504 else { 505 ttisp->tt_ttisstd = *p++; 506 if (ttisp->tt_ttisstd != TRUE && 507 ttisp->tt_ttisstd != FALSE) 508 return -1; 509 } 510 } 511 for (i = 0; i < sp->typecnt; ++i) { 512 register struct ttinfo * ttisp; 513 514 ttisp = &sp->ttis[i]; 515 if (ttisgmtcnt == 0) 516 ttisp->tt_ttisgmt = FALSE; 517 else { 518 ttisp->tt_ttisgmt = *p++; 519 if (ttisp->tt_ttisgmt != TRUE && 520 ttisp->tt_ttisgmt != FALSE) 521 return -1; 522 } 523 } 524 /* 525 ** Out-of-sort ats should mean we're running on a 526 ** signed time_t system but using a data file with 527 ** unsigned values (or vice versa). 528 */ 529 for (i = 0; i < sp->timecnt - 2; ++i) 530 if (sp->ats[i] > sp->ats[i + 1]) { 531 ++i; 532 /* CONSTCOND */ 533 if (TYPE_SIGNED(time_t)) { 534 /* 535 ** Ignore the end (easy). 536 */ 537 sp->timecnt = i; 538 } else { 539 /* 540 ** Ignore the beginning (harder). 541 */ 542 register int j; 543 544 for (j = 0; j + i < sp->timecnt; ++j) { 545 sp->ats[j] = sp->ats[j + i]; 546 sp->types[j] = sp->types[j + i]; 547 } 548 sp->timecnt = j; 549 } 550 break; 551 } 552 /* 553 ** If this is an old file, we're done. 554 */ 555 if (u.tzhead.tzh_version[0] == '\0') 556 break; 557 nread -= p - u.buf; 558 for (i = 0; i < nread; ++i) 559 u.buf[i] = p[i]; 560 /* 561 ** If this is a narrow integer time_t system, we're done. 562 */ 563 if (stored >= (int) sizeof(time_t) 564 /* CONSTCOND */ 565 && TYPE_INTEGRAL(time_t)) 566 break; 567 } 568 if (doextend && nread > 2 && 569 u.buf[0] == '\n' && u.buf[nread - 1] == '\n' && 570 sp->typecnt + 2 <= TZ_MAX_TYPES) { 571 struct state ts; 572 register int result; 573 574 u.buf[nread - 1] = '\0'; 575 result = tzparse(&u.buf[1], &ts, FALSE); 576 if (result == 0 && ts.typecnt == 2 && 577 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) { 578 for (i = 0; i < 2; ++i) 579 ts.ttis[i].tt_abbrind += 580 sp->charcnt; 581 for (i = 0; i < ts.charcnt; ++i) 582 sp->chars[sp->charcnt++] = 583 ts.chars[i]; 584 i = 0; 585 while (i < ts.timecnt && 586 ts.ats[i] <= 587 sp->ats[sp->timecnt - 1]) 588 ++i; 589 while (i < ts.timecnt && 590 sp->timecnt < TZ_MAX_TIMES) { 591 sp->ats[sp->timecnt] = 592 ts.ats[i]; 593 sp->types[sp->timecnt] = 594 sp->typecnt + 595 ts.types[i]; 596 ++sp->timecnt; 597 ++i; 598 } 599 sp->ttis[sp->typecnt++] = ts.ttis[0]; 600 sp->ttis[sp->typecnt++] = ts.ttis[1]; 601 } 602 } 603 sp->goback = sp->goahead = FALSE; 604 if (sp->timecnt > 1) { 605 for (i = 1; i < sp->timecnt; ++i) 606 if (typesequiv(sp, sp->types[i], sp->types[0]) && 607 differ_by_repeat(sp->ats[i], sp->ats[0])) { 608 sp->goback = TRUE; 609 break; 610 } 611 for (i = sp->timecnt - 2; i >= 0; --i) 612 if (typesequiv(sp, sp->types[sp->timecnt - 1], 613 sp->types[i]) && 614 differ_by_repeat(sp->ats[sp->timecnt - 1], 615 sp->ats[i])) { 616 sp->goahead = TRUE; 617 break; 618 } 619 } 620 return 0; 621 } 622 623 static int 624 typesequiv(sp, a, b) 625 const struct state * const sp; 626 const int a; 627 const int b; 628 { 629 register int result; 630 631 if (sp == NULL || 632 a < 0 || a >= sp->typecnt || 633 b < 0 || b >= sp->typecnt) 634 result = FALSE; 635 else { 636 register const struct ttinfo * ap = &sp->ttis[a]; 637 register const struct ttinfo * bp = &sp->ttis[b]; 638 result = ap->tt_gmtoff == bp->tt_gmtoff && 639 ap->tt_isdst == bp->tt_isdst && 640 ap->tt_ttisstd == bp->tt_ttisstd && 641 ap->tt_ttisgmt == bp->tt_ttisgmt && 642 strcmp(&sp->chars[ap->tt_abbrind], 643 &sp->chars[bp->tt_abbrind]) == 0; 644 } 645 return result; 646 } 647 648 static const int mon_lengths[2][MONSPERYEAR] = { 649 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, 650 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } 651 }; 652 653 static const int year_lengths[2] = { 654 DAYSPERNYEAR, DAYSPERLYEAR 655 }; 656 657 /* 658 ** Given a pointer into a time zone string, scan until a character that is not 659 ** a valid character in a zone name is found. Return a pointer to that 660 ** character. 661 */ 662 663 static const char * 664 getzname(strp) 665 register const char * strp; 666 { 667 register char c; 668 669 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && 670 c != '+') 671 ++strp; 672 return strp; 673 } 674 675 /* 676 ** Given a pointer into an extended time zone string, scan until the ending 677 ** delimiter of the zone name is located. Return a pointer to the delimiter. 678 ** 679 ** As with getzname above, the legal character set is actually quite 680 ** restricted, with other characters producing undefined results. 681 ** We don't do any checking here; checking is done later in common-case code. 682 */ 683 684 static const char * 685 getqzname(register const char *strp, const int delim) 686 { 687 register int c; 688 689 while ((c = *strp) != '\0' && c != delim) 690 ++strp; 691 return strp; 692 } 693 694 /* 695 ** Given a pointer into a time zone string, extract a number from that string. 696 ** Check that the number is within a specified range; if it is not, return 697 ** NULL. 698 ** Otherwise, return a pointer to the first character not part of the number. 699 */ 700 701 static const char * 702 getnum(strp, nump, min, max) 703 register const char * strp; 704 int * const nump; 705 const int min; 706 const int max; 707 { 708 register char c; 709 register int num; 710 711 if (strp == NULL || !is_digit(c = *strp)) 712 return NULL; 713 num = 0; 714 do { 715 num = num * 10 + (c - '0'); 716 if (num > max) 717 return NULL; /* illegal value */ 718 c = *++strp; 719 } while (is_digit(c)); 720 if (num < min) 721 return NULL; /* illegal value */ 722 *nump = num; 723 return strp; 724 } 725 726 /* 727 ** Given a pointer into a time zone string, extract a number of seconds, 728 ** in hh[:mm[:ss]] form, from the string. 729 ** If any error occurs, return NULL. 730 ** Otherwise, return a pointer to the first character not part of the number 731 ** of seconds. 732 */ 733 734 static const char * 735 getsecs(strp, secsp) 736 register const char * strp; 737 long * const secsp; 738 { 739 int num; 740 741 /* 742 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like 743 ** "M10.4.6/26", which does not conform to Posix, 744 ** but which specifies the equivalent of 745 ** ``02:00 on the first Sunday on or after 23 Oct''. 746 */ 747 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); 748 if (strp == NULL) 749 return NULL; 750 *secsp = num * (long) SECSPERHOUR; 751 if (*strp == ':') { 752 ++strp; 753 strp = getnum(strp, &num, 0, MINSPERHOUR - 1); 754 if (strp == NULL) 755 return NULL; 756 *secsp += num * SECSPERMIN; 757 if (*strp == ':') { 758 ++strp; 759 /* `SECSPERMIN' allows for leap seconds. */ 760 strp = getnum(strp, &num, 0, SECSPERMIN); 761 if (strp == NULL) 762 return NULL; 763 *secsp += num; 764 } 765 } 766 return strp; 767 } 768 769 /* 770 ** Given a pointer into a time zone string, extract an offset, in 771 ** [+-]hh[:mm[:ss]] form, from the string. 772 ** If any error occurs, return NULL. 773 ** Otherwise, return a pointer to the first character not part of the time. 774 */ 775 776 static const char * 777 getoffset(strp, offsetp) 778 register const char * strp; 779 long * const offsetp; 780 { 781 register int neg = 0; 782 783 if (*strp == '-') { 784 neg = 1; 785 ++strp; 786 } else if (*strp == '+') 787 ++strp; 788 strp = getsecs(strp, offsetp); 789 if (strp == NULL) 790 return NULL; /* illegal time */ 791 if (neg) 792 *offsetp = -*offsetp; 793 return strp; 794 } 795 796 /* 797 ** Given a pointer into a time zone string, extract a rule in the form 798 ** date[/time]. See POSIX section 8 for the format of "date" and "time". 799 ** If a valid rule is not found, return NULL. 800 ** Otherwise, return a pointer to the first character not part of the rule. 801 */ 802 803 static const char * 804 getrule(strp, rulep) 805 const char * strp; 806 register struct rule * const rulep; 807 { 808 if (*strp == 'J') { 809 /* 810 ** Julian day. 811 */ 812 rulep->r_type = JULIAN_DAY; 813 ++strp; 814 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); 815 } else if (*strp == 'M') { 816 /* 817 ** Month, week, day. 818 */ 819 rulep->r_type = MONTH_NTH_DAY_OF_WEEK; 820 ++strp; 821 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); 822 if (strp == NULL) 823 return NULL; 824 if (*strp++ != '.') 825 return NULL; 826 strp = getnum(strp, &rulep->r_week, 1, 5); 827 if (strp == NULL) 828 return NULL; 829 if (*strp++ != '.') 830 return NULL; 831 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); 832 } else if (is_digit(*strp)) { 833 /* 834 ** Day of year. 835 */ 836 rulep->r_type = DAY_OF_YEAR; 837 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); 838 } else return NULL; /* invalid format */ 839 if (strp == NULL) 840 return NULL; 841 if (*strp == '/') { 842 /* 843 ** Time specified. 844 */ 845 ++strp; 846 strp = getsecs(strp, &rulep->r_time); 847 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ 848 return strp; 849 } 850 851 /* 852 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the 853 ** year, a rule, and the offset from UTC at the time that rule takes effect, 854 ** calculate the Epoch-relative time that rule takes effect. 855 */ 856 857 static time_t 858 transtime(janfirst, year, rulep, offset) 859 const time_t janfirst; 860 const int year; 861 register const struct rule * const rulep; 862 const long offset; 863 { 864 register int leapyear; 865 register time_t value; 866 register int i; 867 int d, m1, yy0, yy1, yy2, dow; 868 869 INITIALIZE(value); 870 leapyear = isleap(year); 871 switch (rulep->r_type) { 872 873 case JULIAN_DAY: 874 /* 875 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap 876 ** years. 877 ** In non-leap years, or if the day number is 59 or less, just 878 ** add SECSPERDAY times the day number-1 to the time of 879 ** January 1, midnight, to get the day. 880 */ 881 value = janfirst + (rulep->r_day - 1) * SECSPERDAY; 882 if (leapyear && rulep->r_day >= 60) 883 value += SECSPERDAY; 884 break; 885 886 case DAY_OF_YEAR: 887 /* 888 ** n - day of year. 889 ** Just add SECSPERDAY times the day number to the time of 890 ** January 1, midnight, to get the day. 891 */ 892 value = janfirst + rulep->r_day * SECSPERDAY; 893 break; 894 895 case MONTH_NTH_DAY_OF_WEEK: 896 /* 897 ** Mm.n.d - nth "dth day" of month m. 898 */ 899 value = janfirst; 900 for (i = 0; i < rulep->r_mon - 1; ++i) 901 value += mon_lengths[leapyear][i] * SECSPERDAY; 902 903 /* 904 ** Use Zeller's Congruence to get day-of-week of first day of 905 ** month. 906 */ 907 m1 = (rulep->r_mon + 9) % 12 + 1; 908 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; 909 yy1 = yy0 / 100; 910 yy2 = yy0 % 100; 911 dow = ((26 * m1 - 2) / 10 + 912 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; 913 if (dow < 0) 914 dow += DAYSPERWEEK; 915 916 /* 917 ** "dow" is the day-of-week of the first day of the month. Get 918 ** the day-of-month (zero-origin) of the first "dow" day of the 919 ** month. 920 */ 921 d = rulep->r_day - dow; 922 if (d < 0) 923 d += DAYSPERWEEK; 924 for (i = 1; i < rulep->r_week; ++i) { 925 if (d + DAYSPERWEEK >= 926 mon_lengths[leapyear][rulep->r_mon - 1]) 927 break; 928 d += DAYSPERWEEK; 929 } 930 931 /* 932 ** "d" is the day-of-month (zero-origin) of the day we want. 933 */ 934 value += d * SECSPERDAY; 935 break; 936 } 937 938 /* 939 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in 940 ** question. To get the Epoch-relative time of the specified local 941 ** time on that day, add the transition time and the current offset 942 ** from UTC. 943 */ 944 return value + rulep->r_time + offset; 945 } 946 947 /* 948 ** Given a POSIX section 8-style TZ string, fill in the rule tables as 949 ** appropriate. 950 */ 951 952 static int 953 tzparse(name, sp, lastditch) 954 const char * name; 955 register struct state * const sp; 956 const int lastditch; 957 { 958 const char * stdname; 959 const char * dstname; 960 size_t stdlen; 961 size_t dstlen; 962 long stdoffset; 963 long dstoffset; 964 register time_t * atp; 965 register unsigned char * typep; 966 register char * cp; 967 register int load_result; 968 969 INITIALIZE(dstname); 970 stdname = name; 971 if (lastditch) { 972 stdlen = strlen(name); /* length of standard zone name */ 973 name += stdlen; 974 if (stdlen >= sizeof sp->chars) 975 stdlen = (sizeof sp->chars) - 1; 976 stdoffset = 0; 977 } else { 978 if (*name == '<') { 979 name++; 980 stdname = name; 981 name = getqzname(name, '>'); 982 if (*name != '>') 983 return (-1); 984 stdlen = name - stdname; 985 name++; 986 } else { 987 name = getzname(name); 988 stdlen = name - stdname; 989 } 990 if (*name == '\0') 991 return -1; 992 name = getoffset(name, &stdoffset); 993 if (name == NULL) 994 return -1; 995 } 996 load_result = tzload(TZDEFRULES, sp, FALSE); 997 if (load_result != 0) 998 sp->leapcnt = 0; /* so, we're off a little */ 999 if (*name != '\0') { 1000 if (*name == '<') { 1001 dstname = ++name; 1002 name = getqzname(name, '>'); 1003 if (*name != '>') 1004 return -1; 1005 dstlen = name - dstname; 1006 name++; 1007 } else { 1008 dstname = name; 1009 name = getzname(name); 1010 dstlen = name - dstname; /* length of DST zone name */ 1011 } 1012 if (*name != '\0' && *name != ',' && *name != ';') { 1013 name = getoffset(name, &dstoffset); 1014 if (name == NULL) 1015 return -1; 1016 } else dstoffset = stdoffset - SECSPERHOUR; 1017 if (*name == '\0' && load_result != 0) 1018 name = TZDEFRULESTRING; 1019 if (*name == ',' || *name == ';') { 1020 struct rule start; 1021 struct rule end; 1022 register int year; 1023 register time_t janfirst; 1024 time_t starttime; 1025 time_t endtime; 1026 1027 ++name; 1028 if ((name = getrule(name, &start)) == NULL) 1029 return -1; 1030 if (*name++ != ',') 1031 return -1; 1032 if ((name = getrule(name, &end)) == NULL) 1033 return -1; 1034 if (*name != '\0') 1035 return -1; 1036 sp->typecnt = 2; /* standard time and DST */ 1037 /* 1038 ** Two transitions per year, from EPOCH_YEAR forward. 1039 */ 1040 sp->ttis[0].tt_gmtoff = -dstoffset; 1041 sp->ttis[0].tt_isdst = 1; 1042 sp->ttis[0].tt_abbrind = stdlen + 1; 1043 sp->ttis[1].tt_gmtoff = -stdoffset; 1044 sp->ttis[1].tt_isdst = 0; 1045 sp->ttis[1].tt_abbrind = 0; 1046 atp = sp->ats; 1047 typep = sp->types; 1048 janfirst = 0; 1049 sp->timecnt = 0; 1050 for (year = EPOCH_YEAR; 1051 sp->timecnt + 2 <= TZ_MAX_TIMES; 1052 ++year) { 1053 time_t newfirst; 1054 1055 starttime = transtime(janfirst, year, &start, 1056 stdoffset); 1057 endtime = transtime(janfirst, year, &end, 1058 dstoffset); 1059 if (starttime > endtime) { 1060 *atp++ = endtime; 1061 *typep++ = 1; /* DST ends */ 1062 *atp++ = starttime; 1063 *typep++ = 0; /* DST begins */ 1064 } else { 1065 *atp++ = starttime; 1066 *typep++ = 0; /* DST begins */ 1067 *atp++ = endtime; 1068 *typep++ = 1; /* DST ends */ 1069 } 1070 sp->timecnt += 2; 1071 newfirst = janfirst; 1072 newfirst += year_lengths[isleap(year)] * 1073 SECSPERDAY; 1074 if (newfirst <= janfirst) 1075 break; 1076 janfirst = newfirst; 1077 } 1078 } else { 1079 register long theirstdoffset; 1080 register long theirdstoffset; 1081 register long theiroffset; 1082 register int isdst; 1083 register int i; 1084 register int j; 1085 1086 if (*name != '\0') 1087 return -1; 1088 /* 1089 ** Initial values of theirstdoffset 1090 */ 1091 theirstdoffset = 0; 1092 for (i = 0; i < sp->timecnt; ++i) { 1093 j = sp->types[i]; 1094 if (!sp->ttis[j].tt_isdst) { 1095 theirstdoffset = 1096 -sp->ttis[j].tt_gmtoff; 1097 break; 1098 } 1099 } 1100 theirdstoffset = 0; 1101 for (i = 0; i < sp->timecnt; ++i) { 1102 j = sp->types[i]; 1103 if (sp->ttis[j].tt_isdst) { 1104 theirdstoffset = 1105 -sp->ttis[j].tt_gmtoff; 1106 break; 1107 } 1108 } 1109 /* 1110 ** Initially we're assumed to be in standard time. 1111 */ 1112 isdst = FALSE; 1113 theiroffset = theirstdoffset; 1114 /* 1115 ** Now juggle transition times and types 1116 ** tracking offsets as you do. 1117 */ 1118 for (i = 0; i < sp->timecnt; ++i) { 1119 j = sp->types[i]; 1120 sp->types[i] = sp->ttis[j].tt_isdst; 1121 if (sp->ttis[j].tt_ttisgmt) { 1122 /* No adjustment to transition time */ 1123 } else { 1124 /* 1125 ** If summer time is in effect, and the 1126 ** transition time was not specified as 1127 ** standard time, add the summer time 1128 ** offset to the transition time; 1129 ** otherwise, add the standard time 1130 ** offset to the transition time. 1131 */ 1132 /* 1133 ** Transitions from DST to DDST 1134 ** will effectively disappear since 1135 ** POSIX provides for only one DST 1136 ** offset. 1137 */ 1138 if (isdst && !sp->ttis[j].tt_ttisstd) { 1139 sp->ats[i] += dstoffset - 1140 theirdstoffset; 1141 } else { 1142 sp->ats[i] += stdoffset - 1143 theirstdoffset; 1144 } 1145 } 1146 theiroffset = -sp->ttis[j].tt_gmtoff; 1147 if (!sp->ttis[j].tt_isdst) 1148 theirstdoffset = theiroffset; 1149 else theirdstoffset = theiroffset; 1150 } 1151 /* 1152 ** Finally, fill in ttis. 1153 ** ttisstd and ttisgmt need not be handled. 1154 */ 1155 sp->ttis[0].tt_gmtoff = -stdoffset; 1156 sp->ttis[0].tt_isdst = FALSE; 1157 sp->ttis[0].tt_abbrind = 0; 1158 sp->ttis[1].tt_gmtoff = -dstoffset; 1159 sp->ttis[1].tt_isdst = TRUE; 1160 sp->ttis[1].tt_abbrind = stdlen + 1; 1161 sp->typecnt = 2; 1162 } 1163 } else { 1164 dstlen = 0; 1165 sp->typecnt = 1; /* only standard time */ 1166 sp->timecnt = 0; 1167 sp->ttis[0].tt_gmtoff = -stdoffset; 1168 sp->ttis[0].tt_isdst = 0; 1169 sp->ttis[0].tt_abbrind = 0; 1170 } 1171 sp->charcnt = stdlen + 1; 1172 if (dstlen != 0) 1173 sp->charcnt += dstlen + 1; 1174 if ((size_t) sp->charcnt > sizeof sp->chars) 1175 return -1; 1176 cp = sp->chars; 1177 (void) strncpy(cp, stdname, stdlen); 1178 cp += stdlen; 1179 *cp++ = '\0'; 1180 if (dstlen != 0) { 1181 (void) strncpy(cp, dstname, dstlen); 1182 *(cp + dstlen) = '\0'; 1183 } 1184 return 0; 1185 } 1186 1187 static void 1188 gmtload(sp) 1189 struct state * const sp; 1190 { 1191 if (tzload(gmt, sp, TRUE) != 0) 1192 (void) tzparse(gmt, sp, TRUE); 1193 } 1194 1195 static void 1196 tzsetwall_unlocked(void) 1197 { 1198 if (lcl_is_set < 0) 1199 return; 1200 lcl_is_set = -1; 1201 1202 #ifdef ALL_STATE 1203 if (lclptr == NULL) { 1204 int saveerrno = errno; 1205 lclptr = (struct state *) malloc(sizeof *lclptr); 1206 errno = saveerrno; 1207 if (lclptr == NULL) { 1208 settzname(); /* all we can do */ 1209 return; 1210 } 1211 } 1212 #endif /* defined ALL_STATE */ 1213 if (tzload((char *) NULL, lclptr, TRUE) != 0) 1214 gmtload(lclptr); 1215 settzname(); 1216 } 1217 1218 #ifndef STD_INSPIRED 1219 /* 1220 ** A non-static declaration of tzsetwall in a system header file 1221 ** may cause a warning about this upcoming static declaration... 1222 */ 1223 static 1224 #endif /* !defined STD_INSPIRED */ 1225 void 1226 tzsetwall(void) 1227 { 1228 rwlock_wrlock(&lcl_lock); 1229 tzsetwall_unlocked(); 1230 rwlock_unlock(&lcl_lock); 1231 } 1232 1233 #ifndef STD_INSPIRED 1234 /* 1235 ** A non-static declaration of tzsetwall in a system header file 1236 ** may cause a warning about this upcoming static declaration... 1237 */ 1238 static 1239 #endif /* !defined STD_INSPIRED */ 1240 void 1241 tzset_unlocked(void) 1242 { 1243 register const char * name; 1244 int saveerrno; 1245 1246 saveerrno = errno; 1247 name = getenv("TZ"); 1248 errno = saveerrno; 1249 if (name == NULL) { 1250 tzsetwall_unlocked(); 1251 return; 1252 } 1253 1254 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) 1255 return; 1256 lcl_is_set = strlen(name) < sizeof lcl_TZname; 1257 if (lcl_is_set) 1258 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname)); 1259 1260 #ifdef ALL_STATE 1261 if (lclptr == NULL) { 1262 saveerrno = errno; 1263 lclptr = (struct state *) malloc(sizeof *lclptr); 1264 errno = saveerrno; 1265 if (lclptr == NULL) { 1266 settzname(); /* all we can do */ 1267 return; 1268 } 1269 } 1270 #endif /* defined ALL_STATE */ 1271 if (*name == '\0') { 1272 /* 1273 ** User wants it fast rather than right. 1274 */ 1275 lclptr->leapcnt = 0; /* so, we're off a little */ 1276 lclptr->timecnt = 0; 1277 lclptr->typecnt = 0; 1278 lclptr->ttis[0].tt_isdst = 0; 1279 lclptr->ttis[0].tt_gmtoff = 0; 1280 lclptr->ttis[0].tt_abbrind = 0; 1281 (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars)); 1282 } else if (tzload(name, lclptr, TRUE) != 0) 1283 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0) 1284 (void) gmtload(lclptr); 1285 settzname(); 1286 } 1287 1288 void 1289 tzset(void) 1290 { 1291 rwlock_wrlock(&lcl_lock); 1292 tzset_unlocked(); 1293 rwlock_unlock(&lcl_lock); 1294 } 1295 1296 /* 1297 ** The easy way to behave "as if no library function calls" localtime 1298 ** is to not call it--so we drop its guts into "localsub", which can be 1299 ** freely called. (And no, the PANS doesn't require the above behavior-- 1300 ** but it *is* desirable.) 1301 ** 1302 ** The unused offset argument is for the benefit of mktime variants. 1303 */ 1304 1305 /*ARGSUSED*/ 1306 static struct tm * 1307 localsub(timep, offset, tmp) 1308 const time_t * const timep; 1309 const long offset; 1310 struct tm * const tmp; 1311 { 1312 register struct state * sp; 1313 register const struct ttinfo * ttisp; 1314 register int i; 1315 register struct tm * result; 1316 const time_t t = *timep; 1317 1318 sp = lclptr; 1319 #ifdef ALL_STATE 1320 if (sp == NULL) 1321 return gmtsub(timep, offset, tmp); 1322 #endif /* defined ALL_STATE */ 1323 if ((sp->goback && t < sp->ats[0]) || 1324 (sp->goahead && t > sp->ats[sp->timecnt - 1])) { 1325 time_t newt = t; 1326 register time_t seconds; 1327 register time_t tcycles; 1328 register int_fast64_t icycles; 1329 1330 if (t < sp->ats[0]) 1331 seconds = sp->ats[0] - t; 1332 else seconds = t - sp->ats[sp->timecnt - 1]; 1333 --seconds; 1334 tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR; 1335 ++tcycles; 1336 icycles = tcycles; 1337 if (tcycles - icycles >= 1 || icycles - tcycles >= 1) 1338 return NULL; 1339 seconds = (time_t) icycles; 1340 seconds *= YEARSPERREPEAT; 1341 seconds *= AVGSECSPERYEAR; 1342 if (t < sp->ats[0]) 1343 newt += seconds; 1344 else newt -= seconds; 1345 if (newt < sp->ats[0] || 1346 newt > sp->ats[sp->timecnt - 1]) 1347 return NULL; /* "cannot happen" */ 1348 result = localsub(&newt, offset, tmp); 1349 if (result == tmp) { 1350 register time_t newy; 1351 1352 newy = tmp->tm_year; 1353 if (t < sp->ats[0]) 1354 newy -= (time_t)icycles * YEARSPERREPEAT; 1355 else newy += (time_t)icycles * YEARSPERREPEAT; 1356 tmp->tm_year = (int)newy; 1357 if (tmp->tm_year != newy) 1358 return NULL; 1359 } 1360 return result; 1361 } 1362 if (sp->timecnt == 0 || t < sp->ats[0]) { 1363 i = 0; 1364 while (sp->ttis[i].tt_isdst) 1365 if (++i >= sp->typecnt) { 1366 i = 0; 1367 break; 1368 } 1369 } else { 1370 register int lo = 1; 1371 register int hi = sp->timecnt; 1372 1373 while (lo < hi) { 1374 register int mid = (lo + hi) / 2; 1375 1376 if (t < sp->ats[mid]) 1377 hi = mid; 1378 else lo = mid + 1; 1379 } 1380 i = (int) sp->types[lo - 1]; 1381 } 1382 ttisp = &sp->ttis[i]; 1383 /* 1384 ** To get (wrong) behavior that's compatible with System V Release 2.0 1385 ** you'd replace the statement below with 1386 ** t += ttisp->tt_gmtoff; 1387 ** timesub(&t, 0L, sp, tmp); 1388 */ 1389 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp); 1390 tmp->tm_isdst = ttisp->tt_isdst; 1391 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind]; 1392 #ifdef TM_ZONE 1393 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind]; 1394 #endif /* defined TM_ZONE */ 1395 return result; 1396 } 1397 1398 struct tm * 1399 localtime(timep) 1400 const time_t * const timep; 1401 { 1402 struct tm *result; 1403 1404 rwlock_wrlock(&lcl_lock); 1405 tzset_unlocked(); 1406 result = localsub(timep, 0L, &tm); 1407 rwlock_unlock(&lcl_lock); 1408 return result; 1409 } 1410 1411 /* 1412 ** Re-entrant version of localtime. 1413 */ 1414 1415 struct tm * 1416 localtime_r(timep, tmp) 1417 const time_t * const timep; 1418 struct tm * tmp; 1419 { 1420 struct tm *result; 1421 1422 rwlock_rdlock(&lcl_lock); 1423 tzset_unlocked(); 1424 result = localsub(timep, 0L, tmp); 1425 rwlock_unlock(&lcl_lock); 1426 return result; 1427 } 1428 1429 /* 1430 ** gmtsub is to gmtime as localsub is to localtime. 1431 */ 1432 1433 static struct tm * 1434 gmtsub(timep, offset, tmp) 1435 const time_t * const timep; 1436 const long offset; 1437 struct tm * const tmp; 1438 { 1439 register struct tm * result; 1440 #ifdef _REENTRANT 1441 static mutex_t gmt_mutex = MUTEX_INITIALIZER; 1442 #endif 1443 1444 mutex_lock(&gmt_mutex); 1445 if (!gmt_is_set) { 1446 #ifdef ALL_STATE 1447 int saveerrno; 1448 #endif 1449 gmt_is_set = TRUE; 1450 #ifdef ALL_STATE 1451 saveerrno = errno; 1452 gmtptr = (struct state *) malloc(sizeof *gmtptr); 1453 errno = saveerrno; 1454 if (gmtptr != NULL) 1455 #endif /* defined ALL_STATE */ 1456 gmtload(gmtptr); 1457 } 1458 mutex_unlock(&gmt_mutex); 1459 result = timesub(timep, offset, gmtptr, tmp); 1460 #ifdef TM_ZONE 1461 /* 1462 ** Could get fancy here and deliver something such as 1463 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero, 1464 ** but this is no time for a treasure hunt. 1465 */ 1466 if (offset != 0) 1467 tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr); 1468 else { 1469 #ifdef ALL_STATE 1470 if (gmtptr == NULL) 1471 tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt); 1472 else tmp->TM_ZONE = gmtptr->chars; 1473 #endif /* defined ALL_STATE */ 1474 #ifndef ALL_STATE 1475 tmp->TM_ZONE = gmtptr->chars; 1476 #endif /* State Farm */ 1477 } 1478 #endif /* defined TM_ZONE */ 1479 return result; 1480 } 1481 1482 struct tm * 1483 gmtime(timep) 1484 const time_t * const timep; 1485 { 1486 return gmtsub(timep, 0L, &tm); 1487 } 1488 1489 /* 1490 ** Re-entrant version of gmtime. 1491 */ 1492 1493 struct tm * 1494 gmtime_r(timep, tmp) 1495 const time_t * const timep; 1496 struct tm * tmp; 1497 { 1498 return gmtsub(timep, 0L, tmp); 1499 } 1500 1501 #ifdef STD_INSPIRED 1502 1503 struct tm * 1504 offtime(timep, offset) 1505 const time_t * const timep; 1506 const long offset; 1507 { 1508 return gmtsub(timep, offset, &tm); 1509 } 1510 1511 #endif /* defined STD_INSPIRED */ 1512 1513 /* 1514 ** Return the number of leap years through the end of the given year 1515 ** where, to make the math easy, the answer for year zero is defined as zero. 1516 */ 1517 1518 static int 1519 leaps_thru_end_of(y) 1520 register const int y; 1521 { 1522 return (y >= 0) ? (y / 4 - y / 100 + y / 400) : 1523 -(leaps_thru_end_of(-(y + 1)) + 1); 1524 } 1525 1526 static struct tm * 1527 timesub(timep, offset, sp, tmp) 1528 const time_t * const timep; 1529 const long offset; 1530 register const struct state * const sp; 1531 register struct tm * const tmp; 1532 { 1533 register const struct lsinfo * lp; 1534 register time_t tdays; 1535 register int idays; /* unsigned would be so 2003 */ 1536 register long rem; 1537 int y; 1538 register const int * ip; 1539 register long corr; 1540 register int hit; 1541 register int i; 1542 1543 corr = 0; 1544 hit = 0; 1545 #ifdef ALL_STATE 1546 i = (sp == NULL) ? 0 : sp->leapcnt; 1547 #endif /* defined ALL_STATE */ 1548 #ifndef ALL_STATE 1549 i = sp->leapcnt; 1550 #endif /* State Farm */ 1551 while (--i >= 0) { 1552 lp = &sp->lsis[i]; 1553 if (*timep >= lp->ls_trans) { 1554 if (*timep == lp->ls_trans) { 1555 hit = ((i == 0 && lp->ls_corr > 0) || 1556 lp->ls_corr > sp->lsis[i - 1].ls_corr); 1557 if (hit) 1558 while (i > 0 && 1559 sp->lsis[i].ls_trans == 1560 sp->lsis[i - 1].ls_trans + 1 && 1561 sp->lsis[i].ls_corr == 1562 sp->lsis[i - 1].ls_corr + 1) { 1563 ++hit; 1564 --i; 1565 } 1566 } 1567 corr = lp->ls_corr; 1568 break; 1569 } 1570 } 1571 y = EPOCH_YEAR; 1572 tdays = *timep / SECSPERDAY; 1573 rem = (long) (*timep - tdays * SECSPERDAY); 1574 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) { 1575 int newy; 1576 register time_t tdelta; 1577 register int idelta; 1578 register int leapdays; 1579 1580 tdelta = tdays / DAYSPERLYEAR; 1581 idelta = (int) tdelta; 1582 if (tdelta - idelta >= 1 || idelta - tdelta >= 1) 1583 return NULL; 1584 if (idelta == 0) 1585 idelta = (tdays < 0) ? -1 : 1; 1586 newy = y; 1587 if (increment_overflow(&newy, idelta)) 1588 return NULL; 1589 leapdays = leaps_thru_end_of(newy - 1) - 1590 leaps_thru_end_of(y - 1); 1591 tdays -= ((time_t) newy - y) * DAYSPERNYEAR; 1592 tdays -= leapdays; 1593 y = newy; 1594 } 1595 { 1596 register long seconds; 1597 1598 seconds = tdays * SECSPERDAY + 0.5; 1599 tdays = seconds / SECSPERDAY; 1600 rem += (long) (seconds - tdays * SECSPERDAY); 1601 } 1602 /* 1603 ** Given the range, we can now fearlessly cast... 1604 */ 1605 idays = (int) tdays; 1606 rem += offset - corr; 1607 while (rem < 0) { 1608 rem += SECSPERDAY; 1609 --idays; 1610 } 1611 while (rem >= SECSPERDAY) { 1612 rem -= SECSPERDAY; 1613 ++idays; 1614 } 1615 while (idays < 0) { 1616 if (increment_overflow(&y, -1)) 1617 return NULL; 1618 idays += year_lengths[isleap(y)]; 1619 } 1620 while (idays >= year_lengths[isleap(y)]) { 1621 idays -= year_lengths[isleap(y)]; 1622 if (increment_overflow(&y, 1)) 1623 return NULL; 1624 } 1625 tmp->tm_year = y; 1626 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) 1627 return NULL; 1628 tmp->tm_yday = idays; 1629 /* 1630 ** The "extra" mods below avoid overflow problems. 1631 */ 1632 tmp->tm_wday = EPOCH_WDAY + 1633 ((y - EPOCH_YEAR) % DAYSPERWEEK) * 1634 (DAYSPERNYEAR % DAYSPERWEEK) + 1635 leaps_thru_end_of(y - 1) - 1636 leaps_thru_end_of(EPOCH_YEAR - 1) + 1637 idays; 1638 tmp->tm_wday %= DAYSPERWEEK; 1639 if (tmp->tm_wday < 0) 1640 tmp->tm_wday += DAYSPERWEEK; 1641 tmp->tm_hour = (int) (rem / SECSPERHOUR); 1642 rem %= SECSPERHOUR; 1643 tmp->tm_min = (int) (rem / SECSPERMIN); 1644 /* 1645 ** A positive leap second requires a special 1646 ** representation. This uses "... ??:59:60" et seq. 1647 */ 1648 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; 1649 ip = mon_lengths[isleap(y)]; 1650 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) 1651 idays -= ip[tmp->tm_mon]; 1652 tmp->tm_mday = (int) (idays + 1); 1653 tmp->tm_isdst = 0; 1654 #ifdef TM_GMTOFF 1655 tmp->TM_GMTOFF = offset; 1656 #endif /* defined TM_GMTOFF */ 1657 return tmp; 1658 } 1659 1660 char * 1661 ctime(timep) 1662 const time_t * const timep; 1663 { 1664 /* 1665 ** Section 4.12.3.2 of X3.159-1989 requires that 1666 ** The ctime function converts the calendar time pointed to by timer 1667 ** to local time in the form of a string. It is equivalent to 1668 ** asctime(localtime(timer)) 1669 */ 1670 return asctime(localtime(timep)); 1671 } 1672 1673 char * 1674 ctime_r(timep, buf) 1675 const time_t * const timep; 1676 char * buf; 1677 { 1678 struct tm mytm; 1679 1680 return asctime_r(localtime_r(timep, &mytm), buf); 1681 } 1682 1683 /* 1684 ** Adapted from code provided by Robert Elz, who writes: 1685 ** The "best" way to do mktime I think is based on an idea of Bob 1686 ** Kridle's (so its said...) from a long time ago. 1687 ** It does a binary search of the time_t space. Since time_t's are 1688 ** just 32 bits, its a max of 32 iterations (even at 64 bits it 1689 ** would still be very reasonable). 1690 */ 1691 1692 #ifndef WRONG 1693 #define WRONG (-1) 1694 #endif /* !defined WRONG */ 1695 1696 /* 1697 ** Simplified normalize logic courtesy Paul Eggert. 1698 */ 1699 1700 static int 1701 increment_overflow(number, delta) 1702 int * number; 1703 int delta; 1704 { 1705 int number0; 1706 1707 number0 = *number; 1708 *number += delta; 1709 return (*number < number0) != (delta < 0); 1710 } 1711 1712 static int 1713 long_increment_overflow(number, delta) 1714 long * number; 1715 int delta; 1716 { 1717 long number0; 1718 1719 number0 = *number; 1720 *number += delta; 1721 return (*number < number0) != (delta < 0); 1722 } 1723 1724 static int 1725 normalize_overflow(tensptr, unitsptr, base) 1726 int * const tensptr; 1727 int * const unitsptr; 1728 const int base; 1729 { 1730 register int tensdelta; 1731 1732 tensdelta = (*unitsptr >= 0) ? 1733 (*unitsptr / base) : 1734 (-1 - (-1 - *unitsptr) / base); 1735 *unitsptr -= tensdelta * base; 1736 return increment_overflow(tensptr, tensdelta); 1737 } 1738 1739 static int 1740 long_normalize_overflow(tensptr, unitsptr, base) 1741 long * const tensptr; 1742 int * const unitsptr; 1743 const int base; 1744 { 1745 register int tensdelta; 1746 1747 tensdelta = (*unitsptr >= 0) ? 1748 (*unitsptr / base) : 1749 (-1 - (-1 - *unitsptr) / base); 1750 *unitsptr -= tensdelta * base; 1751 return long_increment_overflow(tensptr, tensdelta); 1752 } 1753 1754 static int 1755 tmcomp(atmp, btmp) 1756 register const struct tm * const atmp; 1757 register const struct tm * const btmp; 1758 { 1759 register int result; 1760 1761 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 && 1762 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 && 1763 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && 1764 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && 1765 (result = (atmp->tm_min - btmp->tm_min)) == 0) 1766 result = atmp->tm_sec - btmp->tm_sec; 1767 return result; 1768 } 1769 1770 static time_t 1771 time2sub(tmp, funcp, offset, okayp, do_norm_secs) 1772 struct tm * const tmp; 1773 struct tm * (* const funcp)(const time_t*, long, struct tm*); 1774 const long offset; 1775 int * const okayp; 1776 const int do_norm_secs; 1777 { 1778 register const struct state * sp; 1779 register int dir; 1780 register int i, j; 1781 register int saved_seconds; 1782 register long li; 1783 register time_t lo; 1784 register time_t hi; 1785 long y; 1786 time_t newt; 1787 time_t t; 1788 struct tm yourtm, mytm; 1789 1790 *okayp = FALSE; 1791 yourtm = *tmp; 1792 if (do_norm_secs) { 1793 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, 1794 SECSPERMIN)) 1795 return WRONG; 1796 } 1797 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) 1798 return WRONG; 1799 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) 1800 return WRONG; 1801 y = yourtm.tm_year; 1802 if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR)) 1803 return WRONG; 1804 /* 1805 ** Turn y into an actual year number for now. 1806 ** It is converted back to an offset from TM_YEAR_BASE later. 1807 */ 1808 if (long_increment_overflow(&y, TM_YEAR_BASE)) 1809 return WRONG; 1810 while (yourtm.tm_mday <= 0) { 1811 if (long_increment_overflow(&y, -1)) 1812 return WRONG; 1813 li = y + (1 < yourtm.tm_mon); 1814 yourtm.tm_mday += year_lengths[isleap(li)]; 1815 } 1816 while (yourtm.tm_mday > DAYSPERLYEAR) { 1817 li = y + (1 < yourtm.tm_mon); 1818 yourtm.tm_mday -= year_lengths[isleap(li)]; 1819 if (long_increment_overflow(&y, 1)) 1820 return WRONG; 1821 } 1822 for ( ; ; ) { 1823 i = mon_lengths[isleap(y)][yourtm.tm_mon]; 1824 if (yourtm.tm_mday <= i) 1825 break; 1826 yourtm.tm_mday -= i; 1827 if (++yourtm.tm_mon >= MONSPERYEAR) { 1828 yourtm.tm_mon = 0; 1829 if (long_increment_overflow(&y, 1)) 1830 return WRONG; 1831 } 1832 } 1833 if (long_increment_overflow(&y, -TM_YEAR_BASE)) 1834 return WRONG; 1835 yourtm.tm_year = y; 1836 if (yourtm.tm_year != y) 1837 return WRONG; 1838 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) 1839 saved_seconds = 0; 1840 else if (y + TM_YEAR_BASE < EPOCH_YEAR) { 1841 /* 1842 ** We can't set tm_sec to 0, because that might push the 1843 ** time below the minimum representable time. 1844 ** Set tm_sec to 59 instead. 1845 ** This assumes that the minimum representable time is 1846 ** not in the same minute that a leap second was deleted from, 1847 ** which is a safer assumption than using 58 would be. 1848 */ 1849 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) 1850 return WRONG; 1851 saved_seconds = yourtm.tm_sec; 1852 yourtm.tm_sec = SECSPERMIN - 1; 1853 } else { 1854 saved_seconds = yourtm.tm_sec; 1855 yourtm.tm_sec = 0; 1856 } 1857 /* 1858 ** Do a binary search (this works whatever time_t's type is). 1859 */ 1860 /* LINTED constant */ 1861 if (!TYPE_SIGNED(time_t)) { 1862 lo = 0; 1863 hi = lo - 1; 1864 /* LINTED constant */ 1865 } else if (!TYPE_INTEGRAL(time_t)) { 1866 /* CONSTCOND */ 1867 if (sizeof(time_t) > sizeof(float)) 1868 /* LINTED assumed double */ 1869 hi = (time_t) DBL_MAX; 1870 /* LINTED assumed float */ 1871 else hi = (time_t) FLT_MAX; 1872 lo = -hi; 1873 } else { 1874 lo = 1; 1875 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i) 1876 lo *= 2; 1877 hi = -(lo + 1); 1878 } 1879 for ( ; ; ) { 1880 t = lo / 2 + hi / 2; 1881 if (t < lo) 1882 t = lo; 1883 else if (t > hi) 1884 t = hi; 1885 if ((*funcp)(&t, offset, &mytm) == NULL) { 1886 /* 1887 ** Assume that t is too extreme to be represented in 1888 ** a struct tm; arrange things so that it is less 1889 ** extreme on the next pass. 1890 */ 1891 dir = (t > 0) ? 1 : -1; 1892 } else dir = tmcomp(&mytm, &yourtm); 1893 if (dir != 0) { 1894 if (t == lo) { 1895 ++t; 1896 if (t <= lo) 1897 return WRONG; 1898 ++lo; 1899 } else if (t == hi) { 1900 --t; 1901 if (t >= hi) 1902 return WRONG; 1903 --hi; 1904 } 1905 if (lo > hi) 1906 return WRONG; 1907 if (dir > 0) 1908 hi = t; 1909 else lo = t; 1910 continue; 1911 } 1912 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) 1913 break; 1914 /* 1915 ** Right time, wrong type. 1916 ** Hunt for right time, right type. 1917 ** It's okay to guess wrong since the guess 1918 ** gets checked. 1919 */ 1920 sp = (const struct state *) 1921 ((funcp == localsub) ? lclptr : gmtptr); 1922 #ifdef ALL_STATE 1923 if (sp == NULL) 1924 return WRONG; 1925 #endif /* defined ALL_STATE */ 1926 for (i = sp->typecnt - 1; i >= 0; --i) { 1927 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) 1928 continue; 1929 for (j = sp->typecnt - 1; j >= 0; --j) { 1930 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) 1931 continue; 1932 newt = t + sp->ttis[j].tt_gmtoff - 1933 sp->ttis[i].tt_gmtoff; 1934 if ((*funcp)(&newt, offset, &mytm) == NULL) 1935 continue; 1936 if (tmcomp(&mytm, &yourtm) != 0) 1937 continue; 1938 if (mytm.tm_isdst != yourtm.tm_isdst) 1939 continue; 1940 /* 1941 ** We have a match. 1942 */ 1943 t = newt; 1944 goto label; 1945 } 1946 } 1947 return WRONG; 1948 } 1949 label: 1950 newt = t + saved_seconds; 1951 if ((newt < t) != (saved_seconds < 0)) 1952 return WRONG; 1953 t = newt; 1954 if ((*funcp)(&t, offset, tmp)) 1955 *okayp = TRUE; 1956 return t; 1957 } 1958 1959 static time_t 1960 time2(tmp, funcp, offset, okayp) 1961 struct tm * const tmp; 1962 struct tm * (* const funcp)(const time_t*, long, struct tm*); 1963 const long offset; 1964 int * const okayp; 1965 { 1966 time_t t; 1967 1968 /* 1969 ** First try without normalization of seconds 1970 ** (in case tm_sec contains a value associated with a leap second). 1971 ** If that fails, try with normalization of seconds. 1972 */ 1973 t = time2sub(tmp, funcp, offset, okayp, FALSE); 1974 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE); 1975 } 1976 1977 static time_t 1978 time1(tmp, funcp, offset) 1979 struct tm * const tmp; 1980 struct tm * (* const funcp)(const time_t *, long, struct tm *); 1981 const long offset; 1982 { 1983 register time_t t; 1984 register const struct state * sp; 1985 register int samei, otheri; 1986 register int sameind, otherind; 1987 register int i; 1988 register int nseen; 1989 int seen[TZ_MAX_TYPES]; 1990 int types[TZ_MAX_TYPES]; 1991 int okay; 1992 1993 if (tmp->tm_isdst > 1) 1994 tmp->tm_isdst = 1; 1995 t = time2(tmp, funcp, offset, &okay); 1996 #ifdef PCTS 1997 /* 1998 ** PCTS code courtesy Grant Sullivan. 1999 */ 2000 if (okay) 2001 return t; 2002 if (tmp->tm_isdst < 0) 2003 tmp->tm_isdst = 0; /* reset to std and try again */ 2004 #endif /* defined PCTS */ 2005 #ifndef PCTS 2006 if (okay || tmp->tm_isdst < 0) 2007 return t; 2008 #endif /* !defined PCTS */ 2009 /* 2010 ** We're supposed to assume that somebody took a time of one type 2011 ** and did some math on it that yielded a "struct tm" that's bad. 2012 ** We try to divine the type they started from and adjust to the 2013 ** type they need. 2014 */ 2015 sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr); 2016 #ifdef ALL_STATE 2017 if (sp == NULL) 2018 return WRONG; 2019 #endif /* defined ALL_STATE */ 2020 for (i = 0; i < sp->typecnt; ++i) 2021 seen[i] = FALSE; 2022 nseen = 0; 2023 for (i = sp->timecnt - 1; i >= 0; --i) 2024 if (!seen[sp->types[i]]) { 2025 seen[sp->types[i]] = TRUE; 2026 types[nseen++] = sp->types[i]; 2027 } 2028 for (sameind = 0; sameind < nseen; ++sameind) { 2029 samei = types[sameind]; 2030 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) 2031 continue; 2032 for (otherind = 0; otherind < nseen; ++otherind) { 2033 otheri = types[otherind]; 2034 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) 2035 continue; 2036 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff - 2037 sp->ttis[samei].tt_gmtoff); 2038 tmp->tm_isdst = !tmp->tm_isdst; 2039 t = time2(tmp, funcp, offset, &okay); 2040 if (okay) 2041 return t; 2042 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff - 2043 sp->ttis[samei].tt_gmtoff); 2044 tmp->tm_isdst = !tmp->tm_isdst; 2045 } 2046 } 2047 return WRONG; 2048 } 2049 2050 time_t 2051 mktime(tmp) 2052 struct tm * const tmp; 2053 { 2054 time_t result; 2055 2056 rwlock_wrlock(&lcl_lock); 2057 tzset_unlocked(); 2058 result = time1(tmp, localsub, 0L); 2059 rwlock_unlock(&lcl_lock); 2060 return (result); 2061 } 2062 2063 #ifdef STD_INSPIRED 2064 2065 time_t 2066 timelocal(tmp) 2067 struct tm * const tmp; 2068 { 2069 tmp->tm_isdst = -1; /* in case it wasn't initialized */ 2070 return mktime(tmp); 2071 } 2072 2073 time_t 2074 timegm(tmp) 2075 struct tm * const tmp; 2076 { 2077 tmp->tm_isdst = 0; 2078 return time1(tmp, gmtsub, 0L); 2079 } 2080 2081 time_t 2082 timeoff(tmp, offset) 2083 struct tm * const tmp; 2084 const long offset; 2085 { 2086 tmp->tm_isdst = 0; 2087 return time1(tmp, gmtsub, offset); 2088 } 2089 2090 #endif /* defined STD_INSPIRED */ 2091 2092 #ifdef CMUCS 2093 2094 /* 2095 ** The following is supplied for compatibility with 2096 ** previous versions of the CMUCS runtime library. 2097 */ 2098 2099 long 2100 gtime(tmp) 2101 struct tm * const tmp; 2102 { 2103 const time_t t = mktime(tmp); 2104 2105 if (t == WRONG) 2106 return -1; 2107 return t; 2108 } 2109 2110 #endif /* defined CMUCS */ 2111 2112 /* 2113 ** XXX--is the below the right way to conditionalize?? 2114 */ 2115 2116 #ifdef STD_INSPIRED 2117 2118 /* 2119 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599 2120 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which 2121 ** is not the case if we are accounting for leap seconds. 2122 ** So, we provide the following conversion routines for use 2123 ** when exchanging timestamps with POSIX conforming systems. 2124 */ 2125 2126 static long 2127 leapcorr(timep) 2128 time_t * timep; 2129 { 2130 register struct state * sp; 2131 register struct lsinfo * lp; 2132 register int i; 2133 2134 sp = lclptr; 2135 i = sp->leapcnt; 2136 while (--i >= 0) { 2137 lp = &sp->lsis[i]; 2138 if (*timep >= lp->ls_trans) 2139 return lp->ls_corr; 2140 } 2141 return 0; 2142 } 2143 2144 time_t 2145 time2posix(t) 2146 time_t t; 2147 { 2148 time_t result; 2149 2150 rwlock_wrlock(&lcl_lock); 2151 tzset_unlocked(); 2152 result = t - leapcorr(&t); 2153 rwlock_unlock(&lcl_lock); 2154 return (result); 2155 } 2156 2157 time_t 2158 posix2time(t) 2159 time_t t; 2160 { 2161 time_t x; 2162 time_t y; 2163 2164 rwlock_wrlock(&lcl_lock); 2165 tzset_unlocked(); 2166 /* 2167 ** For a positive leap second hit, the result 2168 ** is not unique. For a negative leap second 2169 ** hit, the corresponding time doesn't exist, 2170 ** so we return an adjacent second. 2171 */ 2172 x = t + leapcorr(&t); 2173 y = x - leapcorr(&x); 2174 if (y < t) { 2175 do { 2176 x++; 2177 y = x - leapcorr(&x); 2178 } while (y < t); 2179 if (t != y) { 2180 rwlock_unlock(&lcl_lock); 2181 return x - 1; 2182 } 2183 } else if (y > t) { 2184 do { 2185 --x; 2186 y = x - leapcorr(&x); 2187 } while (y > t); 2188 if (t != y) { 2189 rwlock_unlock(&lcl_lock); 2190 return x + 1; 2191 } 2192 } 2193 rwlock_unlock(&lcl_lock); 2194 return x; 2195 } 2196 2197 #endif /* defined STD_INSPIRED */ 2198