xref: /netbsd-src/lib/libc/db/hash/hash_bigkey.c (revision 274254cdae52594c1aa480a736aef78313d15c9c)
1 /*	$NetBSD: hash_bigkey.c,v 1.23 2009/02/12 06:33:13 lukem Exp $	*/
2 
3 /*-
4  * Copyright (c) 1990, 1993, 1994
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Margo Seltzer.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #if HAVE_NBTOOL_CONFIG_H
36 #include "nbtool_config.h"
37 #endif
38 
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: hash_bigkey.c,v 1.23 2009/02/12 06:33:13 lukem Exp $");
41 
42 /*
43  * PACKAGE: hash
44  * DESCRIPTION:
45  *	Big key/data handling for the hashing package.
46  *
47  * ROUTINES:
48  * External
49  *	__big_keydata
50  *	__big_split
51  *	__big_insert
52  *	__big_return
53  *	__big_delete
54  *	__find_last_page
55  * Internal
56  *	collect_key
57  *	collect_data
58  */
59 
60 #include <sys/param.h>
61 
62 #include <errno.h>
63 #include <stdio.h>
64 #include <stdlib.h>
65 #include <string.h>
66 #include <assert.h>
67 
68 #include <db.h>
69 #include "hash.h"
70 #include "page.h"
71 #include "extern.h"
72 
73 static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int);
74 static int collect_data(HTAB *, BUFHEAD *, int, int);
75 
76 /*
77  * Big_insert
78  *
79  * You need to do an insert and the key/data pair is too big
80  *
81  * Returns:
82  * 0 ==> OK
83  *-1 ==> ERROR
84  */
85 int
86 __big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
87 {
88 	uint16_t *p, n;
89 	size_t key_size, val_size;
90 	uint16_t space, move_bytes, off;
91 	char *cp, *key_data, *val_data;
92 	size_t temp;
93 
94 	cp = bufp->page;		/* Character pointer of p. */
95 	p = (uint16_t *)(void *)cp;
96 
97 	key_data = (char *)key->data;
98 	_DBFIT(key->size, int);
99 	key_size = key->size;
100 	val_data = (char *)val->data;
101 	_DBFIT(val->size, int);
102 	val_size = val->size;
103 
104 	/* First move the Key */
105 
106 	temp = FREESPACE(p) - BIGOVERHEAD;
107 	_DBFIT(temp, uint16_t);
108 	space = (uint16_t)temp;
109 	while (key_size) {
110 		move_bytes = MIN(space, key_size);
111 		off = OFFSET(p) - move_bytes;
112 		memmove(cp + off, key_data, (size_t)move_bytes);
113 		key_size -= move_bytes;
114 		key_data += move_bytes;
115 		n = p[0];
116 		p[++n] = off;
117 		p[0] = ++n;
118 		temp = off - PAGE_META(n);
119 		_DBFIT(temp, uint16_t);
120 		FREESPACE(p) = (uint16_t)temp;
121 		OFFSET(p) = off;
122 		p[n] = PARTIAL_KEY;
123 		bufp = __add_ovflpage(hashp, bufp);
124 		if (!bufp)
125 			return (-1);
126 		n = p[0];
127 		if (!key_size) {
128 			space = FREESPACE(p);
129 			if (space) {
130 				move_bytes = MIN(space, val_size);
131 				/*
132 				 * If the data would fit exactly in the
133 				 * remaining space, we must overflow it to the
134 				 * next page; otherwise the invariant that the
135 				 * data must end on a page with FREESPACE
136 				 * non-zero would fail.
137 				 */
138 				if (space == val_size && val_size == val->size)
139 					goto toolarge;
140 				off = OFFSET(p) - move_bytes;
141 				memmove(cp + off, val_data, (size_t)move_bytes);
142 				val_data += move_bytes;
143 				val_size -= move_bytes;
144 				p[n] = off;
145 				p[n - 2] = FULL_KEY_DATA;
146 				FREESPACE(p) = FREESPACE(p) - move_bytes;
147 				OFFSET(p) = off;
148 			} else {
149 			toolarge:
150 				p[n - 2] = FULL_KEY;
151 			}
152 		}
153 		p = (uint16_t *)(void *)bufp->page;
154 		cp = bufp->page;
155 		bufp->flags |= BUF_MOD;
156 		temp = FREESPACE(p) - BIGOVERHEAD;
157 		_DBFIT(temp, uint16_t);
158 		space = (uint16_t)temp;
159 	}
160 
161 	/* Now move the data */
162 	temp = FREESPACE(p) - BIGOVERHEAD;
163 	_DBFIT(temp, uint16_t);
164 	space = (uint16_t)temp;
165 	while (val_size) {
166 		move_bytes = MIN(space, val_size);
167 		/*
168 		 * Here's the hack to make sure that if the data ends on the
169 		 * same page as the key ends, FREESPACE is at least one.
170 		 */
171 		if (space == val_size && val_size == val->size)
172 			move_bytes--;
173 		off = OFFSET(p) - move_bytes;
174 		memmove(cp + off, val_data, (size_t)move_bytes);
175 		val_size -= move_bytes;
176 		val_data += move_bytes;
177 		n = p[0];
178 		p[++n] = off;
179 		p[0] = ++n;
180 		temp = off - PAGE_META(n);
181 		_DBFIT(temp, uint16_t);
182 		FREESPACE(p) = (uint16_t)temp;
183 		OFFSET(p) = off;
184 		if (val_size) {
185 			p[n] = FULL_KEY;
186 			bufp = __add_ovflpage(hashp, bufp);
187 			if (!bufp)
188 				return (-1);
189 			cp = bufp->page;
190 			p = (uint16_t *)(void *)cp;
191 		} else
192 			p[n] = FULL_KEY_DATA;
193 		bufp->flags |= BUF_MOD;
194 		temp = FREESPACE(p) - BIGOVERHEAD;
195 		_DBFIT(temp, uint16_t);
196 		space = (uint16_t)temp;
197 	}
198 	return (0);
199 }
200 
201 /*
202  * Called when bufp's page  contains a partial key (index should be 1)
203  *
204  * All pages in the big key/data pair except bufp are freed.  We cannot
205  * free bufp because the page pointing to it is lost and we can't get rid
206  * of its pointer.
207  *
208  * Returns:
209  * 0 => OK
210  *-1 => ERROR
211  */
212 int
213 __big_delete(HTAB *hashp, BUFHEAD *bufp)
214 {
215 	BUFHEAD *last_bfp, *rbufp;
216 	uint16_t *bp, pageno;
217 	int key_done, n;
218 	size_t temp;
219 
220 	rbufp = bufp;
221 	last_bfp = NULL;
222 	bp = (uint16_t *)(void *)bufp->page;
223 	pageno = 0;
224 	key_done = 0;
225 
226 	while (!key_done || (bp[2] != FULL_KEY_DATA)) {
227 		if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
228 			key_done = 1;
229 
230 		/*
231 		 * If there is freespace left on a FULL_KEY_DATA page, then
232 		 * the data is short and fits entirely on this page, and this
233 		 * is the last page.
234 		 */
235 		if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
236 			break;
237 		pageno = bp[bp[0] - 1];
238 		rbufp->flags |= BUF_MOD;
239 		rbufp = __get_buf(hashp, (uint32_t)pageno, rbufp, 0);
240 		if (last_bfp)
241 			__free_ovflpage(hashp, last_bfp);
242 		last_bfp = rbufp;
243 		if (!rbufp)
244 			return (-1);		/* Error. */
245 		bp = (uint16_t *)(void *)rbufp->page;
246 	}
247 
248 	/*
249 	 * If we get here then rbufp points to the last page of the big
250 	 * key/data pair.  Bufp points to the first one -- it should now be
251 	 * empty pointing to the next page after this pair.  Can't free it
252 	 * because we don't have the page pointing to it.
253 	 */
254 
255 	/* This is information from the last page of the pair. */
256 	n = bp[0];
257 	pageno = bp[n - 1];
258 
259 	/* Now, bp is the first page of the pair. */
260 	bp = (uint16_t *)(void *)bufp->page;
261 	if (n > 2) {
262 		/* There is an overflow page. */
263 		bp[1] = pageno;
264 		bp[2] = OVFLPAGE;
265 		bufp->ovfl = rbufp->ovfl;
266 	} else
267 		/* This is the last page. */
268 		bufp->ovfl = NULL;
269 	n -= 2;
270 	bp[0] = n;
271 	temp = hashp->BSIZE - PAGE_META(n);
272 	_DBFIT(temp, uint16_t);
273 	FREESPACE(bp) = (uint16_t)temp;
274 	OFFSET(bp) = hashp->BSIZE;
275 
276 	bufp->flags |= BUF_MOD;
277 	if (rbufp)
278 		__free_ovflpage(hashp, rbufp);
279 	if (last_bfp && last_bfp != rbufp)
280 		__free_ovflpage(hashp, last_bfp);
281 
282 	hashp->NKEYS--;
283 	return (0);
284 }
285 /*
286  * Returns:
287  *  0 = key not found
288  * -1 = get next overflow page
289  * -2 means key not found and this is big key/data
290  * -3 error
291  */
292 int
293 __find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size)
294 {
295 	uint16_t *bp;
296 	char *p;
297 	int ksize;
298 	uint16_t bytes;
299 	char *kkey;
300 
301 	bp = (uint16_t *)(void *)bufp->page;
302 	p = bufp->page;
303 	ksize = size;
304 	kkey = key;
305 
306 	for (bytes = hashp->BSIZE - bp[ndx];
307 	    bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
308 	    bytes = hashp->BSIZE - bp[ndx]) {
309 		if (memcmp(p + bp[ndx], kkey, (size_t)bytes))
310 			return (-2);
311 		kkey += bytes;
312 		ksize -= bytes;
313 		bufp = __get_buf(hashp, (uint32_t)bp[ndx + 2], bufp, 0);
314 		if (!bufp)
315 			return (-3);
316 		p = bufp->page;
317 		bp = (uint16_t *)(void *)p;
318 		ndx = 1;
319 	}
320 
321 	if (bytes != ksize || memcmp(p + bp[ndx], kkey, (size_t)bytes)) {
322 #ifdef HASH_STATISTICS
323 		++hash_collisions;
324 #endif
325 		return (-2);
326 	} else
327 		return (ndx);
328 }
329 
330 /*
331  * Given the buffer pointer of the first overflow page of a big pair,
332  * find the end of the big pair
333  *
334  * This will set bpp to the buffer header of the last page of the big pair.
335  * It will return the pageno of the overflow page following the last page
336  * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
337  * bucket)
338  */
339 uint16_t
340 __find_last_page(HTAB *hashp, BUFHEAD **bpp)
341 {
342 	BUFHEAD *bufp;
343 	uint16_t *bp, pageno;
344 	int n;
345 
346 	bufp = *bpp;
347 	bp = (uint16_t *)(void *)bufp->page;
348 	for (;;) {
349 		n = bp[0];
350 
351 		/*
352 		 * This is the last page if: the tag is FULL_KEY_DATA and
353 		 * either only 2 entries OVFLPAGE marker is explicit there
354 		 * is freespace on the page.
355 		 */
356 		if (bp[2] == FULL_KEY_DATA &&
357 		    ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
358 			break;
359 
360 		pageno = bp[n - 1];
361 		bufp = __get_buf(hashp, (uint32_t)pageno, bufp, 0);
362 		if (!bufp)
363 			return (0);	/* Need to indicate an error! */
364 		bp = (uint16_t *)(void *)bufp->page;
365 	}
366 
367 	*bpp = bufp;
368 	if (bp[0] > 2)
369 		return (bp[3]);
370 	else
371 		return (0);
372 }
373 
374 /*
375  * Return the data for the key/data pair that begins on this page at this
376  * index (index should always be 1).
377  */
378 int
379 __big_return(HTAB *hashp, BUFHEAD *bufp, int ndx, DBT *val, int set_current)
380 {
381 	BUFHEAD *save_p;
382 	uint16_t *bp, len, off, save_addr;
383 	char *tp;
384 
385 	bp = (uint16_t *)(void *)bufp->page;
386 	while (bp[ndx + 1] == PARTIAL_KEY) {
387 		bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
388 		if (!bufp)
389 			return (-1);
390 		bp = (uint16_t *)(void *)bufp->page;
391 		ndx = 1;
392 	}
393 
394 	if (bp[ndx + 1] == FULL_KEY) {
395 		bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
396 		if (!bufp)
397 			return (-1);
398 		bp = (uint16_t *)(void *)bufp->page;
399 		save_p = bufp;
400 		save_addr = save_p->addr;
401 		off = bp[1];
402 		len = 0;
403 	} else
404 		if (!FREESPACE(bp)) {
405 			/*
406 			 * This is a hack.  We can't distinguish between
407 			 * FULL_KEY_DATA that contains complete data or
408 			 * incomplete data, so we require that if the data
409 			 * is complete, there is at least 1 byte of free
410 			 * space left.
411 			 */
412 			off = bp[bp[0]];
413 			len = bp[1] - off;
414 			save_p = bufp;
415 			save_addr = bufp->addr;
416 			bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
417 			    0);
418 			if (!bufp)
419 				return (-1);
420 			bp = (uint16_t *)(void *)bufp->page;
421 		} else {
422 			/* The data is all on one page. */
423 			tp = (char *)(void *)bp;
424 			off = bp[bp[0]];
425 			val->data = (uint8_t *)tp + off;
426 			val->size = bp[1] - off;
427 			if (set_current) {
428 				if (bp[0] == 2) {	/* No more buckets in
429 							 * chain */
430 					hashp->cpage = NULL;
431 					hashp->cbucket++;
432 					hashp->cndx = 1;
433 				} else {
434 					hashp->cpage = __get_buf(hashp,
435 					    (uint32_t)bp[bp[0] - 1], bufp, 0);
436 					if (!hashp->cpage)
437 						return (-1);
438 					hashp->cndx = 1;
439 					if (!((uint16_t *)(void *)
440 					    hashp->cpage->page)[0]) {
441 						hashp->cbucket++;
442 						hashp->cpage = NULL;
443 					}
444 				}
445 			}
446 			return (0);
447 		}
448 
449 	val->size = collect_data(hashp, bufp, (int)len, set_current);
450 	if (val->size == (size_t)-1)
451 		return (-1);
452 	if (save_p->addr != save_addr) {
453 		/* We are pretty short on buffers. */
454 		errno = EINVAL;			/* OUT OF BUFFERS */
455 		return (-1);
456 	}
457 	memmove(hashp->tmp_buf, (save_p->page) + off, (size_t)len);
458 	val->data = (uint8_t *)hashp->tmp_buf;
459 	return (0);
460 }
461 /*
462  * Count how big the total datasize is by recursing through the pages.  Then
463  * allocate a buffer and copy the data as you recurse up.
464  */
465 static int
466 collect_data(HTAB *hashp, BUFHEAD *bufp, int len, int set)
467 {
468 	uint16_t *bp;
469 	char *p;
470 	BUFHEAD *xbp;
471 	uint16_t save_addr;
472 	int mylen, totlen;
473 
474 	p = bufp->page;
475 	bp = (uint16_t *)(void *)p;
476 	mylen = hashp->BSIZE - bp[1];
477 	save_addr = bufp->addr;
478 
479 	if (bp[2] == FULL_KEY_DATA) {		/* End of Data */
480 		totlen = len + mylen;
481 		if (hashp->tmp_buf)
482 			free(hashp->tmp_buf);
483 		if ((hashp->tmp_buf = calloc(1, (size_t)totlen)) == NULL)
484 			return (-1);
485 		if (set) {
486 			hashp->cndx = 1;
487 			if (bp[0] == 2) {	/* No more buckets in chain */
488 				hashp->cpage = NULL;
489 				hashp->cbucket++;
490 			} else {
491 				hashp->cpage =
492 				    __get_buf(hashp, (uint32_t)bp[bp[0] - 1],
493 				    bufp, 0);
494 				if (!hashp->cpage)
495 					return (-1);
496 				else if (!((uint16_t *)(void *)hashp->cpage->page)[0]) {
497 					hashp->cbucket++;
498 					hashp->cpage = NULL;
499 				}
500 			}
501 		}
502 	} else {
503 		xbp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
504 		if (!xbp || ((totlen =
505 		    collect_data(hashp, xbp, len + mylen, set)) < 1))
506 			return (-1);
507 	}
508 	if (bufp->addr != save_addr) {
509 		errno = EINVAL;			/* Out of buffers. */
510 		return (-1);
511 	}
512 	memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], (size_t)mylen);
513 	return (totlen);
514 }
515 
516 /*
517  * Fill in the key and data for this big pair.
518  */
519 int
520 __big_keydata(HTAB *hashp, BUFHEAD *bufp, DBT *key, DBT *val, int set)
521 {
522 	key->size = collect_key(hashp, bufp, 0, val, set);
523 	if (key->size == (size_t)-1)
524 		return (-1);
525 	key->data = (uint8_t *)hashp->tmp_key;
526 	return (0);
527 }
528 
529 /*
530  * Count how big the total key size is by recursing through the pages.  Then
531  * collect the data, allocate a buffer and copy the key as you recurse up.
532  */
533 static int
534 collect_key(HTAB *hashp, BUFHEAD *bufp, int len, DBT *val, int set)
535 {
536 	BUFHEAD *xbp;
537 	char *p;
538 	int mylen, totlen;
539 	uint16_t *bp, save_addr;
540 
541 	p = bufp->page;
542 	bp = (uint16_t *)(void *)p;
543 	mylen = hashp->BSIZE - bp[1];
544 
545 	save_addr = bufp->addr;
546 	totlen = len + mylen;
547 	if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) {    /* End of Key. */
548 		if (hashp->tmp_key != NULL)
549 			free(hashp->tmp_key);
550 		if ((hashp->tmp_key = calloc(1, (size_t)totlen)) == NULL)
551 			return (-1);
552 		if (__big_return(hashp, bufp, 1, val, set))
553 			return (-1);
554 	} else {
555 		xbp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
556 		if (!xbp || ((totlen =
557 		    collect_key(hashp, xbp, totlen, val, set)) < 1))
558 			return (-1);
559 	}
560 	if (bufp->addr != save_addr) {
561 		errno = EINVAL;		/* MIS -- OUT OF BUFFERS */
562 		return (-1);
563 	}
564 	memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], (size_t)mylen);
565 	return (totlen);
566 }
567 
568 /*
569  * Returns:
570  *  0 => OK
571  * -1 => error
572  */
573 int
574 __big_split(
575 	HTAB *hashp,
576 	BUFHEAD *op,	/* Pointer to where to put keys that go in old bucket */
577 	BUFHEAD *np,	/* Pointer to new bucket page */
578 			/* Pointer to first page containing the big key/data */
579 	BUFHEAD *big_keyp,
580 	int addr,	/* Address of big_keyp */
581 	uint32_t   obucket,/* Old Bucket */
582 	SPLIT_RETURN *ret
583 )
584 {
585 	BUFHEAD *tmpp;
586 	uint16_t *tp;
587 	BUFHEAD *bp;
588 	DBT key, val;
589 	uint32_t change;
590 	uint16_t free_space, n, off;
591 	size_t temp;
592 
593 	bp = big_keyp;
594 
595 	/* Now figure out where the big key/data goes */
596 	if (__big_keydata(hashp, big_keyp, &key, &val, 0))
597 		return (-1);
598 	change = (__call_hash(hashp, key.data, (int)key.size) != obucket);
599 
600 	if ((ret->next_addr = __find_last_page(hashp, &big_keyp)) != 0) {
601 		if (!(ret->nextp =
602 		    __get_buf(hashp, (uint32_t)ret->next_addr, big_keyp, 0)))
603 			return (-1);
604 	} else
605 		ret->nextp = NULL;
606 
607 	/* Now make one of np/op point to the big key/data pair */
608 	_DIAGASSERT(np->ovfl == NULL);
609 	if (change)
610 		tmpp = np;
611 	else
612 		tmpp = op;
613 
614 	tmpp->flags |= BUF_MOD;
615 #ifdef DEBUG1
616 	(void)fprintf(stderr,
617 	    "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
618 	    (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
619 #endif
620 	tmpp->ovfl = bp;	/* one of op/np point to big_keyp */
621 	tp = (uint16_t *)(void *)tmpp->page;
622 	_DIAGASSERT(FREESPACE(tp) >= OVFLSIZE);
623 	n = tp[0];
624 	off = OFFSET(tp);
625 	free_space = FREESPACE(tp);
626 	tp[++n] = (uint16_t)addr;
627 	tp[++n] = OVFLPAGE;
628 	tp[0] = n;
629 	OFFSET(tp) = off;
630 	temp = free_space - OVFLSIZE;
631 	_DBFIT(temp, uint16_t);
632 	FREESPACE(tp) = (uint16_t)temp;
633 
634 	/*
635 	 * Finally, set the new and old return values. BIG_KEYP contains a
636 	 * pointer to the last page of the big key_data pair. Make sure that
637 	 * big_keyp has no following page (2 elements) or create an empty
638 	 * following page.
639 	 */
640 
641 	ret->newp = np;
642 	ret->oldp = op;
643 
644 	tp = (uint16_t *)(void *)big_keyp->page;
645 	big_keyp->flags |= BUF_MOD;
646 	if (tp[0] > 2) {
647 		/*
648 		 * There may be either one or two offsets on this page.  If
649 		 * there is one, then the overflow page is linked on normally
650 		 * and tp[4] is OVFLPAGE.  If there are two, tp[4] contains
651 		 * the second offset and needs to get stuffed in after the
652 		 * next overflow page is added.
653 		 */
654 		n = tp[4];
655 		free_space = FREESPACE(tp);
656 		off = OFFSET(tp);
657 		tp[0] -= 2;
658 		temp = free_space + OVFLSIZE;
659 		_DBFIT(temp, uint16_t);
660 		FREESPACE(tp) = (uint16_t)temp;
661 		OFFSET(tp) = off;
662 		tmpp = __add_ovflpage(hashp, big_keyp);
663 		if (!tmpp)
664 			return (-1);
665 		tp[4] = n;
666 	} else
667 		tmpp = big_keyp;
668 
669 	if (change)
670 		ret->newp = tmpp;
671 	else
672 		ret->oldp = tmpp;
673 	return (0);
674 }
675