1 /* $NetBSD: gdtoaimp.h,v 1.7 2009/05/07 20:31:44 christos Exp $ */ 2 3 /**************************************************************** 4 5 The author of this software is David M. Gay. 6 7 Copyright (C) 1998-2000 by Lucent Technologies 8 All Rights Reserved 9 10 Permission to use, copy, modify, and distribute this software and 11 its documentation for any purpose and without fee is hereby 12 granted, provided that the above copyright notice appear in all 13 copies and that both that the copyright notice and this 14 permission notice and warranty disclaimer appear in supporting 15 documentation, and that the name of Lucent or any of its entities 16 not be used in advertising or publicity pertaining to 17 distribution of the software without specific, written prior 18 permission. 19 20 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 21 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. 22 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY 23 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 24 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER 25 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, 26 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF 27 THIS SOFTWARE. 28 29 ****************************************************************/ 30 31 /* This is a variation on dtoa.c that converts arbitary binary 32 floating-point formats to and from decimal notation. It uses 33 double-precision arithmetic internally, so there are still 34 various #ifdefs that adapt the calculations to the native 35 double-precision arithmetic (any of IEEE, VAX D_floating, 36 or IBM mainframe arithmetic). 37 38 Please send bug reports to David M. Gay (dmg at acm dot org, 39 with " at " changed at "@" and " dot " changed to "."). 40 */ 41 42 /* On a machine with IEEE extended-precision registers, it is 43 * necessary to specify double-precision (53-bit) rounding precision 44 * before invoking strtod or dtoa. If the machine uses (the equivalent 45 * of) Intel 80x87 arithmetic, the call 46 * _control87(PC_53, MCW_PC); 47 * does this with many compilers. Whether this or another call is 48 * appropriate depends on the compiler; for this to work, it may be 49 * necessary to #include "float.h" or another system-dependent header 50 * file. 51 */ 52 53 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. 54 * 55 * This strtod returns a nearest machine number to the input decimal 56 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are 57 * broken by the IEEE round-even rule. Otherwise ties are broken by 58 * biased rounding (add half and chop). 59 * 60 * Inspired loosely by William D. Clinger's paper "How to Read Floating 61 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126]. 62 * 63 * Modifications: 64 * 65 * 1. We only require IEEE, IBM, or VAX double-precision 66 * arithmetic (not IEEE double-extended). 67 * 2. We get by with floating-point arithmetic in a case that 68 * Clinger missed -- when we're computing d * 10^n 69 * for a small integer d and the integer n is not too 70 * much larger than 22 (the maximum integer k for which 71 * we can represent 10^k exactly), we may be able to 72 * compute (d*10^k) * 10^(e-k) with just one roundoff. 73 * 3. Rather than a bit-at-a-time adjustment of the binary 74 * result in the hard case, we use floating-point 75 * arithmetic to determine the adjustment to within 76 * one bit; only in really hard cases do we need to 77 * compute a second residual. 78 * 4. Because of 3., we don't need a large table of powers of 10 79 * for ten-to-e (just some small tables, e.g. of 10^k 80 * for 0 <= k <= 22). 81 */ 82 83 /* 84 * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least 85 * significant byte has the lowest address. 86 * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most 87 * significant byte has the lowest address. 88 * #define Long int on machines with 32-bit ints and 64-bit longs. 89 * #define Sudden_Underflow for IEEE-format machines without gradual 90 * underflow (i.e., that flush to zero on underflow). 91 * #define IBM for IBM mainframe-style floating-point arithmetic. 92 * #define VAX for VAX-style floating-point arithmetic (D_floating). 93 * #define No_leftright to omit left-right logic in fast floating-point 94 * computation of dtoa. 95 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. 96 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines 97 * that use extended-precision instructions to compute rounded 98 * products and quotients) with IBM. 99 * #define ROUND_BIASED for IEEE-format with biased rounding. 100 * #define Inaccurate_Divide for IEEE-format with correctly rounded 101 * products but inaccurate quotients, e.g., for Intel i860. 102 * #define NO_LONG_LONG on machines that do not have a "long long" 103 * integer type (of >= 64 bits). On such machines, you can 104 * #define Just_16 to store 16 bits per 32-bit Long when doing 105 * high-precision integer arithmetic. Whether this speeds things 106 * up or slows things down depends on the machine and the number 107 * being converted. If long long is available and the name is 108 * something other than "long long", #define Llong to be the name, 109 * and if "unsigned Llong" does not work as an unsigned version of 110 * Llong, #define #ULLong to be the corresponding unsigned type. 111 * #define KR_headers for old-style C function headers. 112 * #define Bad_float_h if your system lacks a float.h or if it does not 113 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, 114 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. 115 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) 116 * if memory is available and otherwise does something you deem 117 * appropriate. If MALLOC is undefined, malloc will be invoked 118 * directly -- and assumed always to succeed. 119 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making 120 * memory allocations from a private pool of memory when possible. 121 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, 122 * unless #defined to be a different length. This default length 123 * suffices to get rid of MALLOC calls except for unusual cases, 124 * such as decimal-to-binary conversion of a very long string of 125 * digits. When converting IEEE double precision values, the 126 * longest string gdtoa can return is about 751 bytes long. For 127 * conversions by strtod of strings of 800 digits and all gdtoa 128 * conversions of IEEE doubles in single-threaded executions with 129 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with 130 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate. 131 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for 132 * Infinity and NaN (case insensitively). 133 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, 134 * strtodg also accepts (case insensitively) strings of the form 135 * NaN(x), where x is a string of hexadecimal digits and spaces; 136 * if there is only one string of hexadecimal digits, it is taken 137 * for the fraction bits of the resulting NaN; if there are two or 138 * more strings of hexadecimal digits, each string is assigned 139 * to the next available sequence of 32-bit words of fractions 140 * bits (starting with the most significant), right-aligned in 141 * each sequence. 142 * #define MULTIPLE_THREADS if the system offers preemptively scheduled 143 * multiple threads. In this case, you must provide (or suitably 144 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed 145 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed 146 * in pow5mult, ensures lazy evaluation of only one copy of high 147 * powers of 5; omitting this lock would introduce a small 148 * probability of wasting memory, but would otherwise be harmless.) 149 * You must also invoke freedtoa(s) to free the value s returned by 150 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. 151 * #define IMPRECISE_INEXACT if you do not care about the setting of 152 * the STRTOG_Inexact bits in the special case of doing IEEE double 153 * precision conversions (which could also be done by the strtog in 154 * dtoa.c). 155 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal 156 * floating-point constants. 157 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and 158 * strtodg.c). 159 * #define NO_STRING_H to use private versions of memcpy. 160 * On some K&R systems, it may also be necessary to 161 * #define DECLARE_SIZE_T in this case. 162 * #define YES_ALIAS to permit aliasing certain double values with 163 * arrays of ULongs. This leads to slightly better code with 164 * some compilers and was always used prior to 19990916, but it 165 * is not strictly legal and can cause trouble with aggressively 166 * optimizing compilers (e.g., gcc 2.95.1 under -O2). 167 * #define USE_LOCALE to use the current locale's decimal_point value. 168 */ 169 170 /* #define IEEE_{BIG,LITTLE}_ENDIAN in ${ARCHDIR}/gdtoa/arith.h */ 171 172 #include <stdint.h> 173 #define Short int16_t 174 #define UShort uint16_t 175 #define Long int32_t 176 #define ULong uint32_t 177 #define LLong int64_t 178 #define ULLong uint64_t 179 180 #define INFNAN_CHECK 181 #ifdef _REENTRANT 182 #define MULTIPLE_THREADS 183 #endif 184 #define USE_LOCALE 185 186 #ifndef GDTOAIMP_H_INCLUDED 187 #define GDTOAIMP_H_INCLUDED 188 #include "gdtoa.h" 189 #include "gd_qnan.h" 190 191 #ifdef DEBUG 192 #include "stdio.h" 193 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} 194 #endif 195 196 #include "stdlib.h" 197 #include "string.h" 198 199 #ifdef KR_headers 200 #define Char char 201 #else 202 #define Char void 203 #endif 204 205 #ifdef MALLOC 206 extern Char *MALLOC ANSI((size_t)); 207 #else 208 #define MALLOC malloc 209 #endif 210 211 #undef IEEE_Arith 212 #undef Avoid_Underflow 213 #ifdef IEEE_BIG_ENDIAN 214 #define IEEE_Arith 215 #endif 216 #ifdef IEEE_LITTLE_ENDIAN 217 #define IEEE_Arith 218 #endif 219 220 #include "errno.h" 221 #ifdef Bad_float_h 222 223 #ifdef IEEE_Arith 224 #define DBL_DIG 15 225 #define DBL_MAX_10_EXP 308 226 #define DBL_MAX_EXP 1024 227 #define FLT_RADIX 2 228 #define DBL_MAX 1.7976931348623157e+308 229 #endif 230 231 #ifdef IBM 232 #define DBL_DIG 16 233 #define DBL_MAX_10_EXP 75 234 #define DBL_MAX_EXP 63 235 #define FLT_RADIX 16 236 #define DBL_MAX 7.2370055773322621e+75 237 #endif 238 239 #ifdef VAX 240 #define DBL_DIG 16 241 #define DBL_MAX_10_EXP 38 242 #define DBL_MAX_EXP 127 243 #define FLT_RADIX 2 244 #define DBL_MAX 1.7014118346046923e+38 245 #define n_bigtens 2 246 #endif 247 248 #ifndef LONG_MAX 249 #define LONG_MAX 2147483647 250 #endif 251 252 #else /* ifndef Bad_float_h */ 253 #include "float.h" 254 #endif /* Bad_float_h */ 255 256 #ifdef IEEE_Arith 257 #define Scale_Bit 0x10 258 #define n_bigtens 5 259 #endif 260 261 #ifdef IBM 262 #define n_bigtens 3 263 #endif 264 265 #ifdef VAX 266 #define n_bigtens 2 267 #endif 268 269 #include "math.h" 270 271 #ifdef __cplusplus 272 extern "C" { 273 #endif 274 275 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + defined(IBM) != 1 276 Exactly one of IEEE_LITTLE_ENDIAN, IEEE_BIG_ENDIAN, VAX, or IBM should be defined. 277 #endif 278 279 typedef union { double d; ULong L[2]; } U; 280 281 #ifdef YES_ALIAS 282 #define dval(x) x 283 #ifdef IEEE_LITTLE_ENDIAN 284 #define word0(x) ((ULong *)&x)[1] 285 #define word1(x) ((ULong *)&x)[0] 286 #else 287 #define word0(x) ((ULong *)&x)[0] 288 #define word1(x) ((ULong *)&x)[1] 289 #endif 290 #else /* !YES_ALIAS */ 291 #ifdef IEEE_LITTLE_ENDIAN 292 #define word0(x) ( /* LINTED */ (U*)&x)->L[1] 293 #define word1(x) ( /* LINTED */ (U*)&x)->L[0] 294 #else 295 #define word0(x) ( /* LINTED */ (U*)&x)->L[0] 296 #define word1(x) ( /* LINTED */ (U*)&x)->L[1] 297 #endif 298 #define dval(x) ( /* LINTED */ (U*)&x)->d 299 #endif /* YES_ALIAS */ 300 301 /* The following definition of Storeinc is appropriate for MIPS processors. 302 * An alternative that might be better on some machines is 303 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) 304 */ 305 #if defined(IEEE_LITTLE_ENDIAN) + defined(VAX) 306 #define Storeinc(a,b,c) \ 307 (((unsigned short *)(void *)a)[1] = (unsigned short)b, \ 308 ((unsigned short *)(void *)a)[0] = (unsigned short)c, \ 309 a++) 310 #else 311 #define Storeinc(a,b,c) \ 312 (((unsigned short *)(void *)a)[0] = (unsigned short)b, \ 313 ((unsigned short *)(void *)a)[1] = (unsigned short)c, \ 314 a++) 315 #endif 316 317 /* #define P DBL_MANT_DIG */ 318 /* Ten_pmax = floor(P*log(2)/log(5)) */ 319 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ 320 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ 321 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ 322 323 #ifdef IEEE_Arith 324 #define Exp_shift 20 325 #define Exp_shift1 20 326 #define Exp_msk1 0x100000 327 #define Exp_msk11 0x100000 328 #define Exp_mask 0x7ff00000 329 #define P 53 330 #define Bias 1023 331 #define Emin (-1022) 332 #define Exp_1 0x3ff00000 333 #define Exp_11 0x3ff00000 334 #define Ebits 11 335 #define Frac_mask 0xfffff 336 #define Frac_mask1 0xfffff 337 #define Ten_pmax 22 338 #define Bletch 0x10 339 #define Bndry_mask 0xfffff 340 #define Bndry_mask1 0xfffff 341 #define LSB 1 342 #define Sign_bit 0x80000000 343 #define Log2P 1 344 #define Tiny0 0 345 #define Tiny1 1 346 #define Quick_max 14 347 #define Int_max 14 348 349 #ifndef Flt_Rounds 350 #ifdef FLT_ROUNDS 351 #define Flt_Rounds FLT_ROUNDS 352 #else 353 #define Flt_Rounds 1 354 #endif 355 #endif /*Flt_Rounds*/ 356 357 #else /* ifndef IEEE_Arith */ 358 #undef Sudden_Underflow 359 #define Sudden_Underflow 360 #ifdef IBM 361 #undef Flt_Rounds 362 #define Flt_Rounds 0 363 #define Exp_shift 24 364 #define Exp_shift1 24 365 #define Exp_msk1 0x1000000 366 #define Exp_msk11 0x1000000 367 #define Exp_mask 0x7f000000 368 #define P 14 369 #define Bias 65 370 #define Exp_1 0x41000000 371 #define Exp_11 0x41000000 372 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ 373 #define Frac_mask 0xffffff 374 #define Frac_mask1 0xffffff 375 #define Bletch 4 376 #define Ten_pmax 22 377 #define Bndry_mask 0xefffff 378 #define Bndry_mask1 0xffffff 379 #define LSB 1 380 #define Sign_bit 0x80000000 381 #define Log2P 4 382 #define Tiny0 0x100000 383 #define Tiny1 0 384 #define Quick_max 14 385 #define Int_max 15 386 #else /* VAX */ 387 #undef Flt_Rounds 388 #define Flt_Rounds 1 389 #define Exp_shift 23 390 #define Exp_shift1 7 391 #define Exp_msk1 0x80 392 #define Exp_msk11 0x800000 393 #define Exp_mask 0x7f80 394 #define P 56 395 #define Bias 129 396 #define Exp_1 0x40800000 397 #define Exp_11 0x4080 398 #define Ebits 8 399 #define Frac_mask 0x7fffff 400 #define Frac_mask1 0xffff007f 401 #define Ten_pmax 24 402 #define Bletch 2 403 #define Bndry_mask 0xffff007f 404 #define Bndry_mask1 0xffff007f 405 #define LSB 0x10000 406 #define Sign_bit 0x8000 407 #define Log2P 1 408 #define Tiny0 0x80 409 #define Tiny1 0 410 #define Quick_max 15 411 #define Int_max 15 412 #endif /* IBM, VAX */ 413 #endif /* IEEE_Arith */ 414 415 #ifndef IEEE_Arith 416 #define ROUND_BIASED 417 #endif 418 419 #ifdef RND_PRODQUOT 420 #define rounded_product(a,b) a = rnd_prod(a, b) 421 #define rounded_quotient(a,b) a = rnd_quot(a, b) 422 #ifdef KR_headers 423 extern double rnd_prod(), rnd_quot(); 424 #else 425 extern double rnd_prod(double, double), rnd_quot(double, double); 426 #endif 427 #else 428 #define rounded_product(a,b) a *= b 429 #define rounded_quotient(a,b) a /= b 430 #endif 431 432 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) 433 #define Big1 0xffffffff 434 435 #undef Pack_16 436 #ifndef Pack_32 437 #define Pack_32 438 #endif 439 440 #ifdef NO_LONG_LONG 441 #undef ULLong 442 #ifdef Just_16 443 #undef Pack_32 444 #define Pack_16 445 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long. 446 * This makes some inner loops simpler and sometimes saves work 447 * during multiplications, but it often seems to make things slightly 448 * slower. Hence the default is now to store 32 bits per Long. 449 */ 450 #endif 451 #else /* long long available */ 452 #ifndef Llong 453 #define Llong long long 454 #endif 455 #ifndef ULLong 456 #define ULLong unsigned Llong 457 #endif 458 #endif /* NO_LONG_LONG */ 459 460 #ifdef Pack_32 461 #define ULbits 32 462 #define kshift 5 463 #define kmask 31 464 #define ALL_ON 0xffffffff 465 #else 466 #define ULbits 16 467 #define kshift 4 468 #define kmask 15 469 #define ALL_ON 0xffff 470 #endif 471 472 #ifndef MULTIPLE_THREADS 473 #define ACQUIRE_DTOA_LOCK(n) /*nothing*/ 474 #define FREE_DTOA_LOCK(n) /*nothing*/ 475 #else 476 #include "reentrant.h" 477 478 extern mutex_t __gdtoa_locks[2]; 479 480 #define ACQUIRE_DTOA_LOCK(n) \ 481 do { \ 482 if (__isthreaded) \ 483 mutex_lock(&__gdtoa_locks[n]); \ 484 } while (/* CONSTCOND */ 0) 485 #define FREE_DTOA_LOCK(n) \ 486 do { \ 487 if (__isthreaded) \ 488 mutex_unlock(&__gdtoa_locks[n]); \ 489 } while (/* CONSTCOND */ 0) 490 #endif 491 492 #define Kmax (sizeof(size_t) << 3) 493 494 struct 495 Bigint { 496 struct Bigint *next; 497 int k, maxwds, sign, wds; 498 ULong x[1]; 499 }; 500 501 typedef struct Bigint Bigint; 502 503 #ifdef NO_STRING_H 504 #ifdef DECLARE_SIZE_T 505 typedef unsigned int size_t; 506 #endif 507 extern void memcpy_D2A ANSI((void*, const void*, size_t)); 508 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) 509 #else /* !NO_STRING_H */ 510 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) 511 #endif /* NO_STRING_H */ 512 513 #define Balloc __Balloc_D2A 514 #define Bfree __Bfree_D2A 515 #define ULtoQ __ULtoQ_D2A 516 #define ULtof __ULtof_D2A 517 #define ULtod __ULtod_D2A 518 #define ULtodd __ULtodd_D2A 519 #define ULtox __ULtox_D2A 520 #define ULtoxL __ULtoxL_D2A 521 #define any_on __any_on_D2A 522 #define b2d __b2d_D2A 523 #define bigtens __bigtens_D2A 524 #define cmp __cmp_D2A 525 #define copybits __copybits_D2A 526 #define d2b __d2b_D2A 527 #define decrement __decrement_D2A 528 #define diff __diff_D2A 529 #define dtoa_result __dtoa_result_D2A 530 #define g__fmt __g__fmt_D2A 531 #define gethex __gethex_D2A 532 #define hexdig __hexdig_D2A 533 #define hexdig_init_D2A __hexdig_init_D2A 534 #define hexnan __hexnan_D2A 535 #define hi0bits __hi0bits_D2A 536 #define hi0bits_D2A __hi0bits_D2A 537 #define i2b __i2b_D2A 538 #define increment __increment_D2A 539 #define lo0bits __lo0bits_D2A 540 #define lshift __lshift_D2A 541 #define match __match_D2A 542 #define mult __mult_D2A 543 #define multadd __multadd_D2A 544 #define nrv_alloc __nrv_alloc_D2A 545 #define pow5mult __pow5mult_D2A 546 #define quorem __quorem_D2A 547 #define ratio __ratio_D2A 548 #define rshift __rshift_D2A 549 #define rv_alloc __rv_alloc_D2A 550 #define s2b __s2b_D2A 551 #define set_ones __set_ones_D2A 552 #define strcp __strcp_D2A 553 #define strcp_D2A __strcp_D2A 554 #define strtoIg __strtoIg_D2A 555 #define sum __sum_D2A 556 #define tens __tens_D2A 557 #define tinytens __tinytens_D2A 558 #define tinytens __tinytens_D2A 559 #define trailz __trailz_D2A 560 #define ulp __ulp_D2A 561 562 extern char *dtoa_result; 563 extern CONST double bigtens[], tens[], tinytens[]; 564 extern unsigned char hexdig[]; 565 566 extern Bigint *Balloc ANSI((int)); 567 extern void Bfree ANSI((Bigint*)); 568 extern void ULtof ANSI((ULong*, ULong*, Long, int)); 569 extern void ULtod ANSI((ULong*, ULong*, Long, int)); 570 extern void ULtodd ANSI((ULong*, ULong*, Long, int)); 571 extern void ULtoQ ANSI((ULong*, ULong*, Long, int)); 572 extern void ULtox ANSI((UShort*, ULong*, Long, int)); 573 extern void ULtoxL ANSI((ULong*, ULong*, Long, int)); 574 extern ULong any_on ANSI((Bigint*, int)); 575 extern double b2d ANSI((Bigint*, int*)); 576 extern int cmp ANSI((Bigint*, Bigint*)); 577 extern void copybits ANSI((ULong*, int, Bigint*)); 578 extern Bigint *d2b ANSI((double, int*, int*)); 579 extern int decrement ANSI((Bigint*)); 580 extern Bigint *diff ANSI((Bigint*, Bigint*)); 581 extern char *dtoa ANSI((double d, int mode, int ndigits, 582 int *decpt, int *sign, char **rve)); 583 extern char *g__fmt ANSI((char*, char*, char*, int, ULong)); 584 extern int gethex ANSI((CONST char**, CONST FPI*, Long*, Bigint**, int)); 585 extern void hexdig_init_D2A(Void); 586 extern int hexnan ANSI((CONST char**, CONST FPI*, ULong*)); 587 extern int hi0bits_D2A ANSI((ULong)); 588 extern Bigint *i2b ANSI((int)); 589 extern Bigint *increment ANSI((Bigint*)); 590 extern int lo0bits ANSI((ULong*)); 591 extern Bigint *lshift ANSI((Bigint*, int)); 592 extern int match ANSI((CONST char**, CONST char*)); 593 extern Bigint *mult ANSI((Bigint*, Bigint*)); 594 extern Bigint *multadd ANSI((Bigint*, int, int)); 595 extern char *nrv_alloc ANSI((CONST char*, char **, size_t)); 596 extern Bigint *pow5mult ANSI((Bigint*, int)); 597 extern int quorem ANSI((Bigint*, Bigint*)); 598 extern double ratio ANSI((Bigint*, Bigint*)); 599 extern void rshift ANSI((Bigint*, int)); 600 extern char *rv_alloc ANSI((size_t)); 601 extern Bigint *s2b ANSI((CONST char*, int, int, ULong)); 602 extern Bigint *set_ones ANSI((Bigint*, int)); 603 extern char *strcp ANSI((char*, const char*)); 604 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*)); 605 extern double strtod ANSI((const char *s00, char **se)); 606 extern Bigint *sum ANSI((Bigint*, Bigint*)); 607 extern int trailz ANSI((CONST Bigint*)); 608 extern double ulp ANSI((double)); 609 610 #ifdef __cplusplus 611 } 612 #endif 613 /* 614 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to 615 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0, 616 * respectively), but now are determined by compiling and running 617 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1. 618 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=... 619 * and -DNAN_WORD1=... values if necessary. This should still work. 620 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) 621 */ 622 #ifdef IEEE_Arith 623 #ifdef IEEE_BIG_ENDIAN 624 #define _0 0 625 #define _1 1 626 #ifndef NAN_WORD0 627 #define NAN_WORD0 d_QNAN0 628 #endif 629 #ifndef NAN_WORD1 630 #define NAN_WORD1 d_QNAN1 631 #endif 632 #else 633 #define _0 1 634 #define _1 0 635 #ifndef NAN_WORD0 636 #define NAN_WORD0 d_QNAN1 637 #endif 638 #ifndef NAN_WORD1 639 #define NAN_WORD1 d_QNAN0 640 #endif 641 #endif 642 #else 643 #undef INFNAN_CHECK 644 #endif 645 646 #undef SI 647 #ifdef Sudden_Underflow 648 #define SI 1 649 #else 650 #define SI 0 651 #endif 652 653 #endif /* GDTOAIMP_H_INCLUDED */ 654