xref: /netbsd-src/lib/libc/rpc/rpc_generic.c (revision 1ffa7b76c40339c17a0fb2a09fac93f287cfc046)
1 /*	$NetBSD: rpc_generic.c,v 1.12 2003/01/18 11:29:05 thorpej Exp $	*/
2 
3 /*
4  * Sun RPC is a product of Sun Microsystems, Inc. and is provided for
5  * unrestricted use provided that this legend is included on all tape
6  * media and as a part of the software program in whole or part.  Users
7  * may copy or modify Sun RPC without charge, but are not authorized
8  * to license or distribute it to anyone else except as part of a product or
9  * program developed by the user.
10  *
11  * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
12  * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
13  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
14  *
15  * Sun RPC is provided with no support and without any obligation on the
16  * part of Sun Microsystems, Inc. to assist in its use, correction,
17  * modification or enhancement.
18  *
19  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
20  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
21  * OR ANY PART THEREOF.
22  *
23  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
24  * or profits or other special, indirect and consequential damages, even if
25  * Sun has been advised of the possibility of such damages.
26  *
27  * Sun Microsystems, Inc.
28  * 2550 Garcia Avenue
29  * Mountain View, California  94043
30  */
31 /*
32  * Copyright (c) 1986-1991 by Sun Microsystems Inc.
33  */
34 
35 /* #pragma ident	"@(#)rpc_generic.c	1.17	94/04/24 SMI" */
36 
37 /*
38  * rpc_generic.c, Miscl routines for RPC.
39  *
40  */
41 
42 #include "namespace.h"
43 #include "reentrant.h"
44 #include <sys/types.h>
45 #include <sys/param.h>
46 #include <sys/socket.h>
47 #include <sys/un.h>
48 #include <sys/resource.h>
49 #include <netinet/in.h>
50 #include <arpa/inet.h>
51 #include <rpc/rpc.h>
52 #include <assert.h>
53 #include <ctype.h>
54 #include <stdio.h>
55 #include <netdb.h>
56 #include <netconfig.h>
57 #include <malloc.h>
58 #include <string.h>
59 #include <syslog.h>
60 #include <rpc/nettype.h>
61 #include "rpc_internal.h"
62 
63 struct handle {
64 	NCONF_HANDLE *nhandle;
65 	int nflag;		/* Whether NETPATH or NETCONFIG */
66 	int nettype;
67 };
68 
69 static const struct _rpcnettype {
70 	const char *name;
71 	const int type;
72 } _rpctypelist[] = {
73 	{ "netpath", _RPC_NETPATH },
74 	{ "visible", _RPC_VISIBLE },
75 	{ "circuit_v", _RPC_CIRCUIT_V },
76 	{ "datagram_v", _RPC_DATAGRAM_V },
77 	{ "circuit_n", _RPC_CIRCUIT_N },
78 	{ "datagram_n", _RPC_DATAGRAM_N },
79 	{ "tcp", _RPC_TCP },
80 	{ "udp", _RPC_UDP },
81 	{ 0, _RPC_NONE }
82 };
83 
84 struct netid_af {
85 	const char	*netid;
86 	int		af;
87 	int		protocol;
88 };
89 
90 static const struct netid_af na_cvt[] = {
91 	{ "udp",  AF_INET,  IPPROTO_UDP },
92 	{ "tcp",  AF_INET,  IPPROTO_TCP },
93 #ifdef INET6
94 	{ "udp6", AF_INET6, IPPROTO_UDP },
95 	{ "tcp6", AF_INET6, IPPROTO_TCP },
96 #endif
97 	{ "local", AF_LOCAL, 0 }
98 };
99 
100 #if 0
101 static char *strlocase __P((char *));
102 #endif
103 static int getnettype __P((const char *));
104 
105 /*
106  * Cache the result of getrlimit(), so we don't have to do an
107  * expensive call every time.
108  */
109 int
110 __rpc_dtbsize()
111 {
112 	static int tbsize;
113 	struct rlimit rl;
114 
115 	if (tbsize) {
116 		return (tbsize);
117 	}
118 	if (getrlimit(RLIMIT_NOFILE, &rl) == 0) {
119 		return (tbsize = (int)rl.rlim_max);
120 	}
121 	/*
122 	 * Something wrong.  I'll try to save face by returning a
123 	 * pessimistic number.
124 	 */
125 	return (32);
126 }
127 
128 
129 /*
130  * Find the appropriate buffer size
131  */
132 u_int
133 /*ARGSUSED*/
134 __rpc_get_t_size(af, proto, size)
135 	int af, proto;
136 	int size;	/* Size requested */
137 {
138 	int maxsize;
139 
140 	switch (proto) {
141 	case IPPROTO_TCP:
142 		maxsize = 65536;	/* XXX */
143 		break;
144 	case IPPROTO_UDP:
145 		maxsize = 8192;		/* XXX */
146 		break;
147 	default:
148 		maxsize = RPC_MAXDATASIZE;
149 		break;
150 	}
151 	if (size == 0)
152 		return maxsize;
153 
154 	/* Check whether the value is within the upper max limit */
155 	return (size > maxsize ? (u_int)maxsize : (u_int)size);
156 }
157 
158 /*
159  * Find the appropriate address buffer size
160  */
161 u_int
162 __rpc_get_a_size(af)
163 	int af;
164 {
165 	switch (af) {
166 	case AF_INET:
167 		return sizeof (struct sockaddr_in);
168 #ifdef INET6
169 	case AF_INET6:
170 		return sizeof (struct sockaddr_in6);
171 #endif
172 	case AF_LOCAL:
173 		return sizeof (struct sockaddr_un);
174 	default:
175 		break;
176 	}
177 	return ((u_int)RPC_MAXADDRSIZE);
178 }
179 
180 #if 0
181 static char *
182 strlocase(p)
183 	char *p;
184 {
185 	char *t = p;
186 
187 	_DIAGASSERT(p != NULL);
188 
189 	for (; *p; p++)
190 		if (isupper(*p))
191 			*p = tolower(*p);
192 	return (t);
193 }
194 #endif
195 
196 /*
197  * Returns the type of the network as defined in <rpc/nettype.h>
198  * If nettype is NULL, it defaults to NETPATH.
199  */
200 static int
201 getnettype(nettype)
202 	const char *nettype;
203 {
204 	int i;
205 
206 	if ((nettype == NULL) || (nettype[0] == NULL)) {
207 		return (_RPC_NETPATH);	/* Default */
208 	}
209 
210 #if 0
211 	nettype = strlocase(nettype);
212 #endif
213 	for (i = 0; _rpctypelist[i].name; i++)
214 		if (strcasecmp(nettype, _rpctypelist[i].name) == 0) {
215 			return (_rpctypelist[i].type);
216 		}
217 	return (_rpctypelist[i].type);
218 }
219 
220 /*
221  * For the given nettype (tcp or udp only), return the first structure found.
222  * This should be freed by calling freenetconfigent()
223  */
224 
225 #ifdef _REENTRANT
226 static thread_key_t tcp_key, udp_key;
227 static once_t __rpc_getconfigp_once = ONCE_INITIALIZER;
228 
229 static void
230 __rpc_getconfigp_setup(void)
231 {
232 
233 	thr_keycreate(&tcp_key, free);
234 	thr_keycreate(&udp_key, free);
235 }
236 #endif
237 
238 struct netconfig *
239 __rpc_getconfip(nettype)
240 	const char *nettype;
241 {
242 	char *netid;
243 	char *netid_tcp = (char *) NULL;
244 	char *netid_udp = (char *) NULL;
245 	static char *netid_tcp_main;
246 	static char *netid_udp_main;
247 	struct netconfig *dummy;
248 #ifdef _REENTRANT
249 	extern int __isthreaded;
250 
251 	if (__isthreaded == 0) {
252 		netid_udp = netid_udp_main;
253 		netid_tcp = netid_tcp_main;
254 	} else {
255 		thr_once(&__rpc_getconfigp_once, __rpc_getconfigp_setup);
256 		netid_tcp = thr_getspecific(tcp_key);
257 		netid_udp = thr_getspecific(udp_key);
258 	}
259 #else
260 	netid_udp = netid_udp_main;
261 	netid_tcp = netid_tcp_main;
262 #endif
263 
264 	_DIAGASSERT(nettype != NULL);
265 
266 	if (!netid_udp && !netid_tcp) {
267 		struct netconfig *nconf;
268 		void *confighandle;
269 
270 		if (!(confighandle = setnetconfig())) {
271 			syslog (LOG_ERR, "rpc: failed to open " NETCONFIG);
272 			return (NULL);
273 		}
274 		while ((nconf = getnetconfig(confighandle)) != NULL) {
275 			if (strcmp(nconf->nc_protofmly, NC_INET) == 0) {
276 				if (strcmp(nconf->nc_proto, NC_TCP) == 0) {
277 					netid_tcp = strdup(nconf->nc_netid);
278 #ifdef _REENTRANT
279 					if (__isthreaded == 0)
280 						netid_tcp_main = netid_tcp;
281 					else
282 						thr_setspecific(tcp_key,
283 							(void *) netid_tcp);
284 #else
285 					netid_tcp_main = netid_tcp;
286 #endif
287 				} else
288 				if (strcmp(nconf->nc_proto, NC_UDP) == 0) {
289 					netid_udp = strdup(nconf->nc_netid);
290 #ifdef _REENTRANT
291 					if (__isthreaded == 0)
292 						netid_udp_main = netid_udp;
293 					else
294 						thr_setspecific(udp_key,
295 							(void *) netid_udp);
296 #else
297 					netid_udp_main = netid_udp;
298 #endif
299 				}
300 			}
301 		}
302 		endnetconfig(confighandle);
303 	}
304 	if (strcmp(nettype, "udp") == 0)
305 		netid = netid_udp;
306 	else if (strcmp(nettype, "tcp") == 0)
307 		netid = netid_tcp;
308 	else {
309 		return (NULL);
310 	}
311 	if ((netid == NULL) || (netid[0] == NULL)) {
312 		return (NULL);
313 	}
314 	dummy = getnetconfigent(netid);
315 	return (dummy);
316 }
317 
318 /*
319  * Returns the type of the nettype, which should then be used with
320  * __rpc_getconf().
321  */
322 void *
323 __rpc_setconf(nettype)
324 	const char *nettype;
325 {
326 	struct handle *handle;
327 
328 	/* nettype may be NULL; getnettype() supports that */
329 
330 	handle = (struct handle *) malloc(sizeof (struct handle));
331 	if (handle == NULL) {
332 		return (NULL);
333 	}
334 	switch (handle->nettype = getnettype(nettype)) {
335 	case _RPC_NETPATH:
336 	case _RPC_CIRCUIT_N:
337 	case _RPC_DATAGRAM_N:
338 		if (!(handle->nhandle = setnetpath())) {
339 			free(handle);
340 			return (NULL);
341 		}
342 		handle->nflag = TRUE;
343 		break;
344 	case _RPC_VISIBLE:
345 	case _RPC_CIRCUIT_V:
346 	case _RPC_DATAGRAM_V:
347 	case _RPC_TCP:
348 	case _RPC_UDP:
349 		if (!(handle->nhandle = setnetconfig())) {
350 		        syslog (LOG_ERR, "rpc: failed to open " NETCONFIG);
351 			free(handle);
352 			return (NULL);
353 		}
354 		handle->nflag = FALSE;
355 		break;
356 	default:
357 		return (NULL);
358 	}
359 
360 	return (handle);
361 }
362 
363 /*
364  * Returns the next netconfig struct for the given "net" type.
365  * __rpc_setconf() should have been called previously.
366  */
367 struct netconfig *
368 __rpc_getconf(vhandle)
369 	void *vhandle;
370 {
371 	struct handle *handle;
372 	struct netconfig *nconf;
373 
374 	handle = (struct handle *)vhandle;
375 	if (handle == NULL) {
376 		return (NULL);
377 	}
378 	for (;;) {
379 		if (handle->nflag)
380 			nconf = getnetpath(handle->nhandle);
381 		else
382 			nconf = getnetconfig(handle->nhandle);
383 		if (nconf == NULL)
384 			break;
385 		if ((nconf->nc_semantics != NC_TPI_CLTS) &&
386 			(nconf->nc_semantics != NC_TPI_COTS) &&
387 			(nconf->nc_semantics != NC_TPI_COTS_ORD))
388 			continue;
389 		switch (handle->nettype) {
390 		case _RPC_VISIBLE:
391 			if (!(nconf->nc_flag & NC_VISIBLE))
392 				continue;
393 			/* FALLTHROUGH */
394 		case _RPC_NETPATH:	/* Be happy */
395 			break;
396 		case _RPC_CIRCUIT_V:
397 			if (!(nconf->nc_flag & NC_VISIBLE))
398 				continue;
399 			/* FALLTHROUGH */
400 		case _RPC_CIRCUIT_N:
401 			if ((nconf->nc_semantics != NC_TPI_COTS) &&
402 				(nconf->nc_semantics != NC_TPI_COTS_ORD))
403 				continue;
404 			break;
405 		case _RPC_DATAGRAM_V:
406 			if (!(nconf->nc_flag & NC_VISIBLE))
407 				continue;
408 			/* FALLTHROUGH */
409 		case _RPC_DATAGRAM_N:
410 			if (nconf->nc_semantics != NC_TPI_CLTS)
411 				continue;
412 			break;
413 		case _RPC_TCP:
414 			if (((nconf->nc_semantics != NC_TPI_COTS) &&
415 				(nconf->nc_semantics != NC_TPI_COTS_ORD)) ||
416 				(strcmp(nconf->nc_protofmly, NC_INET)
417 #ifdef INET6
418 				 && strcmp(nconf->nc_protofmly, NC_INET6))
419 #else
420 				)
421 #endif
422 				||
423 				strcmp(nconf->nc_proto, NC_TCP))
424 				continue;
425 			break;
426 		case _RPC_UDP:
427 			if ((nconf->nc_semantics != NC_TPI_CLTS) ||
428 				(strcmp(nconf->nc_protofmly, NC_INET)
429 #ifdef INET6
430 				&& strcmp(nconf->nc_protofmly, NC_INET6))
431 #else
432 				)
433 #endif
434 				||
435 				strcmp(nconf->nc_proto, NC_UDP))
436 				continue;
437 			break;
438 		}
439 		break;
440 	}
441 	return (nconf);
442 }
443 
444 void
445 __rpc_endconf(vhandle)
446 	void * vhandle;
447 {
448 	struct handle *handle;
449 
450 	handle = (struct handle *) vhandle;
451 	if (handle == NULL) {
452 		return;
453 	}
454 	if (handle->nflag) {
455 		endnetpath(handle->nhandle);
456 	} else {
457 		endnetconfig(handle->nhandle);
458 	}
459 	free(handle);
460 }
461 
462 /*
463  * Used to ping the NULL procedure for clnt handle.
464  * Returns NULL if fails, else a non-NULL pointer.
465  */
466 void *
467 rpc_nullproc(clnt)
468 	CLIENT *clnt;
469 {
470 	struct timeval TIMEOUT = {25, 0};
471 
472 	if (clnt_call(clnt, NULLPROC, (xdrproc_t) xdr_void, NULL,
473 		(xdrproc_t) xdr_void, NULL, TIMEOUT) != RPC_SUCCESS) {
474 		return (NULL);
475 	}
476 	return ((void *) clnt);
477 }
478 
479 /*
480  * Try all possible transports until
481  * one succeeds in finding the netconf for the given fd.
482  */
483 struct netconfig *
484 __rpcgettp(fd)
485 	int fd;
486 {
487 	const char *netid;
488 	struct __rpc_sockinfo si;
489 
490 	if (!__rpc_fd2sockinfo(fd, &si))
491 		return NULL;
492 
493 	if (!__rpc_sockinfo2netid(&si, &netid))
494 		return NULL;
495 
496 	/*LINTED const castaway*/
497 	return getnetconfigent((char *)netid);
498 }
499 
500 int
501 __rpc_fd2sockinfo(int fd, struct __rpc_sockinfo *sip)
502 {
503 	socklen_t len;
504 	int type, proto;
505 	struct sockaddr_storage ss;
506 
507 	_DIAGASSERT(sip != NULL);
508 
509 	len = sizeof ss;
510 	if (getsockname(fd, (struct sockaddr *)(void *)&ss, &len) < 0)
511 		return 0;
512 	sip->si_alen = len;
513 
514 	len = sizeof type;
515 	if (getsockopt(fd, SOL_SOCKET, SO_TYPE, &type, &len) < 0)
516 		return 0;
517 
518 	/* XXX */
519 	if (ss.ss_family != AF_LOCAL) {
520 		if (type == SOCK_STREAM)
521 			proto = IPPROTO_TCP;
522 		else if (type == SOCK_DGRAM)
523 			proto = IPPROTO_UDP;
524 		else
525 			return 0;
526 	} else
527 		proto = 0;
528 
529 	sip->si_af = ss.ss_family;
530 	sip->si_proto = proto;
531 	sip->si_socktype = type;
532 
533 	return 1;
534 }
535 
536 /*
537  * Linear search, but the number of entries is small.
538  */
539 int
540 __rpc_nconf2sockinfo(const struct netconfig *nconf, struct __rpc_sockinfo *sip)
541 {
542 	size_t i;
543 
544 	_DIAGASSERT(nconf != NULL);
545 	_DIAGASSERT(sip != NULL);
546 
547 	for (i = 0; i < (sizeof na_cvt) / (sizeof (struct netid_af)); i++)
548 		if (!strcmp(na_cvt[i].netid, nconf->nc_netid)) {
549 			sip->si_af = na_cvt[i].af;
550 			sip->si_proto = na_cvt[i].protocol;
551 			sip->si_socktype =
552 			    __rpc_seman2socktype((int)nconf->nc_semantics);
553 			if (sip->si_socktype == -1)
554 				return 0;
555 			sip->si_alen = __rpc_get_a_size(sip->si_af);
556 			return 1;
557 		}
558 
559 	return 0;
560 }
561 
562 int
563 __rpc_nconf2fd(const struct netconfig *nconf)
564 {
565 	struct __rpc_sockinfo si;
566 
567 	_DIAGASSERT(nconf != NULL);
568 
569 	if (!__rpc_nconf2sockinfo(nconf, &si))
570 		return 0;
571 
572 	return socket(si.si_af, si.si_socktype, si.si_proto);
573 }
574 
575 int
576 __rpc_sockinfo2netid(struct __rpc_sockinfo *sip, const char **netid)
577 {
578 	size_t i;
579 
580 	_DIAGASSERT(sip != NULL);
581 	/* netid may be NULL */
582 
583 	for (i = 0; i < (sizeof na_cvt) / (sizeof (struct netid_af)); i++)
584 		if (na_cvt[i].af == sip->si_af &&
585 		    na_cvt[i].protocol == sip->si_proto) {
586 			if (netid)
587 				*netid = na_cvt[i].netid;
588 			return 1;
589 		}
590 
591 	return 0;
592 }
593 
594 char *
595 taddr2uaddr(const struct netconfig *nconf, const struct netbuf *nbuf)
596 {
597 	struct __rpc_sockinfo si;
598 
599 	_DIAGASSERT(nconf != NULL);
600 	_DIAGASSERT(nbuf != NULL);
601 
602 	if (!__rpc_nconf2sockinfo(nconf, &si))
603 		return NULL;
604 	return __rpc_taddr2uaddr_af(si.si_af, nbuf);
605 }
606 
607 struct netbuf *
608 uaddr2taddr(const struct netconfig *nconf, const char *uaddr)
609 {
610 	struct __rpc_sockinfo si;
611 
612 	_DIAGASSERT(nconf != NULL);
613 	_DIAGASSERT(uaddr != NULL);
614 
615 	if (!__rpc_nconf2sockinfo(nconf, &si))
616 		return NULL;
617 	return __rpc_uaddr2taddr_af(si.si_af, uaddr);
618 }
619 
620 char *
621 __rpc_taddr2uaddr_af(int af, const struct netbuf *nbuf)
622 {
623 	char *ret;
624 	struct sockaddr_in *sinp;
625 	struct sockaddr_un *sun;
626 	char namebuf[INET_ADDRSTRLEN];
627 #ifdef INET6
628 	struct sockaddr_in6 *sin6;
629 	char namebuf6[INET6_ADDRSTRLEN];
630 #endif
631 	u_int16_t port;
632 
633 	_DIAGASSERT(nbuf != NULL);
634 
635 	switch (af) {
636 	case AF_INET:
637 		sinp = nbuf->buf;
638 		if (inet_ntop(af, &sinp->sin_addr, namebuf, sizeof namebuf)
639 		    == NULL)
640 			return NULL;
641 		port = ntohs(sinp->sin_port);
642 		if (asprintf(&ret, "%s.%u.%u", namebuf, ((u_int32_t)port) >> 8,
643 		    port & 0xff) < 0)
644 			return NULL;
645 		break;
646 #ifdef INET6
647 	case AF_INET6:
648 		sin6 = nbuf->buf;
649 		if (inet_ntop(af, &sin6->sin6_addr, namebuf6, sizeof namebuf6)
650 		    == NULL)
651 			return NULL;
652 		port = ntohs(sin6->sin6_port);
653 		if (asprintf(&ret, "%s.%u.%u", namebuf6, ((u_int32_t)port) >> 8,
654 		    port & 0xff) < 0)
655 			return NULL;
656 		break;
657 #endif
658 	case AF_LOCAL:
659 		sun = nbuf->buf;
660 		sun->sun_path[sizeof(sun->sun_path) - 1] = '\0'; /* safety */
661 		ret = strdup(sun->sun_path);
662 		break;
663 	default:
664 		return NULL;
665 	}
666 
667 	return ret;
668 }
669 
670 struct netbuf *
671 __rpc_uaddr2taddr_af(int af, const char *uaddr)
672 {
673 	struct netbuf *ret = NULL;
674 	char *addrstr, *p;
675 	unsigned port, portlo, porthi;
676 	struct sockaddr_in *sinp;
677 #ifdef INET6
678 	struct sockaddr_in6 *sin6;
679 #endif
680 	struct sockaddr_un *sun;
681 
682 	_DIAGASSERT(uaddr != NULL);
683 
684 	addrstr = strdup(uaddr);
685 	if (addrstr == NULL)
686 		return NULL;
687 
688 	/*
689 	 * AF_LOCAL addresses are expected to be absolute
690 	 * pathnames, anything else will be AF_INET or AF_INET6.
691 	 */
692 	if (*addrstr != '/') {
693 		p = strrchr(addrstr, '.');
694 		if (p == NULL)
695 			goto out;
696 		portlo = (unsigned)atoi(p + 1);
697 		*p = '\0';
698 
699 		p = strrchr(addrstr, '.');
700 		if (p == NULL)
701 			goto out;
702 		porthi = (unsigned)atoi(p + 1);
703 		*p = '\0';
704 		port = (porthi << 8) | portlo;
705 	}
706 
707 	ret = (struct netbuf *)malloc(sizeof *ret);
708 	if (ret == NULL)
709 		goto out;
710 
711 	switch (af) {
712 	case AF_INET:
713 		sinp = (struct sockaddr_in *)malloc(sizeof *sinp);
714 		if (sinp == NULL)
715 			goto out;
716 		memset(sinp, 0, sizeof *sinp);
717 		sinp->sin_family = AF_INET;
718 		sinp->sin_port = htons(port);
719 		if (inet_pton(AF_INET, addrstr, &sinp->sin_addr) <= 0) {
720 			free(sinp);
721 			free(ret);
722 			ret = NULL;
723 			goto out;
724 		}
725 		sinp->sin_len = ret->maxlen = ret->len = sizeof *sinp;
726 		ret->buf = sinp;
727 		break;
728 #ifdef INET6
729 	case AF_INET6:
730 		sin6 = (struct sockaddr_in6 *)malloc(sizeof *sin6);
731 		if (sin6 == NULL)
732 			goto out;
733 		memset(sin6, 0, sizeof *sin6);
734 		sin6->sin6_family = AF_INET6;
735 		sin6->sin6_port = htons(port);
736 		if (inet_pton(AF_INET6, addrstr, &sin6->sin6_addr) <= 0) {
737 			free(sin6);
738 			free(ret);
739 			ret = NULL;
740 			goto out;
741 		}
742 		sin6->sin6_len = ret->maxlen = ret->len = sizeof *sin6;
743 		ret->buf = sin6;
744 		break;
745 #endif
746 	case AF_LOCAL:
747 		sun = (struct sockaddr_un *)malloc(sizeof *sun);
748 		if (sun == NULL)
749 			goto out;
750 		memset(sun, 0, sizeof *sun);
751 		sun->sun_family = AF_LOCAL;
752 		strncpy(sun->sun_path, addrstr, sizeof(sun->sun_path) - 1);
753 		ret->len = ret->maxlen = sun->sun_len = SUN_LEN(sun);
754 		ret->buf = sun;
755 		break;
756 	default:
757 		break;
758 	}
759 out:
760 	free(addrstr);
761 	return ret;
762 }
763 
764 int
765 __rpc_seman2socktype(int semantics)
766 {
767 	switch (semantics) {
768 	case NC_TPI_CLTS:
769 		return SOCK_DGRAM;
770 	case NC_TPI_COTS_ORD:
771 		return SOCK_STREAM;
772 	case NC_TPI_RAW:
773 		return SOCK_RAW;
774 	default:
775 		break;
776 	}
777 
778 	return -1;
779 }
780 
781 int
782 __rpc_socktype2seman(int socktype)
783 {
784 	switch (socktype) {
785 	case SOCK_DGRAM:
786 		return NC_TPI_CLTS;
787 	case SOCK_STREAM:
788 		return NC_TPI_COTS_ORD;
789 	case SOCK_RAW:
790 		return NC_TPI_RAW;
791 	default:
792 		break;
793 	}
794 
795 	return -1;
796 }
797 
798 /*
799  * XXXX - IPv6 scope IDs can't be handled in universal addresses.
800  * Here, we compare the original server address to that of the RPC
801  * service we just received back from a call to rpcbind on the remote
802  * machine. If they are both "link local" or "site local", copy
803  * the scope id of the server address over to the service address.
804  */
805 int
806 __rpc_fixup_addr(struct netbuf *new, const struct netbuf *svc)
807 {
808 #ifdef INET6
809 	struct sockaddr *sa_new, *sa_svc;
810 	struct sockaddr_in6 *sin6_new, *sin6_svc;
811 
812 	_DIAGASSERT(new != NULL);
813 	_DIAGASSERT(svc != NULL);
814 
815 	sa_svc = (struct sockaddr *)svc->buf;
816 	sa_new = (struct sockaddr *)new->buf;
817 
818 	if (sa_new->sa_family == sa_svc->sa_family &&
819 	    sa_new->sa_family == AF_INET6) {
820 		sin6_new = (struct sockaddr_in6 *)new->buf;
821 		sin6_svc = (struct sockaddr_in6 *)svc->buf;
822 
823 		if ((IN6_IS_ADDR_LINKLOCAL(&sin6_new->sin6_addr) &&
824 		     IN6_IS_ADDR_LINKLOCAL(&sin6_svc->sin6_addr)) ||
825 		    (IN6_IS_ADDR_SITELOCAL(&sin6_new->sin6_addr) &&
826 		     IN6_IS_ADDR_SITELOCAL(&sin6_svc->sin6_addr))) {
827 			sin6_new->sin6_scope_id = sin6_svc->sin6_scope_id;
828 		}
829 	}
830 #endif
831 	return 1;
832 }
833 
834 int
835 __rpc_sockisbound(int fd)
836 {
837 	struct sockaddr_storage ss;
838 	socklen_t slen;
839 
840 	slen = sizeof (struct sockaddr_storage);
841 	if (getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0)
842 		return 0;
843 
844 	switch (ss.ss_family) {
845 		case AF_INET:
846 			return (((struct sockaddr_in *)
847 			    (void *)&ss)->sin_port != 0);
848 #ifdef INET6
849 		case AF_INET6:
850 			return (((struct sockaddr_in6 *)
851 			    (void *)&ss)->sin6_port != 0);
852 #endif
853 		case AF_LOCAL:
854 			/* XXX check this */
855 			return (((struct sockaddr_un *)
856 			    (void *)&ss)->sun_path[0] != '\0');
857 		default:
858 			break;
859 	}
860 
861 	return 0;
862 }
863