xref: /netbsd-src/external/mit/lua/dist/src/ltable.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: ltable.c,v 1.6 2016/01/28 14:41:39 lneto Exp $	*/
2 
3 /*
4 ** Id: ltable.c,v 2.117 2015/11/19 19:16:22 roberto Exp
5 ** Lua tables (hash)
6 ** See Copyright Notice in lua.h
7 */
8 
9 #define ltable_c
10 #define LUA_CORE
11 
12 #include "lprefix.h"
13 
14 
15 /*
16 ** Implementation of tables (aka arrays, objects, or hash tables).
17 ** Tables keep its elements in two parts: an array part and a hash part.
18 ** Non-negative integer keys are all candidates to be kept in the array
19 ** part. The actual size of the array is the largest 'n' such that
20 ** more than half the slots between 1 and n are in use.
21 ** Hash uses a mix of chained scatter table with Brent's variation.
22 ** A main invariant of these tables is that, if an element is not
23 ** in its main position (i.e. the 'original' position that its hash gives
24 ** to it), then the colliding element is in its own main position.
25 ** Hence even when the load factor reaches 100%, performance remains good.
26 */
27 
28 #ifndef _KERNEL
29 #include <math.h>
30 #include <limits.h>
31 #endif /* _KERNEL */
32 
33 #include "lua.h"
34 
35 #include "ldebug.h"
36 #include "ldo.h"
37 #include "lgc.h"
38 #include "lmem.h"
39 #include "lobject.h"
40 #include "lstate.h"
41 #include "lstring.h"
42 #include "ltable.h"
43 #include "lvm.h"
44 
45 
46 /*
47 ** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is
48 ** the largest integer such that MAXASIZE fits in an unsigned int.
49 */
50 #define MAXABITS	cast_int(sizeof(int) * CHAR_BIT - 1)
51 #define MAXASIZE	(1u << MAXABITS)
52 
53 /*
54 ** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest
55 ** integer such that 2^MAXHBITS fits in a signed int. (Note that the
56 ** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still
57 ** fits comfortably in an unsigned int.)
58 */
59 #define MAXHBITS	(MAXABITS - 1)
60 
61 
62 #define hashpow2(t,n)		(gnode(t, lmod((n), sizenode(t))))
63 
64 #define hashstr(t,str)		hashpow2(t, (str)->hash)
65 #define hashboolean(t,p)	hashpow2(t, p)
66 #define hashint(t,i)		hashpow2(t, i)
67 
68 
69 /*
70 ** for some types, it is better to avoid modulus by power of 2, as
71 ** they tend to have many 2 factors.
72 */
73 #define hashmod(t,n)	(gnode(t, ((n) % ((sizenode(t)-1)|1))))
74 
75 
76 #define hashpointer(t,p)	hashmod(t, point2uint(p))
77 
78 
79 #define dummynode		(&dummynode_)
80 
81 #define isdummy(n)		((n) == dummynode)
82 
83 static const Node dummynode_ = {
84   {NILCONSTANT},  /* value */
85   {{NILCONSTANT, 0}}  /* key */
86 };
87 
88 
89 #ifndef _KERNEL
90 /*
91 ** Hash for floating-point numbers.
92 ** The main computation should be just
93 **     n = frexp(n, &i); return (n * INT_MAX) + i
94 ** but there are some numerical subtleties.
95 ** In a two-complement representation, INT_MAX does not has an exact
96 ** representation as a float, but INT_MIN does; because the absolute
97 ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
98 ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
99 ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
100 ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
101 ** INT_MIN.
102 */
103 #if !defined(l_hashfloat)
104 static int l_hashfloat (lua_Number n) {
105   int i;
106   lua_Integer ni;
107   n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
108   if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */
109     lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
110     return 0;
111   }
112   else {  /* normal case */
113     unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni);
114     return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u);
115   }
116 }
117 #endif
118 #endif /* _KERNEL */
119 
120 
121 /*
122 ** returns the 'main' position of an element in a table (that is, the index
123 ** of its hash value)
124 */
125 static Node *mainposition (const Table *t, const TValue *key) {
126   switch (ttype(key)) {
127     case LUA_TNUMINT:
128       return hashint(t, ivalue(key));
129 #ifndef _KERNEL
130     case LUA_TNUMFLT:
131       return hashmod(t, l_hashfloat(fltvalue(key)));
132 #endif /* _KERNEL */
133     case LUA_TSHRSTR:
134       return hashstr(t, tsvalue(key));
135     case LUA_TLNGSTR:
136       return hashpow2(t, luaS_hashlongstr(tsvalue(key)));
137     case LUA_TBOOLEAN:
138       return hashboolean(t, bvalue(key));
139     case LUA_TLIGHTUSERDATA:
140       return hashpointer(t, pvalue(key));
141     case LUA_TLCF:
142       return hashpointer(t, fvalue(key));
143     default:
144       lua_assert(!ttisdeadkey(key));
145       return hashpointer(t, gcvalue(key));
146   }
147 }
148 
149 
150 /*
151 ** returns the index for 'key' if 'key' is an appropriate key to live in
152 ** the array part of the table, 0 otherwise.
153 */
154 static unsigned int arrayindex (const TValue *key) {
155   if (ttisinteger(key)) {
156     lua_Integer k = ivalue(key);
157     if (0 < k && (lua_Unsigned)k <= MAXASIZE)
158       return cast(unsigned int, k);  /* 'key' is an appropriate array index */
159   }
160   return 0;  /* 'key' did not match some condition */
161 }
162 
163 
164 /*
165 ** returns the index of a 'key' for table traversals. First goes all
166 ** elements in the array part, then elements in the hash part. The
167 ** beginning of a traversal is signaled by 0.
168 */
169 static unsigned int findindex (lua_State *L, Table *t, StkId key) {
170   unsigned int i;
171   if (ttisnil(key)) return 0;  /* first iteration */
172   i = arrayindex(key);
173   if (i != 0 && i <= t->sizearray)  /* is 'key' inside array part? */
174     return i;  /* yes; that's the index */
175   else {
176     int nx;
177     Node *n = mainposition(t, key);
178     for (;;) {  /* check whether 'key' is somewhere in the chain */
179       /* key may be dead already, but it is ok to use it in 'next' */
180       if (luaV_rawequalobj(gkey(n), key) ||
181             (ttisdeadkey(gkey(n)) && iscollectable(key) &&
182              deadvalue(gkey(n)) == gcvalue(key))) {
183         i = cast_int(n - gnode(t, 0));  /* key index in hash table */
184         /* hash elements are numbered after array ones */
185         return (i + 1) + t->sizearray;
186       }
187       nx = gnext(n);
188       if (nx == 0)
189         luaG_runerror(L, "invalid key to 'next'");  /* key not found */
190       else n += nx;
191     }
192   }
193 }
194 
195 
196 int luaH_next (lua_State *L, Table *t, StkId key) {
197   unsigned int i = findindex(L, t, key);  /* find original element */
198   for (; i < t->sizearray; i++) {  /* try first array part */
199     if (!ttisnil(&t->array[i])) {  /* a non-nil value? */
200       setivalue(key, i + 1);
201       setobj2s(L, key+1, &t->array[i]);
202       return 1;
203     }
204   }
205   for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) {  /* hash part */
206     if (!ttisnil(gval(gnode(t, i)))) {  /* a non-nil value? */
207       setobj2s(L, key, gkey(gnode(t, i)));
208       setobj2s(L, key+1, gval(gnode(t, i)));
209       return 1;
210     }
211   }
212   return 0;  /* no more elements */
213 }
214 
215 
216 /*
217 ** {=============================================================
218 ** Rehash
219 ** ==============================================================
220 */
221 
222 /*
223 ** Compute the optimal size for the array part of table 't'. 'nums' is a
224 ** "count array" where 'nums[i]' is the number of integers in the table
225 ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
226 ** integer keys in the table and leaves with the number of keys that
227 ** will go to the array part; return the optimal size.
228 */
229 static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
230   int i;
231   unsigned int twotoi;  /* 2^i (candidate for optimal size) */
232   unsigned int a = 0;  /* number of elements smaller than 2^i */
233   unsigned int na = 0;  /* number of elements to go to array part */
234   unsigned int optimal = 0;  /* optimal size for array part */
235   /* loop while keys can fill more than half of total size */
236   for (i = 0, twotoi = 1; *pna > twotoi / 2; i++, twotoi *= 2) {
237     if (nums[i] > 0) {
238       a += nums[i];
239       if (a > twotoi/2) {  /* more than half elements present? */
240         optimal = twotoi;  /* optimal size (till now) */
241         na = a;  /* all elements up to 'optimal' will go to array part */
242       }
243     }
244   }
245   lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
246   *pna = na;
247   return optimal;
248 }
249 
250 
251 static int countint (const TValue *key, unsigned int *nums) {
252   unsigned int k = arrayindex(key);
253   if (k != 0) {  /* is 'key' an appropriate array index? */
254     nums[luaO_ceillog2(k)]++;  /* count as such */
255     return 1;
256   }
257   else
258     return 0;
259 }
260 
261 
262 /*
263 ** Count keys in array part of table 't': Fill 'nums[i]' with
264 ** number of keys that will go into corresponding slice and return
265 ** total number of non-nil keys.
266 */
267 static unsigned int numusearray (const Table *t, unsigned int *nums) {
268   int lg;
269   unsigned int ttlg;  /* 2^lg */
270   unsigned int ause = 0;  /* summation of 'nums' */
271   unsigned int i = 1;  /* count to traverse all array keys */
272   /* traverse each slice */
273   for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
274     unsigned int lc = 0;  /* counter */
275     unsigned int lim = ttlg;
276     if (lim > t->sizearray) {
277       lim = t->sizearray;  /* adjust upper limit */
278       if (i > lim)
279         break;  /* no more elements to count */
280     }
281     /* count elements in range (2^(lg - 1), 2^lg] */
282     for (; i <= lim; i++) {
283       if (!ttisnil(&t->array[i-1]))
284         lc++;
285     }
286     nums[lg] += lc;
287     ause += lc;
288   }
289   return ause;
290 }
291 
292 
293 static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
294   int totaluse = 0;  /* total number of elements */
295   int ause = 0;  /* elements added to 'nums' (can go to array part) */
296   int i = sizenode(t);
297   while (i--) {
298     Node *n = &t->node[i];
299     if (!ttisnil(gval(n))) {
300       ause += countint(gkey(n), nums);
301       totaluse++;
302     }
303   }
304   *pna += ause;
305   return totaluse;
306 }
307 
308 
309 static void setarrayvector (lua_State *L, Table *t, unsigned int size) {
310   unsigned int i;
311   luaM_reallocvector(L, t->array, t->sizearray, size, TValue);
312   for (i=t->sizearray; i<size; i++)
313      setnilvalue(&t->array[i]);
314   t->sizearray = size;
315 }
316 
317 
318 static void setnodevector (lua_State *L, Table *t, unsigned int size) {
319   int lsize;
320   if (size == 0) {  /* no elements to hash part? */
321     t->node = cast(Node *, dummynode);  /* use common 'dummynode' */
322     lsize = 0;
323   }
324   else {
325     int i;
326     lsize = luaO_ceillog2(size);
327     if (lsize > MAXHBITS)
328       luaG_runerror(L, "table overflow");
329     size = twoto(lsize);
330     t->node = luaM_newvector(L, size, Node);
331     for (i = 0; i < (int)size; i++) {
332       Node *n = gnode(t, i);
333       gnext(n) = 0;
334       setnilvalue(wgkey(n));
335       setnilvalue(gval(n));
336     }
337   }
338   t->lsizenode = cast_byte(lsize);
339   t->lastfree = gnode(t, size);  /* all positions are free */
340 }
341 
342 
343 void luaH_resize (lua_State *L, Table *t, unsigned int nasize,
344                                           unsigned int nhsize) {
345   unsigned int i;
346   int j;
347   unsigned int oldasize = t->sizearray;
348   int oldhsize = t->lsizenode;
349   Node *nold = t->node;  /* save old hash ... */
350   if (nasize > oldasize)  /* array part must grow? */
351     setarrayvector(L, t, nasize);
352   /* create new hash part with appropriate size */
353   setnodevector(L, t, nhsize);
354   if (nasize < oldasize) {  /* array part must shrink? */
355     t->sizearray = nasize;
356     /* re-insert elements from vanishing slice */
357     for (i=nasize; i<oldasize; i++) {
358       if (!ttisnil(&t->array[i]))
359         luaH_setint(L, t, i + 1, &t->array[i]);
360     }
361     /* shrink array */
362     luaM_reallocvector(L, t->array, oldasize, nasize, TValue);
363   }
364   /* re-insert elements from hash part */
365   for (j = twoto(oldhsize) - 1; j >= 0; j--) {
366     Node *old = nold + j;
367     if (!ttisnil(gval(old))) {
368       /* doesn't need barrier/invalidate cache, as entry was
369          already present in the table */
370       setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old));
371     }
372   }
373   if (!isdummy(nold))
374     luaM_freearray(L, nold, cast(size_t, twoto(oldhsize))); /* free old hash */
375 }
376 
377 
378 void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
379   int nsize = isdummy(t->node) ? 0 : sizenode(t);
380   luaH_resize(L, t, nasize, nsize);
381 }
382 
383 /*
384 ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
385 */
386 static void rehash (lua_State *L, Table *t, const TValue *ek) {
387   unsigned int asize;  /* optimal size for array part */
388   unsigned int na;  /* number of keys in the array part */
389   unsigned int nums[MAXABITS + 1];
390   int i;
391   int totaluse;
392   for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */
393   na = numusearray(t, nums);  /* count keys in array part */
394   totaluse = na;  /* all those keys are integer keys */
395   totaluse += numusehash(t, nums, &na);  /* count keys in hash part */
396   /* count extra key */
397   na += countint(ek, nums);
398   totaluse++;
399   /* compute new size for array part */
400   asize = computesizes(nums, &na);
401   /* resize the table to new computed sizes */
402   luaH_resize(L, t, asize, totaluse - na);
403 }
404 
405 
406 
407 /*
408 ** }=============================================================
409 */
410 
411 
412 Table *luaH_new (lua_State *L) {
413   GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table));
414   Table *t = gco2t(o);
415   t->metatable = NULL;
416   t->flags = cast_byte(~0);
417   t->array = NULL;
418   t->sizearray = 0;
419   setnodevector(L, t, 0);
420   return t;
421 }
422 
423 
424 void luaH_free (lua_State *L, Table *t) {
425   if (!isdummy(t->node))
426     luaM_freearray(L, t->node, cast(size_t, sizenode(t)));
427   luaM_freearray(L, t->array, t->sizearray);
428   luaM_free(L, t);
429 }
430 
431 
432 static Node *getfreepos (Table *t) {
433   while (t->lastfree > t->node) {
434     t->lastfree--;
435     if (ttisnil(gkey(t->lastfree)))
436       return t->lastfree;
437   }
438   return NULL;  /* could not find a free place */
439 }
440 
441 
442 
443 /*
444 ** inserts a new key into a hash table; first, check whether key's main
445 ** position is free. If not, check whether colliding node is in its main
446 ** position or not: if it is not, move colliding node to an empty place and
447 ** put new key in its main position; otherwise (colliding node is in its main
448 ** position), new key goes to an empty position.
449 */
450 TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
451   Node *mp;
452 #ifndef _KERNEL
453   TValue aux;
454 #endif /* _KERNEL */
455   if (ttisnil(key)) luaG_runerror(L, "table index is nil");
456 #ifndef _KERNEL
457   else if (ttisfloat(key)) {
458     lua_Integer k;
459     if (luaV_tointeger(key, &k, 0)) {  /* index is int? */
460       setivalue(&aux, k);
461       key = &aux;  /* insert it as an integer */
462     }
463     else if (luai_numisnan(fltvalue(key)))
464       luaG_runerror(L, "table index is NaN");
465   }
466 #endif /* _KERNEL */
467   mp = mainposition(t, key);
468   if (!ttisnil(gval(mp)) || isdummy(mp)) {  /* main position is taken? */
469     Node *othern;
470     Node *f = getfreepos(t);  /* get a free place */
471     if (f == NULL) {  /* cannot find a free place? */
472       rehash(L, t, key);  /* grow table */
473       /* whatever called 'newkey' takes care of TM cache */
474       return luaH_set(L, t, key);  /* insert key into grown table */
475     }
476     lua_assert(!isdummy(f));
477     othern = mainposition(t, gkey(mp));
478     if (othern != mp) {  /* is colliding node out of its main position? */
479       /* yes; move colliding node into free position */
480       while (othern + gnext(othern) != mp)  /* find previous */
481         othern += gnext(othern);
482       gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */
483       *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */
484       if (gnext(mp) != 0) {
485         gnext(f) += cast_int(mp - f);  /* correct 'next' */
486         gnext(mp) = 0;  /* now 'mp' is free */
487       }
488       setnilvalue(gval(mp));
489     }
490     else {  /* colliding node is in its own main position */
491       /* new node will go into free position */
492       if (gnext(mp) != 0)
493         gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */
494       else lua_assert(gnext(f) == 0);
495       gnext(mp) = cast_int(f - mp);
496       mp = f;
497     }
498   }
499   setnodekey(L, &mp->i_key, key);
500   luaC_barrierback(L, t, key);
501   lua_assert(ttisnil(gval(mp)));
502   return gval(mp);
503 }
504 
505 
506 /*
507 ** search function for integers
508 */
509 const TValue *luaH_getint (Table *t, lua_Integer key) {
510   /* (1 <= key && key <= t->sizearray) */
511   if (l_castS2U(key) - 1 < t->sizearray)
512     return &t->array[key - 1];
513   else {
514     Node *n = hashint(t, key);
515     for (;;) {  /* check whether 'key' is somewhere in the chain */
516       if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key)
517         return gval(n);  /* that's it */
518       else {
519         int nx = gnext(n);
520         if (nx == 0) break;
521         n += nx;
522       }
523     }
524     return luaO_nilobject;
525   }
526 }
527 
528 
529 /*
530 ** search function for short strings
531 */
532 const TValue *luaH_getshortstr (Table *t, TString *key) {
533   Node *n = hashstr(t, key);
534   lua_assert(key->tt == LUA_TSHRSTR);
535   for (;;) {  /* check whether 'key' is somewhere in the chain */
536     const TValue *k = gkey(n);
537     if (ttisshrstring(k) && eqshrstr(tsvalue(k), key))
538       return gval(n);  /* that's it */
539     else {
540       int nx = gnext(n);
541       if (nx == 0)
542         return luaO_nilobject;  /* not found */
543       n += nx;
544     }
545   }
546 }
547 
548 
549 /*
550 ** "Generic" get version. (Not that generic: not valid for integers,
551 ** which may be in array part, nor for floats with integral values.)
552 */
553 static const TValue *getgeneric (Table *t, const TValue *key) {
554   Node *n = mainposition(t, key);
555   for (;;) {  /* check whether 'key' is somewhere in the chain */
556     if (luaV_rawequalobj(gkey(n), key))
557       return gval(n);  /* that's it */
558     else {
559       int nx = gnext(n);
560       if (nx == 0)
561         return luaO_nilobject;  /* not found */
562       n += nx;
563     }
564   }
565 }
566 
567 
568 const TValue *luaH_getstr (Table *t, TString *key) {
569   if (key->tt == LUA_TSHRSTR)
570     return luaH_getshortstr(t, key);
571   else {  /* for long strings, use generic case */
572     TValue ko;
573     setsvalue(cast(lua_State *, NULL), &ko, key);
574     return getgeneric(t, &ko);
575   }
576 }
577 
578 
579 /*
580 ** main search function
581 */
582 const TValue *luaH_get (Table *t, const TValue *key) {
583   switch (ttype(key)) {
584     case LUA_TSHRSTR: return luaH_getshortstr(t, tsvalue(key));
585     case LUA_TNUMINT: return luaH_getint(t, ivalue(key));
586     case LUA_TNIL: return luaO_nilobject;
587 #ifndef _KERNEL
588     case LUA_TNUMFLT: {
589       lua_Integer k;
590       if (luaV_tointeger(key, &k, 0)) /* index is int? */
591         return luaH_getint(t, k);  /* use specialized version */
592       /* else... */
593     }  /* FALLTHROUGH */
594 #endif /* _KERNEL */
595     default:
596       return getgeneric(t, key);
597   }
598 }
599 
600 
601 /*
602 ** beware: when using this function you probably need to check a GC
603 ** barrier and invalidate the TM cache.
604 */
605 TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
606   const TValue *p = luaH_get(t, key);
607   if (p != luaO_nilobject)
608     return cast(TValue *, p);
609   else return luaH_newkey(L, t, key);
610 }
611 
612 
613 void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
614   const TValue *p = luaH_getint(t, key);
615   TValue *cell;
616   if (p != luaO_nilobject)
617     cell = cast(TValue *, p);
618   else {
619     TValue k;
620     setivalue(&k, key);
621     cell = luaH_newkey(L, t, &k);
622   }
623   setobj2t(L, cell, value);
624 }
625 
626 
627 static int unbound_search (Table *t, unsigned int j) {
628   unsigned int i = j;  /* i is zero or a present index */
629   j++;
630   /* find 'i' and 'j' such that i is present and j is not */
631   while (!ttisnil(luaH_getint(t, j))) {
632     i = j;
633     if (j > cast(unsigned int, MAX_INT)/2) {  /* overflow? */
634       /* table was built with bad purposes: resort to linear search */
635       i = 1;
636       while (!ttisnil(luaH_getint(t, i))) i++;
637       return i - 1;
638     }
639     j *= 2;
640   }
641   /* now do a binary search between them */
642   while (j - i > 1) {
643     unsigned int m = (i+j)/2;
644     if (ttisnil(luaH_getint(t, m))) j = m;
645     else i = m;
646   }
647   return i;
648 }
649 
650 
651 /*
652 ** Try to find a boundary in table 't'. A 'boundary' is an integer index
653 ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil).
654 */
655 int luaH_getn (Table *t) {
656   unsigned int j = t->sizearray;
657   if (j > 0 && ttisnil(&t->array[j - 1])) {
658     /* there is a boundary in the array part: (binary) search for it */
659     unsigned int i = 0;
660     while (j - i > 1) {
661       unsigned int m = (i+j)/2;
662       if (ttisnil(&t->array[m - 1])) j = m;
663       else i = m;
664     }
665     return i;
666   }
667   /* else must find a boundary in hash part */
668   else if (isdummy(t->node))  /* hash part is empty? */
669     return j;  /* that is easy... */
670   else return unbound_search(t, j);
671 }
672 
673 
674 
675 #if defined(LUA_DEBUG)
676 
677 Node *luaH_mainposition (const Table *t, const TValue *key) {
678   return mainposition(t, key);
679 }
680 
681 int luaH_isdummy (Node *n) { return isdummy(n); }
682 
683 #endif
684