1 /*- 2 * Copyright (c) 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Mike Olson. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 */ 36 37 #if defined(LIBC_SCCS) && !defined(lint) 38 static char sccsid[] = "@(#)bt_split.c 8.1 (Berkeley) 6/4/93"; 39 #endif /* LIBC_SCCS and not lint */ 40 41 #include <sys/types.h> 42 43 #define __DBINTERFACE_PRIVATE 44 #include <limits.h> 45 #include <stdio.h> 46 #include <stdlib.h> 47 #include <string.h> 48 49 #include <db.h> 50 #include "btree.h" 51 52 static int bt_broot __P((BTREE *, PAGE *, PAGE *, PAGE *)); 53 static PAGE *bt_page 54 __P((BTREE *, PAGE *, PAGE **, PAGE **, u_int *, size_t)); 55 static int bt_preserve __P((BTREE *, pgno_t)); 56 static PAGE *bt_psplit 57 __P((BTREE *, PAGE *, PAGE *, PAGE *, u_int *, size_t)); 58 static PAGE *bt_root 59 __P((BTREE *, PAGE *, PAGE **, PAGE **, u_int *, size_t)); 60 static int bt_rroot __P((BTREE *, PAGE *, PAGE *, PAGE *)); 61 static recno_t rec_total __P((PAGE *)); 62 63 #ifdef STATISTICS 64 u_long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved; 65 #endif 66 67 /* 68 * __BT_SPLIT -- Split the tree. 69 * 70 * Parameters: 71 * t: tree 72 * sp: page to split 73 * key: key to insert 74 * data: data to insert 75 * flags: BIGKEY/BIGDATA flags 76 * ilen: insert length 77 * skip: index to leave open 78 * 79 * Returns: 80 * RET_ERROR, RET_SUCCESS 81 */ 82 int 83 __bt_split(t, sp, key, data, flags, ilen, skip) 84 BTREE *t; 85 PAGE *sp; 86 const DBT *key, *data; 87 u_long flags; 88 size_t ilen; 89 u_int skip; 90 { 91 BINTERNAL *bi; 92 BLEAF *bl, *tbl; 93 DBT a, b; 94 EPGNO *parent; 95 PAGE *h, *l, *r, *lchild, *rchild; 96 indx_t nxtindex; 97 size_t n, nbytes, nksize; 98 int parentsplit; 99 char *dest; 100 101 /* 102 * Split the page into two pages, l and r. The split routines return 103 * a pointer to the page into which the key should be inserted and with 104 * skip set to the offset which should be used. Additionally, l and r 105 * are pinned. 106 */ 107 h = sp->pgno == P_ROOT ? 108 bt_root(t, sp, &l, &r, &skip, ilen) : 109 bt_page(t, sp, &l, &r, &skip, ilen); 110 if (h == NULL) 111 return (RET_ERROR); 112 113 /* 114 * Insert the new key/data pair into the leaf page. (Key inserts 115 * always cause a leaf page to split first.) 116 */ 117 h->linp[skip] = h->upper -= ilen; 118 dest = (char *)h + h->upper; 119 if (ISSET(t, R_RECNO)) 120 WR_RLEAF(dest, data, flags) 121 else 122 WR_BLEAF(dest, key, data, flags) 123 124 /* If the root page was split, make it look right. */ 125 if (sp->pgno == P_ROOT && 126 (ISSET(t, R_RECNO) ? 127 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR) 128 goto err2; 129 130 /* 131 * Now we walk the parent page stack -- a LIFO stack of the pages that 132 * were traversed when we searched for the page that split. Each stack 133 * entry is a page number and a page index offset. The offset is for 134 * the page traversed on the search. We've just split a page, so we 135 * have to insert a new key into the parent page. 136 * 137 * If the insert into the parent page causes it to split, may have to 138 * continue splitting all the way up the tree. We stop if the root 139 * splits or the page inserted into didn't have to split to hold the 140 * new key. Some algorithms replace the key for the old page as well 141 * as the new page. We don't, as there's no reason to believe that the 142 * first key on the old page is any better than the key we have, and, 143 * in the case of a key being placed at index 0 causing the split, the 144 * key is unavailable. 145 * 146 * There are a maximum of 5 pages pinned at any time. We keep the left 147 * and right pages pinned while working on the parent. The 5 are the 148 * two children, left parent and right parent (when the parent splits) 149 * and the root page or the overflow key page when calling bt_preserve. 150 * This code must make sure that all pins are released other than the 151 * root page or overflow page which is unlocked elsewhere. 152 */ 153 while ((parent = BT_POP(t)) != NULL) { 154 lchild = l; 155 rchild = r; 156 157 /* Get the parent page. */ 158 if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL) 159 goto err2; 160 161 /* 162 * The new key goes ONE AFTER the index, because the split 163 * was to the right. 164 */ 165 skip = parent->index + 1; 166 167 /* 168 * Calculate the space needed on the parent page. 169 * 170 * Prefix trees: space hack when inserting into BINTERNAL 171 * pages. Retain only what's needed to distinguish between 172 * the new entry and the LAST entry on the page to its left. 173 * If the keys compare equal, retain the entire key. Note, 174 * we don't touch overflow keys, and the entire key must be 175 * retained for the next-to-left most key on the leftmost 176 * page of each level, or the search will fail. Applicable 177 * ONLY to internal pages that have leaf pages as children. 178 * Further reduction of the key between pairs of internal 179 * pages loses too much information. 180 */ 181 switch (rchild->flags & P_TYPE) { 182 case P_BINTERNAL: 183 bi = GETBINTERNAL(rchild, 0); 184 nbytes = NBINTERNAL(bi->ksize); 185 break; 186 case P_BLEAF: 187 bl = GETBLEAF(rchild, 0); 188 nbytes = NBINTERNAL(bl->ksize); 189 if (t->bt_pfx && !(bl->flags & P_BIGKEY) && 190 (h->prevpg != P_INVALID || skip > 1)) { 191 tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1); 192 a.size = tbl->ksize; 193 a.data = tbl->bytes; 194 b.size = bl->ksize; 195 b.data = bl->bytes; 196 nksize = t->bt_pfx(&a, &b); 197 n = NBINTERNAL(nksize); 198 if (n < nbytes) { 199 #ifdef STATISTICS 200 bt_pfxsaved += nbytes - n; 201 #endif 202 nbytes = n; 203 } else 204 nksize = 0; 205 } else 206 nksize = 0; 207 break; 208 case P_RINTERNAL: 209 case P_RLEAF: 210 nbytes = NRINTERNAL; 211 break; 212 default: 213 abort(); 214 } 215 216 /* Split the parent page if necessary or shift the indices. */ 217 if (h->upper - h->lower < nbytes + sizeof(indx_t)) { 218 sp = h; 219 h = h->pgno == P_ROOT ? 220 bt_root(t, h, &l, &r, &skip, nbytes) : 221 bt_page(t, h, &l, &r, &skip, nbytes); 222 if (h == NULL) 223 goto err1; 224 parentsplit = 1; 225 } else { 226 if (skip < (nxtindex = NEXTINDEX(h))) 227 memmove(h->linp + skip + 1, h->linp + skip, 228 (nxtindex - skip) * sizeof(indx_t)); 229 h->lower += sizeof(indx_t); 230 parentsplit = 0; 231 } 232 233 /* Insert the key into the parent page. */ 234 switch(rchild->flags & P_TYPE) { 235 case P_BINTERNAL: 236 h->linp[skip] = h->upper -= nbytes; 237 dest = (char *)h + h->linp[skip]; 238 memmove(dest, bi, nbytes); 239 ((BINTERNAL *)dest)->pgno = rchild->pgno; 240 break; 241 case P_BLEAF: 242 h->linp[skip] = h->upper -= nbytes; 243 dest = (char *)h + h->linp[skip]; 244 WR_BINTERNAL(dest, nksize ? nksize : bl->ksize, 245 rchild->pgno, bl->flags & P_BIGKEY); 246 memmove(dest, bl->bytes, nksize ? nksize : bl->ksize); 247 if (bl->flags & P_BIGKEY && 248 bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR) 249 goto err1; 250 break; 251 case P_RINTERNAL: 252 /* 253 * Update the left page count. If split 254 * added at index 0, fix the correct page. 255 */ 256 if (skip > 0) 257 dest = (char *)h + h->linp[skip - 1]; 258 else 259 dest = (char *)l + l->linp[NEXTINDEX(l) - 1]; 260 ((RINTERNAL *)dest)->nrecs = rec_total(lchild); 261 ((RINTERNAL *)dest)->pgno = lchild->pgno; 262 263 /* Update the right page count. */ 264 h->linp[skip] = h->upper -= nbytes; 265 dest = (char *)h + h->linp[skip]; 266 ((RINTERNAL *)dest)->nrecs = rec_total(rchild); 267 ((RINTERNAL *)dest)->pgno = rchild->pgno; 268 break; 269 case P_RLEAF: 270 /* 271 * Update the left page count. If split 272 * added at index 0, fix the correct page. 273 */ 274 if (skip > 0) 275 dest = (char *)h + h->linp[skip - 1]; 276 else 277 dest = (char *)l + l->linp[NEXTINDEX(l) - 1]; 278 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild); 279 ((RINTERNAL *)dest)->pgno = lchild->pgno; 280 281 /* Update the right page count. */ 282 h->linp[skip] = h->upper -= nbytes; 283 dest = (char *)h + h->linp[skip]; 284 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild); 285 ((RINTERNAL *)dest)->pgno = rchild->pgno; 286 break; 287 default: 288 abort(); 289 } 290 291 /* Unpin the held pages. */ 292 if (!parentsplit) { 293 mpool_put(t->bt_mp, h, MPOOL_DIRTY); 294 break; 295 } 296 297 /* If the root page was split, make it look right. */ 298 if (sp->pgno == P_ROOT && 299 (ISSET(t, R_RECNO) ? 300 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR) 301 goto err1; 302 303 mpool_put(t->bt_mp, lchild, MPOOL_DIRTY); 304 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY); 305 } 306 307 /* Unpin the held pages. */ 308 mpool_put(t->bt_mp, l, MPOOL_DIRTY); 309 mpool_put(t->bt_mp, r, MPOOL_DIRTY); 310 311 /* Clear any pages left on the stack. */ 312 return (RET_SUCCESS); 313 314 /* 315 * If something fails in the above loop we were already walking back 316 * up the tree and the tree is now inconsistent. Nothing much we can 317 * do about it but release any memory we're holding. 318 */ 319 err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY); 320 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY); 321 322 err2: mpool_put(t->bt_mp, l, 0); 323 mpool_put(t->bt_mp, r, 0); 324 __dbpanic(t->bt_dbp); 325 return (RET_ERROR); 326 } 327 328 /* 329 * BT_PAGE -- Split a non-root page of a btree. 330 * 331 * Parameters: 332 * t: tree 333 * h: root page 334 * lp: pointer to left page pointer 335 * rp: pointer to right page pointer 336 * skip: pointer to index to leave open 337 * ilen: insert length 338 * 339 * Returns: 340 * Pointer to page in which to insert or NULL on error. 341 */ 342 static PAGE * 343 bt_page(t, h, lp, rp, skip, ilen) 344 BTREE *t; 345 PAGE *h, **lp, **rp; 346 u_int *skip; 347 size_t ilen; 348 { 349 PAGE *l, *r, *tp; 350 pgno_t npg; 351 352 #ifdef STATISTICS 353 ++bt_split; 354 #endif 355 /* Put the new right page for the split into place. */ 356 if ((r = __bt_new(t, &npg)) == NULL) 357 return (NULL); 358 r->pgno = npg; 359 r->lower = BTDATAOFF; 360 r->upper = t->bt_psize; 361 r->nextpg = h->nextpg; 362 r->prevpg = h->pgno; 363 r->flags = h->flags & P_TYPE; 364 365 /* 366 * If we're splitting the last page on a level because we're appending 367 * a key to it (skip is NEXTINDEX()), it's likely that the data is 368 * sorted. Adding an empty page on the side of the level is less work 369 * and can push the fill factor much higher than normal. If we're 370 * wrong it's no big deal, we'll just do the split the right way next 371 * time. It may look like it's equally easy to do a similar hack for 372 * reverse sorted data, that is, split the tree left, but it's not. 373 * Don't even try. 374 */ 375 if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) { 376 #ifdef STATISTICS 377 ++bt_sortsplit; 378 #endif 379 h->nextpg = r->pgno; 380 r->lower = BTDATAOFF + sizeof(indx_t); 381 *skip = 0; 382 *lp = h; 383 *rp = r; 384 return (r); 385 } 386 387 /* Put the new left page for the split into place. */ 388 if ((l = malloc(t->bt_psize)) == NULL) { 389 mpool_put(t->bt_mp, r, 0); 390 return (NULL); 391 } 392 l->pgno = h->pgno; 393 l->nextpg = r->pgno; 394 l->prevpg = h->prevpg; 395 l->lower = BTDATAOFF; 396 l->upper = t->bt_psize; 397 l->flags = h->flags & P_TYPE; 398 399 /* Fix up the previous pointer of the page after the split page. */ 400 if (h->nextpg != P_INVALID) { 401 if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) { 402 free(l); 403 /* XXX mpool_free(t->bt_mp, r->pgno); */ 404 return (NULL); 405 } 406 tp->prevpg = r->pgno; 407 mpool_put(t->bt_mp, tp, 0); 408 } 409 410 /* 411 * Split right. The key/data pairs aren't sorted in the btree page so 412 * it's simpler to copy the data from the split page onto two new pages 413 * instead of copying half the data to the right page and compacting 414 * the left page in place. Since the left page can't change, we have 415 * to swap the original and the allocated left page after the split. 416 */ 417 tp = bt_psplit(t, h, l, r, skip, ilen); 418 419 /* Move the new left page onto the old left page. */ 420 memmove(h, l, t->bt_psize); 421 if (tp == l) 422 tp = h; 423 free(l); 424 425 *lp = h; 426 *rp = r; 427 return (tp); 428 } 429 430 /* 431 * BT_ROOT -- Split the root page of a btree. 432 * 433 * Parameters: 434 * t: tree 435 * h: root page 436 * lp: pointer to left page pointer 437 * rp: pointer to right page pointer 438 * skip: pointer to index to leave open 439 * ilen: insert length 440 * 441 * Returns: 442 * Pointer to page in which to insert or NULL on error. 443 */ 444 static PAGE * 445 bt_root(t, h, lp, rp, skip, ilen) 446 BTREE *t; 447 PAGE *h, **lp, **rp; 448 u_int *skip; 449 size_t ilen; 450 { 451 PAGE *l, *r, *tp; 452 pgno_t lnpg, rnpg; 453 454 #ifdef STATISTICS 455 ++bt_split; 456 ++bt_rootsplit; 457 #endif 458 /* Put the new left and right pages for the split into place. */ 459 if ((l = __bt_new(t, &lnpg)) == NULL || 460 (r = __bt_new(t, &rnpg)) == NULL) 461 return (NULL); 462 l->pgno = lnpg; 463 r->pgno = rnpg; 464 l->nextpg = r->pgno; 465 r->prevpg = l->pgno; 466 l->prevpg = r->nextpg = P_INVALID; 467 l->lower = r->lower = BTDATAOFF; 468 l->upper = r->upper = t->bt_psize; 469 l->flags = r->flags = h->flags & P_TYPE; 470 471 /* Split the root page. */ 472 tp = bt_psplit(t, h, l, r, skip, ilen); 473 474 *lp = l; 475 *rp = r; 476 return (tp); 477 } 478 479 /* 480 * BT_RROOT -- Fix up the recno root page after it has been split. 481 * 482 * Parameters: 483 * t: tree 484 * h: root page 485 * l: left page 486 * r: right page 487 * 488 * Returns: 489 * RET_ERROR, RET_SUCCESS 490 */ 491 static int 492 bt_rroot(t, h, l, r) 493 BTREE *t; 494 PAGE *h, *l, *r; 495 { 496 char *dest; 497 498 /* Insert the left and right keys, set the header information. */ 499 h->linp[0] = h->upper = t->bt_psize - NRINTERNAL; 500 dest = (char *)h + h->upper; 501 WR_RINTERNAL(dest, 502 l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno); 503 504 h->linp[1] = h->upper -= NRINTERNAL; 505 dest = (char *)h + h->upper; 506 WR_RINTERNAL(dest, 507 r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno); 508 509 h->lower = BTDATAOFF + 2 * sizeof(indx_t); 510 511 /* Unpin the root page, set to recno internal page. */ 512 h->flags &= ~P_TYPE; 513 h->flags |= P_RINTERNAL; 514 mpool_put(t->bt_mp, h, MPOOL_DIRTY); 515 516 return (RET_SUCCESS); 517 } 518 519 /* 520 * BT_BROOT -- Fix up the btree root page after it has been split. 521 * 522 * Parameters: 523 * t: tree 524 * h: root page 525 * l: left page 526 * r: right page 527 * 528 * Returns: 529 * RET_ERROR, RET_SUCCESS 530 */ 531 static int 532 bt_broot(t, h, l, r) 533 BTREE *t; 534 PAGE *h, *l, *r; 535 { 536 BINTERNAL *bi; 537 BLEAF *bl; 538 size_t nbytes; 539 char *dest; 540 541 /* 542 * If the root page was a leaf page, change it into an internal page. 543 * We copy the key we split on (but not the key's data, in the case of 544 * a leaf page) to the new root page. 545 * 546 * The btree comparison code guarantees that the left-most key on any 547 * level of the tree is never used, so it doesn't need to be filled in. 548 */ 549 nbytes = NBINTERNAL(0); 550 h->linp[0] = h->upper = t->bt_psize - nbytes; 551 dest = (char *)h + h->upper; 552 WR_BINTERNAL(dest, 0, l->pgno, 0); 553 554 switch(h->flags & P_TYPE) { 555 case P_BLEAF: 556 bl = GETBLEAF(r, 0); 557 nbytes = NBINTERNAL(bl->ksize); 558 h->linp[1] = h->upper -= nbytes; 559 dest = (char *)h + h->upper; 560 WR_BINTERNAL(dest, bl->ksize, r->pgno, 0); 561 memmove(dest, bl->bytes, bl->ksize); 562 563 /* 564 * If the key is on an overflow page, mark the overflow chain 565 * so it isn't deleted when the leaf copy of the key is deleted. 566 */ 567 if (bl->flags & P_BIGKEY && 568 bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR) 569 return (RET_ERROR); 570 break; 571 case P_BINTERNAL: 572 bi = GETBINTERNAL(r, 0); 573 nbytes = NBINTERNAL(bi->ksize); 574 h->linp[1] = h->upper -= nbytes; 575 dest = (char *)h + h->upper; 576 memmove(dest, bi, nbytes); 577 ((BINTERNAL *)dest)->pgno = r->pgno; 578 break; 579 default: 580 abort(); 581 } 582 583 /* There are two keys on the page. */ 584 h->lower = BTDATAOFF + 2 * sizeof(indx_t); 585 586 /* Unpin the root page, set to btree internal page. */ 587 h->flags &= ~P_TYPE; 588 h->flags |= P_BINTERNAL; 589 mpool_put(t->bt_mp, h, MPOOL_DIRTY); 590 591 return (RET_SUCCESS); 592 } 593 594 /* 595 * BT_PSPLIT -- Do the real work of splitting the page. 596 * 597 * Parameters: 598 * t: tree 599 * h: page to be split 600 * l: page to put lower half of data 601 * r: page to put upper half of data 602 * pskip: pointer to index to leave open 603 * ilen: insert length 604 * 605 * Returns: 606 * Pointer to page in which to insert. 607 */ 608 static PAGE * 609 bt_psplit(t, h, l, r, pskip, ilen) 610 BTREE *t; 611 PAGE *h, *l, *r; 612 u_int *pskip; 613 size_t ilen; 614 { 615 BINTERNAL *bi; 616 BLEAF *bl; 617 RLEAF *rl; 618 EPGNO *c; 619 PAGE *rval; 620 void *src; 621 indx_t full, half, nxt, off, skip, top, used; 622 size_t nbytes; 623 int bigkeycnt, isbigkey; 624 625 /* 626 * Split the data to the left and right pages. Leave the skip index 627 * open. Additionally, make some effort not to split on an overflow 628 * key. This makes internal page processing faster and can save 629 * space as overflow keys used by internal pages are never deleted. 630 */ 631 bigkeycnt = 0; 632 skip = *pskip; 633 full = t->bt_psize - BTDATAOFF; 634 half = full / 2; 635 used = 0; 636 for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) { 637 if (skip == off) { 638 nbytes = ilen; 639 isbigkey = 0; /* XXX: not really known. */ 640 } else 641 switch (h->flags & P_TYPE) { 642 case P_BINTERNAL: 643 src = bi = GETBINTERNAL(h, nxt); 644 nbytes = NBINTERNAL(bi->ksize); 645 isbigkey = bi->flags & P_BIGKEY; 646 break; 647 case P_BLEAF: 648 src = bl = GETBLEAF(h, nxt); 649 nbytes = NBLEAF(bl); 650 isbigkey = bl->flags & P_BIGKEY; 651 break; 652 case P_RINTERNAL: 653 src = GETRINTERNAL(h, nxt); 654 nbytes = NRINTERNAL; 655 isbigkey = 0; 656 break; 657 case P_RLEAF: 658 src = rl = GETRLEAF(h, nxt); 659 nbytes = NRLEAF(rl); 660 isbigkey = 0; 661 break; 662 default: 663 abort(); 664 } 665 666 /* 667 * If the key/data pairs are substantial fractions of the max 668 * possible size for the page, it's possible to get situations 669 * where we decide to try and copy too much onto the left page. 670 * Make sure that doesn't happen. 671 */ 672 if (skip <= off && used + nbytes >= full) { 673 --off; 674 break; 675 } 676 677 /* Copy the key/data pair, if not the skipped index. */ 678 if (skip != off) { 679 ++nxt; 680 681 l->linp[off] = l->upper -= nbytes; 682 memmove((char *)l + l->upper, src, nbytes); 683 } 684 685 used += nbytes; 686 if (used >= half) { 687 if (!isbigkey || bigkeycnt == 3) 688 break; 689 else 690 ++bigkeycnt; 691 } 692 } 693 694 /* 695 * Off is the last offset that's valid for the left page. 696 * Nxt is the first offset to be placed on the right page. 697 */ 698 l->lower += (off + 1) * sizeof(indx_t); 699 700 /* 701 * If splitting the page that the cursor was on, the cursor has to be 702 * adjusted to point to the same record as before the split. If the 703 * cursor is at or past the skipped slot, the cursor is incremented by 704 * one. If the cursor is on the right page, it is decremented by the 705 * number of records split to the left page. 706 * 707 * Don't bother checking for the B_SEQINIT flag, the page number will 708 * be P_INVALID. 709 */ 710 c = &t->bt_bcursor; 711 if (c->pgno == h->pgno) { 712 if (c->index >= skip) 713 ++c->index; 714 if (c->index < nxt) /* Left page. */ 715 c->pgno = l->pgno; 716 else { /* Right page. */ 717 c->pgno = r->pgno; 718 c->index -= nxt; 719 } 720 } 721 722 /* 723 * If the skipped index was on the left page, just return that page. 724 * Otherwise, adjust the skip index to reflect the new position on 725 * the right page. 726 */ 727 if (skip <= off) { 728 skip = 0; 729 rval = l; 730 } else { 731 rval = r; 732 *pskip -= nxt; 733 } 734 735 for (off = 0; nxt < top; ++off) { 736 if (skip == nxt) { 737 ++off; 738 skip = 0; 739 } 740 switch (h->flags & P_TYPE) { 741 case P_BINTERNAL: 742 src = bi = GETBINTERNAL(h, nxt); 743 nbytes = NBINTERNAL(bi->ksize); 744 break; 745 case P_BLEAF: 746 src = bl = GETBLEAF(h, nxt); 747 nbytes = NBLEAF(bl); 748 break; 749 case P_RINTERNAL: 750 src = GETRINTERNAL(h, nxt); 751 nbytes = NRINTERNAL; 752 break; 753 case P_RLEAF: 754 src = rl = GETRLEAF(h, nxt); 755 nbytes = NRLEAF(rl); 756 break; 757 default: 758 abort(); 759 } 760 ++nxt; 761 r->linp[off] = r->upper -= nbytes; 762 memmove((char *)r + r->upper, src, nbytes); 763 } 764 r->lower += off * sizeof(indx_t); 765 766 /* If the key is being appended to the page, adjust the index. */ 767 if (skip == top) 768 r->lower += sizeof(indx_t); 769 770 return (rval); 771 } 772 773 /* 774 * BT_PRESERVE -- Mark a chain of pages as used by an internal node. 775 * 776 * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the 777 * record that references them gets deleted. Chains pointed to by internal 778 * pages never get deleted. This routine marks a chain as pointed to by an 779 * internal page. 780 * 781 * Parameters: 782 * t: tree 783 * pg: page number of first page in the chain. 784 * 785 * Returns: 786 * RET_SUCCESS, RET_ERROR. 787 */ 788 static int 789 bt_preserve(t, pg) 790 BTREE *t; 791 pgno_t pg; 792 { 793 PAGE *h; 794 795 if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL) 796 return (RET_ERROR); 797 h->flags |= P_PRESERVE; 798 mpool_put(t->bt_mp, h, MPOOL_DIRTY); 799 return (RET_SUCCESS); 800 } 801 802 /* 803 * REC_TOTAL -- Return the number of recno entries below a page. 804 * 805 * Parameters: 806 * h: page 807 * 808 * Returns: 809 * The number of recno entries below a page. 810 * 811 * XXX 812 * These values could be set by the bt_psplit routine. The problem is that the 813 * entry has to be popped off of the stack etc. or the values have to be passed 814 * all the way back to bt_split/bt_rroot and it's not very clean. 815 */ 816 static recno_t 817 rec_total(h) 818 PAGE *h; 819 { 820 recno_t recs; 821 indx_t nxt, top; 822 823 for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt) 824 recs += GETRINTERNAL(h, nxt)->nrecs; 825 return (recs); 826 } 827