1 /* $NetBSD: hash_page.c,v 1.16 2003/08/07 16:42:43 agc Exp $ */ 2 3 /*- 4 * Copyright (c) 1990, 1993, 1994 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Margo Seltzer. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 #if defined(LIBC_SCCS) && !defined(lint) 37 #if 0 38 static char sccsid[] = "@(#)hash_page.c 8.7 (Berkeley) 8/16/94"; 39 #else 40 __RCSID("$NetBSD: hash_page.c,v 1.16 2003/08/07 16:42:43 agc Exp $"); 41 #endif 42 #endif /* LIBC_SCCS and not lint */ 43 44 /* 45 * PACKAGE: hashing 46 * 47 * DESCRIPTION: 48 * Page manipulation for hashing package. 49 * 50 * ROUTINES: 51 * 52 * External 53 * __get_page 54 * __add_ovflpage 55 * Internal 56 * overflow_page 57 * open_temp 58 */ 59 60 #include "namespace.h" 61 62 #include <sys/types.h> 63 64 #include <errno.h> 65 #include <fcntl.h> 66 #include <signal.h> 67 #include <stdio.h> 68 #include <stdlib.h> 69 #include <string.h> 70 #include <unistd.h> 71 #ifdef DEBUG 72 #include <assert.h> 73 #endif 74 75 #include <db.h> 76 #include "hash.h" 77 #include "page.h" 78 #include "extern.h" 79 80 static u_int32_t *fetch_bitmap __P((HTAB *, int)); 81 static u_int32_t first_free __P((u_int32_t)); 82 static int open_temp __P((HTAB *)); 83 static u_int16_t overflow_page __P((HTAB *)); 84 static void putpair __P((char *, const DBT *, const DBT *)); 85 static void squeeze_key __P((u_int16_t *, const DBT *, const DBT *)); 86 static int ugly_split 87 __P((HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int)); 88 89 #define PAGE_INIT(P) { \ 90 ((u_int16_t *)(void *)(P))[0] = 0; \ 91 ((u_int16_t *)(void *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \ 92 ((u_int16_t *)(void *)(P))[2] = hashp->BSIZE; \ 93 } 94 95 /* 96 * This is called AFTER we have verified that there is room on the page for 97 * the pair (PAIRFITS has returned true) so we go right ahead and start moving 98 * stuff on. 99 */ 100 static void 101 putpair(p, key, val) 102 char *p; 103 const DBT *key, *val; 104 { 105 register u_int16_t *bp, n, off; 106 107 bp = (u_int16_t *)(void *)p; 108 109 /* Enter the key first. */ 110 n = bp[0]; 111 112 off = OFFSET(bp) - key->size; 113 memmove(p + off, key->data, key->size); 114 bp[++n] = off; 115 116 /* Now the data. */ 117 off -= val->size; 118 memmove(p + off, val->data, val->size); 119 bp[++n] = off; 120 121 /* Adjust page info. */ 122 bp[0] = n; 123 bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t)); 124 bp[n + 2] = off; 125 } 126 127 /* 128 * Returns: 129 * 0 OK 130 * -1 error 131 */ 132 extern int 133 __delpair(hashp, bufp, ndx) 134 HTAB *hashp; 135 BUFHEAD *bufp; 136 register int ndx; 137 { 138 register u_int16_t *bp, newoff; 139 register int n; 140 u_int16_t pairlen; 141 142 bp = (u_int16_t *)(void *)bufp->page; 143 n = bp[0]; 144 145 if (bp[ndx + 1] < REAL_KEY) 146 return (__big_delete(hashp, bufp)); 147 if (ndx != 1) 148 newoff = bp[ndx - 1]; 149 else 150 newoff = hashp->BSIZE; 151 pairlen = newoff - bp[ndx + 1]; 152 153 if (ndx != (n - 1)) { 154 /* Hard Case -- need to shuffle keys */ 155 register int i; 156 register char *src = bufp->page + (int)OFFSET(bp); 157 register char *dst = src + (int)pairlen; 158 memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp))); 159 160 /* Now adjust the pointers */ 161 for (i = ndx + 2; i <= n; i += 2) { 162 if (bp[i + 1] == OVFLPAGE) { 163 bp[i - 2] = bp[i]; 164 bp[i - 1] = bp[i + 1]; 165 } else { 166 bp[i - 2] = bp[i] + pairlen; 167 bp[i - 1] = bp[i + 1] + pairlen; 168 } 169 } 170 } 171 /* Finally adjust the page data */ 172 bp[n] = OFFSET(bp) + pairlen; 173 bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t); 174 bp[0] = n - 2; 175 hashp->NKEYS--; 176 177 bufp->flags |= BUF_MOD; 178 return (0); 179 } 180 /* 181 * Returns: 182 * 0 ==> OK 183 * -1 ==> Error 184 */ 185 extern int 186 __split_page(hashp, obucket, nbucket) 187 HTAB *hashp; 188 u_int32_t obucket, nbucket; 189 { 190 register BUFHEAD *new_bufp, *old_bufp; 191 register u_int16_t *ino; 192 register char *np; 193 DBT key, val; 194 int n, ndx, retval; 195 u_int16_t copyto, diff, off, moved; 196 char *op; 197 198 copyto = (u_int16_t)hashp->BSIZE; 199 off = (u_int16_t)hashp->BSIZE; 200 old_bufp = __get_buf(hashp, obucket, NULL, 0); 201 if (old_bufp == NULL) 202 return (-1); 203 new_bufp = __get_buf(hashp, nbucket, NULL, 0); 204 if (new_bufp == NULL) 205 return (-1); 206 207 old_bufp->flags |= (BUF_MOD | BUF_PIN); 208 new_bufp->flags |= (BUF_MOD | BUF_PIN); 209 210 ino = (u_int16_t *)(void *)(op = old_bufp->page); 211 np = new_bufp->page; 212 213 moved = 0; 214 215 for (n = 1, ndx = 1; n < ino[0]; n += 2) { 216 if (ino[n + 1] < REAL_KEY) { 217 retval = ugly_split(hashp, obucket, old_bufp, new_bufp, 218 (int)copyto, (int)moved); 219 old_bufp->flags &= ~BUF_PIN; 220 new_bufp->flags &= ~BUF_PIN; 221 return (retval); 222 223 } 224 key.data = (u_char *)op + ino[n]; 225 key.size = off - ino[n]; 226 227 if (__call_hash(hashp, key.data, (int)key.size) == obucket) { 228 /* Don't switch page */ 229 diff = copyto - off; 230 if (diff) { 231 copyto = ino[n + 1] + diff; 232 memmove(op + copyto, op + ino[n + 1], 233 (size_t)(off - ino[n + 1])); 234 ino[ndx] = copyto + ino[n] - ino[n + 1]; 235 ino[ndx + 1] = copyto; 236 } else 237 copyto = ino[n + 1]; 238 ndx += 2; 239 } else { 240 /* Switch page */ 241 val.data = (u_char *)op + ino[n + 1]; 242 val.size = ino[n] - ino[n + 1]; 243 putpair(np, &key, &val); 244 moved += 2; 245 } 246 247 off = ino[n + 1]; 248 } 249 250 /* Now clean up the page */ 251 ino[0] -= moved; 252 FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3); 253 OFFSET(ino) = copyto; 254 255 #ifdef DEBUG3 256 (void)fprintf(stderr, "split %d/%d\n", 257 ((u_int16_t *)np)[0] / 2, 258 ((u_int16_t *)op)[0] / 2); 259 #endif 260 /* unpin both pages */ 261 old_bufp->flags &= ~BUF_PIN; 262 new_bufp->flags &= ~BUF_PIN; 263 return (0); 264 } 265 266 /* 267 * Called when we encounter an overflow or big key/data page during split 268 * handling. This is special cased since we have to begin checking whether 269 * the key/data pairs fit on their respective pages and because we may need 270 * overflow pages for both the old and new pages. 271 * 272 * The first page might be a page with regular key/data pairs in which case 273 * we have a regular overflow condition and just need to go on to the next 274 * page or it might be a big key/data pair in which case we need to fix the 275 * big key/data pair. 276 * 277 * Returns: 278 * 0 ==> success 279 * -1 ==> failure 280 */ 281 static int 282 ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved) 283 HTAB *hashp; 284 u_int32_t obucket; /* Same as __split_page. */ 285 BUFHEAD *old_bufp, *new_bufp; 286 int copyto; /* First byte on page which contains key/data values. */ 287 int moved; /* Number of pairs moved to new page. */ 288 { 289 register BUFHEAD *bufp; /* Buffer header for ino */ 290 register u_int16_t *ino; /* Page keys come off of */ 291 register u_int16_t *np; /* New page */ 292 register u_int16_t *op; /* Page keys go on to if they aren't moving */ 293 294 BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */ 295 DBT key, val; 296 SPLIT_RETURN ret; 297 u_int16_t n, off, ov_addr, scopyto; 298 char *cino; /* Character value of ino */ 299 300 bufp = old_bufp; 301 ino = (u_int16_t *)(void *)old_bufp->page; 302 np = (u_int16_t *)(void *)new_bufp->page; 303 op = (u_int16_t *)(void *)old_bufp->page; 304 last_bfp = NULL; 305 scopyto = (u_int16_t)copyto; /* ANSI */ 306 307 n = ino[0] - 1; 308 while (n < ino[0]) { 309 if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) { 310 if (__big_split(hashp, old_bufp, 311 new_bufp, bufp, (int)bufp->addr, obucket, &ret)) 312 return (-1); 313 old_bufp = ret.oldp; 314 if (!old_bufp) 315 return (-1); 316 op = (u_int16_t *)(void *)old_bufp->page; 317 new_bufp = ret.newp; 318 if (!new_bufp) 319 return (-1); 320 np = (u_int16_t *)(void *)new_bufp->page; 321 bufp = ret.nextp; 322 if (!bufp) 323 return (0); 324 cino = (char *)bufp->page; 325 ino = (u_int16_t *)(void *)cino; 326 last_bfp = ret.nextp; 327 } else if (ino[n + 1] == OVFLPAGE) { 328 ov_addr = ino[n]; 329 /* 330 * Fix up the old page -- the extra 2 are the fields 331 * which contained the overflow information. 332 */ 333 ino[0] -= (moved + 2); 334 FREESPACE(ino) = 335 scopyto - sizeof(u_int16_t) * (ino[0] + 3); 336 OFFSET(ino) = scopyto; 337 338 bufp = __get_buf(hashp, (u_int32_t)ov_addr, bufp, 0); 339 if (!bufp) 340 return (-1); 341 342 ino = (u_int16_t *)(void *)bufp->page; 343 n = 1; 344 scopyto = hashp->BSIZE; 345 moved = 0; 346 347 if (last_bfp) 348 __free_ovflpage(hashp, last_bfp); 349 last_bfp = bufp; 350 } 351 /* Move regular sized pairs of there are any */ 352 off = hashp->BSIZE; 353 for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) { 354 cino = (char *)(void *)ino; 355 key.data = (u_char *)cino + ino[n]; 356 key.size = off - ino[n]; 357 val.data = (u_char *)cino + ino[n + 1]; 358 val.size = ino[n] - ino[n + 1]; 359 off = ino[n + 1]; 360 361 if (__call_hash(hashp, key.data, (int)key.size) == obucket) { 362 /* Keep on old page */ 363 if (PAIRFITS(op, (&key), (&val))) 364 putpair((char *)(void *)op, &key, &val); 365 else { 366 old_bufp = 367 __add_ovflpage(hashp, old_bufp); 368 if (!old_bufp) 369 return (-1); 370 op = (u_int16_t *)(void *)old_bufp->page; 371 putpair((char *)(void *)op, &key, &val); 372 } 373 old_bufp->flags |= BUF_MOD; 374 } else { 375 /* Move to new page */ 376 if (PAIRFITS(np, (&key), (&val))) 377 putpair((char *)(void *)np, &key, &val); 378 else { 379 new_bufp = 380 __add_ovflpage(hashp, new_bufp); 381 if (!new_bufp) 382 return (-1); 383 np = (u_int16_t *)(void *)new_bufp->page; 384 putpair((char *)(void *)np, &key, &val); 385 } 386 new_bufp->flags |= BUF_MOD; 387 } 388 } 389 } 390 if (last_bfp) 391 __free_ovflpage(hashp, last_bfp); 392 return (0); 393 } 394 395 /* 396 * Add the given pair to the page 397 * 398 * Returns: 399 * 0 ==> OK 400 * 1 ==> failure 401 */ 402 extern int 403 __addel(hashp, bufp, key, val) 404 HTAB *hashp; 405 BUFHEAD *bufp; 406 const DBT *key, *val; 407 { 408 register u_int16_t *bp, *sop; 409 int do_expand; 410 411 bp = (u_int16_t *)(void *)bufp->page; 412 do_expand = 0; 413 while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY)) 414 /* Exception case */ 415 if (bp[2] == FULL_KEY_DATA && bp[0] == 2) 416 /* This is the last page of a big key/data pair 417 and we need to add another page */ 418 break; 419 else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) { 420 bufp = __get_buf(hashp, (u_int32_t)bp[bp[0] - 1], bufp, 421 0); 422 if (!bufp) 423 return (-1); 424 bp = (u_int16_t *)(void *)bufp->page; 425 } else if (bp[bp[0]] != OVFLPAGE) { 426 /* Short key/data pairs, no more pages */ 427 break; 428 } else { 429 /* Try to squeeze key on this page */ 430 if (bp[2] >= REAL_KEY && 431 FREESPACE(bp) >= PAIRSIZE(key, val)) { 432 squeeze_key(bp, key, val); 433 goto stats; 434 } else { 435 bufp = __get_buf(hashp, 436 (u_int32_t)bp[bp[0] - 1], bufp, 0); 437 if (!bufp) 438 return (-1); 439 bp = (u_int16_t *)(void *)bufp->page; 440 } 441 } 442 443 if (PAIRFITS(bp, key, val)) 444 putpair(bufp->page, key, val); 445 else { 446 do_expand = 1; 447 bufp = __add_ovflpage(hashp, bufp); 448 if (!bufp) 449 return (-1); 450 sop = (u_int16_t *)(void *)bufp->page; 451 452 if (PAIRFITS(sop, key, val)) 453 putpair((char *)(void *)sop, key, val); 454 else 455 if (__big_insert(hashp, bufp, key, val)) 456 return (-1); 457 } 458 stats: 459 bufp->flags |= BUF_MOD; 460 /* 461 * If the average number of keys per bucket exceeds the fill factor, 462 * expand the table. 463 */ 464 hashp->NKEYS++; 465 if (do_expand || 466 (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR)) 467 return (__expand_table(hashp)); 468 return (0); 469 } 470 471 /* 472 * 473 * Returns: 474 * pointer on success 475 * NULL on error 476 */ 477 extern BUFHEAD * 478 __add_ovflpage(hashp, bufp) 479 HTAB *hashp; 480 BUFHEAD *bufp; 481 { 482 register u_int16_t *sp; 483 u_int16_t ndx, ovfl_num; 484 #ifdef DEBUG1 485 int tmp1, tmp2; 486 #endif 487 sp = (u_int16_t *)(void *)bufp->page; 488 489 /* Check if we are dynamically determining the fill factor */ 490 if (hashp->FFACTOR == DEF_FFACTOR) { 491 hashp->FFACTOR = (u_int32_t)sp[0] >> 1; 492 if (hashp->FFACTOR < MIN_FFACTOR) 493 hashp->FFACTOR = MIN_FFACTOR; 494 } 495 bufp->flags |= BUF_MOD; 496 ovfl_num = overflow_page(hashp); 497 #ifdef DEBUG1 498 tmp1 = bufp->addr; 499 tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0; 500 #endif 501 if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (u_int32_t)ovfl_num, 502 bufp, 1))) 503 return (NULL); 504 bufp->ovfl->flags |= BUF_MOD; 505 #ifdef DEBUG1 506 (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n", 507 tmp1, tmp2, bufp->ovfl->addr); 508 #endif 509 ndx = sp[0]; 510 /* 511 * Since a pair is allocated on a page only if there's room to add 512 * an overflow page, we know that the OVFL information will fit on 513 * the page. 514 */ 515 sp[ndx + 4] = OFFSET(sp); 516 sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE; 517 sp[ndx + 1] = ovfl_num; 518 sp[ndx + 2] = OVFLPAGE; 519 sp[0] = ndx + 2; 520 #ifdef HASH_STATISTICS 521 hash_overflows++; 522 #endif 523 return (bufp->ovfl); 524 } 525 526 /* 527 * Returns: 528 * 0 indicates SUCCESS 529 * -1 indicates FAILURE 530 */ 531 extern int 532 __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap) 533 HTAB *hashp; 534 char *p; 535 u_int32_t bucket; 536 int is_bucket, is_disk, is_bitmap; 537 { 538 register int fd, page, size; 539 int rsize; 540 u_int16_t *bp; 541 542 fd = hashp->fp; 543 size = hashp->BSIZE; 544 545 if ((fd == -1) || !is_disk) { 546 PAGE_INIT(p); 547 return (0); 548 } 549 if (is_bucket) 550 page = BUCKET_TO_PAGE(bucket); 551 else 552 page = OADDR_TO_PAGE(bucket); 553 if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1) 554 return (-1); 555 bp = (u_int16_t *)(void *)p; 556 if (!rsize) 557 bp[0] = 0; /* We hit the EOF, so initialize a new page */ 558 else 559 if (rsize != size) { 560 errno = EFTYPE; 561 return (-1); 562 } 563 if (!is_bitmap && !bp[0]) { 564 PAGE_INIT(p); 565 } else 566 if (hashp->LORDER != BYTE_ORDER) { 567 register int i, max; 568 569 if (is_bitmap) { 570 max = (u_int32_t)hashp->BSIZE >> 2; /* divide by 4 */ 571 for (i = 0; i < max; i++) 572 M_32_SWAP(((int *)(void *)p)[i]); 573 } else { 574 M_16_SWAP(bp[0]); 575 max = bp[0] + 2; 576 for (i = 1; i <= max; i++) 577 M_16_SWAP(bp[i]); 578 } 579 } 580 return (0); 581 } 582 583 /* 584 * Write page p to disk 585 * 586 * Returns: 587 * 0 ==> OK 588 * -1 ==>failure 589 */ 590 extern int 591 __put_page(hashp, p, bucket, is_bucket, is_bitmap) 592 HTAB *hashp; 593 char *p; 594 u_int32_t bucket; 595 int is_bucket, is_bitmap; 596 { 597 register int fd, page, size; 598 int wsize; 599 600 size = hashp->BSIZE; 601 if ((hashp->fp == -1) && open_temp(hashp)) 602 return (-1); 603 fd = hashp->fp; 604 605 if (hashp->LORDER != BYTE_ORDER) { 606 register int i; 607 register int max; 608 609 if (is_bitmap) { 610 max = (u_int32_t)hashp->BSIZE >> 2; /* divide by 4 */ 611 for (i = 0; i < max; i++) 612 M_32_SWAP(((int *)(void *)p)[i]); 613 } else { 614 max = ((u_int16_t *)(void *)p)[0] + 2; 615 for (i = 0; i <= max; i++) 616 M_16_SWAP(((u_int16_t *)(void *)p)[i]); 617 } 618 } 619 if (is_bucket) 620 page = BUCKET_TO_PAGE(bucket); 621 else 622 page = OADDR_TO_PAGE(bucket); 623 if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1) 624 /* Errno is set */ 625 return (-1); 626 if (wsize != size) { 627 errno = EFTYPE; 628 return (-1); 629 } 630 return (0); 631 } 632 633 #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1) 634 /* 635 * Initialize a new bitmap page. Bitmap pages are left in memory 636 * once they are read in. 637 */ 638 extern int 639 __ibitmap(hashp, pnum, nbits, ndx) 640 HTAB *hashp; 641 int pnum, nbits, ndx; 642 { 643 u_int32_t *ip; 644 int clearbytes, clearints; 645 646 if ((ip = (u_int32_t *)malloc((size_t)hashp->BSIZE)) == NULL) 647 return (1); 648 hashp->nmaps++; 649 clearints = ((u_int32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1; 650 clearbytes = clearints << INT_TO_BYTE; 651 (void)memset(ip, 0, (size_t)clearbytes); 652 (void)memset(((char *)(void *)ip) + clearbytes, 0xFF, 653 (size_t)(hashp->BSIZE - clearbytes)); 654 ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK); 655 SETBIT(ip, 0); 656 hashp->BITMAPS[ndx] = (u_int16_t)pnum; 657 hashp->mapp[ndx] = ip; 658 return (0); 659 } 660 661 static u_int32_t 662 first_free(map) 663 u_int32_t map; 664 { 665 register u_int32_t i, mask; 666 667 mask = 0x1; 668 for (i = 0; i < BITS_PER_MAP; i++) { 669 if (!(mask & map)) 670 return (i); 671 mask = mask << 1; 672 } 673 return (i); 674 } 675 676 static u_int16_t 677 overflow_page(hashp) 678 HTAB *hashp; 679 { 680 register u_int32_t *freep = NULL; 681 register int max_free, offset, splitnum; 682 u_int16_t addr; 683 int bit, first_page, free_bit, free_page, i, in_use_bits, j; 684 #ifdef DEBUG2 685 int tmp1, tmp2; 686 #endif 687 splitnum = hashp->OVFL_POINT; 688 max_free = hashp->SPARES[splitnum]; 689 690 free_page = (u_int32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT); 691 free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1); 692 693 /* Look through all the free maps to find the first free block */ 694 first_page = (u_int32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT); 695 for ( i = first_page; i <= free_page; i++ ) { 696 if (!(freep = (u_int32_t *)hashp->mapp[i]) && 697 !(freep = fetch_bitmap(hashp, i))) 698 return (0); 699 if (i == free_page) 700 in_use_bits = free_bit; 701 else 702 in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1; 703 704 if (i == first_page) { 705 bit = hashp->LAST_FREED & 706 ((hashp->BSIZE << BYTE_SHIFT) - 1); 707 j = bit / BITS_PER_MAP; 708 bit = bit & ~(BITS_PER_MAP - 1); 709 } else { 710 bit = 0; 711 j = 0; 712 } 713 for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP) 714 if (freep[j] != ALL_SET) 715 goto found; 716 } 717 718 /* No Free Page Found */ 719 hashp->LAST_FREED = hashp->SPARES[splitnum]; 720 hashp->SPARES[splitnum]++; 721 offset = hashp->SPARES[splitnum] - 722 (splitnum ? hashp->SPARES[splitnum - 1] : 0); 723 724 #define OVMSG "HASH: Out of overflow pages. Increase page size\n" 725 if (offset > SPLITMASK) { 726 if (++splitnum >= NCACHED) { 727 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1); 728 errno = EFBIG; 729 return (0); 730 } 731 hashp->OVFL_POINT = splitnum; 732 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1]; 733 hashp->SPARES[splitnum-1]--; 734 offset = 1; 735 } 736 737 /* Check if we need to allocate a new bitmap page */ 738 if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) { 739 free_page++; 740 if (free_page >= NCACHED) { 741 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1); 742 errno = EFBIG; 743 return (0); 744 } 745 /* 746 * This is tricky. The 1 indicates that you want the new page 747 * allocated with 1 clear bit. Actually, you are going to 748 * allocate 2 pages from this map. The first is going to be 749 * the map page, the second is the overflow page we were 750 * looking for. The init_bitmap routine automatically, sets 751 * the first bit of itself to indicate that the bitmap itself 752 * is in use. We would explicitly set the second bit, but 753 * don't have to if we tell init_bitmap not to leave it clear 754 * in the first place. 755 */ 756 if (__ibitmap(hashp, 757 (int)OADDR_OF(splitnum, offset), 1, free_page)) 758 return (0); 759 hashp->SPARES[splitnum]++; 760 #ifdef DEBUG2 761 free_bit = 2; 762 #endif 763 offset++; 764 if (offset > SPLITMASK) { 765 if (++splitnum >= NCACHED) { 766 (void)write(STDERR_FILENO, OVMSG, 767 sizeof(OVMSG) - 1); 768 errno = EFBIG; 769 return (0); 770 } 771 hashp->OVFL_POINT = splitnum; 772 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1]; 773 hashp->SPARES[splitnum-1]--; 774 offset = 0; 775 } 776 } else { 777 /* 778 * Free_bit addresses the last used bit. Bump it to address 779 * the first available bit. 780 */ 781 free_bit++; 782 SETBIT(freep, free_bit); 783 } 784 785 /* Calculate address of the new overflow page */ 786 addr = OADDR_OF(splitnum, offset); 787 #ifdef DEBUG2 788 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n", 789 addr, free_bit, free_page); 790 #endif 791 return (addr); 792 793 found: 794 bit = bit + first_free(freep[j]); 795 SETBIT(freep, bit); 796 #ifdef DEBUG2 797 tmp1 = bit; 798 tmp2 = i; 799 #endif 800 /* 801 * Bits are addressed starting with 0, but overflow pages are addressed 802 * beginning at 1. Bit is a bit addressnumber, so we need to increment 803 * it to convert it to a page number. 804 */ 805 bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT)); 806 if (bit >= hashp->LAST_FREED) 807 hashp->LAST_FREED = bit - 1; 808 809 /* Calculate the split number for this page */ 810 for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++); 811 offset = (i ? bit - hashp->SPARES[i - 1] : bit); 812 if (offset >= SPLITMASK) { 813 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1); 814 errno = EFBIG; 815 return (0); /* Out of overflow pages */ 816 } 817 addr = OADDR_OF(i, offset); 818 #ifdef DEBUG2 819 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n", 820 addr, tmp1, tmp2); 821 #endif 822 823 /* Allocate and return the overflow page */ 824 return (addr); 825 } 826 827 /* 828 * Mark this overflow page as free. 829 */ 830 extern void 831 __free_ovflpage(hashp, obufp) 832 HTAB *hashp; 833 BUFHEAD *obufp; 834 { 835 register u_int16_t addr; 836 u_int32_t *freep; 837 int bit_address, free_page, free_bit; 838 u_int16_t ndx; 839 840 addr = obufp->addr; 841 #ifdef DEBUG1 842 (void)fprintf(stderr, "Freeing %d\n", addr); 843 #endif 844 ndx = (((u_int32_t)addr) >> SPLITSHIFT); 845 bit_address = 846 (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1; 847 if (bit_address < hashp->LAST_FREED) 848 hashp->LAST_FREED = bit_address; 849 free_page = ((u_int32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT)); 850 free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1); 851 852 if (!(freep = hashp->mapp[free_page])) 853 freep = fetch_bitmap(hashp, free_page); 854 #ifdef DEBUG 855 /* 856 * This had better never happen. It means we tried to read a bitmap 857 * that has already had overflow pages allocated off it, and we 858 * failed to read it from the file. 859 */ 860 if (!freep) 861 assert(0); 862 #endif 863 CLRBIT(freep, free_bit); 864 #ifdef DEBUG2 865 (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n", 866 obufp->addr, free_bit, free_page); 867 #endif 868 __reclaim_buf(hashp, obufp); 869 } 870 871 /* 872 * Returns: 873 * 0 success 874 * -1 failure 875 */ 876 static int 877 open_temp(hashp) 878 HTAB *hashp; 879 { 880 sigset_t set, oset; 881 char namestr[] = "_hashXXXXXX"; 882 883 /* Block signals; make sure file goes away at process exit. */ 884 (void)sigfillset(&set); 885 (void)sigprocmask(SIG_BLOCK, &set, &oset); 886 if ((hashp->fp = mkstemp(namestr)) != -1) { 887 (void)unlink(namestr); 888 (void)fcntl(hashp->fp, F_SETFD, 1); 889 } 890 (void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL); 891 return (hashp->fp != -1 ? 0 : -1); 892 } 893 894 /* 895 * We have to know that the key will fit, but the last entry on the page is 896 * an overflow pair, so we need to shift things. 897 */ 898 static void 899 squeeze_key(sp, key, val) 900 u_int16_t *sp; 901 const DBT *key, *val; 902 { 903 register char *p; 904 u_int16_t free_space, n, off, pageno; 905 906 p = (char *)(void *)sp; 907 n = sp[0]; 908 free_space = FREESPACE(sp); 909 off = OFFSET(sp); 910 911 pageno = sp[n - 1]; 912 off -= key->size; 913 sp[n - 1] = off; 914 memmove(p + off, key->data, key->size); 915 off -= val->size; 916 sp[n] = off; 917 memmove(p + off, val->data, val->size); 918 sp[0] = n + 2; 919 sp[n + 1] = pageno; 920 sp[n + 2] = OVFLPAGE; 921 FREESPACE(sp) = free_space - PAIRSIZE(key, val); 922 OFFSET(sp) = off; 923 } 924 925 static u_int32_t * 926 fetch_bitmap(hashp, ndx) 927 HTAB *hashp; 928 int ndx; 929 { 930 if (ndx >= hashp->nmaps) 931 return (NULL); 932 if ((hashp->mapp[ndx] = (u_int32_t *)malloc((size_t)hashp->BSIZE)) == NULL) 933 return (NULL); 934 if (__get_page(hashp, 935 (char *)(void *)hashp->mapp[ndx], (u_int32_t)hashp->BITMAPS[ndx], 0, 1, 1)) { 936 free(hashp->mapp[ndx]); 937 return (NULL); 938 } 939 return (hashp->mapp[ndx]); 940 } 941 942 #ifdef DEBUG4 943 int 944 print_chain(addr) 945 int addr; 946 { 947 BUFHEAD *bufp; 948 short *bp, oaddr; 949 950 (void)fprintf(stderr, "%d ", addr); 951 bufp = __get_buf(hashp, addr, NULL, 0); 952 bp = (short *)bufp->page; 953 while (bp[0] && ((bp[bp[0]] == OVFLPAGE) || 954 ((bp[0] > 2) && bp[2] < REAL_KEY))) { 955 oaddr = bp[bp[0] - 1]; 956 (void)fprintf(stderr, "%d ", (int)oaddr); 957 bufp = __get_buf(hashp, (int)oaddr, bufp, 0); 958 bp = (short *)bufp->page; 959 } 960 (void)fprintf(stderr, "\n"); 961 } 962 #endif 963