xref: /netbsd-src/lib/libc/db/btree/btree.h (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: btree.h,v 1.14 2003/10/27 00:12:42 lukem Exp $	*/
2 
3 /*-
4  * Copyright (c) 1991, 1993, 1994
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Mike Olson.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)btree.h	8.11 (Berkeley) 8/17/94
35  */
36 
37 #if HAVE_NBTOOL_CONFIG_H
38 #include "nbtool_config.h"
39 #endif
40 
41 /* Macros to set/clear/test flags. */
42 #define	F_SET(p, f)	(p)->flags |= (f)
43 #define	F_CLR(p, f)	(p)->flags &= ~(f)
44 #define	F_ISSET(p, f)	((p)->flags & (f))
45 
46 #include <mpool.h>
47 
48 #define	DEFMINKEYPAGE	(2)		/* Minimum keys per page */
49 #define	MINCACHE	(5)		/* Minimum cached pages */
50 #define	MINPSIZE	(512)		/* Minimum page size */
51 
52 /*
53  * Page 0 of a btree file contains a copy of the meta-data.  This page is also
54  * used as an out-of-band page, i.e. page pointers that point to nowhere point
55  * to page 0.  Page 1 is the root of the btree.
56  */
57 #define	P_INVALID	 0		/* Invalid tree page number. */
58 #define	P_META		 0		/* Tree metadata page number. */
59 #define	P_ROOT		 1		/* Tree root page number. */
60 
61 /*
62  * There are five page layouts in the btree: btree internal pages (BINTERNAL),
63  * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
64  * (RLEAF) and overflow pages.  All five page types have a page header (PAGE).
65  * This implementation requires that values within structures NOT be padded.
66  * (ANSI C permits random padding.)  If your compiler pads randomly you'll have
67  * to do some work to get this package to run.
68  */
69 typedef struct _page {
70 	pgno_t	pgno;			/* this page's page number */
71 	pgno_t	prevpg;			/* left sibling */
72 	pgno_t	nextpg;			/* right sibling */
73 
74 #define	P_BINTERNAL	0x01		/* btree internal page */
75 #define	P_BLEAF		0x02		/* leaf page */
76 #define	P_OVERFLOW	0x04		/* overflow page */
77 #define	P_RINTERNAL	0x08		/* recno internal page */
78 #define	P_RLEAF		0x10		/* leaf page */
79 #define P_TYPE		0x1f		/* type mask */
80 #define	P_PRESERVE	0x20		/* never delete this chain of pages */
81 	u_int32_t flags;
82 
83 	indx_t	lower;			/* lower bound of free space on page */
84 	indx_t	upper;			/* upper bound of free space on page */
85 	indx_t	linp[1];		/* indx_t-aligned VAR. LENGTH DATA */
86 } PAGE;
87 
88 /* First and next index. */
89 #define	BTDATAOFF							\
90 	(sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) +		\
91 	    sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t))
92 #define	NEXTINDEX(p)	(((p)->lower - BTDATAOFF) / sizeof(indx_t))
93 
94 /*
95  * For pages other than overflow pages, there is an array of offsets into the
96  * rest of the page immediately following the page header.  Each offset is to
97  * an item which is unique to the type of page.  The h_lower offset is just
98  * past the last filled-in index.  The h_upper offset is the first item on the
99  * page.  Offsets are from the beginning of the page.
100  *
101  * If an item is too big to store on a single page, a flag is set and the item
102  * is a { page, size } pair such that the page is the first page of an overflow
103  * chain with size bytes of item.  Overflow pages are simply bytes without any
104  * external structure.
105  *
106  * The page number and size fields in the items are pgno_t-aligned so they can
107  * be manipulated without copying.  (This presumes that 32 bit items can be
108  * manipulated on this system.)
109  */
110 #define	BTLALIGN(n)	(((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
111 #define	NOVFLSIZE	(sizeof(pgno_t) + sizeof(u_int32_t))
112 
113 /*
114  * For the btree internal pages, the item is a key.  BINTERNALs are {key, pgno}
115  * pairs, such that the key compares less than or equal to all of the records
116  * on that page.  For a tree without duplicate keys, an internal page with two
117  * consecutive keys, a and b, will have all records greater than or equal to a
118  * and less than b stored on the page associated with a.  Duplicate keys are
119  * somewhat special and can cause duplicate internal and leaf page records and
120  * some minor modifications of the above rule.
121  */
122 typedef struct _binternal {
123 	u_int32_t ksize;		/* key size */
124 	pgno_t	pgno;			/* page number stored on */
125 #define	P_BIGDATA	0x01		/* overflow data */
126 #define	P_BIGKEY	0x02		/* overflow key */
127 	u_char	flags;
128 	char	bytes[1];		/* data */
129 } BINTERNAL;
130 
131 /* Get the page's BINTERNAL structure at index indx. */
132 #define	GETBINTERNAL(pg, indx)						\
133 	((BINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
134 
135 /* Get the number of bytes in the entry. */
136 #define NBINTERNAL(len)							\
137 	BTLALIGN(sizeof(u_int32_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
138 
139 /* Copy a BINTERNAL entry to the page. */
140 #define	WR_BINTERNAL(p, size, pgno, flags) {				\
141 	*(u_int32_t *)(void *)p = size;					\
142 	p += sizeof(u_int32_t);						\
143 	*(pgno_t *)(void *)p = pgno;					\
144 	p += sizeof(pgno_t);						\
145 	*(u_char *)(void *)p = flags;					\
146 	p += sizeof(u_char);						\
147 }
148 
149 /*
150  * For the recno internal pages, the item is a page number with the number of
151  * keys found on that page and below.
152  */
153 typedef struct _rinternal {
154 	recno_t	nrecs;			/* number of records */
155 	pgno_t	pgno;			/* page number stored below */
156 } RINTERNAL;
157 
158 /* Get the page's RINTERNAL structure at index indx. */
159 #define	GETRINTERNAL(pg, indx)						\
160 	((RINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
161 
162 /* Get the number of bytes in the entry. */
163 #define NRINTERNAL							\
164 	BTLALIGN(sizeof(recno_t) + sizeof(pgno_t))
165 
166 /* Copy a RINTERAL entry to the page. */
167 #define	WR_RINTERNAL(p, nrecs, pgno) {					\
168 	*(recno_t *)(void *)p = nrecs;					\
169 	p += sizeof(recno_t);						\
170 	*(pgno_t *)(void *)p = pgno;					\
171 }
172 
173 /* For the btree leaf pages, the item is a key and data pair. */
174 typedef struct _bleaf {
175 	u_int32_t	ksize;		/* size of key */
176 	u_int32_t	dsize;		/* size of data */
177 	u_char	flags;			/* P_BIGDATA, P_BIGKEY */
178 	char	bytes[1];		/* data */
179 } BLEAF;
180 
181 /* Get the page's BLEAF structure at index indx. */
182 #define	GETBLEAF(pg, indx)						\
183 	((BLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
184 
185 /* Get the number of bytes in the entry. */
186 #define NBLEAF(p)	NBLEAFDBT((p)->ksize, (p)->dsize)
187 
188 /* Get the number of bytes in the user's key/data pair. */
189 #define NBLEAFDBT(ksize, dsize)						\
190 	BTLALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) +	\
191 	    (ksize) + (dsize))
192 
193 /* Copy a BLEAF entry to the page. */
194 #define	WR_BLEAF(p, key, data, flags) {					\
195 	*(u_int32_t *)(void *)p = key->size;				\
196 	p += sizeof(u_int32_t);						\
197 	*(u_int32_t *)(void *)p = data->size;				\
198 	p += sizeof(u_int32_t);						\
199 	*(u_char *)(void *)p = flags;					\
200 	p += sizeof(u_char);						\
201 	memmove(p, key->data, key->size);				\
202 	p += key->size;							\
203 	memmove(p, data->data, data->size);				\
204 }
205 
206 /* For the recno leaf pages, the item is a data entry. */
207 typedef struct _rleaf {
208 	u_int32_t	dsize;		/* size of data */
209 	u_char	flags;			/* P_BIGDATA */
210 	char	bytes[1];
211 } RLEAF;
212 
213 /* Get the page's RLEAF structure at index indx. */
214 #define	GETRLEAF(pg, indx)						\
215 	((RLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
216 
217 /* Get the number of bytes in the entry. */
218 #define NRLEAF(p)	NRLEAFDBT((p)->dsize)
219 
220 /* Get the number of bytes from the user's data. */
221 #define	NRLEAFDBT(dsize)						\
222 	BTLALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize))
223 
224 /* Copy a RLEAF entry to the page. */
225 #define	WR_RLEAF(p, data, flags) {					\
226 	*(u_int32_t *)(void *)p = data->size;				\
227 	p += sizeof(u_int32_t);						\
228 	*(u_char *)(void *)p = flags;					\
229 	p += sizeof(u_char);						\
230 	memmove(p, data->data, data->size);				\
231 }
232 
233 /*
234  * A record in the tree is either a pointer to a page and an index in the page
235  * or a page number and an index.  These structures are used as a cursor, stack
236  * entry and search returns as well as to pass records to other routines.
237  *
238  * One comment about searches.  Internal page searches must find the largest
239  * record less than key in the tree so that descents work.  Leaf page searches
240  * must find the smallest record greater than key so that the returned index
241  * is the record's correct position for insertion.
242  */
243 typedef struct _epgno {
244 	pgno_t	pgno;			/* the page number */
245 	indx_t	index;			/* the index on the page */
246 } EPGNO;
247 
248 typedef struct _epg {
249 	PAGE	*page;			/* the (pinned) page */
250 	indx_t	 index;			/* the index on the page */
251 } EPG;
252 
253 /*
254  * About cursors.  The cursor (and the page that contained the key/data pair
255  * that it referenced) can be deleted, which makes things a bit tricky.  If
256  * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
257  * or there simply aren't any duplicates of the key) we copy the key that it
258  * referenced when it's deleted, and reacquire a new cursor key if the cursor
259  * is used again.  If there are duplicates keys, we move to the next/previous
260  * key, and set a flag so that we know what happened.  NOTE: if duplicate (to
261  * the cursor) keys are added to the tree during this process, it is undefined
262  * if they will be returned or not in a cursor scan.
263  *
264  * The flags determine the possible states of the cursor:
265  *
266  * CURS_INIT	The cursor references *something*.
267  * CURS_ACQUIRE	The cursor was deleted, and a key has been saved so that
268  *		we can reacquire the right position in the tree.
269  * CURS_AFTER, CURS_BEFORE
270  *		The cursor was deleted, and now references a key/data pair
271  *		that has not yet been returned, either before or after the
272  *		deleted key/data pair.
273  * XXX
274  * This structure is broken out so that we can eventually offer multiple
275  * cursors as part of the DB interface.
276  */
277 typedef struct _cursor {
278 	EPGNO	 pg;			/* B: Saved tree reference. */
279 	DBT	 key;			/* B: Saved key, or key.data == NULL. */
280 	recno_t	 rcursor;		/* R: recno cursor (1-based) */
281 
282 #define	CURS_ACQUIRE	0x01		/*  B: Cursor needs to be reacquired. */
283 #define	CURS_AFTER	0x02		/*  B: Unreturned cursor after key. */
284 #define	CURS_BEFORE	0x04		/*  B: Unreturned cursor before key. */
285 #define	CURS_INIT	0x08		/* RB: Cursor initialized. */
286 	u_int8_t flags;
287 } CURSOR;
288 
289 /*
290  * The metadata of the tree.  The nrecs field is used only by the RECNO code.
291  * This is because the btree doesn't really need it and it requires that every
292  * put or delete call modify the metadata.
293  */
294 typedef struct _btmeta {
295 	u_int32_t	magic;		/* magic number */
296 	u_int32_t	version;	/* version */
297 	u_int32_t	psize;		/* page size */
298 	u_int32_t	free;		/* page number of first free page */
299 	u_int32_t	nrecs;		/* R: number of records */
300 
301 #define	SAVEMETA	(B_NODUPS | R_RECNO)
302 	u_int32_t	flags;		/* bt_flags & SAVEMETA */
303 } BTMETA;
304 
305 /* The in-memory btree/recno data structure. */
306 typedef struct _btree {
307 	MPOOL	 *bt_mp;		/* memory pool cookie */
308 
309 	DB	 *bt_dbp;		/* pointer to enclosing DB */
310 
311 	EPG	  bt_cur;		/* current (pinned) page */
312 	PAGE	 *bt_pinned;		/* page pinned across calls */
313 
314 	CURSOR	  bt_cursor;		/* cursor */
315 
316 #define	BT_PUSH(t, p, i) {						\
317 	t->bt_sp->pgno = p; 						\
318 	t->bt_sp->index = i; 						\
319 	++t->bt_sp;							\
320 }
321 #define	BT_POP(t)	(t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
322 #define	BT_CLR(t)	(t->bt_sp = t->bt_stack)
323 	EPGNO	  bt_stack[50];		/* stack of parent pages */
324 	EPGNO	 *bt_sp;		/* current stack pointer */
325 
326 	DBT	  bt_rkey;		/* returned key */
327 	DBT	  bt_rdata;		/* returned data */
328 
329 	int	  bt_fd;		/* tree file descriptor */
330 
331 	pgno_t	  bt_free;		/* next free page */
332 	u_int32_t bt_psize;		/* page size */
333 	indx_t	  bt_ovflsize;		/* cut-off for key/data overflow */
334 	int	  bt_lorder;		/* byte order */
335 					/* sorted order */
336 	enum { NOT, BACK, FORWARD } bt_order;
337 	EPGNO	  bt_last;		/* last insert */
338 
339 					/* B: key comparison function */
340 	int	(*bt_cmp) __P((const DBT *, const DBT *));
341 					/* B: prefix comparison function */
342 	size_t	(*bt_pfx) __P((const DBT *, const DBT *));
343 					/* R: recno input function */
344 	int	(*bt_irec) __P((struct _btree *, recno_t));
345 
346 	FILE	 *bt_rfp;		/* R: record FILE pointer */
347 	int	  bt_rfd;		/* R: record file descriptor */
348 
349 	caddr_t	  bt_cmap;		/* R: current point in mapped space */
350 	caddr_t	  bt_smap;		/* R: start of mapped space */
351 	caddr_t   bt_emap;		/* R: end of mapped space */
352 	size_t	  bt_msize;		/* R: size of mapped region. */
353 
354 	recno_t	  bt_nrecs;		/* R: number of records */
355 	size_t	  bt_reclen;		/* R: fixed record length */
356 	u_char	  bt_bval;		/* R: delimiting byte/pad character */
357 
358 /*
359  * NB:
360  * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
361  */
362 #define	B_INMEM		0x00001		/* in-memory tree */
363 #define	B_METADIRTY	0x00002		/* need to write metadata */
364 #define	B_MODIFIED	0x00004		/* tree modified */
365 #define	B_NEEDSWAP	0x00008		/* if byte order requires swapping */
366 #define	B_RDONLY	0x00010		/* read-only tree */
367 
368 #define	B_NODUPS	0x00020		/* no duplicate keys permitted */
369 #define	R_RECNO		0x00080		/* record oriented tree */
370 
371 #define	R_CLOSEFP	0x00040		/* opened a file pointer */
372 #define	R_EOF		0x00100		/* end of input file reached. */
373 #define	R_FIXLEN	0x00200		/* fixed length records */
374 #define	R_MEMMAPPED	0x00400		/* memory mapped file. */
375 #define	R_INMEM		0x00800		/* in-memory file */
376 #define	R_MODIFIED	0x01000		/* modified file */
377 #define	R_RDONLY	0x02000		/* read-only file */
378 
379 #define	B_DB_LOCK	0x04000		/* DB_LOCK specified. */
380 #define	B_DB_SHMEM	0x08000		/* DB_SHMEM specified. */
381 #define	B_DB_TXN	0x10000		/* DB_TXN specified. */
382 	u_int32_t flags;
383 } BTREE;
384 
385 #include "extern.h"
386