xref: /netbsd-src/lib/libc/rpc/rpc_generic.c (revision 4472dbe5e3bd91ef2540bada7a7ca7384627ff9b)
1 /*	$NetBSD: rpc_generic.c,v 1.1 2000/06/02 23:11:13 fvdl Exp $	*/
2 
3 /*
4  * Sun RPC is a product of Sun Microsystems, Inc. and is provided for
5  * unrestricted use provided that this legend is included on all tape
6  * media and as a part of the software program in whole or part.  Users
7  * may copy or modify Sun RPC without charge, but are not authorized
8  * to license or distribute it to anyone else except as part of a product or
9  * program developed by the user.
10  *
11  * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
12  * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
13  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
14  *
15  * Sun RPC is provided with no support and without any obligation on the
16  * part of Sun Microsystems, Inc. to assist in its use, correction,
17  * modification or enhancement.
18  *
19  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
20  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
21  * OR ANY PART THEREOF.
22  *
23  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
24  * or profits or other special, indirect and consequential damages, even if
25  * Sun has been advised of the possibility of such damages.
26  *
27  * Sun Microsystems, Inc.
28  * 2550 Garcia Avenue
29  * Mountain View, California  94043
30  */
31 /*
32  * Copyright (c) 1986-1991 by Sun Microsystems Inc.
33  */
34 
35 /* #pragma ident	"@(#)rpc_generic.c	1.17	94/04/24 SMI" */
36 
37 /*
38  * rpc_generic.c, Miscl routines for RPC.
39  *
40  */
41 
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/socket.h>
45 #include <sys/un.h>
46 #include <sys/resource.h>
47 #include <netinet/in.h>
48 #include <arpa/inet.h>
49 #include <rpc/rpc.h>
50 #include <ctype.h>
51 #include <stdio.h>
52 #include <netdb.h>
53 #include <netconfig.h>
54 #include <malloc.h>
55 #include <string.h>
56 #include <rpc/nettype.h>
57 #include "rpc_com.h"
58 
59 struct handle {
60 	NCONF_HANDLE *nhandle;
61 	int nflag;		/* Whether NETPATH or NETCONFIG */
62 	int nettype;
63 };
64 
65 struct _rpcnettype {
66 	const char *name;
67 	const int type;
68 } _rpctypelist[] = {
69 	{ "netpath", _RPC_NETPATH },
70 	{ "visible", _RPC_VISIBLE },
71 	{ "circuit_v", _RPC_CIRCUIT_V },
72 	{ "datagram_v", _RPC_DATAGRAM_V },
73 	{ "circuit_n", _RPC_CIRCUIT_N },
74 	{ "datagram_n", _RPC_DATAGRAM_N },
75 	{ "tcp", _RPC_TCP },
76 	{ "udp", _RPC_UDP },
77 	{ 0, _RPC_NONE }
78 };
79 
80 struct netid_af {
81 	const char	*netid;
82 	int		af;
83 	int		protocol;
84 };
85 
86 static struct netid_af na_cvt[] = {
87 	{ "udp",  AF_INET,  IPPROTO_UDP },
88 	{ "tcp",  AF_INET,  IPPROTO_TCP },
89 #ifdef INET6
90 	{ "udp6", AF_INET6, IPPROTO_UDP },
91 	{ "tcp6", AF_INET6, IPPROTO_TCP },
92 #endif
93 	{ "local", AF_LOCAL, 0 }
94 };
95 
96 static char *strlocase __P((char *));
97 static int getnettype __P((char *));
98 
99 /*
100  * Cache the result of getrlimit(), so we don't have to do an
101  * expensive call every time.
102  */
103 int
104 __rpc_dtbsize()
105 {
106 	static int tbsize;
107 	struct rlimit rl;
108 
109 	if (tbsize) {
110 		return (tbsize);
111 	}
112 	if (getrlimit(RLIMIT_NOFILE, &rl) == 0) {
113 		return (tbsize = rl.rlim_max);
114 	}
115 	/*
116 	 * Something wrong.  I'll try to save face by returning a
117 	 * pessimistic number.
118 	 */
119 	return (32);
120 }
121 
122 
123 /*
124  * Find the appropriate buffer size
125  */
126 u_int
127 __rpc_get_t_size(af, proto, size)
128 	int af, proto;
129 	int size;	/* Size requested */
130 {
131 	int maxsize;
132 
133 	switch (proto) {
134 	case IPPROTO_TCP:
135 		maxsize = 65536;	/* XXX */
136 		break;
137 	case IPPROTO_UDP:
138 		maxsize = 8192;		/* XXX */
139 		break;
140 	default:
141 		maxsize = RPC_MAXDATASIZE;
142 		break;
143 	}
144 	if (size == 0)
145 		return maxsize;
146 
147 	/* Check whether the value is within the upper max limit */
148 	return (size > maxsize ? (u_int)maxsize : (u_int)size);
149 }
150 
151 /*
152  * Find the appropriate address buffer size
153  */
154 u_int
155 __rpc_get_a_size(af)
156 	int af;
157 {
158 	switch (af) {
159 	case AF_INET:
160 		return sizeof (struct sockaddr_in);
161 #ifdef INET6
162 	case AF_INET6:
163 		return sizeof (struct sockaddr_in6);
164 #endif
165 	case AF_LOCAL:
166 		return sizeof (struct sockaddr_un);
167 	default:
168 		break;
169 	}
170 	return ((u_int)RPC_MAXADDRSIZE);
171 }
172 
173 static char *
174 strlocase(p)
175 	char *p;
176 {
177 	char *t = p;
178 
179 	for (; *p; p++)
180 		if (isupper(*p))
181 			*p = tolower(*p);
182 	return (t);
183 }
184 
185 /*
186  * Returns the type of the network as defined in <rpc/nettype.h>
187  * If nettype is NULL, it defaults to NETPATH.
188  */
189 static int
190 getnettype(nettype)
191 	char *nettype;
192 {
193 	int i;
194 
195 	if ((nettype == NULL) || (nettype[0] == NULL)) {
196 		return (_RPC_NETPATH);	/* Default */
197 	}
198 
199 	nettype = strlocase(nettype);
200 	for (i = 0; _rpctypelist[i].name; i++)
201 		if (strcmp(nettype, _rpctypelist[i].name) == 0) {
202 			return (_rpctypelist[i].type);
203 		}
204 	return (_rpctypelist[i].type);
205 }
206 
207 /*
208  * For the given nettype (tcp or udp only), return the first structure found.
209  * This should be freed by calling freenetconfigent()
210  */
211 struct netconfig *
212 __rpc_getconfip(nettype)
213 	char *nettype;
214 {
215 	char *netid;
216 	char *netid_tcp = (char *) NULL;
217 	char *netid_udp = (char *) NULL;
218 	static char *netid_tcp_main;
219 	static char *netid_udp_main;
220 	struct netconfig *dummy;
221 #ifdef __REENT
222 	int main_thread;
223 	static thread_key_t tcp_key, udp_key;
224 	extern mutex_t tsd_lock;
225 
226 	if ((main_thread = _thr_main())) {
227 		netid_udp = netid_udp_main;
228 		netid_tcp = netid_tcp_main;
229 	} else {
230 		if (tcp_key == 0) {
231 			mutex_lock(&tsd_lock);
232 			if (tcp_key == 0)
233 				thr_keycreate(&tcp_key, free);
234 			mutex_unlock(&tsd_lock);
235 		}
236 		thr_getspecific(tcp_key, (void **) &netid_tcp);
237 		if (udp_key == 0) {
238 			mutex_lock(&tsd_lock);
239 			if (udp_key == 0)
240 				thr_keycreate(&udp_key, free);
241 			mutex_unlock(&tsd_lock);
242 		}
243 		thr_getspecific(udp_key, (void **) &netid_udp);
244 	}
245 #else
246 	netid_udp = netid_udp_main;
247 	netid_tcp = netid_tcp_main;
248 #endif
249 	if (!netid_udp && !netid_tcp) {
250 		struct netconfig *nconf;
251 		void *confighandle;
252 
253 		if (!(confighandle = setnetconfig())) {
254 			return (NULL);
255 		}
256 		while ((nconf = getnetconfig(confighandle))) {
257 			if (strcmp(nconf->nc_protofmly, NC_INET) == 0) {
258 				if (strcmp(nconf->nc_proto, NC_TCP) == 0) {
259 					netid_tcp = strdup(nconf->nc_netid);
260 #ifdef __REENT
261 					if (main_thread)
262 						netid_tcp_main = netid_tcp;
263 					else
264 						thr_setspecific(tcp_key,
265 							(void *) netid_tcp);
266 #else
267 					netid_tcp_main = netid_tcp;
268 #endif
269 				} else
270 				if (strcmp(nconf->nc_proto, NC_UDP) == 0) {
271 					netid_udp = strdup(nconf->nc_netid);
272 #ifdef __REENT
273 					if (main_thread)
274 						netid_udp_main = netid_udp;
275 					else
276 						thr_setspecific(udp_key,
277 							(void *) netid_udp);
278 #else
279 					netid_udp_main = netid_udp;
280 #endif
281 				}
282 			}
283 		}
284 		endnetconfig(confighandle);
285 	}
286 	if (strcmp(nettype, "udp") == 0)
287 		netid = netid_udp;
288 	else if (strcmp(nettype, "tcp") == 0)
289 		netid = netid_tcp;
290 	else {
291 		return ((struct netconfig *)NULL);
292 	}
293 	if ((netid == NULL) || (netid[0] == NULL)) {
294 		return ((struct netconfig *)NULL);
295 	}
296 	dummy = getnetconfigent(netid);
297 	return (dummy);
298 }
299 
300 /*
301  * Returns the type of the nettype, which should then be used with
302  * __rpc_getconf().
303  */
304 void *
305 __rpc_setconf(nettype)
306 	char *nettype;
307 {
308 	struct handle *handle;
309 
310 	handle = (struct handle *) malloc(sizeof (struct handle));
311 	if (handle == NULL) {
312 		return (NULL);
313 	}
314 	switch (handle->nettype = getnettype(nettype)) {
315 	case _RPC_NETPATH:
316 	case _RPC_CIRCUIT_N:
317 	case _RPC_DATAGRAM_N:
318 		if (!(handle->nhandle = setnetpath())) {
319 			free(handle);
320 			return (NULL);
321 		}
322 		handle->nflag = TRUE;
323 		break;
324 	case _RPC_VISIBLE:
325 	case _RPC_CIRCUIT_V:
326 	case _RPC_DATAGRAM_V:
327 	case _RPC_TCP:
328 	case _RPC_UDP:
329 		if (!(handle->nhandle = setnetconfig())) {
330 			free(handle);
331 			return (NULL);
332 		}
333 		handle->nflag = FALSE;
334 		break;
335 	default:
336 		return (NULL);
337 	}
338 
339 	return (handle);
340 }
341 
342 /*
343  * Returns the next netconfig struct for the given "net" type.
344  * __rpc_setconf() should have been called previously.
345  */
346 struct netconfig *
347 __rpc_getconf(vhandle)
348 	void *vhandle;
349 {
350 	struct handle *handle;
351 	struct netconfig *nconf;
352 
353 	handle = (struct handle *)vhandle;
354 	if (handle == NULL) {
355 		return (NULL);
356 	}
357 	while (1) {
358 		if (handle->nflag)
359 			nconf = getnetpath(handle->nhandle);
360 		else
361 			nconf = getnetconfig(handle->nhandle);
362 		if (nconf == (struct netconfig *)NULL)
363 			break;
364 		if ((nconf->nc_semantics != NC_TPI_CLTS) &&
365 			(nconf->nc_semantics != NC_TPI_COTS) &&
366 			(nconf->nc_semantics != NC_TPI_COTS_ORD))
367 			continue;
368 		switch (handle->nettype) {
369 		case _RPC_VISIBLE:
370 			if (!(nconf->nc_flag & NC_VISIBLE))
371 				continue;
372 			/* FALLTHROUGH */
373 		case _RPC_NETPATH:	/* Be happy */
374 			break;
375 		case _RPC_CIRCUIT_V:
376 			if (!(nconf->nc_flag & NC_VISIBLE))
377 				continue;
378 			/* FALLTHROUGH */
379 		case _RPC_CIRCUIT_N:
380 			if ((nconf->nc_semantics != NC_TPI_COTS) &&
381 				(nconf->nc_semantics != NC_TPI_COTS_ORD))
382 				continue;
383 			break;
384 		case _RPC_DATAGRAM_V:
385 			if (!(nconf->nc_flag & NC_VISIBLE))
386 				continue;
387 			/* FALLTHROUGH */
388 		case _RPC_DATAGRAM_N:
389 			if (nconf->nc_semantics != NC_TPI_CLTS)
390 				continue;
391 			break;
392 		case _RPC_TCP:
393 			if (((nconf->nc_semantics != NC_TPI_COTS) &&
394 				(nconf->nc_semantics != NC_TPI_COTS_ORD)) ||
395 				(strcmp(nconf->nc_protofmly, NC_INET)
396 #ifdef INET6
397 				 && strcmp(nconf->nc_protofmly, NC_INET6))
398 #else
399 				)
400 #endif
401 				||
402 				strcmp(nconf->nc_proto, NC_TCP))
403 				continue;
404 			break;
405 		case _RPC_UDP:
406 			if ((nconf->nc_semantics != NC_TPI_CLTS) ||
407 				(strcmp(nconf->nc_protofmly, NC_INET)
408 #ifdef INET6
409 				&& strcmp(nconf->nc_protofmly, NC_INET6))
410 #else
411 				)
412 #endif
413 				||
414 				strcmp(nconf->nc_proto, NC_UDP))
415 				continue;
416 			break;
417 		}
418 		break;
419 	}
420 	return (nconf);
421 }
422 
423 void
424 __rpc_endconf(vhandle)
425 	void * vhandle;
426 {
427 	struct handle *handle;
428 
429 	handle = (struct handle *) vhandle;
430 	if (handle == NULL) {
431 		return;
432 	}
433 	if (handle->nflag) {
434 		endnetpath(handle->nhandle);
435 	} else {
436 		endnetconfig(handle->nhandle);
437 	}
438 	free(handle);
439 }
440 
441 /*
442  * Used to ping the NULL procedure for clnt handle.
443  * Returns NULL if fails, else a non-NULL pointer.
444  */
445 void *
446 rpc_nullproc(clnt)
447 	CLIENT *clnt;
448 {
449 	struct timeval TIMEOUT = {25, 0};
450 
451 	if (clnt_call(clnt, NULLPROC, (xdrproc_t) xdr_void, (char *)NULL,
452 		(xdrproc_t) xdr_void, (char *)NULL, TIMEOUT) != RPC_SUCCESS) {
453 		return ((void *) NULL);
454 	}
455 	return ((void *) clnt);
456 }
457 
458 /*
459  * Try all possible transports until
460  * one succeeds in finding the netconf for the given fd.
461  */
462 struct netconfig *
463 __rpcgettp(fd)
464 	int fd;
465 {
466 	const char *netid;
467 	struct __rpc_sockinfo si;
468 
469 	if (!__rpc_fd2sockinfo(fd, &si))
470 		return NULL;
471 
472 	if (!__rpc_sockinfo2netid(&si, &netid))
473 		return NULL;
474 
475 	return getnetconfigent((char *)netid);
476 }
477 
478 int
479 __rpc_fd2sockinfo(int fd, struct __rpc_sockinfo *sip)
480 {
481 	socklen_t len;
482 	int type, proto;
483 	struct sockaddr_storage ss;
484 
485 	len = sizeof ss;
486 	if (getsockname(fd, (struct sockaddr *)&ss, &len) < 0)
487 		return 0;
488 	sip->si_alen = len;
489 
490 	len = sizeof type;
491 	if (getsockopt(fd, SOL_SOCKET, SO_TYPE, &type, &len) < 0)
492 		return 0;
493 
494 	/* XXX */
495 	if (ss.ss_family != AF_LOCAL) {
496 		if (type == SOCK_STREAM)
497 			proto = IPPROTO_TCP;
498 		else if (type == SOCK_DGRAM)
499 			proto = IPPROTO_UDP;
500 		else
501 			return 0;
502 	} else
503 		proto = 0;
504 
505 	sip->si_af = ss.ss_family;
506 	sip->si_proto = proto;
507 	sip->si_socktype = type;
508 
509 	return 1;
510 }
511 
512 /*
513  * Linear search, but the number of entries is small.
514  */
515 int
516 __rpc_nconf2sockinfo(const struct netconfig *nconf, struct __rpc_sockinfo *sip)
517 {
518 	int i;
519 
520 	for (i = 0; i < (sizeof na_cvt) / (sizeof (struct netid_af)); i++)
521 		if (!strcmp(na_cvt[i].netid, nconf->nc_netid)) {
522 			sip->si_af = na_cvt[i].af;
523 			sip->si_proto = na_cvt[i].protocol;
524 			sip->si_socktype =
525 			    __rpc_seman2socktype(nconf->nc_semantics);
526 			if (sip->si_socktype == -1)
527 				return 0;
528 			sip->si_alen = __rpc_get_a_size(sip->si_af);
529 			return 1;
530 		}
531 
532 	return 0;
533 }
534 
535 int
536 __rpc_nconf2fd(const struct netconfig *nconf)
537 {
538 	struct __rpc_sockinfo si;
539 
540 	if (!__rpc_nconf2sockinfo(nconf, &si))
541 		return 0;
542 
543 	return socket(si.si_af, si.si_socktype, si.si_proto);
544 }
545 
546 int
547 __rpc_sockinfo2netid(struct __rpc_sockinfo *sip, const char **netid)
548 {
549 	int i;
550 
551 	for (i = 0; i < (sizeof na_cvt) / (sizeof (struct netid_af)); i++)
552 		if (na_cvt[i].af == sip->si_af &&
553 		    na_cvt[i].protocol == sip->si_proto) {
554 			if (netid)
555 				*netid = na_cvt[i].netid;
556 			return 1;
557 		}
558 
559 	return 0;
560 }
561 
562 char *
563 taddr2uaddr(const struct netconfig *nconf, const struct netbuf *nbuf)
564 {
565 	struct __rpc_sockinfo si;
566 
567 	if (!__rpc_nconf2sockinfo(nconf, &si))
568 		return NULL;
569 	return __rpc_taddr2uaddr_af(si.si_af, nbuf);
570 }
571 
572 struct netbuf *
573 uaddr2taddr(const struct netconfig *nconf, const char *uaddr)
574 {
575 	struct __rpc_sockinfo si;
576 
577 	if (!__rpc_nconf2sockinfo(nconf, &si))
578 		return NULL;
579 	return __rpc_uaddr2taddr_af(si.si_af, uaddr);
580 }
581 
582 char *
583 __rpc_taddr2uaddr_af(int af, const struct netbuf *nbuf)
584 {
585 	char *ret;
586 	struct sockaddr_in *sin;
587 	struct sockaddr_un *sun;
588 	char namebuf[INET_ADDRSTRLEN];
589 #ifdef INET6
590 	struct sockaddr_in6 *sin6;
591 	char namebuf6[INET6_ADDRSTRLEN];
592 #endif
593 	u_int16_t port;
594 
595 	switch (af) {
596 	case AF_INET:
597 		sin = nbuf->buf;
598 		if (inet_ntop(af, &sin->sin_addr, namebuf, sizeof namebuf)
599 		    == NULL)
600 			return NULL;
601 		port = ntohs(sin->sin_port);
602 		if (asprintf(&ret, "%s.%u.%u", namebuf, port >> 8, port & 0xff)
603 		    < 0)
604 			return NULL;
605 		break;
606 #ifdef INET6
607 	case AF_INET6:
608 		sin6 = nbuf->buf;
609 		if (inet_ntop(af, &sin6->sin6_addr, namebuf6, sizeof namebuf6)
610 		    == NULL)
611 			return NULL;
612 		port = ntohs(sin6->sin6_port);
613 		if (asprintf(&ret, "%s.%u.%u", namebuf6, port >> 8, port & 0xff)
614 		    < 0)
615 			return NULL;
616 		break;
617 #endif
618 	case AF_LOCAL:
619 		sun = nbuf->buf;
620 		sun->sun_path[sizeof(sun->sun_path) - 1] = '\0'; /* safety */
621 		ret = strdup(sun->sun_path);
622 		break;
623 	default:
624 		return NULL;
625 	}
626 
627 	return ret;
628 }
629 
630 struct netbuf *
631 __rpc_uaddr2taddr_af(int af, const char *uaddr)
632 {
633 	struct netbuf *ret = NULL;
634 	char *addrstr, *p;
635 	unsigned port, portlo, porthi;
636 	struct sockaddr_in *sin;
637 #ifdef INET6
638 	struct sockaddr_in6 *sin6;
639 #endif
640 	struct sockaddr_un *sun;
641 
642 	addrstr = strdup(uaddr);
643 	if (addrstr == NULL)
644 		return NULL;
645 
646 	/*
647 	 * AF_LOCAL addresses are expected to be absolute
648 	 * pathnames, anything else will be AF_INET or AF_INET6.
649 	 */
650 	if (*addrstr != '/') {
651 		p = strrchr(addrstr, '.');
652 		if (p == NULL)
653 			goto out;
654 		portlo = (unsigned)atoi(p + 1);
655 		*p = '\0';
656 
657 		p = strrchr(addrstr, '.');
658 		if (p == NULL)
659 			goto out;
660 		porthi = (unsigned)atoi(p + 1);
661 		*p = '\0';
662 		port = (porthi << 8) | portlo;
663 	}
664 
665 	ret = (struct netbuf *)malloc(sizeof *ret);
666 
667 	switch (af) {
668 	case AF_INET:
669 		sin = (struct sockaddr_in *)malloc(sizeof *sin);
670 		if (sin == NULL)
671 			goto out;
672 		memset(sin, 0, sizeof *sin);
673 		sin->sin_family = AF_INET;
674 		sin->sin_port = htons(port);
675 		if (inet_pton(AF_INET, addrstr, &sin->sin_addr) <= 0) {
676 			free(sin);
677 			free(ret);
678 			ret = NULL;
679 			goto out;
680 		}
681 		sin->sin_len = ret->maxlen = ret->len = sizeof *sin;
682 		ret->buf = sin;
683 		break;
684 #ifdef INET6
685 	case AF_INET6:
686 		sin6 = (struct sockaddr_in6 *)malloc(sizeof *sin6);
687 		if (sin6 == NULL)
688 			goto out;
689 		memset(sin6, 0, sizeof *sin6);
690 		sin6->sin6_family = AF_INET6;
691 		sin6->sin6_port = htons(port);
692 		if (inet_pton(AF_INET6, addrstr, &sin6->sin6_addr) <= 0) {
693 			free(sin);
694 			free(ret);
695 			ret = NULL;
696 			goto out;
697 		}
698 		sin6->sin6_len = ret->maxlen = ret->len = sizeof *sin6;
699 		ret->buf = sin6;
700 		break;
701 #endif
702 	case AF_LOCAL:
703 		sun = (struct sockaddr_un *)malloc(sizeof *sun);
704 		if (sun == NULL)
705 			goto out;
706 		memset(sun, 0, sizeof *sun);
707 		sun->sun_family = AF_LOCAL;
708 		strncpy(sun->sun_path, addrstr, sizeof(sun->sun_path) - 1);
709 	default:
710 		break;
711 	}
712 out:
713 	free(addrstr);
714 	return ret;
715 }
716 
717 int
718 __rpc_seman2socktype(int semantics)
719 {
720 	switch (semantics) {
721 	case NC_TPI_CLTS:
722 		return SOCK_DGRAM;
723 	case NC_TPI_COTS_ORD:
724 		return SOCK_STREAM;
725 	case NC_TPI_RAW:
726 		return SOCK_RAW;
727 	default:
728 		break;
729 	}
730 
731 	return -1;
732 }
733 
734 int
735 __rpc_socktype2seman(int socktype)
736 {
737 	switch (socktype) {
738 	case SOCK_DGRAM:
739 		return NC_TPI_CLTS;
740 	case SOCK_STREAM:
741 		return NC_TPI_COTS_ORD;
742 	case SOCK_RAW:
743 		return NC_TPI_RAW;
744 	default:
745 		break;
746 	}
747 
748 	return -1;
749 }
750 
751 /*
752  * XXXX - IPv6 scope IDs can't be handled in universal addresses.
753  * Here, we compare the original server address to that of the RPC
754  * service we just received back from a call to rpcbind on the remote
755  * machine. If they are both "link local" or "site local", copy
756  * the scope id of the server address over to the service address.
757  */
758 int
759 __rpc_fixup_addr(struct netbuf *new, const struct netbuf *svc)
760 {
761 #ifdef INET6
762 	struct sockaddr *sa_new, *sa_svc;
763 	struct sockaddr_in6 *sin6_new, *sin6_svc;
764 
765 	sa_svc = (struct sockaddr *)svc->buf;
766 	sa_new = (struct sockaddr *)new->buf;
767 
768 	if (sa_new->sa_family == sa_svc->sa_family &&
769 	    sa_new->sa_family == AF_INET6) {
770 		sin6_new = (struct sockaddr_in6 *)new->buf;
771 		sin6_svc = (struct sockaddr_in6 *)svc->buf;
772 
773 		if ((IN6_IS_ADDR_LINKLOCAL(&sin6_new->sin6_addr) &&
774 		     IN6_IS_ADDR_LINKLOCAL(&sin6_svc->sin6_addr)) ||
775 		    (IN6_IS_ADDR_SITELOCAL(&sin6_new->sin6_addr) &&
776 		     IN6_IS_ADDR_SITELOCAL(&sin6_svc->sin6_addr))) {
777 			sin6_new->sin6_scope_id = sin6_svc->sin6_scope_id;
778 		}
779 	}
780 #endif
781 	return 1;
782 }
783 
784 int
785 __rpc_sockisbound(int fd)
786 {
787 	struct sockaddr_storage ss;
788 	socklen_t slen;
789 
790 	slen = sizeof (struct sockaddr_storage);
791 	if (getsockname(fd, (struct sockaddr *)&ss, &slen) < 0)
792 		return 0;
793 
794 	switch (ss.ss_family) {
795 		case AF_INET:
796 			return (((struct sockaddr_in *)&ss)->sin_port != 0);
797 #ifdef INET6
798 		case AF_INET6:
799 			return (((struct sockaddr_in6 *)&ss)->sin6_port != 0);
800 #endif
801 		case AF_LOCAL:
802 			/* XXX check this */
803 			return
804 			    (((struct sockaddr_un *)&ss)->sun_path[0] != '\0');
805 		default:
806 			break;
807 	}
808 
809 	return 0;
810 }
811