xref: /netbsd-src/lib/libc/gdtoa/hdtoa.c (revision 274254cdae52594c1aa480a736aef78313d15c9c)
1 /*	$NetBSD: hdtoa.c,v 1.6 2008/03/21 23:13:48 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2004, 2005 David Schultz <das@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #if 0
31 __FBSDID("$FreeBSD: src/lib/libc/gdtoa/_hdtoa.c,v 1.4 2007/01/03 04:57:58 das Exp $");
32 #else
33 __RCSID("$NetBSD: hdtoa.c,v 1.6 2008/03/21 23:13:48 christos Exp $");
34 #endif
35 
36 #include <float.h>
37 #include <limits.h>
38 #include <math.h>
39 #ifndef __vax__
40 #include <machine/ieee.h>
41 #else
42 #include <machine/vaxfp.h>
43 #define ieee_double_u vax_dfloating_u
44 #define dblu_d dfltu_d
45 #define dblu_dbl dfltu_dflt
46 #define dbl_sign dflt_sign
47 #define dbl_exp dflt_exp
48 #define dbl_frach dflt_frach
49 #define dbl_fracm dflt_fracm
50 #define dbl_fracl dflt_fracl
51 #define DBL_FRACHBITS	DFLT_FRACHBITS
52 #define DBL_FRACMBITS	DFLT_FRACMBITS
53 #define DBL_FRACLBITS	DFLT_FRACLBITS
54 #define DBL_EXPBITS	DFLT_EXPBITS
55 #endif
56 #include "gdtoaimp.h"
57 
58 /* Strings values used by dtoa() */
59 #define	INFSTR	"Infinity"
60 #define	NANSTR	"NaN"
61 
62 #define	DBL_ADJ		(DBL_MAX_EXP - 2 + ((DBL_MANT_DIG - 1) % 4))
63 #define	LDBL_ADJ	(LDBL_MAX_EXP - 2 + ((LDBL_MANT_DIG - 1) % 4))
64 
65 /*
66  * Round up the given digit string.  If the digit string is fff...f,
67  * this procedure sets it to 100...0 and returns 1 to indicate that
68  * the exponent needs to be bumped.  Otherwise, 0 is returned.
69  */
70 static int
71 roundup(char *s0, int ndigits)
72 {
73 	char *s;
74 
75 	for (s = s0 + ndigits - 1; *s == 0xf; s--) {
76 		if (s == s0) {
77 			*s = 1;
78 			return (1);
79 		}
80 		*s = 0;
81 	}
82 	++*s;
83 	return (0);
84 }
85 
86 /*
87  * Round the given digit string to ndigits digits according to the
88  * current rounding mode.  Note that this could produce a string whose
89  * value is not representable in the corresponding floating-point
90  * type.  The exponent pointed to by decpt is adjusted if necessary.
91  */
92 static void
93 dorounding(char *s0, int ndigits, int sign, int *decpt)
94 {
95 	int adjust = 0;	/* do we need to adjust the exponent? */
96 
97 	switch (FLT_ROUNDS) {
98 	case 0:		/* toward zero */
99 	default:	/* implementation-defined */
100 		break;
101 	case 1:		/* to nearest, halfway rounds to even */
102 		if ((s0[ndigits] > 8) ||
103 		    (s0[ndigits] == 8 && s0[ndigits - 1] & 1))
104 			adjust = roundup(s0, ndigits);
105 		break;
106 	case 2:		/* toward +inf */
107 		if (sign == 0)
108 			adjust = roundup(s0, ndigits);
109 		break;
110 	case 3:		/* toward -inf */
111 		if (sign != 0)
112 			adjust = roundup(s0, ndigits);
113 		break;
114 	}
115 
116 	if (adjust)
117 		*decpt += 4;
118 }
119 
120 /*
121  * This procedure converts a double-precision number in IEEE format
122  * into a string of hexadecimal digits and an exponent of 2.  Its
123  * behavior is bug-for-bug compatible with dtoa() in mode 2, with the
124  * following exceptions:
125  *
126  * - An ndigits < 0 causes it to use as many digits as necessary to
127  *   represent the number exactly.
128  * - The additional xdigs argument should point to either the string
129  *   "0123456789ABCDEF" or the string "0123456789abcdef", depending on
130  *   which case is desired.
131  * - This routine does not repeat dtoa's mistake of setting decpt
132  *   to 9999 in the case of an infinity or NaN.  INT_MAX is used
133  *   for this purpose instead.
134  *
135  * Note that the C99 standard does not specify what the leading digit
136  * should be for non-zero numbers.  For instance, 0x1.3p3 is the same
137  * as 0x2.6p2 is the same as 0x4.cp3.  This implementation chooses the
138  * first digit so that subsequent digits are aligned on nibble
139  * boundaries (before rounding).
140  *
141  * Inputs:	d, xdigs, ndigits
142  * Outputs:	decpt, sign, rve
143  */
144 char *
145 hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
146     char **rve)
147 {
148 	static const int sigfigs = (DBL_MANT_DIG + 3) / 4;
149 	union ieee_double_u u;
150 	char *s, *s0;
151 	size_t bufsize;
152 
153 	u.dblu_d = d;
154 	*sign = u.dblu_dbl.dbl_sign;
155 
156 	switch (fpclassify(d)) {
157 	case FP_NORMAL:
158 		*decpt = u.dblu_dbl.dbl_exp - DBL_ADJ;
159 		break;
160 	case FP_ZERO:
161 		*decpt = 1;
162 		return (nrv_alloc("0", rve, 1));
163 	case FP_SUBNORMAL:
164 		u.dblu_d *= 0x1p514;
165 		*decpt = u.dblu_dbl.dbl_exp - (514 + DBL_ADJ);
166 		break;
167 	case FP_INFINITE:
168 		*decpt = INT_MAX;
169 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
170 	case FP_NAN:
171 		*decpt = INT_MAX;
172 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
173 	default:
174 		abort();
175 	}
176 
177 	/* FP_NORMAL or FP_SUBNORMAL */
178 
179 	if (ndigits == 0)		/* dtoa() compatibility */
180 		ndigits = 1;
181 
182 	/*
183 	 * For simplicity, we generate all the digits even if the
184 	 * caller has requested fewer.
185 	 */
186 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
187 	s0 = rv_alloc(bufsize);
188 	if (s0 == NULL)
189 		return NULL;
190 
191 	/*
192 	 * We work from right to left, first adding any requested zero
193 	 * padding, then the least significant portion of the
194 	 * mantissa, followed by the most significant.  The buffer is
195 	 * filled with the byte values 0x0 through 0xf, which are
196 	 * converted to xdigs[0x0] through xdigs[0xf] after the
197 	 * rounding phase.
198 	 */
199 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
200 		*s = 0;
201 	for (; s > s0 + sigfigs - (DBL_FRACLBITS / 4) - 1 && s > s0; s--) {
202 		*s = u.dblu_dbl.dbl_fracl & 0xf;
203 		u.dblu_dbl.dbl_fracl >>= 4;
204 	}
205 #ifdef DBL_FRACMBITS
206 	for (; s > s0; s--) {
207 		*s = u.dblu_dbl.dbl_fracm & 0xf;
208 		u.dblu_dbl.dbl_fracm >>= 4;
209 	}
210 #endif
211 	for (; s > s0; s--) {
212 		*s = u.dblu_dbl.dbl_frach & 0xf;
213 		u.dblu_dbl.dbl_frach >>= 4;
214 	}
215 
216 	/*
217 	 * At this point, we have snarfed all the bits in the
218 	 * mantissa, with the possible exception of the highest-order
219 	 * (partial) nibble, which is dealt with by the next
220 	 * statement.  We also tack on the implicit normalization bit.
221 	 */
222 	*s = u.dblu_dbl.dbl_frach | (1U << ((DBL_MANT_DIG - 1) % 4));
223 
224 	/* If ndigits < 0, we are expected to auto-size the precision. */
225 	if (ndigits < 0) {
226 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
227 			continue;
228 	}
229 
230 	if (sigfigs > ndigits && s0[ndigits] != 0)
231 		dorounding(s0, ndigits, u.dblu_dbl.dbl_sign, decpt);
232 
233 	s = s0 + ndigits;
234 	if (rve != NULL)
235 		*rve = s;
236 	*s-- = '\0';
237 	for (; s >= s0; s--)
238 		*s = xdigs[(unsigned int)*s];
239 
240 	return (s0);
241 }
242 
243 #if (LDBL_MANT_DIG > DBL_MANT_DIG)
244 
245 /*
246  * This is the long double version of hdtoa().
247  */
248 char *
249 hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
250     char **rve)
251 {
252 	static const int sigfigs = (LDBL_MANT_DIG + 3) / 4;
253 	union ieee_ext_u u;
254 	char *s, *s0;
255 	size_t bufsize;
256 
257 	u.extu_ld = e;
258 	*sign = u.extu_ext.ext_sign;
259 
260 	switch (fpclassify(e)) {
261 	case FP_NORMAL:
262 		*decpt = u.extu_ext.ext_exp - LDBL_ADJ;
263 		break;
264 	case FP_ZERO:
265 		*decpt = 1;
266 		return (nrv_alloc("0", rve, 1));
267 	case FP_SUBNORMAL:
268 		u.extu_ld *= 0x1p514L;
269 		*decpt = u.extu_ext.ext_exp - (514 + LDBL_ADJ);
270 		break;
271 	case FP_INFINITE:
272 		*decpt = INT_MAX;
273 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
274 	case FP_NAN:
275 		*decpt = INT_MAX;
276 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
277 	default:
278 		abort();
279 	}
280 
281 	/* FP_NORMAL or FP_SUBNORMAL */
282 
283 	if (ndigits == 0)		/* dtoa() compatibility */
284 		ndigits = 1;
285 
286 	/*
287 	 * For simplicity, we generate all the digits even if the
288 	 * caller has requested fewer.
289 	 */
290 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
291 	s0 = rv_alloc(bufsize);
292 	if (s0 == NULL)
293 		return NULL;
294 
295 	/*
296 	 * We work from right to left, first adding any requested zero
297 	 * padding, then the least significant portion of the
298 	 * mantissa, followed by the most significant.  The buffer is
299 	 * filled with the byte values 0x0 through 0xf, which are
300 	 * converted to xdigs[0x0] through xdigs[0xf] after the
301 	 * rounding phase.
302 	 */
303 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
304 		*s = 0;
305 	for (; s > s0 + sigfigs - (EXT_FRACLBITS / 4) - 1 && s > s0; s--) {
306 		*s = u.extu_ext.ext_fracl & 0xf;
307 		u.extu_ext.ext_fracl >>= 4;
308 	}
309 #ifdef EXT_FRACHMBITS
310 	for (; s > s0; s--) {
311 		*s = u.extu_ext.ext_frachm & 0xf;
312 		u.extu_ext.ext_frachm >>= 4;
313 	}
314 #endif
315 #ifdef EXT_FRACLMBITS
316 	for (; s > s0; s--) {
317 		*s = u.extu_ext.ext_fraclm & 0xf;
318 		u.extu_ext.ext_fraclm >>= 4;
319 	}
320 #endif
321 	for (; s > s0; s--) {
322 		*s = u.extu_ext.ext_frach & 0xf;
323 		u.extu_ext.ext_frach >>= 4;
324 	}
325 
326 	/*
327 	 * At this point, we have snarfed all the bits in the
328 	 * mantissa, with the possible exception of the highest-order
329 	 * (partial) nibble, which is dealt with by the next
330 	 * statement.  We also tack on the implicit normalization bit.
331 	 */
332 	*s = u.extu_ext.ext_frach | (1U << ((LDBL_MANT_DIG - 1) % 4));
333 
334 	/* If ndigits < 0, we are expected to auto-size the precision. */
335 	if (ndigits < 0) {
336 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
337 			continue;
338 	}
339 
340 	if (sigfigs > ndigits && s0[ndigits] != 0)
341 		dorounding(s0, ndigits, u.extu_ext.ext_sign, decpt);
342 
343 	s = s0 + ndigits;
344 	if (rve != NULL)
345 		*rve = s;
346 	*s-- = '\0';
347 	for (; s >= s0; s--)
348 		*s = xdigs[(unsigned int)*s];
349 
350 	return (s0);
351 }
352 
353 #else	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
354 
355 char *
356 hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
357     char **rve)
358 {
359 
360 	return (hdtoa((double)e, xdigs, ndigits, decpt, sign, rve));
361 }
362 
363 #endif	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
364