xref: /netbsd-src/lib/libc/gen/arc4random.c (revision ead2c0eee3abe6bcf08c63bfc78eb8a93a579b2b)
1 /*	$NetBSD: arc4random.c,v 1.11 2012/02/27 04:25:12 tls Exp $	*/
2 /*	$OpenBSD: arc4random.c,v 1.6 2001/06/05 05:05:38 pvalchev Exp $	*/
3 
4 /*
5  * Arc4 random number generator for OpenBSD.
6  * Copyright 1996 David Mazieres <dm@lcs.mit.edu>.
7  *
8  * Modification and redistribution in source and binary forms is
9  * permitted provided that due credit is given to the author and the
10  * OpenBSD project by leaving this copyright notice intact.
11  */
12 
13 /*
14  * This code is derived from section 17.1 of Applied Cryptography,
15  * second edition, which describes a stream cipher allegedly
16  * compatible with RSA Labs "RC4" cipher (the actual description of
17  * which is a trade secret).  The same algorithm is used as a stream
18  * cipher called "arcfour" in Tatu Ylonen's ssh package.
19  *
20  * Here the stream cipher has been modified always to include the time
21  * when initializing the state.  That makes it impossible to
22  * regenerate the same random sequence twice, so this can't be used
23  * for encryption, but will generate good random numbers.
24  *
25  * RC4 is a registered trademark of RSA Laboratories.
26  */
27 
28 #include <sys/cdefs.h>
29 #if defined(LIBC_SCCS) && !defined(lint)
30 __RCSID("$NetBSD: arc4random.c,v 1.11 2012/02/27 04:25:12 tls Exp $");
31 #endif /* LIBC_SCCS and not lint */
32 
33 #include "namespace.h"
34 #include "reentrant.h"
35 #include <fcntl.h>
36 #include <stdlib.h>
37 #include <unistd.h>
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <sys/time.h>
41 #include <sys/sysctl.h>
42 
43 #ifdef __weak_alias
44 __weak_alias(arc4random,_arc4random)
45 #endif
46 
47 struct arc4_stream {
48 	mutex_t mtx;
49 	uint8_t i;
50 	uint8_t j;
51 	uint8_t s[256];
52 };
53 
54 static int rs_initialized;
55 /* XXX lint explodes with an internal error if only mtx is initialized! */
56 static struct arc4_stream rs = { .i = 0, .mtx = MUTEX_INITIALIZER };
57 
58 static inline void arc4_init(struct arc4_stream *);
59 static inline void arc4_addrandom(struct arc4_stream *, u_char *, int);
60 static void arc4_stir(struct arc4_stream *);
61 static inline uint8_t arc4_getbyte(struct arc4_stream *);
62 static inline uint32_t arc4_getword(struct arc4_stream *);
63 
64 static inline void
65 arc4_init(struct arc4_stream *as)
66 {
67 	int     n;
68 
69 	for (n = 0; n < 256; n++)
70 		as->s[n] = n;
71 	as->i = 0;
72 	as->j = 0;
73 }
74 
75 static inline void
76 arc4_addrandom(struct arc4_stream *as, u_char *dat, int datlen)
77 {
78 	int     n;
79 	uint8_t si;
80 
81 	as->i--;
82 	for (n = 0; n < 256; n++) {
83 		as->i = (as->i + 1);
84 		si = as->s[as->i];
85 		as->j = (as->j + si + dat[n % datlen]);
86 		as->s[as->i] = as->s[as->j];
87 		as->s[as->j] = si;
88 	}
89 	as->j = as->i;
90 }
91 
92 static void
93 arc4_stir(struct arc4_stream *as)
94 {
95 	int rdat[128 / sizeof(int)];
96 	int	n;
97 	int mib[2];
98 	unsigned int i;
99 	size_t len;
100 
101 	/*
102 	 * This code once opened and read /dev/urandom on each
103 	 * call.  That causes repeated rekeying of the kernel stream
104 	 * generator, which is very wasteful.  Because of application
105 	 * behavior, caching the fd doesn't really help.  So we just
106 	 * fill up the tank from sysctl, which is a tiny bit slower
107 	 * for us but much friendlier to other entropy consumers.
108 	 */
109 
110 	mib[0] = CTL_KERN;
111 	mib[1] = KERN_URND;
112 
113 	for (i = 0; i < sizeof(rdat) / sizeof(int); i++) {
114 		len = sizeof(rdat[i]);
115 		if (sysctl(mib, 2, &rdat[i], &len, NULL, 0) == -1)
116 			abort();
117 	}
118 
119 	arc4_addrandom(as, (void *) &rdat, sizeof(rdat));
120 
121 	/*
122 	 * Throw away the first N words of output, as suggested in the
123 	 * paper "Weaknesses in the Key Scheduling Algorithm of RC4"
124 	 * by Fluher, Mantin, and Shamir.  (N = 256 in our case.)
125 	 */
126 	for (n = 0; n < 256 * 4; n++)
127 		arc4_getbyte(as);
128 }
129 
130 static inline uint8_t
131 arc4_getbyte(struct arc4_stream *as)
132 {
133 	uint8_t si, sj;
134 
135 	as->i = (as->i + 1);
136 	si = as->s[as->i];
137 	as->j = (as->j + si);
138 	sj = as->s[as->j];
139 	as->s[as->i] = sj;
140 	as->s[as->j] = si;
141 	return (as->s[(si + sj) & 0xff]);
142 }
143 
144 static inline uint32_t
145 arc4_getword(struct arc4_stream *as)
146 {
147 	uint32_t val;
148 	val = arc4_getbyte(as) << 24;
149 	val |= arc4_getbyte(as) << 16;
150 	val |= arc4_getbyte(as) << 8;
151 	val |= arc4_getbyte(as);
152 	return val;
153 }
154 
155 static inline void
156 _arc4random_stir_unlocked(void)
157 {
158 	if (!rs_initialized) {
159 		arc4_init(&rs);
160 		rs_initialized = 1;
161 	}
162 	arc4_stir(&rs);
163 }
164 
165 void
166 arc4random_stir(void)
167 {
168 #ifdef _REENTRANT
169 	if (__isthreaded) {
170 		mutex_lock(&rs.mtx);
171                 _arc4random_stir_unlocked();
172 		mutex_unlock(&rs.mtx);
173 		return;
174         }
175 #endif
176 	_arc4random_stir_unlocked();
177 }
178 
179 static inline void
180 _arc4random_addrandom_unlocked(u_char *dat, int datlen)
181 {
182 	if (!rs_initialized)
183 		arc4_stir(&rs);
184 	arc4_addrandom(&rs, dat, datlen);
185 }
186 
187 void
188 arc4random_addrandom(u_char *dat, int datlen)
189 {
190 #ifdef _REENTRANT
191 	if (__isthreaded) {
192 		mutex_lock(&rs.mtx);
193 		_arc4random_addrandom_unlocked(dat, datlen);
194 		mutex_unlock(&rs.mtx);
195 		return;
196 	}
197 #endif
198 	_arc4random_addrandom_unlocked(dat, datlen);
199 }
200 
201 static inline uint32_t
202 _arc4random_unlocked(void)
203 {
204 	if (!rs_initialized)
205 		arc4_stir(&rs);
206 	return arc4_getword(&rs);
207 }
208 
209 uint32_t
210 arc4random(void)
211 {
212 	uint32_t v;
213 #ifdef _REENTRANT
214 	if (__isthreaded) {
215 		mutex_lock(&rs.mtx);
216 		v = _arc4random_unlocked();
217 		mutex_unlock(&rs.mtx);
218 		return v;
219 	}
220 #endif
221 	v = _arc4random_unlocked();
222 	return v;
223 }
224 
225 static void
226 _arc4random_buf_unlocked(void *buf, size_t len)
227 {
228 	uint8_t *bp = buf;
229 	uint8_t *ep = bp + len;
230 
231 	bp[0] = arc4_getbyte(&rs) % 3;
232 	while (bp[0]--)
233 		(void)arc4_getbyte(&rs);
234 
235 	while (bp < ep)
236 		*bp++ = arc4_getbyte(&rs);
237 }
238 
239 void
240 arc4random_buf(void *buf, size_t len)
241 {
242 #ifdef _REENTRANT
243 	if (__isthreaded) {
244 		mutex_lock(&rs.mtx);
245 		_arc4random_buf_unlocked(buf, len);
246 		mutex_unlock(&rs.mtx);
247 		return;
248 	} else
249 #endif
250 	_arc4random_buf_unlocked(buf, len);
251 }
252 
253 /*-
254  * Written by Damien Miller.
255  * With simplifications by Jinmei Tatuya.
256  */
257 
258 /*
259  * Calculate a uniformly distributed random number less than
260  * upper_bound avoiding "modulo bias".
261  *
262  * Uniformity is achieved by generating new random numbers
263  * until the one returned is outside the range
264  * [0, 2^32 % upper_bound[. This guarantees the selected
265  * random number will be inside the range
266  * [2^32 % upper_bound, 2^32[ which maps back to
267  * [0, upper_bound[ after reduction modulo upper_bound.
268  */
269 static uint32_t
270 _arc4random_uniform_unlocked(uint32_t upper_bound)
271 {
272 	uint32_t r, min;
273 
274 	if (upper_bound < 2)
275 		return 0;
276 
277 #if defined(ULONG_MAX) && (ULONG_MAX > 0xFFFFFFFFUL)
278 	min = 0x100000000UL % upper_bound;
279 #else
280 	/* calculate (2^32 % upper_bound) avoiding 64-bit math */
281 	if (upper_bound > 0x80000000U)
282 		/* 2^32 - upper_bound (only one "value area") */
283 		min = 1 + ~upper_bound;
284 	else
285 		/* ((2^32 - x) % x) == (2^32 % x) when x <= 2^31 */
286 		min = (0xFFFFFFFFU - upper_bound + 1) % upper_bound;
287 #endif
288 
289 	/*
290 	 * This could theoretically loop forever but each retry has
291 	 * p > 0.5 (worst case, usually far better) of selecting a
292 	 * number inside the range we need, so it should rarely need
293 	 * to re-roll (at all).
294 	 */
295 	if (!rs_initialized)
296 		arc4_stir(&rs);
297 	if (arc4_getbyte(&rs) & 1)
298 		(void)arc4_getbyte(&rs);
299 	do
300 		r = arc4_getword(&rs);
301 	while (r < min);
302 
303 	return r % upper_bound;
304 }
305 
306 uint32_t
307 arc4random_uniform(uint32_t upper_bound)
308 {
309 	uint32_t v;
310 #ifdef _REENTRANT
311 	if (__isthreaded) {
312 		mutex_lock(&rs.mtx);
313 		v = _arc4random_uniform_unlocked(upper_bound);
314 		mutex_unlock(&rs.mtx);
315 		return v;
316 	}
317 #endif
318 	v = _arc4random_uniform_unlocked(upper_bound);
319 	return v;
320 }
321