xref: /netbsd-src/lib/libc/time/localtime.c (revision 1b9578b8c2c1f848eeb16dabbfd7d1f0d9fdefbd)
1 /*	$NetBSD: localtime.c,v 1.57 2011/06/16 22:40:17 christos Exp $	*/
2 
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
7 
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char	elsieid[] = "@(#)localtime.c	8.9";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.57 2011/06/16 22:40:17 christos Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16 
17 /*
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
20 */
21 
22 /*LINTLIBRARY*/
23 
24 #include "namespace.h"
25 #include "private.h"
26 #include "tzfile.h"
27 #include "fcntl.h"
28 #include "reentrant.h"
29 
30 #if defined(__weak_alias)
31 __weak_alias(daylight,_daylight)
32 __weak_alias(tzname,_tzname)
33 #endif
34 
35 #include "float.h"	/* for FLT_MAX and DBL_MAX */
36 
37 #ifndef TZ_ABBR_MAX_LEN
38 #define TZ_ABBR_MAX_LEN	16
39 #endif /* !defined TZ_ABBR_MAX_LEN */
40 
41 #ifndef TZ_ABBR_CHAR_SET
42 #define TZ_ABBR_CHAR_SET \
43 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
44 #endif /* !defined TZ_ABBR_CHAR_SET */
45 
46 #ifndef TZ_ABBR_ERR_CHAR
47 #define TZ_ABBR_ERR_CHAR	'_'
48 #endif /* !defined TZ_ABBR_ERR_CHAR */
49 
50 /*
51 ** SunOS 4.1.1 headers lack O_BINARY.
52 */
53 
54 #ifdef O_BINARY
55 #define OPEN_MODE	(O_RDONLY | O_BINARY)
56 #endif /* defined O_BINARY */
57 #ifndef O_BINARY
58 #define OPEN_MODE	O_RDONLY
59 #endif /* !defined O_BINARY */
60 
61 #ifndef WILDABBR
62 /*
63 ** Someone might make incorrect use of a time zone abbreviation:
64 **	1.	They might reference tzname[0] before calling tzset (explicitly
65 **		or implicitly).
66 **	2.	They might reference tzname[1] before calling tzset (explicitly
67 **		or implicitly).
68 **	3.	They might reference tzname[1] after setting to a time zone
69 **		in which Daylight Saving Time is never observed.
70 **	4.	They might reference tzname[0] after setting to a time zone
71 **		in which Standard Time is never observed.
72 **	5.	They might reference tm.TM_ZONE after calling offtime.
73 ** What's best to do in the above cases is open to debate;
74 ** for now, we just set things up so that in any of the five cases
75 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
76 ** string "tzname[0] used before set", and similarly for the other cases.
77 ** And another: initialize tzname[0] to "ERA", with an explanation in the
78 ** manual page of what this "time zone abbreviation" means (doing this so
79 ** that tzname[0] has the "normal" length of three characters).
80 */
81 #define WILDABBR	"   "
82 #endif /* !defined WILDABBR */
83 
84 static const char	wildabbr[] = WILDABBR;
85 
86 static char		gmt[] = "GMT";
87 
88 /*
89 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
90 ** We default to US rules as of 1999-08-17.
91 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
92 ** implementation dependent; for historical reasons, US rules are a
93 ** common default.
94 */
95 #ifndef TZDEFRULESTRING
96 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
97 #endif /* !defined TZDEFDST */
98 
99 struct ttinfo {				/* time type information */
100 	long		tt_gmtoff;	/* UTC offset in seconds */
101 	int		tt_isdst;	/* used to set tm_isdst */
102 	int		tt_abbrind;	/* abbreviation list index */
103 	int		tt_ttisstd;	/* TRUE if transition is std time */
104 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
105 };
106 
107 struct lsinfo {				/* leap second information */
108 	time_t		ls_trans;	/* transition time */
109 	long		ls_corr;	/* correction to apply */
110 };
111 
112 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
113 
114 #ifdef TZNAME_MAX
115 #define MY_TZNAME_MAX	TZNAME_MAX
116 #endif /* defined TZNAME_MAX */
117 #ifndef TZNAME_MAX
118 #define MY_TZNAME_MAX	255
119 #endif /* !defined TZNAME_MAX */
120 
121 struct __state {
122 	int		leapcnt;
123 	int		timecnt;
124 	int		typecnt;
125 	int		charcnt;
126 	int		goback;
127 	int		goahead;
128 	time_t		ats[TZ_MAX_TIMES];
129 	unsigned char	types[TZ_MAX_TIMES];
130 	struct ttinfo	ttis[TZ_MAX_TYPES];
131 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
132 				(2 * (MY_TZNAME_MAX + 1)))];
133 	struct lsinfo	lsis[TZ_MAX_LEAPS];
134 };
135 
136 struct rule {
137 	int		r_type;		/* type of rule--see below */
138 	int		r_day;		/* day number of rule */
139 	int		r_week;		/* week number of rule */
140 	int		r_mon;		/* month number of rule */
141 	long		r_time;		/* transition time of rule */
142 };
143 
144 #define JULIAN_DAY		0	/* Jn - Julian day */
145 #define DAY_OF_YEAR		1	/* n - day of year */
146 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
147 
148 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
149 			       long offset, struct tm *tmp);
150 
151 /*
152 ** Prototypes for static functions.
153 */
154 
155 static long		detzcode(const char * codep);
156 static time_t		detzcode64(const char * codep);
157 static int		differ_by_repeat(time_t t1, time_t t0);
158 static const char *	getzname(const char * strp);
159 static const char *	getqzname(const char * strp, const int delim);
160 static const char *	getnum(const char * strp, int * nump, int min,
161 				int max);
162 static const char *	getsecs(const char * strp, long * secsp);
163 static const char *	getoffset(const char * strp, long * offsetp);
164 static const char *	getrule(const char * strp, struct rule * rulep);
165 static void		gmtload(timezone_t sp);
166 static struct tm *	gmtsub(const timezone_t sp, const time_t *timep,
167 				long offset, struct tm * tmp);
168 static struct tm *	localsub(const timezone_t sp, const time_t *timep,
169 				long offset, struct tm *tmp);
170 static int		increment_overflow(int * number, int delta);
171 static int		leaps_thru_end_of(int y);
172 static int		long_increment_overflow(long * number, int delta);
173 static int		long_normalize_overflow(long * tensptr,
174 				int * unitsptr, int base);
175 static int		normalize_overflow(int * tensptr, int * unitsptr,
176 				int base);
177 static void		settzname(void);
178 static time_t		time1(const timezone_t sp, struct tm * const tmp,
179 				subfun_t funcp, long offset);
180 static time_t		time2(const timezone_t sp, struct tm * const tmp,
181 				subfun_t funcp,
182 				const long offset, int *const okayp);
183 static time_t		time2sub(const timezone_t sp, struct tm * consttmp,
184 				subfun_t funcp, const long offset,
185 				int *const okayp, const int do_norm_secs);
186 static struct tm *	timesub(const timezone_t sp, const time_t * timep,
187 				long offset, struct tm * tmp);
188 static int		tmcomp(const struct tm * atmp,
189 				const struct tm * btmp);
190 static time_t		transtime(time_t janfirst, int year,
191 				const struct rule * rulep, long offset);
192 static int		typesequiv(const timezone_t sp, int a, int b);
193 static int		tzload(timezone_t sp, const char * name,
194 				int doextend);
195 static int		tzparse(timezone_t sp, const char * name,
196 				int lastditch);
197 static void		tzset_unlocked(void);
198 static void		tzsetwall_unlocked(void);
199 static long		leapcorr(const timezone_t sp, time_t * timep);
200 
201 static timezone_t lclptr;
202 static timezone_t gmtptr;
203 
204 #ifndef TZ_STRLEN_MAX
205 #define TZ_STRLEN_MAX 255
206 #endif /* !defined TZ_STRLEN_MAX */
207 
208 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
209 static int		lcl_is_set;
210 static int		gmt_is_set;
211 
212 #if !defined(__LIBC12_SOURCE__)
213 
214 __aconst char *		tzname[2] = {
215 	(__aconst char *)__UNCONST(wildabbr),
216 	(__aconst char *)__UNCONST(wildabbr)
217 };
218 
219 #else
220 
221 extern __aconst char *	tzname[2];
222 
223 #endif
224 
225 #ifdef _REENTRANT
226 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
227 #endif
228 
229 /*
230 ** Section 4.12.3 of X3.159-1989 requires that
231 **	Except for the strftime function, these functions [asctime,
232 **	ctime, gmtime, localtime] return values in one of two static
233 **	objects: a broken-down time structure and an array of char.
234 ** Thanks to Paul Eggert for noting this.
235 */
236 
237 static struct tm	tm;
238 
239 #ifdef USG_COMPAT
240 #if !defined(__LIBC12_SOURCE__)
241 long 			timezone = 0;
242 int			daylight = 0;
243 #else
244 extern int		daylight;
245 extern long		timezone __RENAME(__timezone13);
246 #endif
247 #endif /* defined USG_COMPAT */
248 
249 #ifdef ALTZONE
250 time_t			altzone = 0;
251 #endif /* defined ALTZONE */
252 
253 static long
254 detzcode(const char *const codep)
255 {
256 	long	result;
257 	int	i;
258 
259 	result = (codep[0] & 0x80) ? ~0L : 0;
260 	for (i = 0; i < 4; ++i)
261 		result = (result << 8) | (codep[i] & 0xff);
262 	return result;
263 }
264 
265 static time_t
266 detzcode64(const char *const codep)
267 {
268 	time_t	result;
269 	int	i;
270 
271 	result = (codep[0] & 0x80) ? -1 : 0;
272 	for (i = 0; i < 8; ++i)
273 		result = result * 256 + (codep[i] & 0xff);
274 	return result;
275 }
276 
277 const char *
278 tzgetname(const timezone_t sp, int isdst)
279 {
280 	int i;
281 	for (i = 0; i < sp->timecnt; ++i) {
282 		const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
283 
284 		if (ttisp->tt_isdst == isdst)
285 			return &sp->chars[ttisp->tt_abbrind];
286 	}
287 	return NULL;
288 }
289 
290 static void
291 settzname_z(timezone_t sp)
292 {
293 	int			i;
294 
295 	/*
296 	** Scrub the abbreviations.
297 	** First, replace bogus characters.
298 	*/
299 	for (i = 0; i < sp->charcnt; ++i)
300 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
301 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
302 	/*
303 	** Second, truncate long abbreviations.
304 	*/
305 	for (i = 0; i < sp->typecnt; ++i) {
306 		const struct ttinfo * const	ttisp = &sp->ttis[i];
307 		char *				cp = &sp->chars[ttisp->tt_abbrind];
308 
309 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
310 			strcmp(cp, GRANDPARENTED) != 0)
311 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
312 	}
313 }
314 
315 static void
316 settzname(void)
317 {
318 	timezone_t const	sp = lclptr;
319 	int			i;
320 
321 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
322 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
323 #ifdef USG_COMPAT
324 	daylight = 0;
325 	timezone = 0;
326 #endif /* defined USG_COMPAT */
327 #ifdef ALTZONE
328 	altzone = 0;
329 #endif /* defined ALTZONE */
330 	if (sp == NULL) {
331 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
332 		return;
333 	}
334 	for (i = 0; i < sp->typecnt; ++i) {
335 		const struct ttinfo * const	ttisp = &sp->ttis[i];
336 
337 		tzname[ttisp->tt_isdst] =
338 			&sp->chars[ttisp->tt_abbrind];
339 #ifdef USG_COMPAT
340 		if (ttisp->tt_isdst)
341 			daylight = 1;
342 		if (i == 0 || !ttisp->tt_isdst)
343 			timezone = -(ttisp->tt_gmtoff);
344 #endif /* defined USG_COMPAT */
345 #ifdef ALTZONE
346 		if (i == 0 || ttisp->tt_isdst)
347 			altzone = -(ttisp->tt_gmtoff);
348 #endif /* defined ALTZONE */
349 	}
350 	/*
351 	** And to get the latest zone names into tzname. . .
352 	*/
353 	for (i = 0; i < sp->timecnt; ++i) {
354 		register const struct ttinfo * const	ttisp =
355 							&sp->ttis[
356 								sp->types[i]];
357 
358 		tzname[ttisp->tt_isdst] =
359 			&sp->chars[ttisp->tt_abbrind];
360 	}
361 	settzname_z(sp);
362 }
363 
364 static int
365 differ_by_repeat(const time_t t1, const time_t t0)
366 {
367 /* CONSTCOND */
368 	if (TYPE_INTEGRAL(time_t) &&
369 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
370 			return 0;
371 	return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
372 }
373 
374 static int
375 tzload(timezone_t sp, const char *name, const int doextend)
376 {
377 	const char *		p;
378 	int			i;
379 	int			fid;
380 	int			stored;
381 	int			nread;
382 	union {
383 		struct tzhead	tzhead;
384 		char		buf[2 * sizeof(struct tzhead) +
385 					2 * sizeof *sp +
386 					4 * TZ_MAX_TIMES];
387 	} u;
388 
389 	sp->goback = sp->goahead = FALSE;
390 	if (name == NULL && (name = TZDEFAULT) == NULL)
391 		return -1;
392 	{
393 		int	doaccess;
394 		/*
395 		** Section 4.9.1 of the C standard says that
396 		** "FILENAME_MAX expands to an integral constant expression
397 		** that is the size needed for an array of char large enough
398 		** to hold the longest file name string that the implementation
399 		** guarantees can be opened."
400 		*/
401 		char		fullname[FILENAME_MAX + 1];
402 
403 		if (name[0] == ':')
404 			++name;
405 		doaccess = name[0] == '/';
406 		if (!doaccess) {
407 			if ((p = TZDIR) == NULL)
408 				return -1;
409 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
410 				return -1;
411 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
412 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
413 			(void) strcat(fullname, name);	/* XXX strcat is safe */
414 			/*
415 			** Set doaccess if '.' (as in "../") shows up in name.
416 			*/
417 			if (strchr(name, '.') != NULL)
418 				doaccess = TRUE;
419 			name = fullname;
420 		}
421 		if (doaccess && access(name, R_OK) != 0)
422 			return -1;
423 		/*
424 		 * XXX potential security problem here if user of a set-id
425 		 * program has set TZ (which is passed in as name) here,
426 		 * and uses a race condition trick to defeat the access(2)
427 		 * above.
428 		 */
429 		if ((fid = open(name, OPEN_MODE)) == -1)
430 			return -1;
431 	}
432 	nread = read(fid, u.buf, sizeof u.buf);
433 	if (close(fid) < 0 || nread <= 0)
434 		return -1;
435 	for (stored = 4; stored <= 8; stored *= 2) {
436 		int		ttisstdcnt;
437 		int		ttisgmtcnt;
438 
439 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
440 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
441 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
442 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
443 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
444 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
445 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
446 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
447 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
448 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
449 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
450 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
451 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
452 				return -1;
453 		if (nread - (p - u.buf) <
454 			sp->timecnt * stored +		/* ats */
455 			sp->timecnt +			/* types */
456 			sp->typecnt * 6 +		/* ttinfos */
457 			sp->charcnt +			/* chars */
458 			sp->leapcnt * (stored + 4) +	/* lsinfos */
459 			ttisstdcnt +			/* ttisstds */
460 			ttisgmtcnt)			/* ttisgmts */
461 				return -1;
462 		for (i = 0; i < sp->timecnt; ++i) {
463 			sp->ats[i] = (stored == 4) ?
464 				detzcode(p) : detzcode64(p);
465 			p += stored;
466 		}
467 		for (i = 0; i < sp->timecnt; ++i) {
468 			sp->types[i] = (unsigned char) *p++;
469 			if (sp->types[i] >= sp->typecnt)
470 				return -1;
471 		}
472 		for (i = 0; i < sp->typecnt; ++i) {
473 			struct ttinfo *	ttisp;
474 
475 			ttisp = &sp->ttis[i];
476 			ttisp->tt_gmtoff = detzcode(p);
477 			p += 4;
478 			ttisp->tt_isdst = (unsigned char) *p++;
479 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
480 				return -1;
481 			ttisp->tt_abbrind = (unsigned char) *p++;
482 			if (ttisp->tt_abbrind < 0 ||
483 				ttisp->tt_abbrind > sp->charcnt)
484 					return -1;
485 		}
486 		for (i = 0; i < sp->charcnt; ++i)
487 			sp->chars[i] = *p++;
488 		sp->chars[i] = '\0';	/* ensure '\0' at end */
489 		for (i = 0; i < sp->leapcnt; ++i) {
490 			struct lsinfo *	lsisp;
491 
492 			lsisp = &sp->lsis[i];
493 			lsisp->ls_trans = (stored == 4) ?
494 				detzcode(p) : detzcode64(p);
495 			p += stored;
496 			lsisp->ls_corr = detzcode(p);
497 			p += 4;
498 		}
499 		for (i = 0; i < sp->typecnt; ++i) {
500 			struct ttinfo *	ttisp;
501 
502 			ttisp = &sp->ttis[i];
503 			if (ttisstdcnt == 0)
504 				ttisp->tt_ttisstd = FALSE;
505 			else {
506 				ttisp->tt_ttisstd = *p++;
507 				if (ttisp->tt_ttisstd != TRUE &&
508 					ttisp->tt_ttisstd != FALSE)
509 						return -1;
510 			}
511 		}
512 		for (i = 0; i < sp->typecnt; ++i) {
513 			struct ttinfo *	ttisp;
514 
515 			ttisp = &sp->ttis[i];
516 			if (ttisgmtcnt == 0)
517 				ttisp->tt_ttisgmt = FALSE;
518 			else {
519 				ttisp->tt_ttisgmt = *p++;
520 				if (ttisp->tt_ttisgmt != TRUE &&
521 					ttisp->tt_ttisgmt != FALSE)
522 						return -1;
523 			}
524 		}
525 		/*
526 		** Out-of-sort ats should mean we're running on a
527 		** signed time_t system but using a data file with
528 		** unsigned values (or vice versa).
529 		*/
530 		for (i = 0; i < sp->timecnt - 2; ++i)
531 			if (sp->ats[i] > sp->ats[i + 1]) {
532 				++i;
533 /* CONSTCOND */
534 				if (TYPE_SIGNED(time_t)) {
535 					/*
536 					** Ignore the end (easy).
537 					*/
538 					sp->timecnt = i;
539 				} else {
540 					/*
541 					** Ignore the beginning (harder).
542 					*/
543 					int	j;
544 
545 					for (j = 0; j + i < sp->timecnt; ++j) {
546 						sp->ats[j] = sp->ats[j + i];
547 						sp->types[j] = sp->types[j + i];
548 					}
549 					sp->timecnt = j;
550 				}
551 				break;
552 			}
553 		/*
554 		** If this is an old file, we're done.
555 		*/
556 		if (u.tzhead.tzh_version[0] == '\0')
557 			break;
558 		nread -= p - u.buf;
559 		for (i = 0; i < nread; ++i)
560 			u.buf[i] = p[i];
561 		/*
562 		** If this is a narrow integer time_t system, we're done.
563 		*/
564 		if (stored >= (int) sizeof(time_t)
565 /* CONSTCOND */
566 				&& TYPE_INTEGRAL(time_t))
567 			break;
568 	}
569 	if (doextend && nread > 2 &&
570 		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
571 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
572 			struct __state ts;
573 			int	result;
574 
575 			u.buf[nread - 1] = '\0';
576 			result = tzparse(&ts, &u.buf[1], FALSE);
577 			if (result == 0 && ts.typecnt == 2 &&
578 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
579 					for (i = 0; i < 2; ++i)
580 						ts.ttis[i].tt_abbrind +=
581 							sp->charcnt;
582 					for (i = 0; i < ts.charcnt; ++i)
583 						sp->chars[sp->charcnt++] =
584 							ts.chars[i];
585 					i = 0;
586 					while (i < ts.timecnt &&
587 						ts.ats[i] <=
588 						sp->ats[sp->timecnt - 1])
589 							++i;
590 					while (i < ts.timecnt &&
591 					    sp->timecnt < TZ_MAX_TIMES) {
592 						sp->ats[sp->timecnt] =
593 							ts.ats[i];
594 						sp->types[sp->timecnt] =
595 							sp->typecnt +
596 							ts.types[i];
597 						++sp->timecnt;
598 						++i;
599 					}
600 					sp->ttis[sp->typecnt++] = ts.ttis[0];
601 					sp->ttis[sp->typecnt++] = ts.ttis[1];
602 			}
603 	}
604 	if (sp->timecnt > 1) {
605 		for (i = 1; i < sp->timecnt; ++i)
606 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
607 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
608 					sp->goback = TRUE;
609 					break;
610 				}
611 		for (i = sp->timecnt - 2; i >= 0; --i)
612 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
613 				sp->types[i]) &&
614 				differ_by_repeat(sp->ats[sp->timecnt - 1],
615 				sp->ats[i])) {
616 					sp->goahead = TRUE;
617 					break;
618 		}
619 	}
620 	return 0;
621 }
622 
623 static int
624 typesequiv(const timezone_t sp, const int a, const int b)
625 {
626 	int	result;
627 
628 	if (sp == NULL ||
629 		a < 0 || a >= sp->typecnt ||
630 		b < 0 || b >= sp->typecnt)
631 			result = FALSE;
632 	else {
633 		const struct ttinfo *	ap = &sp->ttis[a];
634 		const struct ttinfo *	bp = &sp->ttis[b];
635 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
636 			ap->tt_isdst == bp->tt_isdst &&
637 			ap->tt_ttisstd == bp->tt_ttisstd &&
638 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
639 			strcmp(&sp->chars[ap->tt_abbrind],
640 			&sp->chars[bp->tt_abbrind]) == 0;
641 	}
642 	return result;
643 }
644 
645 static const int	mon_lengths[2][MONSPERYEAR] = {
646 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
647 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
648 };
649 
650 static const int	year_lengths[2] = {
651 	DAYSPERNYEAR, DAYSPERLYEAR
652 };
653 
654 /*
655 ** Given a pointer into a time zone string, scan until a character that is not
656 ** a valid character in a zone name is found. Return a pointer to that
657 ** character.
658 */
659 
660 static const char *
661 getzname(strp)
662 const char *	strp;
663 {
664 	char	c;
665 
666 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
667 		c != '+')
668 			++strp;
669 	return strp;
670 }
671 
672 /*
673 ** Given a pointer into an extended time zone string, scan until the ending
674 ** delimiter of the zone name is located. Return a pointer to the delimiter.
675 **
676 ** As with getzname above, the legal character set is actually quite
677 ** restricted, with other characters producing undefined results.
678 ** We don't do any checking here; checking is done later in common-case code.
679 */
680 
681 static const char *
682 getqzname(const char *strp, const int delim)
683 {
684 	int	c;
685 
686 	while ((c = *strp) != '\0' && c != delim)
687 		++strp;
688 	return strp;
689 }
690 
691 /*
692 ** Given a pointer into a time zone string, extract a number from that string.
693 ** Check that the number is within a specified range; if it is not, return
694 ** NULL.
695 ** Otherwise, return a pointer to the first character not part of the number.
696 */
697 
698 static const char *
699 getnum(strp, nump, min, max)
700 const char *	strp;
701 int * const		nump;
702 const int		min;
703 const int		max;
704 {
705 	char	c;
706 	int	num;
707 
708 	if (strp == NULL || !is_digit(c = *strp)) {
709 		errno = EINVAL;
710 		return NULL;
711 	}
712 	num = 0;
713 	do {
714 		num = num * 10 + (c - '0');
715 		if (num > max) {
716 			errno = EOVERFLOW;
717 			return NULL;	/* illegal value */
718 		}
719 		c = *++strp;
720 	} while (is_digit(c));
721 	if (num < min) {
722 		errno = EINVAL;
723 		return NULL;		/* illegal value */
724 	}
725 	*nump = num;
726 	return strp;
727 }
728 
729 /*
730 ** Given a pointer into a time zone string, extract a number of seconds,
731 ** in hh[:mm[:ss]] form, from the string.
732 ** If any error occurs, return NULL.
733 ** Otherwise, return a pointer to the first character not part of the number
734 ** of seconds.
735 */
736 
737 static const char *
738 getsecs(const char *strp, long *const secsp)
739 {
740 	int	num;
741 
742 	/*
743 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
744 	** "M10.4.6/26", which does not conform to Posix,
745 	** but which specifies the equivalent of
746 	** ``02:00 on the first Sunday on or after 23 Oct''.
747 	*/
748 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
749 	if (strp == NULL)
750 		return NULL;
751 	*secsp = num * (long) SECSPERHOUR;
752 	if (*strp == ':') {
753 		++strp;
754 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
755 		if (strp == NULL)
756 			return NULL;
757 		*secsp += num * SECSPERMIN;
758 		if (*strp == ':') {
759 			++strp;
760 			/* `SECSPERMIN' allows for leap seconds. */
761 			strp = getnum(strp, &num, 0, SECSPERMIN);
762 			if (strp == NULL)
763 				return NULL;
764 			*secsp += num;
765 		}
766 	}
767 	return strp;
768 }
769 
770 /*
771 ** Given a pointer into a time zone string, extract an offset, in
772 ** [+-]hh[:mm[:ss]] form, from the string.
773 ** If any error occurs, return NULL.
774 ** Otherwise, return a pointer to the first character not part of the time.
775 */
776 
777 static const char *
778 getoffset(const char *strp, long *const offsetp)
779 {
780 	int	neg = 0;
781 
782 	if (*strp == '-') {
783 		neg = 1;
784 		++strp;
785 	} else if (*strp == '+')
786 		++strp;
787 	strp = getsecs(strp, offsetp);
788 	if (strp == NULL)
789 		return NULL;		/* illegal time */
790 	if (neg)
791 		*offsetp = -*offsetp;
792 	return strp;
793 }
794 
795 /*
796 ** Given a pointer into a time zone string, extract a rule in the form
797 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
798 ** If a valid rule is not found, return NULL.
799 ** Otherwise, return a pointer to the first character not part of the rule.
800 */
801 
802 static const char *
803 getrule(const char *strp, struct rule *const rulep)
804 {
805 	if (*strp == 'J') {
806 		/*
807 		** Julian day.
808 		*/
809 		rulep->r_type = JULIAN_DAY;
810 		++strp;
811 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
812 	} else if (*strp == 'M') {
813 		/*
814 		** Month, week, day.
815 		*/
816 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
817 		++strp;
818 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
819 		if (strp == NULL)
820 			return NULL;
821 		if (*strp++ != '.')
822 			return NULL;
823 		strp = getnum(strp, &rulep->r_week, 1, 5);
824 		if (strp == NULL)
825 			return NULL;
826 		if (*strp++ != '.')
827 			return NULL;
828 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
829 	} else if (is_digit(*strp)) {
830 		/*
831 		** Day of year.
832 		*/
833 		rulep->r_type = DAY_OF_YEAR;
834 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
835 	} else	return NULL;		/* invalid format */
836 	if (strp == NULL)
837 		return NULL;
838 	if (*strp == '/') {
839 		/*
840 		** Time specified.
841 		*/
842 		++strp;
843 		strp = getsecs(strp, &rulep->r_time);
844 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
845 	return strp;
846 }
847 
848 /*
849 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
850 ** year, a rule, and the offset from UTC at the time that rule takes effect,
851 ** calculate the Epoch-relative time that rule takes effect.
852 */
853 
854 static time_t
855 transtime(const time_t janfirst, const int year, const struct rule *const rulep,
856     const long offset)
857 {
858 	int	leapyear;
859 	time_t	value;
860 	int	i;
861 	int		d, m1, yy0, yy1, yy2, dow;
862 
863 	INITIALIZE(value);
864 	leapyear = isleap(year);
865 	switch (rulep->r_type) {
866 
867 	case JULIAN_DAY:
868 		/*
869 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
870 		** years.
871 		** In non-leap years, or if the day number is 59 or less, just
872 		** add SECSPERDAY times the day number-1 to the time of
873 		** January 1, midnight, to get the day.
874 		*/
875 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
876 		if (leapyear && rulep->r_day >= 60)
877 			value += SECSPERDAY;
878 		break;
879 
880 	case DAY_OF_YEAR:
881 		/*
882 		** n - day of year.
883 		** Just add SECSPERDAY times the day number to the time of
884 		** January 1, midnight, to get the day.
885 		*/
886 		value = janfirst + rulep->r_day * SECSPERDAY;
887 		break;
888 
889 	case MONTH_NTH_DAY_OF_WEEK:
890 		/*
891 		** Mm.n.d - nth "dth day" of month m.
892 		*/
893 		value = janfirst;
894 		for (i = 0; i < rulep->r_mon - 1; ++i)
895 			value += mon_lengths[leapyear][i] * SECSPERDAY;
896 
897 		/*
898 		** Use Zeller's Congruence to get day-of-week of first day of
899 		** month.
900 		*/
901 		m1 = (rulep->r_mon + 9) % 12 + 1;
902 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
903 		yy1 = yy0 / 100;
904 		yy2 = yy0 % 100;
905 		dow = ((26 * m1 - 2) / 10 +
906 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
907 		if (dow < 0)
908 			dow += DAYSPERWEEK;
909 
910 		/*
911 		** "dow" is the day-of-week of the first day of the month. Get
912 		** the day-of-month (zero-origin) of the first "dow" day of the
913 		** month.
914 		*/
915 		d = rulep->r_day - dow;
916 		if (d < 0)
917 			d += DAYSPERWEEK;
918 		for (i = 1; i < rulep->r_week; ++i) {
919 			if (d + DAYSPERWEEK >=
920 				mon_lengths[leapyear][rulep->r_mon - 1])
921 					break;
922 			d += DAYSPERWEEK;
923 		}
924 
925 		/*
926 		** "d" is the day-of-month (zero-origin) of the day we want.
927 		*/
928 		value += d * SECSPERDAY;
929 		break;
930 	}
931 
932 	/*
933 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
934 	** question. To get the Epoch-relative time of the specified local
935 	** time on that day, add the transition time and the current offset
936 	** from UTC.
937 	*/
938 	return value + rulep->r_time + offset;
939 }
940 
941 /*
942 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
943 ** appropriate.
944 */
945 
946 static int
947 tzparse(timezone_t sp, const char *name, const int lastditch)
948 {
949 	const char *			stdname;
950 	const char *			dstname;
951 	size_t				stdlen;
952 	size_t				dstlen;
953 	long				stdoffset;
954 	long				dstoffset;
955 	time_t *		atp;
956 	unsigned char *	typep;
957 	char *			cp;
958 	int			load_result;
959 
960 	INITIALIZE(dstname);
961 	stdname = name;
962 	if (lastditch) {
963 		stdlen = strlen(name);	/* length of standard zone name */
964 		name += stdlen;
965 		if (stdlen >= sizeof sp->chars)
966 			stdlen = (sizeof sp->chars) - 1;
967 		stdoffset = 0;
968 	} else {
969 		if (*name == '<') {
970 			name++;
971 			stdname = name;
972 			name = getqzname(name, '>');
973 			if (*name != '>')
974 				return (-1);
975 			stdlen = name - stdname;
976 			name++;
977 		} else {
978 			name = getzname(name);
979 			stdlen = name - stdname;
980 		}
981 		if (*name == '\0')
982 			return -1;
983 		name = getoffset(name, &stdoffset);
984 		if (name == NULL)
985 			return -1;
986 	}
987 	load_result = tzload(sp, TZDEFRULES, FALSE);
988 	if (load_result != 0)
989 		sp->leapcnt = 0;		/* so, we're off a little */
990 	if (*name != '\0') {
991 		if (*name == '<') {
992 			dstname = ++name;
993 			name = getqzname(name, '>');
994 			if (*name != '>')
995 				return -1;
996 			dstlen = name - dstname;
997 			name++;
998 		} else {
999 			dstname = name;
1000 			name = getzname(name);
1001 			dstlen = name - dstname; /* length of DST zone name */
1002 		}
1003 		if (*name != '\0' && *name != ',' && *name != ';') {
1004 			name = getoffset(name, &dstoffset);
1005 			if (name == NULL)
1006 				return -1;
1007 		} else	dstoffset = stdoffset - SECSPERHOUR;
1008 		if (*name == '\0' && load_result != 0)
1009 			name = TZDEFRULESTRING;
1010 		if (*name == ',' || *name == ';') {
1011 			struct rule	start;
1012 			struct rule	end;
1013 			int	year;
1014 			time_t	janfirst;
1015 			time_t		starttime;
1016 			time_t		endtime;
1017 
1018 			++name;
1019 			if ((name = getrule(name, &start)) == NULL)
1020 				return -1;
1021 			if (*name++ != ',')
1022 				return -1;
1023 			if ((name = getrule(name, &end)) == NULL)
1024 				return -1;
1025 			if (*name != '\0')
1026 				return -1;
1027 			sp->typecnt = 2;	/* standard time and DST */
1028 			/*
1029 			** Two transitions per year, from EPOCH_YEAR forward.
1030 			*/
1031 			sp->ttis[0].tt_gmtoff = -dstoffset;
1032 			sp->ttis[0].tt_isdst = 1;
1033 			sp->ttis[0].tt_abbrind = stdlen + 1;
1034 			sp->ttis[1].tt_gmtoff = -stdoffset;
1035 			sp->ttis[1].tt_isdst = 0;
1036 			sp->ttis[1].tt_abbrind = 0;
1037 			atp = sp->ats;
1038 			typep = sp->types;
1039 			janfirst = 0;
1040 			sp->timecnt = 0;
1041 			for (year = EPOCH_YEAR;
1042 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
1043 			    ++year) {
1044 			    	time_t	newfirst;
1045 
1046 				starttime = transtime(janfirst, year, &start,
1047 					stdoffset);
1048 				endtime = transtime(janfirst, year, &end,
1049 					dstoffset);
1050 				if (starttime > endtime) {
1051 					*atp++ = endtime;
1052 					*typep++ = 1;	/* DST ends */
1053 					*atp++ = starttime;
1054 					*typep++ = 0;	/* DST begins */
1055 				} else {
1056 					*atp++ = starttime;
1057 					*typep++ = 0;	/* DST begins */
1058 					*atp++ = endtime;
1059 					*typep++ = 1;	/* DST ends */
1060 				}
1061 				sp->timecnt += 2;
1062 				newfirst = janfirst;
1063 				newfirst += year_lengths[isleap(year)] *
1064 					SECSPERDAY;
1065 				if (newfirst <= janfirst)
1066 					break;
1067 				janfirst = newfirst;
1068 			}
1069 		} else {
1070 			long	theirstdoffset;
1071 			long	theirdstoffset;
1072 			long	theiroffset;
1073 			int	isdst;
1074 			int	i;
1075 			int	j;
1076 
1077 			if (*name != '\0')
1078 				return -1;
1079 			/*
1080 			** Initial values of theirstdoffset
1081 			*/
1082 			theirstdoffset = 0;
1083 			for (i = 0; i < sp->timecnt; ++i) {
1084 				j = sp->types[i];
1085 				if (!sp->ttis[j].tt_isdst) {
1086 					theirstdoffset =
1087 						-sp->ttis[j].tt_gmtoff;
1088 					break;
1089 				}
1090 			}
1091 			theirdstoffset = 0;
1092 			for (i = 0; i < sp->timecnt; ++i) {
1093 				j = sp->types[i];
1094 				if (sp->ttis[j].tt_isdst) {
1095 					theirdstoffset =
1096 						-sp->ttis[j].tt_gmtoff;
1097 					break;
1098 				}
1099 			}
1100 			/*
1101 			** Initially we're assumed to be in standard time.
1102 			*/
1103 			isdst = FALSE;
1104 			theiroffset = theirstdoffset;
1105 			/*
1106 			** Now juggle transition times and types
1107 			** tracking offsets as you do.
1108 			*/
1109 			for (i = 0; i < sp->timecnt; ++i) {
1110 				j = sp->types[i];
1111 				sp->types[i] = sp->ttis[j].tt_isdst;
1112 				if (sp->ttis[j].tt_ttisgmt) {
1113 					/* No adjustment to transition time */
1114 				} else {
1115 					/*
1116 					** If summer time is in effect, and the
1117 					** transition time was not specified as
1118 					** standard time, add the summer time
1119 					** offset to the transition time;
1120 					** otherwise, add the standard time
1121 					** offset to the transition time.
1122 					*/
1123 					/*
1124 					** Transitions from DST to DDST
1125 					** will effectively disappear since
1126 					** POSIX provides for only one DST
1127 					** offset.
1128 					*/
1129 					if (isdst && !sp->ttis[j].tt_ttisstd) {
1130 						sp->ats[i] += dstoffset -
1131 							theirdstoffset;
1132 					} else {
1133 						sp->ats[i] += stdoffset -
1134 							theirstdoffset;
1135 					}
1136 				}
1137 				theiroffset = -sp->ttis[j].tt_gmtoff;
1138 				if (!sp->ttis[j].tt_isdst)
1139 					theirstdoffset = theiroffset;
1140 				else	theirdstoffset = theiroffset;
1141 			}
1142 			/*
1143 			** Finally, fill in ttis.
1144 			** ttisstd and ttisgmt need not be handled.
1145 			*/
1146 			sp->ttis[0].tt_gmtoff = -stdoffset;
1147 			sp->ttis[0].tt_isdst = FALSE;
1148 			sp->ttis[0].tt_abbrind = 0;
1149 			sp->ttis[1].tt_gmtoff = -dstoffset;
1150 			sp->ttis[1].tt_isdst = TRUE;
1151 			sp->ttis[1].tt_abbrind = stdlen + 1;
1152 			sp->typecnt = 2;
1153 		}
1154 	} else {
1155 		dstlen = 0;
1156 		sp->typecnt = 1;		/* only standard time */
1157 		sp->timecnt = 0;
1158 		sp->ttis[0].tt_gmtoff = -stdoffset;
1159 		sp->ttis[0].tt_isdst = 0;
1160 		sp->ttis[0].tt_abbrind = 0;
1161 	}
1162 	sp->charcnt = stdlen + 1;
1163 	if (dstlen != 0)
1164 		sp->charcnt += dstlen + 1;
1165 	if ((size_t) sp->charcnt > sizeof sp->chars)
1166 		return -1;
1167 	cp = sp->chars;
1168 	(void) strncpy(cp, stdname, stdlen);
1169 	cp += stdlen;
1170 	*cp++ = '\0';
1171 	if (dstlen != 0) {
1172 		(void) strncpy(cp, dstname, dstlen);
1173 		*(cp + dstlen) = '\0';
1174 	}
1175 	return 0;
1176 }
1177 
1178 static void
1179 gmtload(timezone_t sp)
1180 {
1181 	if (tzload(sp, gmt, TRUE) != 0)
1182 		(void) tzparse(sp, gmt, TRUE);
1183 }
1184 
1185 timezone_t
1186 tzalloc(const char *name)
1187 {
1188 	timezone_t sp = calloc(1, sizeof *sp);
1189 	if (sp == NULL)
1190 		return NULL;
1191 	if (tzload(sp, name, TRUE) != 0) {
1192 		free(sp);
1193 		return NULL;
1194 	}
1195 	settzname_z(sp);
1196 	return sp;
1197 }
1198 
1199 void
1200 tzfree(const timezone_t sp)
1201 {
1202 	free(sp);
1203 }
1204 
1205 static void
1206 tzsetwall_unlocked(void)
1207 {
1208 	if (lcl_is_set < 0)
1209 		return;
1210 	lcl_is_set = -1;
1211 
1212 	if (lclptr == NULL) {
1213 		int saveerrno = errno;
1214 		lclptr = calloc(1, sizeof *lclptr);
1215 		errno = saveerrno;
1216 		if (lclptr == NULL) {
1217 			settzname();	/* all we can do */
1218 			return;
1219 		}
1220 	}
1221 	if (tzload(lclptr, NULL, TRUE) != 0)
1222 		gmtload(lclptr);
1223 	settzname();
1224 }
1225 
1226 #ifndef STD_INSPIRED
1227 /*
1228 ** A non-static declaration of tzsetwall in a system header file
1229 ** may cause a warning about this upcoming static declaration...
1230 */
1231 static
1232 #endif /* !defined STD_INSPIRED */
1233 void
1234 tzsetwall(void)
1235 {
1236 	rwlock_wrlock(&lcl_lock);
1237 	tzsetwall_unlocked();
1238 	rwlock_unlock(&lcl_lock);
1239 }
1240 
1241 #ifndef STD_INSPIRED
1242 /*
1243 ** A non-static declaration of tzsetwall in a system header file
1244 ** may cause a warning about this upcoming static declaration...
1245 */
1246 static
1247 #endif /* !defined STD_INSPIRED */
1248 void
1249 tzset_unlocked(void)
1250 {
1251 	const char *	name;
1252 	int saveerrno;
1253 
1254 	saveerrno = errno;
1255 	name = getenv("TZ");
1256 	errno = saveerrno;
1257 	if (name == NULL) {
1258 		tzsetwall_unlocked();
1259 		return;
1260 	}
1261 
1262 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1263 		return;
1264 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1265 	if (lcl_is_set)
1266 		(void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1267 
1268 	if (lclptr == NULL) {
1269 		saveerrno = errno;
1270 		lclptr = calloc(1, sizeof *lclptr);
1271 		errno = saveerrno;
1272 		if (lclptr == NULL) {
1273 			settzname();	/* all we can do */
1274 			return;
1275 		}
1276 	}
1277 	if (*name == '\0') {
1278 		/*
1279 		** User wants it fast rather than right.
1280 		*/
1281 		lclptr->leapcnt = 0;		/* so, we're off a little */
1282 		lclptr->timecnt = 0;
1283 		lclptr->typecnt = 0;
1284 		lclptr->ttis[0].tt_isdst = 0;
1285 		lclptr->ttis[0].tt_gmtoff = 0;
1286 		lclptr->ttis[0].tt_abbrind = 0;
1287 		(void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1288 	} else if (tzload(lclptr, name, TRUE) != 0)
1289 		if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
1290 			(void) gmtload(lclptr);
1291 	settzname();
1292 }
1293 
1294 void
1295 tzset(void)
1296 {
1297 	rwlock_wrlock(&lcl_lock);
1298 	tzset_unlocked();
1299 	rwlock_unlock(&lcl_lock);
1300 }
1301 
1302 /*
1303 ** The easy way to behave "as if no library function calls" localtime
1304 ** is to not call it--so we drop its guts into "localsub", which can be
1305 ** freely called. (And no, the PANS doesn't require the above behavior--
1306 ** but it *is* desirable.)
1307 **
1308 ** The unused offset argument is for the benefit of mktime variants.
1309 */
1310 
1311 /*ARGSUSED*/
1312 static struct tm *
1313 localsub(const timezone_t sp, const time_t * const timep, const long offset,
1314     struct tm *const tmp)
1315 {
1316 	const struct ttinfo *	ttisp;
1317 	int			i;
1318 	struct tm *		result;
1319 	const time_t			t = *timep;
1320 
1321 	if ((sp->goback && t < sp->ats[0]) ||
1322 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1323 			time_t			newt = t;
1324 			time_t		seconds;
1325 			time_t		tcycles;
1326 			int_fast64_t	icycles;
1327 
1328 			if (t < sp->ats[0])
1329 				seconds = sp->ats[0] - t;
1330 			else	seconds = t - sp->ats[sp->timecnt - 1];
1331 			--seconds;
1332 			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1333 			++tcycles;
1334 			icycles = tcycles;
1335 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1336 				return NULL;
1337 			seconds = (time_t) icycles;
1338 			seconds *= YEARSPERREPEAT;
1339 			seconds *= AVGSECSPERYEAR;
1340 			if (t < sp->ats[0])
1341 				newt += seconds;
1342 			else	newt -= seconds;
1343 			if (newt < sp->ats[0] ||
1344 				newt > sp->ats[sp->timecnt - 1])
1345 					return NULL;	/* "cannot happen" */
1346 			result = localsub(sp, &newt, offset, tmp);
1347 			if (result == tmp) {
1348 				time_t	newy;
1349 
1350 				newy = tmp->tm_year;
1351 				if (t < sp->ats[0])
1352 					newy -= (time_t)icycles * YEARSPERREPEAT;
1353 				else	newy += (time_t)icycles * YEARSPERREPEAT;
1354 				tmp->tm_year = (int)newy;
1355 				if (tmp->tm_year != newy)
1356 					return NULL;
1357 			}
1358 			return result;
1359 	}
1360 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1361 		i = 0;
1362 		while (sp->ttis[i].tt_isdst)
1363 			if (++i >= sp->typecnt) {
1364 				i = 0;
1365 				break;
1366 			}
1367 	} else {
1368 		int	lo = 1;
1369 		int	hi = sp->timecnt;
1370 
1371 		while (lo < hi) {
1372 			int	mid = (lo + hi) / 2;
1373 
1374 			if (t < sp->ats[mid])
1375 				hi = mid;
1376 			else	lo = mid + 1;
1377 		}
1378 		i = (int) sp->types[lo - 1];
1379 	}
1380 	ttisp = &sp->ttis[i];
1381 	/*
1382 	** To get (wrong) behavior that's compatible with System V Release 2.0
1383 	** you'd replace the statement below with
1384 	**	t += ttisp->tt_gmtoff;
1385 	**	timesub(&t, 0L, sp, tmp);
1386 	*/
1387 	result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
1388 	tmp->tm_isdst = ttisp->tt_isdst;
1389 	if (sp == lclptr)
1390 		tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1391 #ifdef TM_ZONE
1392 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1393 #endif /* defined TM_ZONE */
1394 	return result;
1395 }
1396 
1397 /*
1398 ** Re-entrant version of localtime.
1399 */
1400 
1401 struct tm *
1402 localtime_r(const time_t * __restrict timep, struct tm *tmp)
1403 {
1404 	rwlock_rdlock(&lcl_lock);
1405 	tzset_unlocked();
1406 	tmp = localtime_rz(lclptr, timep, tmp);
1407 	rwlock_unlock(&lcl_lock);
1408 	return tmp;
1409 }
1410 
1411 struct tm *
1412 localtime(const time_t *const timep)
1413 {
1414 	return localtime_r(timep, &tm);
1415 }
1416 
1417 struct tm *
1418 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
1419 {
1420 	if (sp == NULL)
1421 		tmp = gmtsub(NULL, timep, 0L, tmp);
1422 	else
1423 		tmp = localsub(sp, timep, 0L, tmp);
1424 	if (tmp == NULL)
1425 		errno = EOVERFLOW;
1426 	return tmp;
1427 }
1428 
1429 /*
1430 ** gmtsub is to gmtime as localsub is to localtime.
1431 */
1432 
1433 static struct tm *
1434 gmtsub(const timezone_t sp, const time_t * const timep, const long offset,
1435     struct tm *const tmp)
1436 {
1437 	struct tm *	result;
1438 #ifdef _REENTRANT
1439 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1440 #endif
1441 
1442 	mutex_lock(&gmt_mutex);
1443 	if (!gmt_is_set) {
1444 		int saveerrno;
1445 		gmt_is_set = TRUE;
1446 		saveerrno = errno;
1447 		gmtptr = calloc(1, sizeof *gmtptr);
1448 		errno = saveerrno;
1449 		if (gmtptr != NULL)
1450 			gmtload(gmtptr);
1451 	}
1452 	mutex_unlock(&gmt_mutex);
1453 	result = timesub(gmtptr, timep, offset, tmp);
1454 #ifdef TM_ZONE
1455 	/*
1456 	** Could get fancy here and deliver something such as
1457 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1458 	** but this is no time for a treasure hunt.
1459 	*/
1460 	if (offset != 0)
1461 		tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1462 	else {
1463 		if (gmtptr == NULL)
1464 			tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1465 		else	tmp->TM_ZONE = gmtptr->chars;
1466 	}
1467 #endif /* defined TM_ZONE */
1468 	return result;
1469 }
1470 
1471 struct tm *
1472 gmtime(const time_t *const timep)
1473 {
1474 	struct tm *tmp = gmtsub(NULL, timep, 0L, &tm);
1475 
1476 	if (tmp == NULL)
1477 		errno = EOVERFLOW;
1478 
1479 	return tmp;
1480 }
1481 
1482 /*
1483 ** Re-entrant version of gmtime.
1484 */
1485 
1486 struct tm *
1487 gmtime_r(const time_t * const timep, struct tm *tmp)
1488 {
1489 	tmp = gmtsub(NULL, timep, 0L, tmp);
1490 
1491 	if (tmp == NULL)
1492 		errno = EOVERFLOW;
1493 
1494 	return tmp;
1495 }
1496 
1497 #ifdef STD_INSPIRED
1498 
1499 struct tm *
1500 offtime(const time_t *const timep, long offset)
1501 {
1502 	struct tm *tmp = gmtsub(NULL, timep, offset, &tm);
1503 
1504 	if (tmp == NULL)
1505 		errno = EOVERFLOW;
1506 
1507 	return tmp;
1508 }
1509 
1510 struct tm *
1511 offtime_r(const time_t *timep, long offset, struct tm *tmp)
1512 {
1513 	tmp = gmtsub(NULL, timep, offset, tmp);
1514 
1515 	if (tmp == NULL)
1516 		errno = EOVERFLOW;
1517 
1518 	return tmp;
1519 }
1520 
1521 #endif /* defined STD_INSPIRED */
1522 
1523 /*
1524 ** Return the number of leap years through the end of the given year
1525 ** where, to make the math easy, the answer for year zero is defined as zero.
1526 */
1527 
1528 static int
1529 leaps_thru_end_of(const int y)
1530 {
1531 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1532 		-(leaps_thru_end_of(-(y + 1)) + 1);
1533 }
1534 
1535 static struct tm *
1536 timesub(const timezone_t sp, const time_t *const timep, const long offset,
1537     struct tm *const tmp)
1538 {
1539 	const struct lsinfo *	lp;
1540 	time_t			tdays;
1541 	int			idays;	/* unsigned would be so 2003 */
1542 	long			rem;
1543 	int			y;
1544 	const int *		ip;
1545 	long			corr;
1546 	int			hit;
1547 	int			i;
1548 
1549 	corr = 0;
1550 	hit = 0;
1551 	i = (sp == NULL) ? 0 : sp->leapcnt;
1552 	while (--i >= 0) {
1553 		lp = &sp->lsis[i];
1554 		if (*timep >= lp->ls_trans) {
1555 			if (*timep == lp->ls_trans) {
1556 				hit = ((i == 0 && lp->ls_corr > 0) ||
1557 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1558 				if (hit)
1559 					while (i > 0 &&
1560 						sp->lsis[i].ls_trans ==
1561 						sp->lsis[i - 1].ls_trans + 1 &&
1562 						sp->lsis[i].ls_corr ==
1563 						sp->lsis[i - 1].ls_corr + 1) {
1564 							++hit;
1565 							--i;
1566 					}
1567 			}
1568 			corr = lp->ls_corr;
1569 			break;
1570 		}
1571 	}
1572 	y = EPOCH_YEAR;
1573 	tdays = *timep / SECSPERDAY;
1574 	rem = (long) (*timep - tdays * SECSPERDAY);
1575 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1576 		int		newy;
1577 		time_t	tdelta;
1578 		int	idelta;
1579 		int	leapdays;
1580 
1581 		tdelta = tdays / DAYSPERLYEAR;
1582 		idelta = (int) tdelta;
1583 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1584 			return NULL;
1585 		if (idelta == 0)
1586 			idelta = (tdays < 0) ? -1 : 1;
1587 		newy = y;
1588 		if (increment_overflow(&newy, idelta))
1589 			return NULL;
1590 		leapdays = leaps_thru_end_of(newy - 1) -
1591 			leaps_thru_end_of(y - 1);
1592 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1593 		tdays -= leapdays;
1594 		y = newy;
1595 	}
1596 	{
1597 		long	seconds;
1598 
1599 		seconds = tdays * SECSPERDAY + 0.5;
1600 		tdays = seconds / SECSPERDAY;
1601 		rem += (long) (seconds - tdays * SECSPERDAY);
1602 	}
1603 	/*
1604 	** Given the range, we can now fearlessly cast...
1605 	*/
1606 	idays = (int) tdays;
1607 	rem += offset - corr;
1608 	while (rem < 0) {
1609 		rem += SECSPERDAY;
1610 		--idays;
1611 	}
1612 	while (rem >= SECSPERDAY) {
1613 		rem -= SECSPERDAY;
1614 		++idays;
1615 	}
1616 	while (idays < 0) {
1617 		if (increment_overflow(&y, -1))
1618 			return NULL;
1619 		idays += year_lengths[isleap(y)];
1620 	}
1621 	while (idays >= year_lengths[isleap(y)]) {
1622 		idays -= year_lengths[isleap(y)];
1623 		if (increment_overflow(&y, 1))
1624 			return NULL;
1625 	}
1626 	tmp->tm_year = y;
1627 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1628 		return NULL;
1629 	tmp->tm_yday = idays;
1630 	/*
1631 	** The "extra" mods below avoid overflow problems.
1632 	*/
1633 	tmp->tm_wday = EPOCH_WDAY +
1634 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
1635 		(DAYSPERNYEAR % DAYSPERWEEK) +
1636 		leaps_thru_end_of(y - 1) -
1637 		leaps_thru_end_of(EPOCH_YEAR - 1) +
1638 		idays;
1639 	tmp->tm_wday %= DAYSPERWEEK;
1640 	if (tmp->tm_wday < 0)
1641 		tmp->tm_wday += DAYSPERWEEK;
1642 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1643 	rem %= SECSPERHOUR;
1644 	tmp->tm_min = (int) (rem / SECSPERMIN);
1645 	/*
1646 	** A positive leap second requires a special
1647 	** representation. This uses "... ??:59:60" et seq.
1648 	*/
1649 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1650 	ip = mon_lengths[isleap(y)];
1651 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1652 		idays -= ip[tmp->tm_mon];
1653 	tmp->tm_mday = (int) (idays + 1);
1654 	tmp->tm_isdst = 0;
1655 #ifdef TM_GMTOFF
1656 	tmp->TM_GMTOFF = offset;
1657 #endif /* defined TM_GMTOFF */
1658 	return tmp;
1659 }
1660 
1661 char *
1662 ctime(const time_t *const timep)
1663 {
1664 /*
1665 ** Section 4.12.3.2 of X3.159-1989 requires that
1666 **	The ctime function converts the calendar time pointed to by timer
1667 **	to local time in the form of a string. It is equivalent to
1668 **		asctime(localtime(timer))
1669 */
1670 	struct tm *rtm = localtime(timep);
1671 	if (rtm == NULL)
1672 		return NULL;
1673 	return asctime(rtm);
1674 }
1675 
1676 char *
1677 ctime_r(const time_t *const timep, char *buf)
1678 {
1679 	struct tm	mytm, *rtm;
1680 
1681 	rtm = localtime_r(timep, &mytm);
1682 	if (rtm == NULL)
1683 		return NULL;
1684 	return asctime_r(rtm, buf);
1685 }
1686 
1687 char *
1688 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1689 {
1690 	struct tm	mytm, *rtm;
1691 
1692 	rtm = localtime_rz(sp, timep, &mytm);
1693 	if (rtm == NULL)
1694 		return NULL;
1695 	return asctime_r(rtm, buf);
1696 }
1697 
1698 /*
1699 ** Adapted from code provided by Robert Elz, who writes:
1700 **	The "best" way to do mktime I think is based on an idea of Bob
1701 **	Kridle's (so its said...) from a long time ago.
1702 **	It does a binary search of the time_t space. Since time_t's are
1703 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1704 **	would still be very reasonable).
1705 */
1706 
1707 #ifndef WRONG
1708 #define WRONG	((time_t)-1)
1709 #endif /* !defined WRONG */
1710 
1711 /*
1712 ** Simplified normalize logic courtesy Paul Eggert.
1713 */
1714 
1715 static int
1716 increment_overflow(int *number, int delta)
1717 {
1718 	int	number0;
1719 
1720 	number0 = *number;
1721 	if (delta < 0 ? number0 < INT_MIN - delta : INT_MAX - delta < number0)
1722 		  return 1;
1723 	*number += delta;
1724 	return 0;
1725 }
1726 
1727 static int
1728 long_increment_overflow(long *number, int delta)
1729 {
1730 	long	number0;
1731 
1732 	number0 = *number;
1733 	if (delta < 0 ? number0 < LONG_MIN - delta : LONG_MAX - delta < number0)
1734 		  return 1;
1735 	*number += delta;
1736 	return 0;
1737 }
1738 
1739 static int
1740 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1741 {
1742 	int	tensdelta;
1743 
1744 	tensdelta = (*unitsptr >= 0) ?
1745 		(*unitsptr / base) :
1746 		(-1 - (-1 - *unitsptr) / base);
1747 	*unitsptr -= tensdelta * base;
1748 	return increment_overflow(tensptr, tensdelta);
1749 }
1750 
1751 static int
1752 long_normalize_overflow(long *const tensptr, int *const unitsptr,
1753     const int base)
1754 {
1755 	int	tensdelta;
1756 
1757 	tensdelta = (*unitsptr >= 0) ?
1758 		(*unitsptr / base) :
1759 		(-1 - (-1 - *unitsptr) / base);
1760 	*unitsptr -= tensdelta * base;
1761 	return long_increment_overflow(tensptr, tensdelta);
1762 }
1763 
1764 static int
1765 tmcomp(const struct tm *const atmp, const struct tm *const btmp)
1766 {
1767 	int	result;
1768 
1769 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1770 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1771 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1772 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1773 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1774 			result = atmp->tm_sec - btmp->tm_sec;
1775 	return result;
1776 }
1777 
1778 static time_t
1779 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1780     const long offset, int *const okayp, const int do_norm_secs)
1781 {
1782 	int			dir;
1783 	int			i, j;
1784 	int			saved_seconds;
1785 	long			li;
1786 	time_t			lo;
1787 	time_t			hi;
1788 	long				y;
1789 	time_t				newt;
1790 	time_t				t;
1791 	struct tm			yourtm, mytm;
1792 
1793 	*okayp = FALSE;
1794 	yourtm = *tmp;
1795 	if (do_norm_secs) {
1796 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1797 			SECSPERMIN))
1798 				return WRONG;
1799 	}
1800 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1801 		return WRONG;
1802 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1803 		return WRONG;
1804 	y = yourtm.tm_year;
1805 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1806 		return WRONG;
1807 	/*
1808 	** Turn y into an actual year number for now.
1809 	** It is converted back to an offset from TM_YEAR_BASE later.
1810 	*/
1811 	if (long_increment_overflow(&y, TM_YEAR_BASE))
1812 		return WRONG;
1813 	while (yourtm.tm_mday <= 0) {
1814 		if (long_increment_overflow(&y, -1))
1815 			return WRONG;
1816 		li = y + (1 < yourtm.tm_mon);
1817 		yourtm.tm_mday += year_lengths[isleap(li)];
1818 	}
1819 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1820 		li = y + (1 < yourtm.tm_mon);
1821 		yourtm.tm_mday -= year_lengths[isleap(li)];
1822 		if (long_increment_overflow(&y, 1))
1823 			return WRONG;
1824 	}
1825 	for ( ; ; ) {
1826 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1827 		if (yourtm.tm_mday <= i)
1828 			break;
1829 		yourtm.tm_mday -= i;
1830 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1831 			yourtm.tm_mon = 0;
1832 			if (long_increment_overflow(&y, 1))
1833 				return WRONG;
1834 		}
1835 	}
1836 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
1837 		return WRONG;
1838 	yourtm.tm_year = y;
1839 	if (yourtm.tm_year != y)
1840 		return WRONG;
1841 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1842 		saved_seconds = 0;
1843 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1844 		/*
1845 		** We can't set tm_sec to 0, because that might push the
1846 		** time below the minimum representable time.
1847 		** Set tm_sec to 59 instead.
1848 		** This assumes that the minimum representable time is
1849 		** not in the same minute that a leap second was deleted from,
1850 		** which is a safer assumption than using 58 would be.
1851 		*/
1852 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1853 			return WRONG;
1854 		saved_seconds = yourtm.tm_sec;
1855 		yourtm.tm_sec = SECSPERMIN - 1;
1856 	} else {
1857 		saved_seconds = yourtm.tm_sec;
1858 		yourtm.tm_sec = 0;
1859 	}
1860 	/*
1861 	** Do a binary search (this works whatever time_t's type is).
1862 	*/
1863 /* LINTED constant */
1864 	if (!TYPE_SIGNED(time_t)) {
1865 		lo = 0;
1866 		hi = lo - 1;
1867 /* LINTED constant */
1868 	} else if (!TYPE_INTEGRAL(time_t)) {
1869 /* CONSTCOND */
1870 		if (sizeof(time_t) > sizeof(float))
1871 /* LINTED assumed double */
1872 			hi = (time_t) DBL_MAX;
1873 /* LINTED assumed float */
1874 		else	hi = (time_t) FLT_MAX;
1875 		lo = -hi;
1876 	} else {
1877 		lo = 1;
1878 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1879 			lo *= 2;
1880 		hi = -(lo + 1);
1881 	}
1882 	for ( ; ; ) {
1883 		t = lo / 2 + hi / 2;
1884 		if (t < lo)
1885 			t = lo;
1886 		else if (t > hi)
1887 			t = hi;
1888 		if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
1889 			/*
1890 			** Assume that t is too extreme to be represented in
1891 			** a struct tm; arrange things so that it is less
1892 			** extreme on the next pass.
1893 			*/
1894 			dir = (t > 0) ? 1 : -1;
1895 		} else	dir = tmcomp(&mytm, &yourtm);
1896 		if (dir != 0) {
1897 			if (t == lo) {
1898 				++t;
1899 				if (t <= lo)
1900 					return WRONG;
1901 				++lo;
1902 			} else if (t == hi) {
1903 				--t;
1904 				if (t >= hi)
1905 					return WRONG;
1906 				--hi;
1907 			}
1908 			if (lo > hi)
1909 				return WRONG;
1910 			if (dir > 0)
1911 				hi = t;
1912 			else	lo = t;
1913 			continue;
1914 		}
1915 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1916 			break;
1917 		/*
1918 		** Right time, wrong type.
1919 		** Hunt for right time, right type.
1920 		** It's okay to guess wrong since the guess
1921 		** gets checked.
1922 		*/
1923 		if (sp == NULL)
1924 			return WRONG;
1925 		for (i = sp->typecnt - 1; i >= 0; --i) {
1926 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1927 				continue;
1928 			for (j = sp->typecnt - 1; j >= 0; --j) {
1929 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1930 					continue;
1931 				newt = t + sp->ttis[j].tt_gmtoff -
1932 					sp->ttis[i].tt_gmtoff;
1933 				if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
1934 					continue;
1935 				if (tmcomp(&mytm, &yourtm) != 0)
1936 					continue;
1937 				if (mytm.tm_isdst != yourtm.tm_isdst)
1938 					continue;
1939 				/*
1940 				** We have a match.
1941 				*/
1942 				t = newt;
1943 				goto label;
1944 			}
1945 		}
1946 		return WRONG;
1947 	}
1948 label:
1949 	newt = t + saved_seconds;
1950 	if ((newt < t) != (saved_seconds < 0))
1951 		return WRONG;
1952 	t = newt;
1953 	if ((*funcp)(sp, &t, offset, tmp)) {
1954 		*okayp = TRUE;
1955 		return t;
1956 	} else
1957 		return WRONG;
1958 }
1959 
1960 static time_t
1961 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1962     const long offset, int *const okayp)
1963 {
1964 	time_t	t;
1965 
1966 	/*
1967 	** First try without normalization of seconds
1968 	** (in case tm_sec contains a value associated with a leap second).
1969 	** If that fails, try with normalization of seconds.
1970 	*/
1971 	t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
1972 	return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
1973 }
1974 
1975 static time_t
1976 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1977     long offset)
1978 {
1979 	time_t			t;
1980 	int			samei, otheri;
1981 	int			sameind, otherind;
1982 	int			i;
1983 	int			nseen;
1984 	int				seen[TZ_MAX_TYPES];
1985 	int				types[TZ_MAX_TYPES];
1986 	int				okay;
1987 
1988 	if (tmp->tm_isdst > 1)
1989 		tmp->tm_isdst = 1;
1990 	t = time2(sp, tmp, funcp, offset, &okay);
1991 #ifdef PCTS
1992 	/*
1993 	** PCTS code courtesy Grant Sullivan.
1994 	*/
1995 	if (okay)
1996 		return t;
1997 	if (tmp->tm_isdst < 0)
1998 		tmp->tm_isdst = 0;	/* reset to std and try again */
1999 #endif /* defined PCTS */
2000 #ifndef PCTS
2001 	if (okay || tmp->tm_isdst < 0)
2002 		return t;
2003 #endif /* !defined PCTS */
2004 	/*
2005 	** We're supposed to assume that somebody took a time of one type
2006 	** and did some math on it that yielded a "struct tm" that's bad.
2007 	** We try to divine the type they started from and adjust to the
2008 	** type they need.
2009 	*/
2010 	if (sp == NULL)
2011 		return WRONG;
2012 	for (i = 0; i < sp->typecnt; ++i)
2013 		seen[i] = FALSE;
2014 	nseen = 0;
2015 	for (i = sp->timecnt - 1; i >= 0; --i)
2016 		if (!seen[sp->types[i]]) {
2017 			seen[sp->types[i]] = TRUE;
2018 			types[nseen++] = sp->types[i];
2019 		}
2020 	for (sameind = 0; sameind < nseen; ++sameind) {
2021 		samei = types[sameind];
2022 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2023 			continue;
2024 		for (otherind = 0; otherind < nseen; ++otherind) {
2025 			otheri = types[otherind];
2026 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2027 				continue;
2028 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2029 					sp->ttis[samei].tt_gmtoff);
2030 			tmp->tm_isdst = !tmp->tm_isdst;
2031 			t = time2(sp, tmp, funcp, offset, &okay);
2032 			if (okay)
2033 				return t;
2034 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2035 					sp->ttis[samei].tt_gmtoff);
2036 			tmp->tm_isdst = !tmp->tm_isdst;
2037 		}
2038 	}
2039 	return WRONG;
2040 }
2041 
2042 time_t
2043 mktime_z(const timezone_t sp, struct tm *tmp)
2044 {
2045 	time_t t;
2046 	if (sp == NULL)
2047 		t = time1(NULL, tmp, gmtsub, 0L);
2048 	else
2049 		t = time1(sp, tmp, localsub, 0L);
2050 	if (t == WRONG)
2051 		errno = EOVERFLOW;
2052 	return t;
2053 }
2054 
2055 time_t
2056 mktime(struct tm * const	tmp)
2057 {
2058 	time_t result;
2059 
2060 	rwlock_wrlock(&lcl_lock);
2061 	tzset_unlocked();
2062 	result = mktime_z(lclptr, tmp);
2063 	rwlock_unlock(&lcl_lock);
2064 	return result;
2065 }
2066 
2067 #ifdef STD_INSPIRED
2068 
2069 time_t
2070 timelocal_z(const timezone_t sp, struct tm *tmp)
2071 {
2072 	if (tmp != NULL)
2073 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
2074 	return mktime_z(sp, tmp);
2075 }
2076 
2077 time_t
2078 timelocal(struct tm *const tmp)
2079 {
2080 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
2081 	return mktime(tmp);
2082 }
2083 
2084 time_t
2085 timegm(struct tm *const tmp)
2086 {
2087 	time_t t;
2088 
2089 	tmp->tm_isdst = 0;
2090 	t = time1(gmtptr, tmp, gmtsub, 0L);
2091 	if (t == WRONG)
2092 		errno = EOVERFLOW;
2093 	return t;
2094 }
2095 
2096 time_t
2097 timeoff(struct tm *const tmp, const long offset)
2098 {
2099 	time_t t;
2100 
2101 	tmp->tm_isdst = 0;
2102 	t = time1(gmtptr, tmp, gmtsub, offset);
2103 	if (t == WRONG)
2104 		errno = EOVERFLOW;
2105 	return t;
2106 }
2107 
2108 #endif /* defined STD_INSPIRED */
2109 
2110 #ifdef CMUCS
2111 
2112 /*
2113 ** The following is supplied for compatibility with
2114 ** previous versions of the CMUCS runtime library.
2115 */
2116 
2117 long
2118 gtime(struct tm *const tmp)
2119 {
2120 	const time_t t = mktime(tmp);
2121 
2122 	if (t == WRONG)
2123 		return -1;
2124 	return t;
2125 }
2126 
2127 #endif /* defined CMUCS */
2128 
2129 /*
2130 ** XXX--is the below the right way to conditionalize??
2131 */
2132 
2133 #ifdef STD_INSPIRED
2134 
2135 /*
2136 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2137 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2138 ** is not the case if we are accounting for leap seconds.
2139 ** So, we provide the following conversion routines for use
2140 ** when exchanging timestamps with POSIX conforming systems.
2141 */
2142 
2143 static long
2144 leapcorr(const timezone_t sp, time_t *timep)
2145 {
2146 	struct lsinfo * lp;
2147 	int		i;
2148 
2149 	i = sp->leapcnt;
2150 	while (--i >= 0) {
2151 		lp = &sp->lsis[i];
2152 		if (*timep >= lp->ls_trans)
2153 			return lp->ls_corr;
2154 	}
2155 	return 0;
2156 }
2157 
2158 time_t
2159 time2posix_z(const timezone_t sp, time_t t)
2160 {
2161 	return t - leapcorr(sp, &t);
2162 }
2163 
2164 time_t
2165 time2posix(time_t t)
2166 {
2167 	time_t result;
2168 	rwlock_wrlock(&lcl_lock);
2169 	tzset_unlocked();
2170 	result = t - leapcorr(lclptr, &t);
2171 	rwlock_unlock(&lcl_lock);
2172 	return (result);
2173 }
2174 
2175 time_t
2176 posix2time_z(const timezone_t sp, time_t t)
2177 {
2178 	time_t	x;
2179 	time_t	y;
2180 
2181 	/*
2182 	** For a positive leap second hit, the result
2183 	** is not unique. For a negative leap second
2184 	** hit, the corresponding time doesn't exist,
2185 	** so we return an adjacent second.
2186 	*/
2187 	x = t + leapcorr(sp, &t);
2188 	y = x - leapcorr(sp, &x);
2189 	if (y < t) {
2190 		do {
2191 			x++;
2192 			y = x - leapcorr(sp, &x);
2193 		} while (y < t);
2194 		if (t != y) {
2195 			return x - 1;
2196 		}
2197 	} else if (y > t) {
2198 		do {
2199 			--x;
2200 			y = x - leapcorr(sp, &x);
2201 		} while (y > t);
2202 		if (t != y) {
2203 			return x + 1;
2204 		}
2205 	}
2206 	return x;
2207 }
2208 
2209 
2210 
2211 time_t
2212 posix2time(time_t t)
2213 {
2214 	time_t result;
2215 
2216 	rwlock_wrlock(&lcl_lock);
2217 	tzset_unlocked();
2218 	result = posix2time_z(lclptr, t);
2219 	rwlock_unlock(&lcl_lock);
2220 	return result;
2221 }
2222 
2223 #endif /* defined STD_INSPIRED */
2224