xref: /netbsd-src/lib/libc/db/hash/hash_page.c (revision 2980e352a13e8f0b545a366830c411e7a542ada8)
1 /*	$NetBSD: hash_page.c,v 1.20 2007/02/03 23:46:09 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1990, 1993, 1994
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Margo Seltzer.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 #if defined(LIBC_SCCS) && !defined(lint)
37 #if 0
38 static char sccsid[] = "@(#)hash_page.c	8.7 (Berkeley) 8/16/94";
39 #else
40 __RCSID("$NetBSD: hash_page.c,v 1.20 2007/02/03 23:46:09 christos Exp $");
41 #endif
42 #endif /* LIBC_SCCS and not lint */
43 
44 /*
45  * PACKAGE:  hashing
46  *
47  * DESCRIPTION:
48  *	Page manipulation for hashing package.
49  *
50  * ROUTINES:
51  *
52  * External
53  *	__get_page
54  *	__add_ovflpage
55  * Internal
56  *	overflow_page
57  *	open_temp
58  */
59 
60 #include "namespace.h"
61 
62 #include <sys/types.h>
63 
64 #include <errno.h>
65 #include <fcntl.h>
66 #include <signal.h>
67 #include <stdio.h>
68 #include <stdlib.h>
69 #include <string.h>
70 #include <unistd.h>
71 #include <paths.h>
72 #include <assert.h>
73 
74 #include <db.h>
75 #include "hash.h"
76 #include "page.h"
77 #include "extern.h"
78 
79 static u_int32_t*fetch_bitmap(HTAB *, int);
80 static u_int32_t first_free(u_int32_t);
81 static int	 open_temp(HTAB *);
82 static u_int16_t overflow_page(HTAB *);
83 static void	 putpair(char *, const DBT *, const DBT *);
84 static void	 squeeze_key(u_int16_t *, const DBT *, const DBT *);
85 static int	 ugly_split(HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int);
86 
87 #define	PAGE_INIT(P) { \
88 	((u_int16_t *)(void *)(P))[0] = 0; \
89 	temp = 3 * sizeof(u_int16_t); \
90 	_DIAGASSERT(hashp->BSIZE >= temp); \
91 	((u_int16_t *)(void *)(P))[1] = (u_int16_t)(hashp->BSIZE - temp); \
92 	((u_int16_t *)(void *)(P))[2] = hashp->BSIZE; \
93 }
94 
95 /*
96  * This is called AFTER we have verified that there is room on the page for
97  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
98  * stuff on.
99  */
100 static void
101 putpair(char *p, const DBT *key, const DBT *val)
102 {
103 	u_int16_t *bp, n, off;
104 	size_t temp;
105 
106 	bp = (u_int16_t *)(void *)p;
107 
108 	/* Enter the key first. */
109 	n = bp[0];
110 
111 	temp = OFFSET(bp);
112 	_DIAGASSERT(temp >= key->size);
113 	off = (u_int16_t)(temp - key->size);
114 	memmove(p + off, key->data, key->size);
115 	bp[++n] = off;
116 
117 	/* Now the data. */
118 	_DIAGASSERT(off >= val->size);
119 	off -= (u_int16_t)val->size;
120 	memmove(p + off, val->data, val->size);
121 	bp[++n] = off;
122 
123 	/* Adjust page info. */
124 	bp[0] = n;
125 	temp = (n + 3) * sizeof(u_int16_t);
126 	_DIAGASSERT(off >= temp);
127 	bp[n + 1] = (u_int16_t)(off - temp);
128 	bp[n + 2] = off;
129 }
130 
131 /*
132  * Returns:
133  *	 0 OK
134  *	-1 error
135  */
136 int
137 __delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
138 {
139 	u_int16_t *bp, newoff;
140 	int n;
141 	u_int16_t pairlen;
142 	size_t temp;
143 
144 	bp = (u_int16_t *)(void *)bufp->page;
145 	n = bp[0];
146 
147 	if (bp[ndx + 1] < REAL_KEY)
148 		return (__big_delete(hashp, bufp));
149 	if (ndx != 1)
150 		newoff = bp[ndx - 1];
151 	else
152 		newoff = hashp->BSIZE;
153 	pairlen = newoff - bp[ndx + 1];
154 
155 	if (ndx != (n - 1)) {
156 		/* Hard Case -- need to shuffle keys */
157 		int i;
158 		char *src = bufp->page + (int)OFFSET(bp);
159 		char *dst = src + (int)pairlen;
160 		memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp)));
161 
162 		/* Now adjust the pointers */
163 		for (i = ndx + 2; i <= n; i += 2) {
164 			if (bp[i + 1] == OVFLPAGE) {
165 				bp[i - 2] = bp[i];
166 				bp[i - 1] = bp[i + 1];
167 			} else {
168 				bp[i - 2] = bp[i] + pairlen;
169 				bp[i - 1] = bp[i + 1] + pairlen;
170 			}
171 		}
172 	}
173 	/* Finally adjust the page data */
174 	bp[n] = OFFSET(bp) + pairlen;
175 	temp = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
176 	_DIAGASSERT(temp <= 0xffff);
177 	bp[n - 1] = (u_int16_t)temp;
178 	bp[0] = n - 2;
179 	hashp->NKEYS--;
180 
181 	bufp->flags |= BUF_MOD;
182 	return (0);
183 }
184 /*
185  * Returns:
186  *	 0 ==> OK
187  *	-1 ==> Error
188  */
189 int
190 __split_page(HTAB *hashp, u_int32_t obucket, u_int32_t nbucket)
191 {
192 	BUFHEAD *new_bufp, *old_bufp;
193 	u_int16_t *ino;
194 	char *np;
195 	DBT key, val;
196 	int n, ndx, retval;
197 	u_int16_t copyto, diff, off, moved;
198 	char *op;
199 	size_t temp;
200 
201 	copyto = (u_int16_t)hashp->BSIZE;
202 	off = (u_int16_t)hashp->BSIZE;
203 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
204 	if (old_bufp == NULL)
205 		return (-1);
206 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
207 	if (new_bufp == NULL)
208 		return (-1);
209 
210 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
211 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
212 
213 	ino = (u_int16_t *)(void *)(op = old_bufp->page);
214 	np = new_bufp->page;
215 
216 	moved = 0;
217 
218 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
219 		if (ino[n + 1] < REAL_KEY) {
220 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
221 			    (int)copyto, (int)moved);
222 			old_bufp->flags &= ~BUF_PIN;
223 			new_bufp->flags &= ~BUF_PIN;
224 			return (retval);
225 
226 		}
227 		key.data = (u_char *)op + ino[n];
228 		key.size = off - ino[n];
229 
230 		if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
231 			/* Don't switch page */
232 			diff = copyto - off;
233 			if (diff) {
234 				copyto = ino[n + 1] + diff;
235 				memmove(op + copyto, op + ino[n + 1],
236 				    (size_t)(off - ino[n + 1]));
237 				ino[ndx] = copyto + ino[n] - ino[n + 1];
238 				ino[ndx + 1] = copyto;
239 			} else
240 				copyto = ino[n + 1];
241 			ndx += 2;
242 		} else {
243 			/* Switch page */
244 			val.data = (u_char *)op + ino[n + 1];
245 			val.size = ino[n] - ino[n + 1];
246 			putpair(np, &key, &val);
247 			moved += 2;
248 		}
249 
250 		off = ino[n + 1];
251 	}
252 
253 	/* Now clean up the page */
254 	ino[0] -= moved;
255 	temp = sizeof(u_int16_t) * (ino[0] + 3);
256 	_DIAGASSERT(copyto >= temp);
257 	FREESPACE(ino) = (u_int16_t)(copyto - temp);
258 	OFFSET(ino) = copyto;
259 
260 #ifdef DEBUG3
261 	(void)fprintf(stderr, "split %d/%d\n",
262 	    ((u_int16_t *)np)[0] / 2,
263 	    ((u_int16_t *)op)[0] / 2);
264 #endif
265 	/* unpin both pages */
266 	old_bufp->flags &= ~BUF_PIN;
267 	new_bufp->flags &= ~BUF_PIN;
268 	return (0);
269 }
270 
271 /*
272  * Called when we encounter an overflow or big key/data page during split
273  * handling.  This is special cased since we have to begin checking whether
274  * the key/data pairs fit on their respective pages and because we may need
275  * overflow pages for both the old and new pages.
276  *
277  * The first page might be a page with regular key/data pairs in which case
278  * we have a regular overflow condition and just need to go on to the next
279  * page or it might be a big key/data pair in which case we need to fix the
280  * big key/data pair.
281  *
282  * Returns:
283  *	 0 ==> success
284  *	-1 ==> failure
285  */
286 static int
287 ugly_split(
288 	HTAB *hashp,
289 	u_int32_t obucket,	/* Same as __split_page. */
290 	BUFHEAD *old_bufp,
291 	BUFHEAD *new_bufp,
292 	int copyto,	/* First byte on page which contains key/data values. */
293 	int moved	/* Number of pairs moved to new page. */
294 )
295 {
296 	BUFHEAD *bufp;	/* Buffer header for ino */
297 	u_int16_t *ino;	/* Page keys come off of */
298 	u_int16_t *np;	/* New page */
299 	u_int16_t *op;	/* Page keys go on to if they aren't moving */
300 	size_t temp;
301 
302 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
303 	DBT key, val;
304 	SPLIT_RETURN ret;
305 	u_int16_t n, off, ov_addr, scopyto;
306 	char *cino;		/* Character value of ino */
307 
308 	bufp = old_bufp;
309 	ino = (u_int16_t *)(void *)old_bufp->page;
310 	np = (u_int16_t *)(void *)new_bufp->page;
311 	op = (u_int16_t *)(void *)old_bufp->page;
312 	last_bfp = NULL;
313 	scopyto = (u_int16_t)copyto;	/* ANSI */
314 
315 	n = ino[0] - 1;
316 	while (n < ino[0]) {
317 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
318 			if (__big_split(hashp, old_bufp,
319 			    new_bufp, bufp, (int)bufp->addr, obucket, &ret))
320 				return (-1);
321 			old_bufp = ret.oldp;
322 			if (!old_bufp)
323 				return (-1);
324 			op = (u_int16_t *)(void *)old_bufp->page;
325 			new_bufp = ret.newp;
326 			if (!new_bufp)
327 				return (-1);
328 			np = (u_int16_t *)(void *)new_bufp->page;
329 			bufp = ret.nextp;
330 			if (!bufp)
331 				return (0);
332 			cino = (char *)bufp->page;
333 			ino = (u_int16_t *)(void *)cino;
334 			last_bfp = ret.nextp;
335 		} else if (ino[n + 1] == OVFLPAGE) {
336 			ov_addr = ino[n];
337 			/*
338 			 * Fix up the old page -- the extra 2 are the fields
339 			 * which contained the overflow information.
340 			 */
341 			ino[0] -= (moved + 2);
342 			temp = sizeof(u_int16_t) * (ino[0] + 3);
343 			_DIAGASSERT(scopyto >= temp);
344 			FREESPACE(ino) = (u_int16_t)(scopyto - temp);
345 			OFFSET(ino) = scopyto;
346 
347 			bufp = __get_buf(hashp, (u_int32_t)ov_addr, bufp, 0);
348 			if (!bufp)
349 				return (-1);
350 
351 			ino = (u_int16_t *)(void *)bufp->page;
352 			n = 1;
353 			scopyto = hashp->BSIZE;
354 			moved = 0;
355 
356 			if (last_bfp)
357 				__free_ovflpage(hashp, last_bfp);
358 			last_bfp = bufp;
359 		}
360 		/* Move regular sized pairs of there are any */
361 		off = hashp->BSIZE;
362 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
363 			cino = (char *)(void *)ino;
364 			key.data = (u_char *)cino + ino[n];
365 			key.size = off - ino[n];
366 			val.data = (u_char *)cino + ino[n + 1];
367 			val.size = ino[n] - ino[n + 1];
368 			off = ino[n + 1];
369 
370 			if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
371 				/* Keep on old page */
372 				if (PAIRFITS(op, (&key), (&val)))
373 					putpair((char *)(void *)op, &key, &val);
374 				else {
375 					old_bufp =
376 					    __add_ovflpage(hashp, old_bufp);
377 					if (!old_bufp)
378 						return (-1);
379 					op = (u_int16_t *)(void *)old_bufp->page;
380 					putpair((char *)(void *)op, &key, &val);
381 				}
382 				old_bufp->flags |= BUF_MOD;
383 			} else {
384 				/* Move to new page */
385 				if (PAIRFITS(np, (&key), (&val)))
386 					putpair((char *)(void *)np, &key, &val);
387 				else {
388 					new_bufp =
389 					    __add_ovflpage(hashp, new_bufp);
390 					if (!new_bufp)
391 						return (-1);
392 					np = (u_int16_t *)(void *)new_bufp->page;
393 					putpair((char *)(void *)np, &key, &val);
394 				}
395 				new_bufp->flags |= BUF_MOD;
396 			}
397 		}
398 	}
399 	if (last_bfp)
400 		__free_ovflpage(hashp, last_bfp);
401 	return (0);
402 }
403 
404 /*
405  * Add the given pair to the page
406  *
407  * Returns:
408  *	0 ==> OK
409  *	1 ==> failure
410  */
411 int
412 __addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
413 {
414 	u_int16_t *bp, *sop;
415 	int do_expand;
416 
417 	bp = (u_int16_t *)(void *)bufp->page;
418 	do_expand = 0;
419 	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
420 		/* Exception case */
421 		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
422 			/* This is the last page of a big key/data pair
423 			   and we need to add another page */
424 			break;
425 		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
426 			bufp = __get_buf(hashp, (u_int32_t)bp[bp[0] - 1], bufp,
427 			    0);
428 			if (!bufp)
429 				return (-1);
430 			bp = (u_int16_t *)(void *)bufp->page;
431 		} else if (bp[bp[0]] != OVFLPAGE) {
432 			/* Short key/data pairs, no more pages */
433 			break;
434 		} else {
435 			/* Try to squeeze key on this page */
436 			if (bp[2] >= REAL_KEY &&
437 			    FREESPACE(bp) >= PAIRSIZE(key, val)) {
438 				squeeze_key(bp, key, val);
439 				goto stats;
440 			} else {
441 				bufp = __get_buf(hashp,
442 				    (u_int32_t)bp[bp[0] - 1], bufp, 0);
443 				if (!bufp)
444 					return (-1);
445 				bp = (u_int16_t *)(void *)bufp->page;
446 			}
447 		}
448 
449 	if (PAIRFITS(bp, key, val))
450 		putpair(bufp->page, key, val);
451 	else {
452 		do_expand = 1;
453 		bufp = __add_ovflpage(hashp, bufp);
454 		if (!bufp)
455 			return (-1);
456 		sop = (u_int16_t *)(void *)bufp->page;
457 
458 		if (PAIRFITS(sop, key, val))
459 			putpair((char *)(void *)sop, key, val);
460 		else
461 			if (__big_insert(hashp, bufp, key, val))
462 				return (-1);
463 	}
464 stats:
465 	bufp->flags |= BUF_MOD;
466 	/*
467 	 * If the average number of keys per bucket exceeds the fill factor,
468 	 * expand the table.
469 	 */
470 	hashp->NKEYS++;
471 	if (do_expand ||
472 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
473 		return (__expand_table(hashp));
474 	return (0);
475 }
476 
477 /*
478  *
479  * Returns:
480  *	pointer on success
481  *	NULL on error
482  */
483 BUFHEAD *
484 __add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
485 {
486 	u_int16_t *sp;
487 	u_int16_t ndx, ovfl_num;
488 	size_t temp;
489 #ifdef DEBUG1
490 	int tmp1, tmp2;
491 #endif
492 	sp = (u_int16_t *)(void *)bufp->page;
493 
494 	/* Check if we are dynamically determining the fill factor */
495 	if (hashp->FFACTOR == DEF_FFACTOR) {
496 		hashp->FFACTOR = (u_int32_t)sp[0] >> 1;
497 		if (hashp->FFACTOR < MIN_FFACTOR)
498 			hashp->FFACTOR = MIN_FFACTOR;
499 	}
500 	bufp->flags |= BUF_MOD;
501 	ovfl_num = overflow_page(hashp);
502 #ifdef DEBUG1
503 	tmp1 = bufp->addr;
504 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
505 #endif
506 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (u_int32_t)ovfl_num,
507 	    bufp, 1)))
508 		return (NULL);
509 	bufp->ovfl->flags |= BUF_MOD;
510 #ifdef DEBUG1
511 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
512 	    tmp1, tmp2, bufp->ovfl->addr);
513 #endif
514 	ndx = sp[0];
515 	/*
516 	 * Since a pair is allocated on a page only if there's room to add
517 	 * an overflow page, we know that the OVFL information will fit on
518 	 * the page.
519 	 */
520 	sp[ndx + 4] = OFFSET(sp);
521 	temp = FREESPACE(sp);
522 	_DIAGASSERT(temp >= OVFLSIZE);
523 	sp[ndx + 3] = (u_int16_t)(temp - OVFLSIZE);
524 	sp[ndx + 1] = ovfl_num;
525 	sp[ndx + 2] = OVFLPAGE;
526 	sp[0] = ndx + 2;
527 #ifdef HASH_STATISTICS
528 	hash_overflows++;
529 #endif
530 	return (bufp->ovfl);
531 }
532 
533 /*
534  * Returns:
535  *	 0 indicates SUCCESS
536  *	-1 indicates FAILURE
537  */
538 int
539 __get_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_disk,
540     int is_bitmap)
541 {
542 	int fd, page, size;
543 	ssize_t rsize;
544 	u_int16_t *bp;
545 	size_t temp;
546 
547 	fd = hashp->fp;
548 	size = hashp->BSIZE;
549 
550 	if ((fd == -1) || !is_disk) {
551 		PAGE_INIT(p);
552 		return (0);
553 	}
554 	if (is_bucket)
555 		page = BUCKET_TO_PAGE(bucket);
556 	else
557 		page = OADDR_TO_PAGE(bucket);
558 	if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
559 		return (-1);
560 	bp = (u_int16_t *)(void *)p;
561 	if (!rsize)
562 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
563 	else
564 		if (rsize != size) {
565 			errno = EFTYPE;
566 			return (-1);
567 		}
568 	if (!is_bitmap && !bp[0]) {
569 		PAGE_INIT(p);
570 	} else
571 		if (hashp->LORDER != BYTE_ORDER) {
572 			int i, max;
573 
574 			if (is_bitmap) {
575 				max = (u_int32_t)hashp->BSIZE >> 2; /* divide by 4 */
576 				for (i = 0; i < max; i++)
577 					M_32_SWAP(((int *)(void *)p)[i]);
578 			} else {
579 				M_16_SWAP(bp[0]);
580 				max = bp[0] + 2;
581 				for (i = 1; i <= max; i++)
582 					M_16_SWAP(bp[i]);
583 			}
584 		}
585 	return (0);
586 }
587 
588 /*
589  * Write page p to disk
590  *
591  * Returns:
592  *	 0 ==> OK
593  *	-1 ==>failure
594  */
595 int
596 __put_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_bitmap)
597 {
598 	int fd, page, size;
599 	ssize_t wsize;
600 
601 	size = hashp->BSIZE;
602 	if ((hashp->fp == -1) && open_temp(hashp))
603 		return (-1);
604 	fd = hashp->fp;
605 
606 	if (hashp->LORDER != BYTE_ORDER) {
607 		int i;
608 		int max;
609 
610 		if (is_bitmap) {
611 			max = (u_int32_t)hashp->BSIZE >> 2;	/* divide by 4 */
612 			for (i = 0; i < max; i++)
613 				M_32_SWAP(((int *)(void *)p)[i]);
614 		} else {
615 			max = ((u_int16_t *)(void *)p)[0] + 2;
616 			for (i = 0; i <= max; i++)
617 				M_16_SWAP(((u_int16_t *)(void *)p)[i]);
618 		}
619 	}
620 	if (is_bucket)
621 		page = BUCKET_TO_PAGE(bucket);
622 	else
623 		page = OADDR_TO_PAGE(bucket);
624 	if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
625 		/* Errno is set */
626 		return (-1);
627 	if (wsize != size) {
628 		errno = EFTYPE;
629 		return (-1);
630 	}
631 	return (0);
632 }
633 
634 #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
635 /*
636  * Initialize a new bitmap page.  Bitmap pages are left in memory
637  * once they are read in.
638  */
639 int
640 __ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
641 {
642 	u_int32_t *ip;
643 	int clearbytes, clearints;
644 
645 	if ((ip = malloc((size_t)hashp->BSIZE)) == NULL)
646 		return (1);
647 	hashp->nmaps++;
648 	clearints = ((u_int32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1;
649 	clearbytes = clearints << INT_TO_BYTE;
650 	(void)memset(ip, 0, (size_t)clearbytes);
651 	(void)memset(((char *)(void *)ip) + clearbytes, 0xFF,
652 	    (size_t)(hashp->BSIZE - clearbytes));
653 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
654 	SETBIT(ip, 0);
655 	hashp->BITMAPS[ndx] = (u_int16_t)pnum;
656 	hashp->mapp[ndx] = ip;
657 	return (0);
658 }
659 
660 static u_int32_t
661 first_free(u_int32_t map)
662 {
663 	u_int32_t i, mask;
664 
665 	mask = 0x1;
666 	for (i = 0; i < BITS_PER_MAP; i++) {
667 		if (!(mask & map))
668 			return (i);
669 		mask = mask << 1;
670 	}
671 	return (i);
672 }
673 
674 static u_int16_t
675 overflow_page(HTAB *hashp)
676 {
677 	u_int32_t *freep = NULL;
678 	int max_free, offset, splitnum;
679 	u_int16_t addr;
680 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
681 #ifdef DEBUG2
682 	int tmp1, tmp2;
683 #endif
684 	splitnum = hashp->OVFL_POINT;
685 	max_free = hashp->SPARES[splitnum];
686 
687 	free_page = (u_int32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
688 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
689 
690 	/* Look through all the free maps to find the first free block */
691 	first_page = (u_int32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
692 	for ( i = first_page; i <= free_page; i++ ) {
693 		if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
694 		    !(freep = fetch_bitmap(hashp, i)))
695 			return (0);
696 		if (i == free_page)
697 			in_use_bits = free_bit;
698 		else
699 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
700 
701 		if (i == first_page) {
702 			bit = hashp->LAST_FREED &
703 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
704 			j = bit / BITS_PER_MAP;
705 			bit = bit & ~(BITS_PER_MAP - 1);
706 		} else {
707 			bit = 0;
708 			j = 0;
709 		}
710 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
711 			if (freep[j] != ALL_SET)
712 				goto found;
713 	}
714 
715 	/* No Free Page Found */
716 	hashp->LAST_FREED = hashp->SPARES[splitnum];
717 	hashp->SPARES[splitnum]++;
718 	offset = hashp->SPARES[splitnum] -
719 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
720 
721 #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
722 	if (offset > SPLITMASK) {
723 		if (++splitnum >= NCACHED) {
724 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
725 			errno = EFBIG;
726 			return (0);
727 		}
728 		hashp->OVFL_POINT = splitnum;
729 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
730 		hashp->SPARES[splitnum-1]--;
731 		offset = 1;
732 	}
733 
734 	/* Check if we need to allocate a new bitmap page */
735 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
736 		free_page++;
737 		if (free_page >= NCACHED) {
738 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
739 			errno = EFBIG;
740 			return (0);
741 		}
742 		/*
743 		 * This is tricky.  The 1 indicates that you want the new page
744 		 * allocated with 1 clear bit.  Actually, you are going to
745 		 * allocate 2 pages from this map.  The first is going to be
746 		 * the map page, the second is the overflow page we were
747 		 * looking for.  The init_bitmap routine automatically, sets
748 		 * the first bit of itself to indicate that the bitmap itself
749 		 * is in use.  We would explicitly set the second bit, but
750 		 * don't have to if we tell init_bitmap not to leave it clear
751 		 * in the first place.
752 		 */
753 		if (__ibitmap(hashp,
754 		    (int)OADDR_OF(splitnum, offset), 1, free_page))
755 			return (0);
756 		hashp->SPARES[splitnum]++;
757 #ifdef DEBUG2
758 		free_bit = 2;
759 #endif
760 		offset++;
761 		if (offset > SPLITMASK) {
762 			if (++splitnum >= NCACHED) {
763 				(void)write(STDERR_FILENO, OVMSG,
764 				    sizeof(OVMSG) - 1);
765 				errno = EFBIG;
766 				return (0);
767 			}
768 			hashp->OVFL_POINT = splitnum;
769 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
770 			hashp->SPARES[splitnum-1]--;
771 			offset = 0;
772 		}
773 	} else {
774 		/*
775 		 * Free_bit addresses the last used bit.  Bump it to address
776 		 * the first available bit.
777 		 */
778 		free_bit++;
779 		SETBIT(freep, free_bit);
780 	}
781 
782 	/* Calculate address of the new overflow page */
783 	addr = OADDR_OF(splitnum, offset);
784 #ifdef DEBUG2
785 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
786 	    addr, free_bit, free_page);
787 #endif
788 	return (addr);
789 
790 found:
791 	bit = bit + first_free(freep[j]);
792 	SETBIT(freep, bit);
793 #ifdef DEBUG2
794 	tmp1 = bit;
795 	tmp2 = i;
796 #endif
797 	/*
798 	 * Bits are addressed starting with 0, but overflow pages are addressed
799 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
800 	 * it to convert it to a page number.
801 	 */
802 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
803 	if (bit >= hashp->LAST_FREED)
804 		hashp->LAST_FREED = bit - 1;
805 
806 	/* Calculate the split number for this page */
807 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
808 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
809 	if (offset >= SPLITMASK) {
810 		(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
811 		errno = EFBIG;
812 		return (0);	/* Out of overflow pages */
813 	}
814 	addr = OADDR_OF(i, offset);
815 #ifdef DEBUG2
816 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
817 	    addr, tmp1, tmp2);
818 #endif
819 
820 	/* Allocate and return the overflow page */
821 	return (addr);
822 }
823 
824 /*
825  * Mark this overflow page as free.
826  */
827 void
828 __free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
829 {
830 	u_int16_t addr;
831 	u_int32_t *freep;
832 	int bit_address, free_page, free_bit;
833 	u_int16_t ndx;
834 
835 	addr = obufp->addr;
836 #ifdef DEBUG1
837 	(void)fprintf(stderr, "Freeing %d\n", addr);
838 #endif
839 	ndx = (((u_int32_t)addr) >> SPLITSHIFT);
840 	bit_address =
841 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
842 	 if (bit_address < hashp->LAST_FREED)
843 		hashp->LAST_FREED = bit_address;
844 	free_page = ((u_int32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
845 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
846 
847 	if (!(freep = hashp->mapp[free_page]))
848 		freep = fetch_bitmap(hashp, free_page);
849 	/*
850 	 * This had better never happen.  It means we tried to read a bitmap
851 	 * that has already had overflow pages allocated off it, and we
852 	 * failed to read it from the file.
853 	 */
854 	_DIAGASSERT(freep != NULL);
855 	CLRBIT(freep, free_bit);
856 #ifdef DEBUG2
857 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
858 	    obufp->addr, free_bit, free_page);
859 #endif
860 	__reclaim_buf(hashp, obufp);
861 }
862 
863 /*
864  * Returns:
865  *	 0 success
866  *	-1 failure
867  */
868 static int
869 open_temp(HTAB *hashp)
870 {
871 	sigset_t set, oset;
872 	char *envtmp;
873 	char namestr[PATH_MAX];
874 
875 	if (issetugid())
876 		envtmp = NULL;
877 	else
878 		envtmp = getenv("TMPDIR");
879 
880 	if (-1 == snprintf(namestr, sizeof(namestr), "%s/_hashXXXXXX",
881 	    envtmp ? envtmp : _PATH_TMP))
882 		return -1;
883 
884 	/* Block signals; make sure file goes away at process exit. */
885 	(void)sigfillset(&set);
886 	(void)sigprocmask(SIG_BLOCK, &set, &oset);
887 	if ((hashp->fp = mkstemp(namestr)) != -1) {
888 		(void)unlink(namestr);
889 		(void)fcntl(hashp->fp, F_SETFD, FD_CLOEXEC);
890 	}
891 	(void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
892 	return (hashp->fp != -1 ? 0 : -1);
893 }
894 
895 /*
896  * We have to know that the key will fit, but the last entry on the page is
897  * an overflow pair, so we need to shift things.
898  */
899 static void
900 squeeze_key(u_int16_t *sp, const DBT *key, const DBT *val)
901 {
902 	char *p;
903 	u_int16_t free_space, n, off, pageno;
904 	size_t temp;
905 
906 	p = (char *)(void *)sp;
907 	n = sp[0];
908 	free_space = FREESPACE(sp);
909 	off = OFFSET(sp);
910 
911 	pageno = sp[n - 1];
912 	_DIAGASSERT(off >= key->size);
913 	off -= (u_int16_t)key->size;
914 	sp[n - 1] = off;
915 	memmove(p + off, key->data, key->size);
916 	_DIAGASSERT(off >= val->size);
917 	off -= (u_int16_t)val->size;
918 	sp[n] = off;
919 	memmove(p + off, val->data, val->size);
920 	sp[0] = n + 2;
921 	sp[n + 1] = pageno;
922 	sp[n + 2] = OVFLPAGE;
923 	temp = PAIRSIZE(key, val);
924 	_DIAGASSERT(free_space >= temp);
925 	FREESPACE(sp) = (u_int16_t)(free_space - temp);
926 	OFFSET(sp) = off;
927 }
928 
929 static u_int32_t *
930 fetch_bitmap(HTAB *hashp, int ndx)
931 {
932 	if (ndx >= hashp->nmaps)
933 		return (NULL);
934 	if ((hashp->mapp[ndx] = malloc((size_t)hashp->BSIZE)) == NULL)
935 		return (NULL);
936 	if (__get_page(hashp,
937 	    (char *)(void *)hashp->mapp[ndx], (u_int32_t)hashp->BITMAPS[ndx], 0, 1, 1)) {
938 		free(hashp->mapp[ndx]);
939 		return (NULL);
940 	}
941 	return (hashp->mapp[ndx]);
942 }
943 
944 #ifdef DEBUG4
945 void print_chain(HTAB *, u_int32_t);
946 void
947 print_chain(HTAB *hashp, u_int32_t addr)
948 {
949 	BUFHEAD *bufp;
950 	u_int16_t *bp, oaddr;
951 
952 	(void)fprintf(stderr, "%d ", addr);
953 	bufp = __get_buf(hashp, addr, NULL, 0);
954 	bp = (u_int16_t *)bufp->page;
955 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
956 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
957 		oaddr = bp[bp[0] - 1];
958 		(void)fprintf(stderr, "%d ", (int)oaddr);
959 		bufp = __get_buf(hashp, (u_int32_t)oaddr, bufp, 0);
960 		bp = (u_int16_t *)bufp->page;
961 	}
962 	(void)fprintf(stderr, "\n");
963 }
964 #endif
965