xref: /netbsd-src/lib/libc/db/hash/hash_page.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: hash_page.c,v 1.16 2003/08/07 16:42:43 agc Exp $	*/
2 
3 /*-
4  * Copyright (c) 1990, 1993, 1994
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Margo Seltzer.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 #if defined(LIBC_SCCS) && !defined(lint)
37 #if 0
38 static char sccsid[] = "@(#)hash_page.c	8.7 (Berkeley) 8/16/94";
39 #else
40 __RCSID("$NetBSD: hash_page.c,v 1.16 2003/08/07 16:42:43 agc Exp $");
41 #endif
42 #endif /* LIBC_SCCS and not lint */
43 
44 /*
45  * PACKAGE:  hashing
46  *
47  * DESCRIPTION:
48  *	Page manipulation for hashing package.
49  *
50  * ROUTINES:
51  *
52  * External
53  *	__get_page
54  *	__add_ovflpage
55  * Internal
56  *	overflow_page
57  *	open_temp
58  */
59 
60 #include "namespace.h"
61 
62 #include <sys/types.h>
63 
64 #include <errno.h>
65 #include <fcntl.h>
66 #include <signal.h>
67 #include <stdio.h>
68 #include <stdlib.h>
69 #include <string.h>
70 #include <unistd.h>
71 #ifdef DEBUG
72 #include <assert.h>
73 #endif
74 
75 #include <db.h>
76 #include "hash.h"
77 #include "page.h"
78 #include "extern.h"
79 
80 static u_int32_t	*fetch_bitmap __P((HTAB *, int));
81 static u_int32_t	 first_free __P((u_int32_t));
82 static int	 open_temp __P((HTAB *));
83 static u_int16_t	 overflow_page __P((HTAB *));
84 static void	 putpair __P((char *, const DBT *, const DBT *));
85 static void	 squeeze_key __P((u_int16_t *, const DBT *, const DBT *));
86 static int	 ugly_split
87 		    __P((HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int));
88 
89 #define	PAGE_INIT(P) { \
90 	((u_int16_t *)(void *)(P))[0] = 0; \
91 	((u_int16_t *)(void *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
92 	((u_int16_t *)(void *)(P))[2] = hashp->BSIZE; \
93 }
94 
95 /*
96  * This is called AFTER we have verified that there is room on the page for
97  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
98  * stuff on.
99  */
100 static void
101 putpair(p, key, val)
102 	char *p;
103 	const DBT *key, *val;
104 {
105 	register u_int16_t *bp, n, off;
106 
107 	bp = (u_int16_t *)(void *)p;
108 
109 	/* Enter the key first. */
110 	n = bp[0];
111 
112 	off = OFFSET(bp) - key->size;
113 	memmove(p + off, key->data, key->size);
114 	bp[++n] = off;
115 
116 	/* Now the data. */
117 	off -= val->size;
118 	memmove(p + off, val->data, val->size);
119 	bp[++n] = off;
120 
121 	/* Adjust page info. */
122 	bp[0] = n;
123 	bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
124 	bp[n + 2] = off;
125 }
126 
127 /*
128  * Returns:
129  *	 0 OK
130  *	-1 error
131  */
132 extern int
133 __delpair(hashp, bufp, ndx)
134 	HTAB *hashp;
135 	BUFHEAD *bufp;
136 	register int ndx;
137 {
138 	register u_int16_t *bp, newoff;
139 	register int n;
140 	u_int16_t pairlen;
141 
142 	bp = (u_int16_t *)(void *)bufp->page;
143 	n = bp[0];
144 
145 	if (bp[ndx + 1] < REAL_KEY)
146 		return (__big_delete(hashp, bufp));
147 	if (ndx != 1)
148 		newoff = bp[ndx - 1];
149 	else
150 		newoff = hashp->BSIZE;
151 	pairlen = newoff - bp[ndx + 1];
152 
153 	if (ndx != (n - 1)) {
154 		/* Hard Case -- need to shuffle keys */
155 		register int i;
156 		register char *src = bufp->page + (int)OFFSET(bp);
157 		register char *dst = src + (int)pairlen;
158 		memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp)));
159 
160 		/* Now adjust the pointers */
161 		for (i = ndx + 2; i <= n; i += 2) {
162 			if (bp[i + 1] == OVFLPAGE) {
163 				bp[i - 2] = bp[i];
164 				bp[i - 1] = bp[i + 1];
165 			} else {
166 				bp[i - 2] = bp[i] + pairlen;
167 				bp[i - 1] = bp[i + 1] + pairlen;
168 			}
169 		}
170 	}
171 	/* Finally adjust the page data */
172 	bp[n] = OFFSET(bp) + pairlen;
173 	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
174 	bp[0] = n - 2;
175 	hashp->NKEYS--;
176 
177 	bufp->flags |= BUF_MOD;
178 	return (0);
179 }
180 /*
181  * Returns:
182  *	 0 ==> OK
183  *	-1 ==> Error
184  */
185 extern int
186 __split_page(hashp, obucket, nbucket)
187 	HTAB *hashp;
188 	u_int32_t obucket, nbucket;
189 {
190 	register BUFHEAD *new_bufp, *old_bufp;
191 	register u_int16_t *ino;
192 	register char *np;
193 	DBT key, val;
194 	int n, ndx, retval;
195 	u_int16_t copyto, diff, off, moved;
196 	char *op;
197 
198 	copyto = (u_int16_t)hashp->BSIZE;
199 	off = (u_int16_t)hashp->BSIZE;
200 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
201 	if (old_bufp == NULL)
202 		return (-1);
203 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
204 	if (new_bufp == NULL)
205 		return (-1);
206 
207 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
208 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
209 
210 	ino = (u_int16_t *)(void *)(op = old_bufp->page);
211 	np = new_bufp->page;
212 
213 	moved = 0;
214 
215 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
216 		if (ino[n + 1] < REAL_KEY) {
217 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
218 			    (int)copyto, (int)moved);
219 			old_bufp->flags &= ~BUF_PIN;
220 			new_bufp->flags &= ~BUF_PIN;
221 			return (retval);
222 
223 		}
224 		key.data = (u_char *)op + ino[n];
225 		key.size = off - ino[n];
226 
227 		if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
228 			/* Don't switch page */
229 			diff = copyto - off;
230 			if (diff) {
231 				copyto = ino[n + 1] + diff;
232 				memmove(op + copyto, op + ino[n + 1],
233 				    (size_t)(off - ino[n + 1]));
234 				ino[ndx] = copyto + ino[n] - ino[n + 1];
235 				ino[ndx + 1] = copyto;
236 			} else
237 				copyto = ino[n + 1];
238 			ndx += 2;
239 		} else {
240 			/* Switch page */
241 			val.data = (u_char *)op + ino[n + 1];
242 			val.size = ino[n] - ino[n + 1];
243 			putpair(np, &key, &val);
244 			moved += 2;
245 		}
246 
247 		off = ino[n + 1];
248 	}
249 
250 	/* Now clean up the page */
251 	ino[0] -= moved;
252 	FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
253 	OFFSET(ino) = copyto;
254 
255 #ifdef DEBUG3
256 	(void)fprintf(stderr, "split %d/%d\n",
257 	    ((u_int16_t *)np)[0] / 2,
258 	    ((u_int16_t *)op)[0] / 2);
259 #endif
260 	/* unpin both pages */
261 	old_bufp->flags &= ~BUF_PIN;
262 	new_bufp->flags &= ~BUF_PIN;
263 	return (0);
264 }
265 
266 /*
267  * Called when we encounter an overflow or big key/data page during split
268  * handling.  This is special cased since we have to begin checking whether
269  * the key/data pairs fit on their respective pages and because we may need
270  * overflow pages for both the old and new pages.
271  *
272  * The first page might be a page with regular key/data pairs in which case
273  * we have a regular overflow condition and just need to go on to the next
274  * page or it might be a big key/data pair in which case we need to fix the
275  * big key/data pair.
276  *
277  * Returns:
278  *	 0 ==> success
279  *	-1 ==> failure
280  */
281 static int
282 ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
283 	HTAB *hashp;
284 	u_int32_t obucket;	/* Same as __split_page. */
285 	BUFHEAD *old_bufp, *new_bufp;
286 	int copyto;	/* First byte on page which contains key/data values. */
287 	int moved;	/* Number of pairs moved to new page. */
288 {
289 	register BUFHEAD *bufp;	/* Buffer header for ino */
290 	register u_int16_t *ino;	/* Page keys come off of */
291 	register u_int16_t *np;	/* New page */
292 	register u_int16_t *op;	/* Page keys go on to if they aren't moving */
293 
294 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
295 	DBT key, val;
296 	SPLIT_RETURN ret;
297 	u_int16_t n, off, ov_addr, scopyto;
298 	char *cino;		/* Character value of ino */
299 
300 	bufp = old_bufp;
301 	ino = (u_int16_t *)(void *)old_bufp->page;
302 	np = (u_int16_t *)(void *)new_bufp->page;
303 	op = (u_int16_t *)(void *)old_bufp->page;
304 	last_bfp = NULL;
305 	scopyto = (u_int16_t)copyto;	/* ANSI */
306 
307 	n = ino[0] - 1;
308 	while (n < ino[0]) {
309 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
310 			if (__big_split(hashp, old_bufp,
311 			    new_bufp, bufp, (int)bufp->addr, obucket, &ret))
312 				return (-1);
313 			old_bufp = ret.oldp;
314 			if (!old_bufp)
315 				return (-1);
316 			op = (u_int16_t *)(void *)old_bufp->page;
317 			new_bufp = ret.newp;
318 			if (!new_bufp)
319 				return (-1);
320 			np = (u_int16_t *)(void *)new_bufp->page;
321 			bufp = ret.nextp;
322 			if (!bufp)
323 				return (0);
324 			cino = (char *)bufp->page;
325 			ino = (u_int16_t *)(void *)cino;
326 			last_bfp = ret.nextp;
327 		} else if (ino[n + 1] == OVFLPAGE) {
328 			ov_addr = ino[n];
329 			/*
330 			 * Fix up the old page -- the extra 2 are the fields
331 			 * which contained the overflow information.
332 			 */
333 			ino[0] -= (moved + 2);
334 			FREESPACE(ino) =
335 			    scopyto - sizeof(u_int16_t) * (ino[0] + 3);
336 			OFFSET(ino) = scopyto;
337 
338 			bufp = __get_buf(hashp, (u_int32_t)ov_addr, bufp, 0);
339 			if (!bufp)
340 				return (-1);
341 
342 			ino = (u_int16_t *)(void *)bufp->page;
343 			n = 1;
344 			scopyto = hashp->BSIZE;
345 			moved = 0;
346 
347 			if (last_bfp)
348 				__free_ovflpage(hashp, last_bfp);
349 			last_bfp = bufp;
350 		}
351 		/* Move regular sized pairs of there are any */
352 		off = hashp->BSIZE;
353 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
354 			cino = (char *)(void *)ino;
355 			key.data = (u_char *)cino + ino[n];
356 			key.size = off - ino[n];
357 			val.data = (u_char *)cino + ino[n + 1];
358 			val.size = ino[n] - ino[n + 1];
359 			off = ino[n + 1];
360 
361 			if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
362 				/* Keep on old page */
363 				if (PAIRFITS(op, (&key), (&val)))
364 					putpair((char *)(void *)op, &key, &val);
365 				else {
366 					old_bufp =
367 					    __add_ovflpage(hashp, old_bufp);
368 					if (!old_bufp)
369 						return (-1);
370 					op = (u_int16_t *)(void *)old_bufp->page;
371 					putpair((char *)(void *)op, &key, &val);
372 				}
373 				old_bufp->flags |= BUF_MOD;
374 			} else {
375 				/* Move to new page */
376 				if (PAIRFITS(np, (&key), (&val)))
377 					putpair((char *)(void *)np, &key, &val);
378 				else {
379 					new_bufp =
380 					    __add_ovflpage(hashp, new_bufp);
381 					if (!new_bufp)
382 						return (-1);
383 					np = (u_int16_t *)(void *)new_bufp->page;
384 					putpair((char *)(void *)np, &key, &val);
385 				}
386 				new_bufp->flags |= BUF_MOD;
387 			}
388 		}
389 	}
390 	if (last_bfp)
391 		__free_ovflpage(hashp, last_bfp);
392 	return (0);
393 }
394 
395 /*
396  * Add the given pair to the page
397  *
398  * Returns:
399  *	0 ==> OK
400  *	1 ==> failure
401  */
402 extern int
403 __addel(hashp, bufp, key, val)
404 	HTAB *hashp;
405 	BUFHEAD *bufp;
406 	const DBT *key, *val;
407 {
408 	register u_int16_t *bp, *sop;
409 	int do_expand;
410 
411 	bp = (u_int16_t *)(void *)bufp->page;
412 	do_expand = 0;
413 	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
414 		/* Exception case */
415 		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
416 			/* This is the last page of a big key/data pair
417 			   and we need to add another page */
418 			break;
419 		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
420 			bufp = __get_buf(hashp, (u_int32_t)bp[bp[0] - 1], bufp,
421 			    0);
422 			if (!bufp)
423 				return (-1);
424 			bp = (u_int16_t *)(void *)bufp->page;
425 		} else if (bp[bp[0]] != OVFLPAGE) {
426 			/* Short key/data pairs, no more pages */
427 			break;
428 		} else {
429 			/* Try to squeeze key on this page */
430 			if (bp[2] >= REAL_KEY &&
431 			    FREESPACE(bp) >= PAIRSIZE(key, val)) {
432 				squeeze_key(bp, key, val);
433 				goto stats;
434 			} else {
435 				bufp = __get_buf(hashp,
436 				    (u_int32_t)bp[bp[0] - 1], bufp, 0);
437 				if (!bufp)
438 					return (-1);
439 				bp = (u_int16_t *)(void *)bufp->page;
440 			}
441 		}
442 
443 	if (PAIRFITS(bp, key, val))
444 		putpair(bufp->page, key, val);
445 	else {
446 		do_expand = 1;
447 		bufp = __add_ovflpage(hashp, bufp);
448 		if (!bufp)
449 			return (-1);
450 		sop = (u_int16_t *)(void *)bufp->page;
451 
452 		if (PAIRFITS(sop, key, val))
453 			putpair((char *)(void *)sop, key, val);
454 		else
455 			if (__big_insert(hashp, bufp, key, val))
456 				return (-1);
457 	}
458 stats:
459 	bufp->flags |= BUF_MOD;
460 	/*
461 	 * If the average number of keys per bucket exceeds the fill factor,
462 	 * expand the table.
463 	 */
464 	hashp->NKEYS++;
465 	if (do_expand ||
466 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
467 		return (__expand_table(hashp));
468 	return (0);
469 }
470 
471 /*
472  *
473  * Returns:
474  *	pointer on success
475  *	NULL on error
476  */
477 extern BUFHEAD *
478 __add_ovflpage(hashp, bufp)
479 	HTAB *hashp;
480 	BUFHEAD *bufp;
481 {
482 	register u_int16_t *sp;
483 	u_int16_t ndx, ovfl_num;
484 #ifdef DEBUG1
485 	int tmp1, tmp2;
486 #endif
487 	sp = (u_int16_t *)(void *)bufp->page;
488 
489 	/* Check if we are dynamically determining the fill factor */
490 	if (hashp->FFACTOR == DEF_FFACTOR) {
491 		hashp->FFACTOR = (u_int32_t)sp[0] >> 1;
492 		if (hashp->FFACTOR < MIN_FFACTOR)
493 			hashp->FFACTOR = MIN_FFACTOR;
494 	}
495 	bufp->flags |= BUF_MOD;
496 	ovfl_num = overflow_page(hashp);
497 #ifdef DEBUG1
498 	tmp1 = bufp->addr;
499 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
500 #endif
501 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (u_int32_t)ovfl_num,
502 	    bufp, 1)))
503 		return (NULL);
504 	bufp->ovfl->flags |= BUF_MOD;
505 #ifdef DEBUG1
506 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
507 	    tmp1, tmp2, bufp->ovfl->addr);
508 #endif
509 	ndx = sp[0];
510 	/*
511 	 * Since a pair is allocated on a page only if there's room to add
512 	 * an overflow page, we know that the OVFL information will fit on
513 	 * the page.
514 	 */
515 	sp[ndx + 4] = OFFSET(sp);
516 	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
517 	sp[ndx + 1] = ovfl_num;
518 	sp[ndx + 2] = OVFLPAGE;
519 	sp[0] = ndx + 2;
520 #ifdef HASH_STATISTICS
521 	hash_overflows++;
522 #endif
523 	return (bufp->ovfl);
524 }
525 
526 /*
527  * Returns:
528  *	 0 indicates SUCCESS
529  *	-1 indicates FAILURE
530  */
531 extern int
532 __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
533 	HTAB *hashp;
534 	char *p;
535 	u_int32_t bucket;
536 	int is_bucket, is_disk, is_bitmap;
537 {
538 	register int fd, page, size;
539 	int rsize;
540 	u_int16_t *bp;
541 
542 	fd = hashp->fp;
543 	size = hashp->BSIZE;
544 
545 	if ((fd == -1) || !is_disk) {
546 		PAGE_INIT(p);
547 		return (0);
548 	}
549 	if (is_bucket)
550 		page = BUCKET_TO_PAGE(bucket);
551 	else
552 		page = OADDR_TO_PAGE(bucket);
553 	if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
554 		return (-1);
555 	bp = (u_int16_t *)(void *)p;
556 	if (!rsize)
557 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
558 	else
559 		if (rsize != size) {
560 			errno = EFTYPE;
561 			return (-1);
562 		}
563 	if (!is_bitmap && !bp[0]) {
564 		PAGE_INIT(p);
565 	} else
566 		if (hashp->LORDER != BYTE_ORDER) {
567 			register int i, max;
568 
569 			if (is_bitmap) {
570 				max = (u_int32_t)hashp->BSIZE >> 2; /* divide by 4 */
571 				for (i = 0; i < max; i++)
572 					M_32_SWAP(((int *)(void *)p)[i]);
573 			} else {
574 				M_16_SWAP(bp[0]);
575 				max = bp[0] + 2;
576 				for (i = 1; i <= max; i++)
577 					M_16_SWAP(bp[i]);
578 			}
579 		}
580 	return (0);
581 }
582 
583 /*
584  * Write page p to disk
585  *
586  * Returns:
587  *	 0 ==> OK
588  *	-1 ==>failure
589  */
590 extern int
591 __put_page(hashp, p, bucket, is_bucket, is_bitmap)
592 	HTAB *hashp;
593 	char *p;
594 	u_int32_t bucket;
595 	int is_bucket, is_bitmap;
596 {
597 	register int fd, page, size;
598 	int wsize;
599 
600 	size = hashp->BSIZE;
601 	if ((hashp->fp == -1) && open_temp(hashp))
602 		return (-1);
603 	fd = hashp->fp;
604 
605 	if (hashp->LORDER != BYTE_ORDER) {
606 		register int i;
607 		register int max;
608 
609 		if (is_bitmap) {
610 			max = (u_int32_t)hashp->BSIZE >> 2;	/* divide by 4 */
611 			for (i = 0; i < max; i++)
612 				M_32_SWAP(((int *)(void *)p)[i]);
613 		} else {
614 			max = ((u_int16_t *)(void *)p)[0] + 2;
615 			for (i = 0; i <= max; i++)
616 				M_16_SWAP(((u_int16_t *)(void *)p)[i]);
617 		}
618 	}
619 	if (is_bucket)
620 		page = BUCKET_TO_PAGE(bucket);
621 	else
622 		page = OADDR_TO_PAGE(bucket);
623 	if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
624 		/* Errno is set */
625 		return (-1);
626 	if (wsize != size) {
627 		errno = EFTYPE;
628 		return (-1);
629 	}
630 	return (0);
631 }
632 
633 #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
634 /*
635  * Initialize a new bitmap page.  Bitmap pages are left in memory
636  * once they are read in.
637  */
638 extern int
639 __ibitmap(hashp, pnum, nbits, ndx)
640 	HTAB *hashp;
641 	int pnum, nbits, ndx;
642 {
643 	u_int32_t *ip;
644 	int clearbytes, clearints;
645 
646 	if ((ip = (u_int32_t *)malloc((size_t)hashp->BSIZE)) == NULL)
647 		return (1);
648 	hashp->nmaps++;
649 	clearints = ((u_int32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1;
650 	clearbytes = clearints << INT_TO_BYTE;
651 	(void)memset(ip, 0, (size_t)clearbytes);
652 	(void)memset(((char *)(void *)ip) + clearbytes, 0xFF,
653 	    (size_t)(hashp->BSIZE - clearbytes));
654 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
655 	SETBIT(ip, 0);
656 	hashp->BITMAPS[ndx] = (u_int16_t)pnum;
657 	hashp->mapp[ndx] = ip;
658 	return (0);
659 }
660 
661 static u_int32_t
662 first_free(map)
663 	u_int32_t map;
664 {
665 	register u_int32_t i, mask;
666 
667 	mask = 0x1;
668 	for (i = 0; i < BITS_PER_MAP; i++) {
669 		if (!(mask & map))
670 			return (i);
671 		mask = mask << 1;
672 	}
673 	return (i);
674 }
675 
676 static u_int16_t
677 overflow_page(hashp)
678 	HTAB *hashp;
679 {
680 	register u_int32_t *freep = NULL;
681 	register int max_free, offset, splitnum;
682 	u_int16_t addr;
683 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
684 #ifdef DEBUG2
685 	int tmp1, tmp2;
686 #endif
687 	splitnum = hashp->OVFL_POINT;
688 	max_free = hashp->SPARES[splitnum];
689 
690 	free_page = (u_int32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
691 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
692 
693 	/* Look through all the free maps to find the first free block */
694 	first_page = (u_int32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
695 	for ( i = first_page; i <= free_page; i++ ) {
696 		if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
697 		    !(freep = fetch_bitmap(hashp, i)))
698 			return (0);
699 		if (i == free_page)
700 			in_use_bits = free_bit;
701 		else
702 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
703 
704 		if (i == first_page) {
705 			bit = hashp->LAST_FREED &
706 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
707 			j = bit / BITS_PER_MAP;
708 			bit = bit & ~(BITS_PER_MAP - 1);
709 		} else {
710 			bit = 0;
711 			j = 0;
712 		}
713 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
714 			if (freep[j] != ALL_SET)
715 				goto found;
716 	}
717 
718 	/* No Free Page Found */
719 	hashp->LAST_FREED = hashp->SPARES[splitnum];
720 	hashp->SPARES[splitnum]++;
721 	offset = hashp->SPARES[splitnum] -
722 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
723 
724 #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
725 	if (offset > SPLITMASK) {
726 		if (++splitnum >= NCACHED) {
727 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
728 			errno = EFBIG;
729 			return (0);
730 		}
731 		hashp->OVFL_POINT = splitnum;
732 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
733 		hashp->SPARES[splitnum-1]--;
734 		offset = 1;
735 	}
736 
737 	/* Check if we need to allocate a new bitmap page */
738 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
739 		free_page++;
740 		if (free_page >= NCACHED) {
741 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
742 			errno = EFBIG;
743 			return (0);
744 		}
745 		/*
746 		 * This is tricky.  The 1 indicates that you want the new page
747 		 * allocated with 1 clear bit.  Actually, you are going to
748 		 * allocate 2 pages from this map.  The first is going to be
749 		 * the map page, the second is the overflow page we were
750 		 * looking for.  The init_bitmap routine automatically, sets
751 		 * the first bit of itself to indicate that the bitmap itself
752 		 * is in use.  We would explicitly set the second bit, but
753 		 * don't have to if we tell init_bitmap not to leave it clear
754 		 * in the first place.
755 		 */
756 		if (__ibitmap(hashp,
757 		    (int)OADDR_OF(splitnum, offset), 1, free_page))
758 			return (0);
759 		hashp->SPARES[splitnum]++;
760 #ifdef DEBUG2
761 		free_bit = 2;
762 #endif
763 		offset++;
764 		if (offset > SPLITMASK) {
765 			if (++splitnum >= NCACHED) {
766 				(void)write(STDERR_FILENO, OVMSG,
767 				    sizeof(OVMSG) - 1);
768 				errno = EFBIG;
769 				return (0);
770 			}
771 			hashp->OVFL_POINT = splitnum;
772 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
773 			hashp->SPARES[splitnum-1]--;
774 			offset = 0;
775 		}
776 	} else {
777 		/*
778 		 * Free_bit addresses the last used bit.  Bump it to address
779 		 * the first available bit.
780 		 */
781 		free_bit++;
782 		SETBIT(freep, free_bit);
783 	}
784 
785 	/* Calculate address of the new overflow page */
786 	addr = OADDR_OF(splitnum, offset);
787 #ifdef DEBUG2
788 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
789 	    addr, free_bit, free_page);
790 #endif
791 	return (addr);
792 
793 found:
794 	bit = bit + first_free(freep[j]);
795 	SETBIT(freep, bit);
796 #ifdef DEBUG2
797 	tmp1 = bit;
798 	tmp2 = i;
799 #endif
800 	/*
801 	 * Bits are addressed starting with 0, but overflow pages are addressed
802 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
803 	 * it to convert it to a page number.
804 	 */
805 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
806 	if (bit >= hashp->LAST_FREED)
807 		hashp->LAST_FREED = bit - 1;
808 
809 	/* Calculate the split number for this page */
810 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
811 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
812 	if (offset >= SPLITMASK) {
813 		(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
814 		errno = EFBIG;
815 		return (0);	/* Out of overflow pages */
816 	}
817 	addr = OADDR_OF(i, offset);
818 #ifdef DEBUG2
819 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
820 	    addr, tmp1, tmp2);
821 #endif
822 
823 	/* Allocate and return the overflow page */
824 	return (addr);
825 }
826 
827 /*
828  * Mark this overflow page as free.
829  */
830 extern void
831 __free_ovflpage(hashp, obufp)
832 	HTAB *hashp;
833 	BUFHEAD *obufp;
834 {
835 	register u_int16_t addr;
836 	u_int32_t *freep;
837 	int bit_address, free_page, free_bit;
838 	u_int16_t ndx;
839 
840 	addr = obufp->addr;
841 #ifdef DEBUG1
842 	(void)fprintf(stderr, "Freeing %d\n", addr);
843 #endif
844 	ndx = (((u_int32_t)addr) >> SPLITSHIFT);
845 	bit_address =
846 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
847 	 if (bit_address < hashp->LAST_FREED)
848 		hashp->LAST_FREED = bit_address;
849 	free_page = ((u_int32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
850 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
851 
852 	if (!(freep = hashp->mapp[free_page]))
853 		freep = fetch_bitmap(hashp, free_page);
854 #ifdef DEBUG
855 	/*
856 	 * This had better never happen.  It means we tried to read a bitmap
857 	 * that has already had overflow pages allocated off it, and we
858 	 * failed to read it from the file.
859 	 */
860 	if (!freep)
861 		assert(0);
862 #endif
863 	CLRBIT(freep, free_bit);
864 #ifdef DEBUG2
865 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
866 	    obufp->addr, free_bit, free_page);
867 #endif
868 	__reclaim_buf(hashp, obufp);
869 }
870 
871 /*
872  * Returns:
873  *	 0 success
874  *	-1 failure
875  */
876 static int
877 open_temp(hashp)
878 	HTAB *hashp;
879 {
880 	sigset_t set, oset;
881 	char namestr[] = "_hashXXXXXX";
882 
883 	/* Block signals; make sure file goes away at process exit. */
884 	(void)sigfillset(&set);
885 	(void)sigprocmask(SIG_BLOCK, &set, &oset);
886 	if ((hashp->fp = mkstemp(namestr)) != -1) {
887 		(void)unlink(namestr);
888 		(void)fcntl(hashp->fp, F_SETFD, 1);
889 	}
890 	(void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
891 	return (hashp->fp != -1 ? 0 : -1);
892 }
893 
894 /*
895  * We have to know that the key will fit, but the last entry on the page is
896  * an overflow pair, so we need to shift things.
897  */
898 static void
899 squeeze_key(sp, key, val)
900 	u_int16_t *sp;
901 	const DBT *key, *val;
902 {
903 	register char *p;
904 	u_int16_t free_space, n, off, pageno;
905 
906 	p = (char *)(void *)sp;
907 	n = sp[0];
908 	free_space = FREESPACE(sp);
909 	off = OFFSET(sp);
910 
911 	pageno = sp[n - 1];
912 	off -= key->size;
913 	sp[n - 1] = off;
914 	memmove(p + off, key->data, key->size);
915 	off -= val->size;
916 	sp[n] = off;
917 	memmove(p + off, val->data, val->size);
918 	sp[0] = n + 2;
919 	sp[n + 1] = pageno;
920 	sp[n + 2] = OVFLPAGE;
921 	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
922 	OFFSET(sp) = off;
923 }
924 
925 static u_int32_t *
926 fetch_bitmap(hashp, ndx)
927 	HTAB *hashp;
928 	int ndx;
929 {
930 	if (ndx >= hashp->nmaps)
931 		return (NULL);
932 	if ((hashp->mapp[ndx] = (u_int32_t *)malloc((size_t)hashp->BSIZE)) == NULL)
933 		return (NULL);
934 	if (__get_page(hashp,
935 	    (char *)(void *)hashp->mapp[ndx], (u_int32_t)hashp->BITMAPS[ndx], 0, 1, 1)) {
936 		free(hashp->mapp[ndx]);
937 		return (NULL);
938 	}
939 	return (hashp->mapp[ndx]);
940 }
941 
942 #ifdef DEBUG4
943 int
944 print_chain(addr)
945 	int addr;
946 {
947 	BUFHEAD *bufp;
948 	short *bp, oaddr;
949 
950 	(void)fprintf(stderr, "%d ", addr);
951 	bufp = __get_buf(hashp, addr, NULL, 0);
952 	bp = (short *)bufp->page;
953 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
954 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
955 		oaddr = bp[bp[0] - 1];
956 		(void)fprintf(stderr, "%d ", (int)oaddr);
957 		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
958 		bp = (short *)bufp->page;
959 	}
960 	(void)fprintf(stderr, "\n");
961 }
962 #endif
963