xref: /netbsd-src/lib/libc/db/btree/btree.h (revision ce0bb6e8d2e560ecacbe865a848624f94498063b)
1 /*	$NetBSD: btree.h,v 1.8 1995/02/27 13:21:08 cgd Exp $	*/
2 
3 /*-
4  * Copyright (c) 1991, 1993, 1994
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Mike Olson.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)btree.h	8.6 (Berkeley) 5/31/94
39  */
40 
41 #include <mpool.h>
42 
43 #define	DEFMINKEYPAGE	(2)		/* Minimum keys per page */
44 #define	MINCACHE	(5)		/* Minimum cached pages */
45 #define	MINPSIZE	(512)		/* Minimum page size */
46 
47 /*
48  * Page 0 of a btree file contains a copy of the meta-data.  This page is also
49  * used as an out-of-band page, i.e. page pointers that point to nowhere point
50  * to page 0.  Page 1 is the root of the btree.
51  */
52 #define	P_INVALID	 0		/* Invalid tree page number. */
53 #define	P_META		 0		/* Tree metadata page number. */
54 #define	P_ROOT		 1		/* Tree root page number. */
55 
56 /*
57  * There are five page layouts in the btree: btree internal pages (BINTERNAL),
58  * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
59  * (RLEAF) and overflow pages.  All five page types have a page header (PAGE).
60  * This implementation requires that values within structures NOT be padded.
61  * (ANSI C permits random padding.)  If your compiler pads randomly you'll have
62  * to do some work to get this package to run.
63  */
64 typedef struct _page {
65 	pgno_t	pgno;			/* this page's page number */
66 	pgno_t	prevpg;			/* left sibling */
67 	pgno_t	nextpg;			/* right sibling */
68 
69 #define	P_BINTERNAL	0x01		/* btree internal page */
70 #define	P_BLEAF		0x02		/* leaf page */
71 #define	P_OVERFLOW	0x04		/* overflow page */
72 #define	P_RINTERNAL	0x08		/* recno internal page */
73 #define	P_RLEAF		0x10		/* leaf page */
74 #define P_TYPE		0x1f		/* type mask */
75 #define	P_PRESERVE	0x20		/* never delete this chain of pages */
76 	u_int32_t flags;
77 
78 	indx_t	lower;			/* lower bound of free space on page */
79 	indx_t	upper;			/* upper bound of free space on page */
80 	indx_t	linp[1];		/* indx_t-aligned VAR. LENGTH DATA */
81 } PAGE;
82 
83 /* First and next index. */
84 #define	BTDATAOFF	(sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) + \
85 			    sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t))
86 #define	NEXTINDEX(p)	(((p)->lower - BTDATAOFF) / sizeof(indx_t))
87 
88 /*
89  * For pages other than overflow pages, there is an array of offsets into the
90  * rest of the page immediately following the page header.  Each offset is to
91  * an item which is unique to the type of page.  The h_lower offset is just
92  * past the last filled-in index.  The h_upper offset is the first item on the
93  * page.  Offsets are from the beginning of the page.
94  *
95  * If an item is too big to store on a single page, a flag is set and the item
96  * is a { page, size } pair such that the page is the first page of an overflow
97  * chain with size bytes of item.  Overflow pages are simply bytes without any
98  * external structure.
99  *
100  * The page number and size fields in the items are pgno_t-aligned so they can
101  * be manipulated without copying.  (This presumes that 32 bit items can be
102  * manipulated on this system.)
103  */
104 #define	LALIGN(n) \
105 	(((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
106 #define	NOVFLSIZE	(sizeof(pgno_t) + sizeof(u_int32_t))
107 
108 /*
109  * For the btree internal pages, the item is a key.  BINTERNALs are {key, pgno}
110  * pairs, such that the key compares less than or equal to all of the records
111  * on that page.  For a tree without duplicate keys, an internal page with two
112  * consecutive keys, a and b, will have all records greater than or equal to a
113  * and less than b stored on the page associated with a.  Duplicate keys are
114  * somewhat special and can cause duplicate internal and leaf page records and
115  * some minor modifications of the above rule.
116  */
117 typedef struct _binternal {
118 	u_int32_t ksize;		/* key size */
119 	pgno_t	pgno;			/* page number stored on */
120 #define	P_BIGDATA	0x01		/* overflow data */
121 #define	P_BIGKEY	0x02		/* overflow key */
122 	u_char	flags;
123 	char	bytes[1];		/* data */
124 } BINTERNAL;
125 
126 /* Get the page's BINTERNAL structure at index indx. */
127 #define	GETBINTERNAL(pg, indx) \
128 	((BINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
129 
130 /* Get the number of bytes in the entry. */
131 #define NBINTERNAL(len) \
132 	LALIGN(sizeof(u_int32_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
133 
134 /* Copy a BINTERNAL entry to the page. */
135 #define	WR_BINTERNAL(p, size, pgno, flags) {				\
136 	*(u_int32_t *)p = size;						\
137 	p += sizeof(u_int32_t);						\
138 	*(pgno_t *)p = pgno;						\
139 	p += sizeof(pgno_t);						\
140 	*(u_char *)p = flags;						\
141 	p += sizeof(u_char);						\
142 }
143 
144 /*
145  * For the recno internal pages, the item is a page number with the number of
146  * keys found on that page and below.
147  */
148 typedef struct _rinternal {
149 	recno_t	nrecs;			/* number of records */
150 	pgno_t	pgno;			/* page number stored below */
151 } RINTERNAL;
152 
153 /* Get the page's RINTERNAL structure at index indx. */
154 #define	GETRINTERNAL(pg, indx) \
155 	((RINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
156 
157 /* Get the number of bytes in the entry. */
158 #define NRINTERNAL \
159 	LALIGN(sizeof(recno_t) + sizeof(pgno_t))
160 
161 /* Copy a RINTERAL entry to the page. */
162 #define	WR_RINTERNAL(p, nrecs, pgno) { \
163 	*(recno_t *)p = nrecs; \
164 	p += sizeof(recno_t); \
165 	*(pgno_t *)p = pgno; \
166 }
167 
168 /* For the btree leaf pages, the item is a key and data pair. */
169 typedef struct _bleaf {
170 	u_int32_t	ksize;		/* size of key */
171 	u_int32_t	dsize;		/* size of data */
172 	u_char	flags;			/* P_BIGDATA, P_BIGKEY */
173 	char	bytes[1];		/* data */
174 } BLEAF;
175 
176 /* Get the page's BLEAF structure at index indx. */
177 #define	GETBLEAF(pg, indx) \
178 	((BLEAF *)((char *)(pg) + (pg)->linp[indx]))
179 
180 /* Get the number of bytes in the entry. */
181 #define NBLEAF(p)	NBLEAFDBT((p)->ksize, (p)->dsize)
182 
183 /* Get the number of bytes in the user's key/data pair. */
184 #define NBLEAFDBT(ksize, dsize) \
185 	LALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) + \
186 	    (ksize) + (dsize))
187 
188 /* Copy a BLEAF entry to the page. */
189 #define	WR_BLEAF(p, key, data, flags) {					\
190 	*(u_int32_t *)p = key->size;					\
191 	p += sizeof(u_int32_t);						\
192 	*(u_int32_t *)p = data->size;					\
193 	p += sizeof(u_int32_t);						\
194 	*(u_char *)p = flags;						\
195 	p += sizeof(u_char);						\
196 	memmove(p, key->data, key->size);				\
197 	p += key->size;							\
198 	memmove(p, data->data, data->size);				\
199 }
200 
201 /* For the recno leaf pages, the item is a data entry. */
202 typedef struct _rleaf {
203 	u_int32_t	dsize;		/* size of data */
204 	u_char	flags;			/* P_BIGDATA */
205 	char	bytes[1];
206 } RLEAF;
207 
208 /* Get the page's RLEAF structure at index indx. */
209 #define	GETRLEAF(pg, indx) \
210 	((RLEAF *)((char *)(pg) + (pg)->linp[indx]))
211 
212 /* Get the number of bytes in the entry. */
213 #define NRLEAF(p)	NRLEAFDBT((p)->dsize)
214 
215 /* Get the number of bytes from the user's data. */
216 #define	NRLEAFDBT(dsize) \
217 	LALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize))
218 
219 /* Copy a RLEAF entry to the page. */
220 #define	WR_RLEAF(p, data, flags) {					\
221 	*(u_int32_t *)p = data->size;					\
222 	p += sizeof(u_int32_t);						\
223 	*(u_char *)p = flags;						\
224 	p += sizeof(u_char);						\
225 	memmove(p, data->data, data->size);				\
226 }
227 
228 /*
229  * A record in the tree is either a pointer to a page and an index in the page
230  * or a page number and an index.  These structures are used as a cursor, stack
231  * entry and search returns as well as to pass records to other routines.
232  *
233  * One comment about searches.  Internal page searches must find the largest
234  * record less than key in the tree so that descents work.  Leaf page searches
235  * must find the smallest record greater than key so that the returned index
236  * is the record's correct position for insertion.
237  *
238  * One comment about cursors.  The cursor key is never removed from the tree,
239  * even if deleted.  This is because it is quite difficult to decide where the
240  * cursor should be when other keys have been inserted/deleted in the tree;
241  * duplicate keys make it impossible.  This scheme does require extra work
242  * though, to make sure that we don't perform an operation on a deleted key.
243  */
244 typedef struct _epgno {
245 	pgno_t	pgno;			/* the page number */
246 	indx_t	index;			/* the index on the page */
247 } EPGNO;
248 
249 typedef struct _epg {
250 	PAGE	*page;			/* the (pinned) page */
251 	indx_t	 index;			/* the index on the page */
252 } EPG;
253 
254 /*
255  * The metadata of the tree.  The m_nrecs field is used only by the RECNO code.
256  * This is because the btree doesn't really need it and it requires that every
257  * put or delete call modify the metadata.
258  */
259 typedef struct _btmeta {
260 	u_int32_t	m_magic;	/* magic number */
261 	u_int32_t	m_version;	/* version */
262 	u_int32_t	m_psize;	/* page size */
263 	u_int32_t	m_free;		/* page number of first free page */
264 	u_int32_t	m_nrecs;	/* R: number of records */
265 #define	SAVEMETA	(B_NODUPS | R_RECNO)
266 	u_int32_t	m_flags;	/* bt_flags & SAVEMETA */
267 	u_int32_t	m_unused;	/* unused */
268 } BTMETA;
269 
270 /* The in-memory btree/recno data structure. */
271 typedef struct _btree {
272 	MPOOL	*bt_mp;			/* memory pool cookie */
273 
274 	DB	*bt_dbp;		/* pointer to enclosing DB */
275 
276 	EPG	bt_cur;			/* current (pinned) page */
277 	PAGE	*bt_pinned;		/* page pinned across calls */
278 
279 	EPGNO	bt_bcursor;		/* B: btree cursor */
280 	recno_t	bt_rcursor;		/* R: recno cursor (1-based) */
281 
282 #define	BT_POP(t)	(t->bt_sp ? t->bt_stack + --t->bt_sp : NULL)
283 #define	BT_CLR(t)	(t->bt_sp = 0)
284 	EPGNO	*bt_stack;		/* stack of parent pages */
285 	u_int	bt_sp;			/* current stack pointer */
286 	u_int	bt_maxstack;		/* largest stack */
287 
288 	char	*bt_kbuf;		/* key buffer */
289 	size_t	bt_kbufsz;		/* key buffer size */
290 	char	*bt_dbuf;		/* data buffer */
291 	size_t	bt_dbufsz;		/* data buffer size */
292 
293 	int	bt_fd;			/* tree file descriptor */
294 
295 	pgno_t	bt_free;		/* next free page */
296 	u_int32_t bt_psize;		/* page size */
297 	indx_t	bt_ovflsize;		/* cut-off for key/data overflow */
298 	int	bt_lorder;		/* byte order */
299 					/* sorted order */
300 	enum { NOT, BACK, FORWARD } bt_order;
301 	EPGNO	bt_last;		/* last insert */
302 
303 					/* B: key comparison function */
304 	int	(*bt_cmp) __P((const DBT *, const DBT *));
305 					/* B: prefix comparison function */
306 	size_t	(*bt_pfx) __P((const DBT *, const DBT *));
307 					/* R: recno input function */
308 	int	(*bt_irec) __P((struct _btree *, recno_t));
309 
310 	FILE	*bt_rfp;		/* R: record FILE pointer */
311 	int	bt_rfd;			/* R: record file descriptor */
312 
313 	caddr_t	bt_cmap;		/* R: current point in mapped space */
314 	caddr_t	bt_smap;		/* R: start of mapped space */
315 	caddr_t bt_emap;		/* R: end of mapped space */
316 	size_t	bt_msize;		/* R: size of mapped region. */
317 
318 	recno_t	bt_nrecs;		/* R: number of records */
319 	size_t	bt_reclen;		/* R: fixed record length */
320 	u_char	bt_bval;		/* R: delimiting byte/pad character */
321 
322 /*
323  * NB:
324  * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
325  */
326 #define	B_DELCRSR	0x00001		/* cursor has been deleted */
327 #define	B_INMEM		0x00002		/* in-memory tree */
328 #define	B_METADIRTY	0x00004		/* need to write metadata */
329 #define	B_MODIFIED	0x00008		/* tree modified */
330 #define	B_NEEDSWAP	0x00010		/* if byte order requires swapping */
331 #define	B_NODUPS	0x00020		/* no duplicate keys permitted */
332 #define	B_RDONLY	0x00040		/* read-only tree */
333 #define	R_RECNO		0x00080		/* record oriented tree */
334 #define	B_SEQINIT	0x00100		/* sequential scan initialized */
335 
336 #define	R_CLOSEFP	0x00200		/* opened a file pointer */
337 #define	R_EOF		0x00400		/* end of input file reached. */
338 #define	R_FIXLEN	0x00800		/* fixed length records */
339 #define	R_MEMMAPPED	0x01000		/* memory mapped file. */
340 #define	R_INMEM		0x02000		/* in-memory file */
341 #define	R_MODIFIED	0x04000		/* modified file */
342 #define	R_RDONLY	0x08000		/* read-only file */
343 
344 #define	B_DB_LOCK	0x10000		/* DB_LOCK specified. */
345 #define	B_DB_SHMEM	0x20000		/* DB_SHMEM specified. */
346 #define	B_DB_TXN	0x40000		/* DB_TXN specified. */
347 
348 	u_int32_t	bt_flags;	/* btree state */
349 } BTREE;
350 
351 #define	SET(t, f)	((t)->bt_flags |= (f))
352 #define	CLR(t, f)	((t)->bt_flags &= ~(f))
353 #define	ISSET(t, f)	((t)->bt_flags & (f))
354 
355 #include "extern.h"
356