1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> 2<html> 3 4<head> 5<title>Lua 5.3 Reference Manual</title> 6<link rel="stylesheet" type="text/css" href="lua.css"> 7<link rel="stylesheet" type="text/css" href="manual.css"> 8<META HTTP-EQUIV="content-type" CONTENT="text/html; charset=iso-8859-1"> 9</head> 10 11<body> 12 13<hr> 14<h1> 15<a href="http://www.lua.org/"><img src="logo.gif" alt="" border="0"></a> 16Lua 5.3 Reference Manual 17</h1> 18 19by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes 20<p> 21<small> 22Copyright © 2015 Lua.org, PUC-Rio. 23Freely available under the terms of the 24<a href="http://www.lua.org/license.html">Lua license</a>. 25</small> 26<hr> 27<p> 28 29<a href="contents.html#contents">contents</A> 30· 31<a href="contents.html#index">index</A> 32 33<!-- ====================================================================== --> 34<p> 35 36<!-- Id: manual.of,v 1.146 2015/01/06 11:23:01 roberto Exp --> 37 38 39 40 41<h1>1 – <a name="1">Introduction</a></h1> 42 43<p> 44Lua is an extension programming language designed to support 45general procedural programming with data description 46facilities. 47Lua also offers good support for object-oriented programming, 48functional programming, and data-driven programming. 49Lua is intended to be used as a powerful, lightweight, 50embeddable scripting language for any program that needs one. 51Lua is implemented as a library, written in <em>clean C</em>, 52the common subset of Standard C and C++. 53 54 55<p> 56As an extension language, Lua has no notion of a "main" program: 57it only works <em>embedded</em> in a host client, 58called the <em>embedding program</em> or simply the <em>host</em>. 59The host program can invoke functions to execute a piece of Lua code, 60can write and read Lua variables, 61and can register C functions to be called by Lua code. 62Through the use of C functions, Lua can be augmented to cope with 63a wide range of different domains, 64thus creating customized programming languages sharing a syntactical framework. 65The Lua distribution includes a sample host program called <code>lua</code>, 66which uses the Lua library to offer a complete, standalone Lua interpreter, 67for interactive or batch use. 68 69 70<p> 71Lua is free software, 72and is provided as usual with no guarantees, 73as stated in its license. 74The implementation described in this manual is available 75at Lua's official web site, <code>www.lua.org</code>. 76 77 78<p> 79Like any other reference manual, 80this document is dry in places. 81For a discussion of the decisions behind the design of Lua, 82see the technical papers available at Lua's web site. 83For a detailed introduction to programming in Lua, 84see Roberto's book, <em>Programming in Lua</em>. 85 86 87 88<h1>2 – <a name="2">Basic Concepts</a></h1> 89 90<p> 91This section describes the basic concepts of the language. 92 93 94 95<h2>2.1 – <a name="2.1">Values and Types</a></h2> 96 97<p> 98Lua is a <em>dynamically typed language</em>. 99This means that 100variables do not have types; only values do. 101There are no type definitions in the language. 102All values carry their own type. 103 104 105<p> 106All values in Lua are <em>first-class values</em>. 107This means that all values can be stored in variables, 108passed as arguments to other functions, and returned as results. 109 110 111<p> 112There are eight basic types in Lua: 113<em>nil</em>, <em>boolean</em>, <em>number</em>, 114<em>string</em>, <em>function</em>, <em>userdata</em>, 115<em>thread</em>, and <em>table</em>. 116<em>Nil</em> is the type of the value <b>nil</b>, 117whose main property is to be different from any other value; 118it usually represents the absence of a useful value. 119<em>Boolean</em> is the type of the values <b>false</b> and <b>true</b>. 120Both <b>nil</b> and <b>false</b> make a condition false; 121any other value makes it true. 122<em>Number</em> represents both 123integer numbers and real (floating-point) numbers. 124<em>String</em> represents immutable sequences of bytes. 125 126Lua is 8-bit clean: 127strings can contain any 8-bit value, 128including embedded zeros ('<code>\0</code>'). 129Lua is also encoding-agnostic; 130it makes no assumptions about the contents of a string. 131 132 133<p> 134The type <em>number</em> uses two internal representations, 135one called <em>integer</em> and the other called <em>float</em>. 136Lua has explicit rules about when each representation is used, 137but it also converts between them automatically as needed (see <a href="#3.4.3">§3.4.3</a>). 138Therefore, 139the programmer may choose to mostly ignore the difference 140between integers and floats 141or to assume complete control over the representation of each number. 142Standard Lua uses 64-bit integers and double-precision (64-bit) floats, 143but you can also compile Lua so that it 144uses 32-bit integers and/or single-precision (32-bit) floats. 145The option with 32 bits for both integers and floats 146is particularly attractive 147for small machines and embedded systems. 148(See macro <code>LUA_32BITS</code> in file <code>luaconf.h</code>.) 149 150 151<p> 152Lua can call (and manipulate) functions written in Lua and 153functions written in C (see <a href="#3.4.10">§3.4.10</a>). 154Both are represented by the type <em>function</em>. 155 156 157<p> 158The type <em>userdata</em> is provided to allow arbitrary C data to 159be stored in Lua variables. 160A userdata value represents a block of raw memory. 161There are two kinds of userdata: 162<em>full userdata</em>, 163which is an object with a block of memory managed by Lua, 164and <em>light userdata</em>, 165which is simply a C pointer value. 166Userdata has no predefined operations in Lua, 167except assignment and identity test. 168By using <em>metatables</em>, 169the programmer can define operations for full userdata values 170(see <a href="#2.4">§2.4</a>). 171Userdata values cannot be created or modified in Lua, 172only through the C API. 173This guarantees the integrity of data owned by the host program. 174 175 176<p> 177The type <em>thread</em> represents independent threads of execution 178and it is used to implement coroutines (see <a href="#2.6">§2.6</a>). 179Lua threads are not related to operating-system threads. 180Lua supports coroutines on all systems, 181even those that do not support threads natively. 182 183 184<p> 185The type <em>table</em> implements associative arrays, 186that is, arrays that can be indexed not only with numbers, 187but with any Lua value except <b>nil</b> and NaN. 188(<em>Not a Number</em> is a special numeric value used to represent 189undefined or unrepresentable results, such as <code>0/0</code>.) 190Tables can be <em>heterogeneous</em>; 191that is, they can contain values of all types (except <b>nil</b>). 192Any key with value <b>nil</b> is not considered part of the table. 193Conversely, any key that is not part of a table has 194an associated value <b>nil</b>. 195 196 197<p> 198Tables are the sole data-structuring mechanism in Lua; 199they can be used to represent ordinary arrays, sequences, 200symbol tables, sets, records, graphs, trees, etc. 201To represent records, Lua uses the field name as an index. 202The language supports this representation by 203providing <code>a.name</code> as syntactic sugar for <code>a["name"]</code>. 204There are several convenient ways to create tables in Lua 205(see <a href="#3.4.9">§3.4.9</a>). 206 207 208<p> 209We use the term <em>sequence</em> to denote a table where 210the set of all positive numeric keys is equal to {1..<em>n</em>} 211for some non-negative integer <em>n</em>, 212which is called the length of the sequence (see <a href="#3.4.7">§3.4.7</a>). 213 214 215<p> 216Like indices, 217the values of table fields can be of any type. 218In particular, 219because functions are first-class values, 220table fields can contain functions. 221Thus tables can also carry <em>methods</em> (see <a href="#3.4.11">§3.4.11</a>). 222 223 224<p> 225The indexing of tables follows 226the definition of raw equality in the language. 227The expressions <code>a[i]</code> and <code>a[j]</code> 228denote the same table element 229if and only if <code>i</code> and <code>j</code> are raw equal 230(that is, equal without metamethods). 231In particular, floats with integral values 232are equal to their respective integers 233(e.g., <code>1.0 == 1</code>). 234To avoid ambiguities, 235any float with integral value used as a key 236is converted to its respective integer. 237For instance, if you write <code>a[2.0] = true</code>, 238the actual key inserted into the table will be the 239integer <code>2</code>. 240(On the other hand, 2412 and "<code>2</code>" are different Lua values and therefore 242denote different table entries.) 243 244 245<p> 246Tables, functions, threads, and (full) userdata values are <em>objects</em>: 247variables do not actually <em>contain</em> these values, 248only <em>references</em> to them. 249Assignment, parameter passing, and function returns 250always manipulate references to such values; 251these operations do not imply any kind of copy. 252 253 254<p> 255The library function <a href="#pdf-type"><code>type</code></a> returns a string describing the type 256of a given value (see <a href="#6.1">§6.1</a>). 257 258 259 260 261 262<h2>2.2 – <a name="2.2">Environments and the Global Environment</a></h2> 263 264<p> 265As will be discussed in <a href="#3.2">§3.2</a> and <a href="#3.3.3">§3.3.3</a>, 266any reference to a free name 267(that is, a name not bound to any declaration) <code>var</code> 268is syntactically translated to <code>_ENV.var</code>. 269Moreover, every chunk is compiled in the scope of 270an external local variable named <code>_ENV</code> (see <a href="#3.3.2">§3.3.2</a>), 271so <code>_ENV</code> itself is never a free name in a chunk. 272 273 274<p> 275Despite the existence of this external <code>_ENV</code> variable and 276the translation of free names, 277<code>_ENV</code> is a completely regular name. 278In particular, 279you can define new variables and parameters with that name. 280Each reference to a free name uses the <code>_ENV</code> that is 281visible at that point in the program, 282following the usual visibility rules of Lua (see <a href="#3.5">§3.5</a>). 283 284 285<p> 286Any table used as the value of <code>_ENV</code> is called an <em>environment</em>. 287 288 289<p> 290Lua keeps a distinguished environment called the <em>global environment</em>. 291This value is kept at a special index in the C registry (see <a href="#4.5">§4.5</a>). 292In Lua, the global variable <a href="#pdf-_G"><code>_G</code></a> is initialized with this same value. 293(<a href="#pdf-_G"><code>_G</code></a> is never used internally.) 294 295 296<p> 297When Lua loads a chunk, 298the default value for its <code>_ENV</code> upvalue 299is the global environment (see <a href="#pdf-load"><code>load</code></a>). 300Therefore, by default, 301free names in Lua code refer to entries in the global environment 302(and, therefore, they are also called <em>global variables</em>). 303Moreover, all standard libraries are loaded in the global environment 304and some functions there operate on that environment. 305You can use <a href="#pdf-load"><code>load</code></a> (or <a href="#pdf-loadfile"><code>loadfile</code></a>) 306to load a chunk with a different environment. 307(In C, you have to load the chunk and then change the value 308of its first upvalue.) 309 310 311 312 313 314<h2>2.3 – <a name="2.3">Error Handling</a></h2> 315 316<p> 317Because Lua is an embedded extension language, 318all Lua actions start from C code in the host program 319calling a function from the Lua library. 320(When you use Lua standalone, 321the <code>lua</code> application is the host program.) 322Whenever an error occurs during 323the compilation or execution of a Lua chunk, 324control returns to the host, 325which can take appropriate measures 326(such as printing an error message). 327 328 329<p> 330Lua code can explicitly generate an error by calling the 331<a href="#pdf-error"><code>error</code></a> function. 332If you need to catch errors in Lua, 333you can use <a href="#pdf-pcall"><code>pcall</code></a> or <a href="#pdf-xpcall"><code>xpcall</code></a> 334to call a given function in <em>protected mode</em>. 335 336 337<p> 338Whenever there is an error, 339an <em>error object</em> (also called an <em>error message</em>) 340is propagated with information about the error. 341Lua itself only generates errors whose error object is a string, 342but programs may generate errors with 343any value as the error object. 344It is up to the Lua program or its host to handle such error objects. 345 346 347<p> 348When you use <a href="#pdf-xpcall"><code>xpcall</code></a> or <a href="#lua_pcall"><code>lua_pcall</code></a>, 349you may give a <em>message handler</em> 350to be called in case of errors. 351This function is called with the original error message 352and returns a new error message. 353It is called before the error unwinds the stack, 354so that it can gather more information about the error, 355for instance by inspecting the stack and creating a stack traceback. 356This message handler is still protected by the protected call; 357so, an error inside the message handler 358will call the message handler again. 359If this loop goes on for too long, 360Lua breaks it and returns an appropriate message. 361 362 363 364 365 366<h2>2.4 – <a name="2.4">Metatables and Metamethods</a></h2> 367 368<p> 369Every value in Lua can have a <em>metatable</em>. 370This <em>metatable</em> is an ordinary Lua table 371that defines the behavior of the original value 372under certain special operations. 373You can change several aspects of the behavior 374of operations over a value by setting specific fields in its metatable. 375For instance, when a non-numeric value is the operand of an addition, 376Lua checks for a function in the field "<code>__add</code>" of the value's metatable. 377If it finds one, 378Lua calls this function to perform the addition. 379 380 381<p> 382The keys in a metatable are derived from the <em>event</em> names; 383the corresponding values are called <em>metamethods</em>. 384In the previous example, the event is <code>"add"</code> 385and the metamethod is the function that performs the addition. 386 387 388<p> 389You can query the metatable of any value 390using the <a href="#pdf-getmetatable"><code>getmetatable</code></a> function. 391 392 393<p> 394You can replace the metatable of tables 395using the <a href="#pdf-setmetatable"><code>setmetatable</code></a> function. 396You cannot change the metatable of other types from Lua 397(except by using the debug library (<a href="#6.10">§6.10</a>)); 398you must use the C API for that. 399 400 401<p> 402Tables and full userdata have individual metatables 403(although multiple tables and userdata can share their metatables). 404Values of all other types share one single metatable per type; 405that is, there is one single metatable for all numbers, 406one for all strings, etc. 407By default, a value has no metatable, 408but the string library sets a metatable for the string type (see <a href="#6.4">§6.4</a>). 409 410 411<p> 412A metatable controls how an object behaves in 413arithmetic operations, bitwise operations, 414order comparisons, concatenation, length operation, calls, and indexing. 415A metatable also can define a function to be called 416when a userdata or a table is garbage collected (<a href="#2.5">§2.5</a>). 417 418 419<p> 420A detailed list of events controlled by metatables is given next. 421Each operation is identified by its corresponding event name. 422The key for each event is a string with its name prefixed by 423two underscores, '<code>__</code>'; 424for instance, the key for operation "add" is the 425string "<code>__add</code>". 426Note that queries for metamethods are always raw; 427the access to a metamethod does not invoke other metamethods. 428You can emulate how Lua queries a metamethod for an object <code>obj</code> 429with the following code: 430 431<pre> 432 rawget(getmetatable(obj) or {}, "__" .. event_name) 433</pre> 434 435<p> 436For the unary operators (negation, length, and bitwise not), 437the metamethod is computed and called with a dummy second operand, 438equal to the first one. 439This extra operand is only to simplify Lua's internals 440(by making these operators behave like a binary operation) 441and may be removed in future versions. 442(For most uses this extra operand is irrelevant.) 443 444 445 446<ul> 447 448<li><b>"add": </b> 449the <code>+</code> operation. 450 451If any operand for an addition is not a number 452(nor a string coercible to a number), 453Lua will try to call a metamethod. 454First, Lua will check the first operand (even if it is valid). 455If that operand does not define a metamethod for the "<code>__add</code>" event, 456then Lua will check the second operand. 457If Lua can find a metamethod, 458it calls the metamethod with the two operands as arguments, 459and the result of the call 460(adjusted to one value) 461is the result of the operation. 462Otherwise, 463it raises an error. 464</li> 465 466<li><b>"sub": </b> 467the <code>-</code> operation. 468 469Behavior similar to the "add" operation. 470</li> 471 472<li><b>"mul": </b> 473the <code>*</code> operation. 474 475Behavior similar to the "add" operation. 476</li> 477 478<li><b>"div": </b> 479the <code>/</code> operation. 480 481Behavior similar to the "add" operation. 482</li> 483 484<li><b>"mod": </b> 485the <code>%</code> operation. 486 487Behavior similar to the "add" operation. 488</li> 489 490<li><b>"pow": </b> 491the <code>^</code> (exponentiation) operation. 492 493Behavior similar to the "add" operation. 494</li> 495 496<li><b>"unm": </b> 497the <code>-</code> (unary minus) operation. 498 499Behavior similar to the "add" operation. 500</li> 501 502<li><b>"idiv": </b> 503the <code>//</code> (floor division) operation. 504 505Behavior similar to the "add" operation. 506</li> 507 508<li><b>"band": </b> 509the <code>&</code> (bitwise and) operation. 510 511Behavior similar to the "add" operation, 512except that Lua will try a metamethod 513if any operator is neither an integer 514nor a value coercible to an integer (see <a href="#3.4.3">§3.4.3</a>). 515</li> 516 517<li><b>"bor": </b> 518the <code>|</code> (bitwise or) operation. 519 520Behavior similar to the "band" operation. 521</li> 522 523<li><b>"bxor": </b> 524the <code>~</code> (bitwise exclusive or) operation. 525 526Behavior similar to the "band" operation. 527</li> 528 529<li><b>"bnot": </b> 530the <code>~</code> (bitwise unary not) operation. 531 532Behavior similar to the "band" operation. 533</li> 534 535<li><b>"shl": </b> 536the <code><<</code> (bitwise left shift) operation. 537 538Behavior similar to the "band" operation. 539</li> 540 541<li><b>"shr": </b> 542the <code>>></code> (bitwise right shift) operation. 543 544Behavior similar to the "band" operation. 545</li> 546 547<li><b>"concat": </b> 548the <code>..</code> (concatenation) operation. 549 550Behavior similar to the "add" operation, 551except that Lua will try a metamethod 552if any operator is neither a string nor a number 553(which is always coercible to a string). 554</li> 555 556<li><b>"len": </b> 557the <code>#</code> (length) operation. 558 559If the object is not a string, 560Lua will try its metamethod. 561If there is a metamethod, 562Lua calls it with the object as argument, 563and the result of the call 564(always adjusted to one value) 565is the result of the operation. 566If there is no metamethod but the object is a table, 567then Lua uses the table length operation (see <a href="#3.4.7">§3.4.7</a>). 568Otherwise, Lua raises an error. 569</li> 570 571<li><b>"eq": </b> 572the <code>==</code> (equal) operation. 573 574Behavior similar to the "add" operation, 575except that Lua will try a metamethod only when the values 576being compared are either both tables or both full userdata 577and they are not primitively equal. 578The result of the call is always converted to a boolean. 579</li> 580 581<li><b>"lt": </b> 582the <code><</code> (less than) operation. 583 584Behavior similar to the "add" operation, 585except that Lua will try a metamethod only when the values 586being compared are neither both numbers nor both strings. 587The result of the call is always converted to a boolean. 588</li> 589 590<li><b>"le": </b> 591the <code><=</code> (less equal) operation. 592 593Unlike other operations, 594The less-equal operation can use two different events. 595First, Lua looks for the "<code>__le</code>" metamethod in both operands, 596like in the "lt" operation. 597If it cannot find such a metamethod, 598then it will try the "<code>__lt</code>" event, 599assuming that <code>a <= b</code> is equivalent to <code>not (b < a)</code>. 600As with the other comparison operators, 601the result is always a boolean. 602</li> 603 604<li><b>"index": </b> 605The indexing access <code>table[key]</code>. 606 607This event happens when <code>table</code> is not a table or 608when <code>key</code> is not present in <code>table</code>. 609The metamethod is looked up in <code>table</code>. 610 611 612<p> 613Despite the name, 614the metamethod for this event can be either a function or a table. 615If it is a function, 616it is called with <code>table</code> and <code>key</code> as arguments. 617If it is a table, 618the final result is the result of indexing this table with <code>key</code>. 619(This indexing is regular, not raw, 620and therefore can trigger another metamethod.) 621</li> 622 623<li><b>"newindex": </b> 624The indexing assignment <code>table[key] = value</code>. 625 626Like the index event, 627this event happens when <code>table</code> is not a table or 628when <code>key</code> is not present in <code>table</code>. 629The metamethod is looked up in <code>table</code>. 630 631 632<p> 633Like with indexing, 634the metamethod for this event can be either a function or a table. 635If it is a function, 636it is called with <code>table</code>, <code>key</code>, and <code>value</code> as arguments. 637If it is a table, 638Lua does an indexing assignment to this table with the same key and value. 639(This assignment is regular, not raw, 640and therefore can trigger another metamethod.) 641 642 643<p> 644Whenever there is a "newindex" metamethod, 645Lua does not perform the primitive assignment. 646(If necessary, 647the metamethod itself can call <a href="#pdf-rawset"><code>rawset</code></a> 648to do the assignment.) 649</li> 650 651<li><b>"call": </b> 652The call operation <code>func(args)</code>. 653 654This event happens when Lua tries to call a non-function value 655(that is, <code>func</code> is not a function). 656The metamethod is looked up in <code>func</code>. 657If present, 658the metamethod is called with <code>func</code> as its first argument, 659followed by the arguments of the original call (<code>args</code>). 660</li> 661 662</ul> 663 664 665 666 667<h2>2.5 – <a name="2.5">Garbage Collection</a></h2> 668 669<p> 670Lua performs automatic memory management. 671This means that 672you do not have to worry about allocating memory for new objects 673or freeing it when the objects are no longer needed. 674Lua manages memory automatically by running 675a <em>garbage collector</em> to collect all <em>dead objects</em> 676(that is, objects that are no longer accessible from Lua). 677All memory used by Lua is subject to automatic management: 678strings, tables, userdata, functions, threads, internal structures, etc. 679 680 681<p> 682Lua implements an incremental mark-and-sweep collector. 683It uses two numbers to control its garbage-collection cycles: 684the <em>garbage-collector pause</em> and 685the <em>garbage-collector step multiplier</em>. 686Both use percentage points as units 687(e.g., a value of 100 means an internal value of 1). 688 689 690<p> 691The garbage-collector pause 692controls how long the collector waits before starting a new cycle. 693Larger values make the collector less aggressive. 694Values smaller than 100 mean the collector will not wait to 695start a new cycle. 696A value of 200 means that the collector waits for the total memory in use 697to double before starting a new cycle. 698 699 700<p> 701The garbage-collector step multiplier 702controls the relative speed of the collector relative to 703memory allocation. 704Larger values make the collector more aggressive but also increase 705the size of each incremental step. 706You should not use values smaller than 100, 707because they make the collector too slow and 708can result in the collector never finishing a cycle. 709The default is 200, 710which means that the collector runs at "twice" 711the speed of memory allocation. 712 713 714<p> 715If you set the step multiplier to a very large number 716(larger than 10% of the maximum number of 717bytes that the program may use), 718the collector behaves like a stop-the-world collector. 719If you then set the pause to 200, 720the collector behaves as in old Lua versions, 721doing a complete collection every time Lua doubles its 722memory usage. 723 724 725<p> 726You can change these numbers by calling <a href="#lua_gc"><code>lua_gc</code></a> in C 727or <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> in Lua. 728You can also use these functions to control 729the collector directly (e.g., stop and restart it). 730 731 732 733<h3>2.5.1 – <a name="2.5.1">Garbage-Collection Metamethods</a></h3> 734 735<p> 736You can set garbage-collector metamethods for tables 737and, using the C API, 738for full userdata (see <a href="#2.4">§2.4</a>). 739These metamethods are also called <em>finalizers</em>. 740Finalizers allow you to coordinate Lua's garbage collection 741with external resource management 742(such as closing files, network or database connections, 743or freeing your own memory). 744 745 746<p> 747For an object (table or userdata) to be finalized when collected, 748you must <em>mark</em> it for finalization. 749 750You mark an object for finalization when you set its metatable 751and the metatable has a field indexed by the string "<code>__gc</code>". 752Note that if you set a metatable without a <code>__gc</code> field 753and later create that field in the metatable, 754the object will not be marked for finalization. 755However, after an object has been marked, 756you can freely change the <code>__gc</code> field of its metatable. 757 758 759<p> 760When a marked object becomes garbage, 761it is not collected immediately by the garbage collector. 762Instead, Lua puts it in a list. 763After the collection, 764Lua goes through that list. 765For each object in the list, 766it checks the object's <code>__gc</code> metamethod: 767If it is a function, 768Lua calls it with the object as its single argument; 769if the metamethod is not a function, 770Lua simply ignores it. 771 772 773<p> 774At the end of each garbage-collection cycle, 775the finalizers for objects are called in 776the reverse order that the objects were marked for finalization, 777among those collected in that cycle; 778that is, the first finalizer to be called is the one associated 779with the object marked last in the program. 780The execution of each finalizer may occur at any point during 781the execution of the regular code. 782 783 784<p> 785Because the object being collected must still be used by the finalizer, 786that object (and other objects accessible only through it) 787must be <em>resurrected</em> by Lua. 788Usually, this resurrection is transient, 789and the object memory is freed in the next garbage-collection cycle. 790However, if the finalizer stores the object in some global place 791(e.g., a global variable), 792then the resurrection is permanent. 793Moreover, if the finalizer marks a finalizing object for finalization again, 794its finalizer will be called again in the next cycle where the 795object is unreachable. 796In any case, 797the object memory is freed only in the GC cycle where 798the object is unreachable and not marked for finalization. 799 800 801<p> 802When you close a state (see <a href="#lua_close"><code>lua_close</code></a>), 803Lua calls the finalizers of all objects marked for finalization, 804following the reverse order that they were marked. 805If any finalizer marks objects for collection during that phase, 806these marks have no effect. 807 808 809 810 811 812<h3>2.5.2 – <a name="2.5.2">Weak Tables</a></h3> 813 814<p> 815A <em>weak table</em> is a table whose elements are 816<em>weak references</em>. 817A weak reference is ignored by the garbage collector. 818In other words, 819if the only references to an object are weak references, 820then the garbage collector will collect that object. 821 822 823<p> 824A weak table can have weak keys, weak values, or both. 825A table with weak keys allows the collection of its keys, 826but prevents the collection of its values. 827A table with both weak keys and weak values allows the collection of 828both keys and values. 829In any case, if either the key or the value is collected, 830the whole pair is removed from the table. 831The weakness of a table is controlled by the 832<code>__mode</code> field of its metatable. 833If the <code>__mode</code> field is a string containing the character '<code>k</code>', 834the keys in the table are weak. 835If <code>__mode</code> contains '<code>v</code>', 836the values in the table are weak. 837 838 839<p> 840A table with weak keys and strong values 841is also called an <em>ephemeron table</em>. 842In an ephemeron table, 843a value is considered reachable only if its key is reachable. 844In particular, 845if the only reference to a key comes through its value, 846the pair is removed. 847 848 849<p> 850Any change in the weakness of a table may take effect only 851at the next collect cycle. 852In particular, if you change the weakness to a stronger mode, 853Lua may still collect some items from that table 854before the change takes effect. 855 856 857<p> 858Only objects that have an explicit construction 859are removed from weak tables. 860Values, such as numbers and light C functions, 861are not subject to garbage collection, 862and therefore are not removed from weak tables 863(unless their associated values are collected). 864Although strings are subject to garbage collection, 865they do not have an explicit construction, 866and therefore are not removed from weak tables. 867 868 869<p> 870Resurrected objects 871(that is, objects being finalized 872and objects accessible only through objects being finalized) 873have a special behavior in weak tables. 874They are removed from weak values before running their finalizers, 875but are removed from weak keys only in the next collection 876after running their finalizers, when such objects are actually freed. 877This behavior allows the finalizer to access properties 878associated with the object through weak tables. 879 880 881<p> 882If a weak table is among the resurrected objects in a collection cycle, 883it may not be properly cleared until the next cycle. 884 885 886 887 888 889 890 891<h2>2.6 – <a name="2.6">Coroutines</a></h2> 892 893<p> 894Lua supports coroutines, 895also called <em>collaborative multithreading</em>. 896A coroutine in Lua represents an independent thread of execution. 897Unlike threads in multithread systems, however, 898a coroutine only suspends its execution by explicitly calling 899a yield function. 900 901 902<p> 903You create a coroutine by calling <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>. 904Its sole argument is a function 905that is the main function of the coroutine. 906The <code>create</code> function only creates a new coroutine and 907returns a handle to it (an object of type <em>thread</em>); 908it does not start the coroutine. 909 910 911<p> 912You execute a coroutine by calling <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>. 913When you first call <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>, 914passing as its first argument 915a thread returned by <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>, 916the coroutine starts its execution, 917at the first line of its main function. 918Extra arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> are passed 919as arguments to the coroutine's main function. 920After the coroutine starts running, 921it runs until it terminates or <em>yields</em>. 922 923 924<p> 925A coroutine can terminate its execution in two ways: 926normally, when its main function returns 927(explicitly or implicitly, after the last instruction); 928and abnormally, if there is an unprotected error. 929In case of normal termination, 930<a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>true</b>, 931plus any values returned by the coroutine main function. 932In case of errors, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>false</b> 933plus an error message. 934 935 936<p> 937A coroutine yields by calling <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>. 938When a coroutine yields, 939the corresponding <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns immediately, 940even if the yield happens inside nested function calls 941(that is, not in the main function, 942but in a function directly or indirectly called by the main function). 943In the case of a yield, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> also returns <b>true</b>, 944plus any values passed to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>. 945The next time you resume the same coroutine, 946it continues its execution from the point where it yielded, 947with the call to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a> returning any extra 948arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>. 949 950 951<p> 952Like <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>, 953the <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> function also creates a coroutine, 954but instead of returning the coroutine itself, 955it returns a function that, when called, resumes the coroutine. 956Any arguments passed to this function 957go as extra arguments to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>. 958<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> returns all the values returned by <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>, 959except the first one (the boolean error code). 960Unlike <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>, 961<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> does not catch errors; 962any error is propagated to the caller. 963 964 965<p> 966As an example of how coroutines work, 967consider the following code: 968 969<pre> 970 function foo (a) 971 print("foo", a) 972 return coroutine.yield(2*a) 973 end 974 975 co = coroutine.create(function (a,b) 976 print("co-body", a, b) 977 local r = foo(a+1) 978 print("co-body", r) 979 local r, s = coroutine.yield(a+b, a-b) 980 print("co-body", r, s) 981 return b, "end" 982 end) 983 984 print("main", coroutine.resume(co, 1, 10)) 985 print("main", coroutine.resume(co, "r")) 986 print("main", coroutine.resume(co, "x", "y")) 987 print("main", coroutine.resume(co, "x", "y")) 988</pre><p> 989When you run it, it produces the following output: 990 991<pre> 992 co-body 1 10 993 foo 2 994 main true 4 995 co-body r 996 main true 11 -9 997 co-body x y 998 main true 10 end 999 main false cannot resume dead coroutine 1000</pre> 1001 1002<p> 1003You can also create and manipulate coroutines through the C API: 1004see functions <a href="#lua_newthread"><code>lua_newthread</code></a>, <a href="#lua_resume"><code>lua_resume</code></a>, 1005and <a href="#lua_yield"><code>lua_yield</code></a>. 1006 1007 1008 1009 1010 1011<h1>3 – <a name="3">The Language</a></h1> 1012 1013<p> 1014This section describes the lexis, the syntax, and the semantics of Lua. 1015In other words, 1016this section describes 1017which tokens are valid, 1018how they can be combined, 1019and what their combinations mean. 1020 1021 1022<p> 1023Language constructs will be explained using the usual extended BNF notation, 1024in which 1025{<em>a</em>} means 0 or more <em>a</em>'s, and 1026[<em>a</em>] means an optional <em>a</em>. 1027Non-terminals are shown like non-terminal, 1028keywords are shown like <b>kword</b>, 1029and other terminal symbols are shown like ‘<b>=</b>’. 1030The complete syntax of Lua can be found in <a href="#9">§9</a> 1031at the end of this manual. 1032 1033 1034 1035<h2>3.1 – <a name="3.1">Lexical Conventions</a></h2> 1036 1037<p> 1038Lua is a free-form language. 1039It ignores spaces (including new lines) and comments 1040between lexical elements (tokens), 1041except as delimiters between names and keywords. 1042 1043 1044<p> 1045<em>Names</em> 1046(also called <em>identifiers</em>) 1047in Lua can be any string of letters, 1048digits, and underscores, 1049not beginning with a digit. 1050Identifiers are used to name variables, table fields, and labels. 1051 1052 1053<p> 1054The following <em>keywords</em> are reserved 1055and cannot be used as names: 1056 1057 1058<pre> 1059 and break do else elseif end 1060 false for function goto if in 1061 local nil not or repeat return 1062 then true until while 1063</pre> 1064 1065<p> 1066Lua is a case-sensitive language: 1067<code>and</code> is a reserved word, but <code>And</code> and <code>AND</code> 1068are two different, valid names. 1069As a convention, 1070programs should avoid creating 1071names that start with an underscore followed by 1072one or more uppercase letters (such as <a href="#pdf-_VERSION"><code>_VERSION</code></a>). 1073 1074 1075<p> 1076The following strings denote other tokens: 1077 1078<pre> 1079 + - * / % ^ # 1080 & ~ | << >> // 1081 == ~= <= >= < > = 1082 ( ) { } [ ] :: 1083 ; : , . .. ... 1084</pre> 1085 1086<p> 1087<em>Literal strings</em> 1088can be delimited by matching single or double quotes, 1089and can contain the following C-like escape sequences: 1090'<code>\a</code>' (bell), 1091'<code>\b</code>' (backspace), 1092'<code>\f</code>' (form feed), 1093'<code>\n</code>' (newline), 1094'<code>\r</code>' (carriage return), 1095'<code>\t</code>' (horizontal tab), 1096'<code>\v</code>' (vertical tab), 1097'<code>\\</code>' (backslash), 1098'<code>\"</code>' (quotation mark [double quote]), 1099and '<code>\'</code>' (apostrophe [single quote]). 1100A backslash followed by a real newline 1101results in a newline in the string. 1102The escape sequence '<code>\z</code>' skips the following span 1103of white-space characters, 1104including line breaks; 1105it is particularly useful to break and indent a long literal string 1106into multiple lines without adding the newlines and spaces 1107into the string contents. 1108 1109 1110<p> 1111Strings in Lua can contain any 8-bit value, including embedded zeros, 1112which can be specified as '<code>\0</code>'. 1113More generally, 1114we can specify any byte in a literal string by its numerical value. 1115This can be done 1116with the escape sequence <code>\x<em>XX</em></code>, 1117where <em>XX</em> is a sequence of exactly two hexadecimal digits, 1118or with the escape sequence <code>\<em>ddd</em></code>, 1119where <em>ddd</em> is a sequence of up to three decimal digits. 1120(Note that if a decimal escape sequence is to be followed by a digit, 1121it must be expressed using exactly three digits.) 1122 1123 1124<p> 1125The UTF-8 encoding of a Unicode character 1126can be inserted in a literal string with 1127the escape sequence <code>\u{<em>XXX</em>}</code> 1128(note the mandatory enclosing brackets), 1129where <em>XXX</em> is a sequence of one or more hexadecimal digits 1130representing the character code point. 1131 1132 1133<p> 1134Literal strings can also be defined using a long format 1135enclosed by <em>long brackets</em>. 1136We define an <em>opening long bracket of level <em>n</em></em> as an opening 1137square bracket followed by <em>n</em> equal signs followed by another 1138opening square bracket. 1139So, an opening long bracket of level 0 is written as <code>[[</code>, 1140an opening long bracket of level 1 is written as <code>[=[</code>, 1141and so on. 1142A <em>closing long bracket</em> is defined similarly; 1143for instance, 1144a closing long bracket of level 4 is written as <code>]====]</code>. 1145A <em>long literal</em> starts with an opening long bracket of any level and 1146ends at the first closing long bracket of the same level. 1147It can contain any text except a closing bracket of the same level. 1148Literals in this bracketed form can run for several lines, 1149do not interpret any escape sequences, 1150and ignore long brackets of any other level. 1151Any kind of end-of-line sequence 1152(carriage return, newline, carriage return followed by newline, 1153or newline followed by carriage return) 1154is converted to a simple newline. 1155 1156 1157<p> 1158Any byte in a literal string not 1159explicitly affected by the previous rules represents itself. 1160However, Lua opens files for parsing in text mode, 1161and the system file functions may have problems with 1162some control characters. 1163So, it is safer to represent 1164non-text data as a quoted literal with 1165explicit escape sequences for non-text characters. 1166 1167 1168<p> 1169For convenience, 1170when the opening long bracket is immediately followed by a newline, 1171the newline is not included in the string. 1172As an example, in a system using ASCII 1173(in which '<code>a</code>' is coded as 97, 1174newline is coded as 10, and '<code>1</code>' is coded as 49), 1175the five literal strings below denote the same string: 1176 1177<pre> 1178 a = 'alo\n123"' 1179 a = "alo\n123\"" 1180 a = '\97lo\10\04923"' 1181 a = [[alo 1182 123"]] 1183 a = [==[ 1184 alo 1185 123"]==] 1186</pre> 1187 1188<p> 1189A <em>numerical constant</em> (or <em>numeral</em>) 1190can be written with an optional fractional part 1191and an optional decimal exponent, 1192marked by a letter '<code>e</code>' or '<code>E</code>'. 1193Lua also accepts hexadecimal constants, 1194which start with <code>0x</code> or <code>0X</code>. 1195Hexadecimal constants also accept an optional fractional part 1196plus an optional binary exponent, 1197marked by a letter '<code>p</code>' or '<code>P</code>'. 1198A numeric constant with a fractional dot or an exponent 1199denotes a float; 1200otherwise it denotes an integer. 1201Examples of valid integer constants are 1202 1203<pre> 1204 3 345 0xff 0xBEBADA 1205</pre><p> 1206Examples of valid float constants are 1207 1208<pre> 1209 3.0 3.1416 314.16e-2 0.31416E1 34e1 1210 0x0.1E 0xA23p-4 0X1.921FB54442D18P+1 1211</pre> 1212 1213<p> 1214A <em>comment</em> starts with a double hyphen (<code>--</code>) 1215anywhere outside a string. 1216If the text immediately after <code>--</code> is not an opening long bracket, 1217the comment is a <em>short comment</em>, 1218which runs until the end of the line. 1219Otherwise, it is a <em>long comment</em>, 1220which runs until the corresponding closing long bracket. 1221Long comments are frequently used to disable code temporarily. 1222 1223 1224 1225 1226 1227<h2>3.2 – <a name="3.2">Variables</a></h2> 1228 1229<p> 1230Variables are places that store values. 1231There are three kinds of variables in Lua: 1232global variables, local variables, and table fields. 1233 1234 1235<p> 1236A single name can denote a global variable or a local variable 1237(or a function's formal parameter, 1238which is a particular kind of local variable): 1239 1240<pre> 1241 var ::= Name 1242</pre><p> 1243Name denotes identifiers, as defined in <a href="#3.1">§3.1</a>. 1244 1245 1246<p> 1247Any variable name is assumed to be global unless explicitly declared 1248as a local (see <a href="#3.3.7">§3.3.7</a>). 1249Local variables are <em>lexically scoped</em>: 1250local variables can be freely accessed by functions 1251defined inside their scope (see <a href="#3.5">§3.5</a>). 1252 1253 1254<p> 1255Before the first assignment to a variable, its value is <b>nil</b>. 1256 1257 1258<p> 1259Square brackets are used to index a table: 1260 1261<pre> 1262 var ::= prefixexp ‘<b>[</b>’ exp ‘<b>]</b>’ 1263</pre><p> 1264The meaning of accesses to table fields can be changed via metatables. 1265An access to an indexed variable <code>t[i]</code> is equivalent to 1266a call <code>gettable_event(t,i)</code>. 1267(See <a href="#2.4">§2.4</a> for a complete description of the 1268<code>gettable_event</code> function. 1269This function is not defined or callable in Lua. 1270We use it here only for explanatory purposes.) 1271 1272 1273<p> 1274The syntax <code>var.Name</code> is just syntactic sugar for 1275<code>var["Name"]</code>: 1276 1277<pre> 1278 var ::= prefixexp ‘<b>.</b>’ Name 1279</pre> 1280 1281<p> 1282An access to a global variable <code>x</code> 1283is equivalent to <code>_ENV.x</code>. 1284Due to the way that chunks are compiled, 1285<code>_ENV</code> is never a global name (see <a href="#2.2">§2.2</a>). 1286 1287 1288 1289 1290 1291<h2>3.3 – <a name="3.3">Statements</a></h2> 1292 1293<p> 1294Lua supports an almost conventional set of statements, 1295similar to those in Pascal or C. 1296This set includes 1297assignments, control structures, function calls, 1298and variable declarations. 1299 1300 1301 1302<h3>3.3.1 – <a name="3.3.1">Blocks</a></h3> 1303 1304<p> 1305A block is a list of statements, 1306which are executed sequentially: 1307 1308<pre> 1309 block ::= {stat} 1310</pre><p> 1311Lua has <em>empty statements</em> 1312that allow you to separate statements with semicolons, 1313start a block with a semicolon 1314or write two semicolons in sequence: 1315 1316<pre> 1317 stat ::= ‘<b>;</b>’ 1318</pre> 1319 1320<p> 1321Function calls and assignments 1322can start with an open parenthesis. 1323This possibility leads to an ambiguity in Lua's grammar. 1324Consider the following fragment: 1325 1326<pre> 1327 a = b + c 1328 (print or io.write)('done') 1329</pre><p> 1330The grammar could see it in two ways: 1331 1332<pre> 1333 a = b + c(print or io.write)('done') 1334 1335 a = b + c; (print or io.write)('done') 1336</pre><p> 1337The current parser always sees such constructions 1338in the first way, 1339interpreting the open parenthesis 1340as the start of the arguments to a call. 1341To avoid this ambiguity, 1342it is a good practice to always precede with a semicolon 1343statements that start with a parenthesis: 1344 1345<pre> 1346 ;(print or io.write)('done') 1347</pre> 1348 1349<p> 1350A block can be explicitly delimited to produce a single statement: 1351 1352<pre> 1353 stat ::= <b>do</b> block <b>end</b> 1354</pre><p> 1355Explicit blocks are useful 1356to control the scope of variable declarations. 1357Explicit blocks are also sometimes used to 1358add a <b>return</b> statement in the middle 1359of another block (see <a href="#3.3.4">§3.3.4</a>). 1360 1361 1362 1363 1364 1365<h3>3.3.2 – <a name="3.3.2">Chunks</a></h3> 1366 1367<p> 1368The unit of compilation of Lua is called a <em>chunk</em>. 1369Syntactically, 1370a chunk is simply a block: 1371 1372<pre> 1373 chunk ::= block 1374</pre> 1375 1376<p> 1377Lua handles a chunk as the body of an anonymous function 1378with a variable number of arguments 1379(see <a href="#3.4.11">§3.4.11</a>). 1380As such, chunks can define local variables, 1381receive arguments, and return values. 1382Moreover, such anonymous function is compiled as in the 1383scope of an external local variable called <code>_ENV</code> (see <a href="#2.2">§2.2</a>). 1384The resulting function always has <code>_ENV</code> as its only upvalue, 1385even if it does not use that variable. 1386 1387 1388<p> 1389A chunk can be stored in a file or in a string inside the host program. 1390To execute a chunk, 1391Lua first <em>loads</em> it, 1392precompiling the chunk's code into instructions for a virtual machine, 1393and then Lua executes the compiled code 1394with an interpreter for the virtual machine. 1395 1396 1397<p> 1398Chunks can also be precompiled into binary form; 1399see program <code>luac</code> and function <a href="#pdf-string.dump"><code>string.dump</code></a> for details. 1400Programs in source and compiled forms are interchangeable; 1401Lua automatically detects the file type and acts accordingly (see <a href="#pdf-load"><code>load</code></a>). 1402 1403 1404 1405 1406 1407<h3>3.3.3 – <a name="3.3.3">Assignment</a></h3> 1408 1409<p> 1410Lua allows multiple assignments. 1411Therefore, the syntax for assignment 1412defines a list of variables on the left side 1413and a list of expressions on the right side. 1414The elements in both lists are separated by commas: 1415 1416<pre> 1417 stat ::= varlist ‘<b>=</b>’ explist 1418 varlist ::= var {‘<b>,</b>’ var} 1419 explist ::= exp {‘<b>,</b>’ exp} 1420</pre><p> 1421Expressions are discussed in <a href="#3.4">§3.4</a>. 1422 1423 1424<p> 1425Before the assignment, 1426the list of values is <em>adjusted</em> to the length of 1427the list of variables. 1428If there are more values than needed, 1429the excess values are thrown away. 1430If there are fewer values than needed, 1431the list is extended with as many <b>nil</b>'s as needed. 1432If the list of expressions ends with a function call, 1433then all values returned by that call enter the list of values, 1434before the adjustment 1435(except when the call is enclosed in parentheses; see <a href="#3.4">§3.4</a>). 1436 1437 1438<p> 1439The assignment statement first evaluates all its expressions 1440and only then the assignments are performed. 1441Thus the code 1442 1443<pre> 1444 i = 3 1445 i, a[i] = i+1, 20 1446</pre><p> 1447sets <code>a[3]</code> to 20, without affecting <code>a[4]</code> 1448because the <code>i</code> in <code>a[i]</code> is evaluated (to 3) 1449before it is assigned 4. 1450Similarly, the line 1451 1452<pre> 1453 x, y = y, x 1454</pre><p> 1455exchanges the values of <code>x</code> and <code>y</code>, 1456and 1457 1458<pre> 1459 x, y, z = y, z, x 1460</pre><p> 1461cyclically permutes the values of <code>x</code>, <code>y</code>, and <code>z</code>. 1462 1463 1464<p> 1465The meaning of assignments to global variables 1466and table fields can be changed via metatables. 1467An assignment to an indexed variable <code>t[i] = val</code> is equivalent to 1468<code>settable_event(t,i,val)</code>. 1469(See <a href="#2.4">§2.4</a> for a complete description of the 1470<code>settable_event</code> function. 1471This function is not defined or callable in Lua. 1472We use it here only for explanatory purposes.) 1473 1474 1475<p> 1476An assignment to a global name <code>x = val</code> 1477is equivalent to the assignment 1478<code>_ENV.x = val</code> (see <a href="#2.2">§2.2</a>). 1479 1480 1481 1482 1483 1484<h3>3.3.4 – <a name="3.3.4">Control Structures</a></h3><p> 1485The control structures 1486<b>if</b>, <b>while</b>, and <b>repeat</b> have the usual meaning and 1487familiar syntax: 1488 1489 1490 1491 1492<pre> 1493 stat ::= <b>while</b> exp <b>do</b> block <b>end</b> 1494 stat ::= <b>repeat</b> block <b>until</b> exp 1495 stat ::= <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> 1496</pre><p> 1497Lua also has a <b>for</b> statement, in two flavors (see <a href="#3.3.5">§3.3.5</a>). 1498 1499 1500<p> 1501The condition expression of a 1502control structure can return any value. 1503Both <b>false</b> and <b>nil</b> are considered false. 1504All values different from <b>nil</b> and <b>false</b> are considered true 1505(in particular, the number 0 and the empty string are also true). 1506 1507 1508<p> 1509In the <b>repeat</b>–<b>until</b> loop, 1510the inner block does not end at the <b>until</b> keyword, 1511but only after the condition. 1512So, the condition can refer to local variables 1513declared inside the loop block. 1514 1515 1516<p> 1517The <b>goto</b> statement transfers the program control to a label. 1518For syntactical reasons, 1519labels in Lua are considered statements too: 1520 1521 1522 1523<pre> 1524 stat ::= <b>goto</b> Name 1525 stat ::= label 1526 label ::= ‘<b>::</b>’ Name ‘<b>::</b>’ 1527</pre> 1528 1529<p> 1530A label is visible in the entire block where it is defined, 1531except 1532inside nested blocks where a label with the same name is defined and 1533inside nested functions. 1534A goto may jump to any visible label as long as it does not 1535enter into the scope of a local variable. 1536 1537 1538<p> 1539Labels and empty statements are called <em>void statements</em>, 1540as they perform no actions. 1541 1542 1543<p> 1544The <b>break</b> statement terminates the execution of a 1545<b>while</b>, <b>repeat</b>, or <b>for</b> loop, 1546skipping to the next statement after the loop: 1547 1548 1549<pre> 1550 stat ::= <b>break</b> 1551</pre><p> 1552A <b>break</b> ends the innermost enclosing loop. 1553 1554 1555<p> 1556The <b>return</b> statement is used to return values 1557from a function or a chunk 1558(which is an anonymous function). 1559 1560Functions can return more than one value, 1561so the syntax for the <b>return</b> statement is 1562 1563<pre> 1564 stat ::= <b>return</b> [explist] [‘<b>;</b>’] 1565</pre> 1566 1567<p> 1568The <b>return</b> statement can only be written 1569as the last statement of a block. 1570If it is really necessary to <b>return</b> in the middle of a block, 1571then an explicit inner block can be used, 1572as in the idiom <code>do return end</code>, 1573because now <b>return</b> is the last statement in its (inner) block. 1574 1575 1576 1577 1578 1579<h3>3.3.5 – <a name="3.3.5">For Statement</a></h3> 1580 1581<p> 1582 1583The <b>for</b> statement has two forms: 1584one numeric and one generic. 1585 1586 1587<p> 1588The numeric <b>for</b> loop repeats a block of code while a 1589control variable runs through an arithmetic progression. 1590It has the following syntax: 1591 1592<pre> 1593 stat ::= <b>for</b> Name ‘<b>=</b>’ exp ‘<b>,</b>’ exp [‘<b>,</b>’ exp] <b>do</b> block <b>end</b> 1594</pre><p> 1595The <em>block</em> is repeated for <em>name</em> starting at the value of 1596the first <em>exp</em>, until it passes the second <em>exp</em> by steps of the 1597third <em>exp</em>. 1598More precisely, a <b>for</b> statement like 1599 1600<pre> 1601 for v = <em>e1</em>, <em>e2</em>, <em>e3</em> do <em>block</em> end 1602</pre><p> 1603is equivalent to the code: 1604 1605<pre> 1606 do 1607 local <em>var</em>, <em>limit</em>, <em>step</em> = tonumber(<em>e1</em>), tonumber(<em>e2</em>), tonumber(<em>e3</em>) 1608 if not (<em>var</em> and <em>limit</em> and <em>step</em>) then error() end 1609 <em>var</em> = <em>var</em> - <em>step</em> 1610 while true do 1611 <em>var</em> = <em>var</em> + <em>step</em> 1612 if (<em>step</em> >= 0 and <em>var</em> > <em>limit</em>) or (<em>step</em> < 0 and <em>var</em> < <em>limit</em>) then 1613 break 1614 end 1615 local v = <em>var</em> 1616 <em>block</em> 1617 end 1618 end 1619</pre> 1620 1621<p> 1622Note the following: 1623 1624<ul> 1625 1626<li> 1627All three control expressions are evaluated only once, 1628before the loop starts. 1629They must all result in numbers. 1630</li> 1631 1632<li> 1633<code><em>var</em></code>, <code><em>limit</em></code>, and <code><em>step</em></code> are invisible variables. 1634The names shown here are for explanatory purposes only. 1635</li> 1636 1637<li> 1638If the third expression (the step) is absent, 1639then a step of 1 is used. 1640</li> 1641 1642<li> 1643You can use <b>break</b> and <b>goto</b> to exit a <b>for</b> loop. 1644</li> 1645 1646<li> 1647The loop variable <code>v</code> is local to the loop body. 1648If you need its value after the loop, 1649assign it to another variable before exiting the loop. 1650</li> 1651 1652</ul> 1653 1654<p> 1655The generic <b>for</b> statement works over functions, 1656called <em>iterators</em>. 1657On each iteration, the iterator function is called to produce a new value, 1658stopping when this new value is <b>nil</b>. 1659The generic <b>for</b> loop has the following syntax: 1660 1661<pre> 1662 stat ::= <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b> 1663 namelist ::= Name {‘<b>,</b>’ Name} 1664</pre><p> 1665A <b>for</b> statement like 1666 1667<pre> 1668 for <em>var_1</em>, ···, <em>var_n</em> in <em>explist</em> do <em>block</em> end 1669</pre><p> 1670is equivalent to the code: 1671 1672<pre> 1673 do 1674 local <em>f</em>, <em>s</em>, <em>var</em> = <em>explist</em> 1675 while true do 1676 local <em>var_1</em>, ···, <em>var_n</em> = <em>f</em>(<em>s</em>, <em>var</em>) 1677 if <em>var_1</em> == nil then break end 1678 <em>var</em> = <em>var_1</em> 1679 <em>block</em> 1680 end 1681 end 1682</pre><p> 1683Note the following: 1684 1685<ul> 1686 1687<li> 1688<code><em>explist</em></code> is evaluated only once. 1689Its results are an <em>iterator</em> function, 1690a <em>state</em>, 1691and an initial value for the first <em>iterator variable</em>. 1692</li> 1693 1694<li> 1695<code><em>f</em></code>, <code><em>s</em></code>, and <code><em>var</em></code> are invisible variables. 1696The names are here for explanatory purposes only. 1697</li> 1698 1699<li> 1700You can use <b>break</b> to exit a <b>for</b> loop. 1701</li> 1702 1703<li> 1704The loop variables <code><em>var_i</em></code> are local to the loop; 1705you cannot use their values after the <b>for</b> ends. 1706If you need these values, 1707then assign them to other variables before breaking or exiting the loop. 1708</li> 1709 1710</ul> 1711 1712 1713 1714 1715<h3>3.3.6 – <a name="3.3.6">Function Calls as Statements</a></h3><p> 1716To allow possible side-effects, 1717function calls can be executed as statements: 1718 1719<pre> 1720 stat ::= functioncall 1721</pre><p> 1722In this case, all returned values are thrown away. 1723Function calls are explained in <a href="#3.4.10">§3.4.10</a>. 1724 1725 1726 1727 1728 1729<h3>3.3.7 – <a name="3.3.7">Local Declarations</a></h3><p> 1730Local variables can be declared anywhere inside a block. 1731The declaration can include an initial assignment: 1732 1733<pre> 1734 stat ::= <b>local</b> namelist [‘<b>=</b>’ explist] 1735</pre><p> 1736If present, an initial assignment has the same semantics 1737of a multiple assignment (see <a href="#3.3.3">§3.3.3</a>). 1738Otherwise, all variables are initialized with <b>nil</b>. 1739 1740 1741<p> 1742A chunk is also a block (see <a href="#3.3.2">§3.3.2</a>), 1743and so local variables can be declared in a chunk outside any explicit block. 1744 1745 1746<p> 1747The visibility rules for local variables are explained in <a href="#3.5">§3.5</a>. 1748 1749 1750 1751 1752 1753 1754 1755<h2>3.4 – <a name="3.4">Expressions</a></h2> 1756 1757<p> 1758The basic expressions in Lua are the following: 1759 1760<pre> 1761 exp ::= prefixexp 1762 exp ::= <b>nil</b> | <b>false</b> | <b>true</b> 1763 exp ::= Numeral 1764 exp ::= LiteralString 1765 exp ::= functiondef 1766 exp ::= tableconstructor 1767 exp ::= ‘<b>...</b>’ 1768 exp ::= exp binop exp 1769 exp ::= unop exp 1770 prefixexp ::= var | functioncall | ‘<b>(</b>’ exp ‘<b>)</b>’ 1771</pre> 1772 1773<p> 1774Numerals and literal strings are explained in <a href="#3.1">§3.1</a>; 1775variables are explained in <a href="#3.2">§3.2</a>; 1776function definitions are explained in <a href="#3.4.11">§3.4.11</a>; 1777function calls are explained in <a href="#3.4.10">§3.4.10</a>; 1778table constructors are explained in <a href="#3.4.9">§3.4.9</a>. 1779Vararg expressions, 1780denoted by three dots ('<code>...</code>'), can only be used when 1781directly inside a vararg function; 1782they are explained in <a href="#3.4.11">§3.4.11</a>. 1783 1784 1785<p> 1786Binary operators comprise arithmetic operators (see <a href="#3.4.1">§3.4.1</a>), 1787bitwise operators (see <a href="#3.4.2">§3.4.2</a>), 1788relational operators (see <a href="#3.4.4">§3.4.4</a>), logical operators (see <a href="#3.4.5">§3.4.5</a>), 1789and the concatenation operator (see <a href="#3.4.6">§3.4.6</a>). 1790Unary operators comprise the unary minus (see <a href="#3.4.1">§3.4.1</a>), 1791the unary bitwise not (see <a href="#3.4.2">§3.4.2</a>), 1792the unary logical <b>not</b> (see <a href="#3.4.5">§3.4.5</a>), 1793and the unary <em>length operator</em> (see <a href="#3.4.7">§3.4.7</a>). 1794 1795 1796<p> 1797Both function calls and vararg expressions can result in multiple values. 1798If a function call is used as a statement (see <a href="#3.3.6">§3.3.6</a>), 1799then its return list is adjusted to zero elements, 1800thus discarding all returned values. 1801If an expression is used as the last (or the only) element 1802of a list of expressions, 1803then no adjustment is made 1804(unless the expression is enclosed in parentheses). 1805In all other contexts, 1806Lua adjusts the result list to one element, 1807either discarding all values except the first one 1808or adding a single <b>nil</b> if there are no values. 1809 1810 1811<p> 1812Here are some examples: 1813 1814<pre> 1815 f() -- adjusted to 0 results 1816 g(f(), x) -- f() is adjusted to 1 result 1817 g(x, f()) -- g gets x plus all results from f() 1818 a,b,c = f(), x -- f() is adjusted to 1 result (c gets nil) 1819 a,b = ... -- a gets the first vararg parameter, b gets 1820 -- the second (both a and b can get nil if there 1821 -- is no corresponding vararg parameter) 1822 1823 a,b,c = x, f() -- f() is adjusted to 2 results 1824 a,b,c = f() -- f() is adjusted to 3 results 1825 return f() -- returns all results from f() 1826 return ... -- returns all received vararg parameters 1827 return x,y,f() -- returns x, y, and all results from f() 1828 {f()} -- creates a list with all results from f() 1829 {...} -- creates a list with all vararg parameters 1830 {f(), nil} -- f() is adjusted to 1 result 1831</pre> 1832 1833<p> 1834Any expression enclosed in parentheses always results in only one value. 1835Thus, 1836<code>(f(x,y,z))</code> is always a single value, 1837even if <code>f</code> returns several values. 1838(The value of <code>(f(x,y,z))</code> is the first value returned by <code>f</code> 1839or <b>nil</b> if <code>f</code> does not return any values.) 1840 1841 1842 1843<h3>3.4.1 – <a name="3.4.1">Arithmetic Operators</a></h3><p> 1844Lua supports the following arithmetic operators: 1845 1846<ul> 1847<li><b><code>+</code>: </b>addition</li> 1848<li><b><code>-</code>: </b>subtraction</li> 1849<li><b><code>*</code>: </b>multiplication</li> 1850<li><b><code>/</code>: </b>float division</li> 1851<li><b><code>//</code>: </b>floor division</li> 1852<li><b><code>%</code>: </b>modulo</li> 1853<li><b><code>^</code>: </b>exponentiation</li> 1854<li><b><code>-</code>: </b>unary minus</li> 1855</ul> 1856 1857<p> 1858With the exception of exponentiation and float division, 1859the arithmetic operators work as follows: 1860If both operands are integers, 1861the operation is performed over integers and the result is an integer. 1862Otherwise, if both operands are numbers 1863or strings that can be converted to 1864numbers (see <a href="#3.4.3">§3.4.3</a>), 1865then they are converted to floats, 1866the operation is performed following the usual rules 1867for floating-point arithmetic 1868(usually the IEEE 754 standard), 1869and the result is a float. 1870 1871 1872<p> 1873Exponentiation and float division (<code>/</code>) 1874always convert their operands to floats 1875and the result is always a float. 1876Exponentiation uses the ISO C function <code>pow</code>, 1877so that it works for non-integer exponents too. 1878 1879 1880<p> 1881Floor division (<code>//</code>) is a division 1882that rounds the quotient towards minus infinite, 1883that is, the floor of the division of its operands. 1884 1885 1886<p> 1887Modulo is defined as the remainder of a division 1888that rounds the quotient towards minus infinite (floor division). 1889 1890 1891<p> 1892In case of overflows in integer arithmetic, 1893all operations <em>wrap around</em>, 1894according to the usual rules of two-complement arithmetic. 1895(In other words, 1896they return the unique representable integer 1897that is equal modulo <em>2<sup>64</sup></em> to the mathematical result.) 1898 1899 1900 1901<h3>3.4.2 – <a name="3.4.2">Bitwise Operators</a></h3><p> 1902Lua supports the following bitwise operators: 1903 1904<ul> 1905<li><b><code>&</code>: </b>bitwise and</li> 1906<li><b><code>|</code>: </b>bitwise or</li> 1907<li><b><code>~</code>: </b>bitwise exclusive or</li> 1908<li><b><code>>></code>: </b>right shift</li> 1909<li><b><code><<</code>: </b>left shift</li> 1910<li><b><code>~</code>: </b>unary bitwise not</li> 1911</ul> 1912 1913<p> 1914All bitwise operations convert its operands to integers 1915(see <a href="#3.4.3">§3.4.3</a>), 1916operate on all bits of those integers, 1917and result in an integer. 1918 1919 1920<p> 1921Both right and left shifts fill the vacant bits with zeros. 1922Negative displacements shift to the other direction; 1923displacements with absolute values equal to or higher than 1924the number of bits in an integer 1925result in zero (as all bits are shifted out). 1926 1927 1928 1929 1930 1931<h3>3.4.3 – <a name="3.4.3">Coercions and Conversions</a></h3><p> 1932Lua provides some automatic conversions between some 1933types and representations at run time. 1934Bitwise operators always convert float operands to integers. 1935Exponentiation and float division 1936always convert integer operands to floats. 1937All other arithmetic operations applied to mixed numbers 1938(integers and floats) convert the integer operand to a float; 1939this is called the <em>usual rule</em>. 1940The C API also converts both integers to floats and 1941floats to integers, as needed. 1942Moreover, string concatenation accepts numbers as arguments, 1943besides strings. 1944 1945 1946<p> 1947Lua also converts strings to numbers, 1948whenever a number is expected. 1949 1950 1951<p> 1952In a conversion from integer to float, 1953if the integer value has an exact representation as a float, 1954that is the result. 1955Otherwise, 1956the conversion gets the nearest higher or 1957the nearest lower representable value. 1958This kind of conversion never fails. 1959 1960 1961<p> 1962The conversion from float to integer 1963checks whether the float has an exact representation as an integer 1964(that is, the float has an integral value and 1965it is in the range of integer representation). 1966If it does, that representation is the result. 1967Otherwise, the conversion fails. 1968 1969 1970<p> 1971The conversion from strings to numbers goes as follows: 1972First, the string is converted to an integer or a float, 1973following its syntax and the rules of the Lua lexer. 1974(The string may have also leading and trailing spaces and a sign.) 1975Then, the resulting number is converted to the required type 1976(float or integer) according to the previous rules. 1977 1978 1979<p> 1980The conversion from numbers to strings uses a 1981non-specified human-readable format. 1982For complete control over how numbers are converted to strings, 1983use the <code>format</code> function from the string library 1984(see <a href="#pdf-string.format"><code>string.format</code></a>). 1985 1986 1987 1988 1989 1990<h3>3.4.4 – <a name="3.4.4">Relational Operators</a></h3><p> 1991Lua supports the following relational operators: 1992 1993<ul> 1994<li><b><code>==</code>: </b>equality</li> 1995<li><b><code>~=</code>: </b>inequality</li> 1996<li><b><code><</code>: </b>less than</li> 1997<li><b><code>></code>: </b>greater than</li> 1998<li><b><code><=</code>: </b>less or equal</li> 1999<li><b><code>>=</code>: </b>greater or equal</li> 2000</ul><p> 2001These operators always result in <b>false</b> or <b>true</b>. 2002 2003 2004<p> 2005Equality (<code>==</code>) first compares the type of its operands. 2006If the types are different, then the result is <b>false</b>. 2007Otherwise, the values of the operands are compared. 2008Strings are compared in the obvious way. 2009Numbers follow the usual rule for binary operations: 2010if both operands are integers, 2011they are compared as integers; 2012otherwise, they are converted to floats 2013and compared as such. 2014 2015 2016<p> 2017Tables, userdata, and threads 2018are compared by reference: 2019two objects are considered equal only if they are the same object. 2020Every time you create a new object 2021(a table, userdata, or thread), 2022this new object is different from any previously existing object. 2023Closures with the same reference are always equal. 2024Closures with any detectable difference 2025(different behavior, different definition) are always different. 2026 2027 2028<p> 2029You can change the way that Lua compares tables and userdata 2030by using the "eq" metamethod (see <a href="#2.4">§2.4</a>). 2031 2032 2033<p> 2034Equality comparisons do not convert strings to numbers 2035or vice versa. 2036Thus, <code>"0"==0</code> evaluates to <b>false</b>, 2037and <code>t[0]</code> and <code>t["0"]</code> denote different 2038entries in a table. 2039 2040 2041<p> 2042The operator <code>~=</code> is exactly the negation of equality (<code>==</code>). 2043 2044 2045<p> 2046The order operators work as follows. 2047If both arguments are numbers, 2048then they are compared following 2049the usual rule for binary operations. 2050Otherwise, if both arguments are strings, 2051then their values are compared according to the current locale. 2052Otherwise, Lua tries to call the "lt" or the "le" 2053metamethod (see <a href="#2.4">§2.4</a>). 2054A comparison <code>a > b</code> is translated to <code>b < a</code> 2055and <code>a >= b</code> is translated to <code>b <= a</code>. 2056 2057 2058 2059 2060 2061<h3>3.4.5 – <a name="3.4.5">Logical Operators</a></h3><p> 2062The logical operators in Lua are 2063<b>and</b>, <b>or</b>, and <b>not</b>. 2064Like the control structures (see <a href="#3.3.4">§3.3.4</a>), 2065all logical operators consider both <b>false</b> and <b>nil</b> as false 2066and anything else as true. 2067 2068 2069<p> 2070The negation operator <b>not</b> always returns <b>false</b> or <b>true</b>. 2071The conjunction operator <b>and</b> returns its first argument 2072if this value is <b>false</b> or <b>nil</b>; 2073otherwise, <b>and</b> returns its second argument. 2074The disjunction operator <b>or</b> returns its first argument 2075if this value is different from <b>nil</b> and <b>false</b>; 2076otherwise, <b>or</b> returns its second argument. 2077Both <b>and</b> and <b>or</b> use short-circuit evaluation; 2078that is, 2079the second operand is evaluated only if necessary. 2080Here are some examples: 2081 2082<pre> 2083 10 or 20 --> 10 2084 10 or error() --> 10 2085 nil or "a" --> "a" 2086 nil and 10 --> nil 2087 false and error() --> false 2088 false and nil --> false 2089 false or nil --> nil 2090 10 and 20 --> 20 2091</pre><p> 2092(In this manual, 2093<code>--></code> indicates the result of the preceding expression.) 2094 2095 2096 2097 2098 2099<h3>3.4.6 – <a name="3.4.6">Concatenation</a></h3><p> 2100The string concatenation operator in Lua is 2101denoted by two dots ('<code>..</code>'). 2102If both operands are strings or numbers, then they are converted to 2103strings according to the rules described in <a href="#3.4.3">§3.4.3</a>. 2104Otherwise, the <code>__concat</code> metamethod is called (see <a href="#2.4">§2.4</a>). 2105 2106 2107 2108 2109 2110<h3>3.4.7 – <a name="3.4.7">The Length Operator</a></h3> 2111 2112<p> 2113The length operator is denoted by the unary prefix operator <code>#</code>. 2114The length of a string is its number of bytes 2115(that is, the usual meaning of string length when each 2116character is one byte). 2117 2118 2119<p> 2120A program can modify the behavior of the length operator for 2121any value but strings through the <code>__len</code> metamethod (see <a href="#2.4">§2.4</a>). 2122 2123 2124<p> 2125Unless a <code>__len</code> metamethod is given, 2126the length of a table <code>t</code> is only defined if the 2127table is a <em>sequence</em>, 2128that is, 2129the set of its positive numeric keys is equal to <em>{1..n}</em> 2130for some non-negative integer <em>n</em>. 2131In that case, <em>n</em> is its length. 2132Note that a table like 2133 2134<pre> 2135 {10, 20, nil, 40} 2136</pre><p> 2137is not a sequence, because it has the key <code>4</code> 2138but does not have the key <code>3</code>. 2139(So, there is no <em>n</em> such that the set <em>{1..n}</em> is equal 2140to the set of positive numeric keys of that table.) 2141Note, however, that non-numeric keys do not interfere 2142with whether a table is a sequence. 2143 2144 2145 2146 2147 2148<h3>3.4.8 – <a name="3.4.8">Precedence</a></h3><p> 2149Operator precedence in Lua follows the table below, 2150from lower to higher priority: 2151 2152<pre> 2153 or 2154 and 2155 < > <= >= ~= == 2156 | 2157 ~ 2158 & 2159 << >> 2160 .. 2161 + - 2162 * / // % 2163 unary operators (not # - ~) 2164 ^ 2165</pre><p> 2166As usual, 2167you can use parentheses to change the precedences of an expression. 2168The concatenation ('<code>..</code>') and exponentiation ('<code>^</code>') 2169operators are right associative. 2170All other binary operators are left associative. 2171 2172 2173 2174 2175 2176<h3>3.4.9 – <a name="3.4.9">Table Constructors</a></h3><p> 2177Table constructors are expressions that create tables. 2178Every time a constructor is evaluated, a new table is created. 2179A constructor can be used to create an empty table 2180or to create a table and initialize some of its fields. 2181The general syntax for constructors is 2182 2183<pre> 2184 tableconstructor ::= ‘<b>{</b>’ [fieldlist] ‘<b>}</b>’ 2185 fieldlist ::= field {fieldsep field} [fieldsep] 2186 field ::= ‘<b>[</b>’ exp ‘<b>]</b>’ ‘<b>=</b>’ exp | Name ‘<b>=</b>’ exp | exp 2187 fieldsep ::= ‘<b>,</b>’ | ‘<b>;</b>’ 2188</pre> 2189 2190<p> 2191Each field of the form <code>[exp1] = exp2</code> adds to the new table an entry 2192with key <code>exp1</code> and value <code>exp2</code>. 2193A field of the form <code>name = exp</code> is equivalent to 2194<code>["name"] = exp</code>. 2195Finally, fields of the form <code>exp</code> are equivalent to 2196<code>[i] = exp</code>, where <code>i</code> are consecutive integers 2197starting with 1. 2198Fields in the other formats do not affect this counting. 2199For example, 2200 2201<pre> 2202 a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 } 2203</pre><p> 2204is equivalent to 2205 2206<pre> 2207 do 2208 local t = {} 2209 t[f(1)] = g 2210 t[1] = "x" -- 1st exp 2211 t[2] = "y" -- 2nd exp 2212 t.x = 1 -- t["x"] = 1 2213 t[3] = f(x) -- 3rd exp 2214 t[30] = 23 2215 t[4] = 45 -- 4th exp 2216 a = t 2217 end 2218</pre> 2219 2220<p> 2221The order of the assignments in a constructor is undefined. 2222(This order would be relevant only when there are repeated keys.) 2223 2224 2225<p> 2226If the last field in the list has the form <code>exp</code> 2227and the expression is a function call or a vararg expression, 2228then all values returned by this expression enter the list consecutively 2229(see <a href="#3.4.10">§3.4.10</a>). 2230 2231 2232<p> 2233The field list can have an optional trailing separator, 2234as a convenience for machine-generated code. 2235 2236 2237 2238 2239 2240<h3>3.4.10 – <a name="3.4.10">Function Calls</a></h3><p> 2241A function call in Lua has the following syntax: 2242 2243<pre> 2244 functioncall ::= prefixexp args 2245</pre><p> 2246In a function call, 2247first prefixexp and args are evaluated. 2248If the value of prefixexp has type <em>function</em>, 2249then this function is called 2250with the given arguments. 2251Otherwise, the prefixexp "call" metamethod is called, 2252having as first parameter the value of prefixexp, 2253followed by the original call arguments 2254(see <a href="#2.4">§2.4</a>). 2255 2256 2257<p> 2258The form 2259 2260<pre> 2261 functioncall ::= prefixexp ‘<b>:</b>’ Name args 2262</pre><p> 2263can be used to call "methods". 2264A call <code>v:name(<em>args</em>)</code> 2265is syntactic sugar for <code>v.name(v,<em>args</em>)</code>, 2266except that <code>v</code> is evaluated only once. 2267 2268 2269<p> 2270Arguments have the following syntax: 2271 2272<pre> 2273 args ::= ‘<b>(</b>’ [explist] ‘<b>)</b>’ 2274 args ::= tableconstructor 2275 args ::= LiteralString 2276</pre><p> 2277All argument expressions are evaluated before the call. 2278A call of the form <code>f{<em>fields</em>}</code> is 2279syntactic sugar for <code>f({<em>fields</em>})</code>; 2280that is, the argument list is a single new table. 2281A call of the form <code>f'<em>string</em>'</code> 2282(or <code>f"<em>string</em>"</code> or <code>f[[<em>string</em>]]</code>) 2283is syntactic sugar for <code>f('<em>string</em>')</code>; 2284that is, the argument list is a single literal string. 2285 2286 2287<p> 2288A call of the form <code>return <em>functioncall</em></code> is called 2289a <em>tail call</em>. 2290Lua implements <em>proper tail calls</em> 2291(or <em>proper tail recursion</em>): 2292in a tail call, 2293the called function reuses the stack entry of the calling function. 2294Therefore, there is no limit on the number of nested tail calls that 2295a program can execute. 2296However, a tail call erases any debug information about the 2297calling function. 2298Note that a tail call only happens with a particular syntax, 2299where the <b>return</b> has one single function call as argument; 2300this syntax makes the calling function return exactly 2301the returns of the called function. 2302So, none of the following examples are tail calls: 2303 2304<pre> 2305 return (f(x)) -- results adjusted to 1 2306 return 2 * f(x) 2307 return x, f(x) -- additional results 2308 f(x); return -- results discarded 2309 return x or f(x) -- results adjusted to 1 2310</pre> 2311 2312 2313 2314 2315<h3>3.4.11 – <a name="3.4.11">Function Definitions</a></h3> 2316 2317<p> 2318The syntax for function definition is 2319 2320<pre> 2321 functiondef ::= <b>function</b> funcbody 2322 funcbody ::= ‘<b>(</b>’ [parlist] ‘<b>)</b>’ block <b>end</b> 2323</pre> 2324 2325<p> 2326The following syntactic sugar simplifies function definitions: 2327 2328<pre> 2329 stat ::= <b>function</b> funcname funcbody 2330 stat ::= <b>local</b> <b>function</b> Name funcbody 2331 funcname ::= Name {‘<b>.</b>’ Name} [‘<b>:</b>’ Name] 2332</pre><p> 2333The statement 2334 2335<pre> 2336 function f () <em>body</em> end 2337</pre><p> 2338translates to 2339 2340<pre> 2341 f = function () <em>body</em> end 2342</pre><p> 2343The statement 2344 2345<pre> 2346 function t.a.b.c.f () <em>body</em> end 2347</pre><p> 2348translates to 2349 2350<pre> 2351 t.a.b.c.f = function () <em>body</em> end 2352</pre><p> 2353The statement 2354 2355<pre> 2356 local function f () <em>body</em> end 2357</pre><p> 2358translates to 2359 2360<pre> 2361 local f; f = function () <em>body</em> end 2362</pre><p> 2363not to 2364 2365<pre> 2366 local f = function () <em>body</em> end 2367</pre><p> 2368(This only makes a difference when the body of the function 2369contains references to <code>f</code>.) 2370 2371 2372<p> 2373A function definition is an executable expression, 2374whose value has type <em>function</em>. 2375When Lua precompiles a chunk, 2376all its function bodies are precompiled too. 2377Then, whenever Lua executes the function definition, 2378the function is <em>instantiated</em> (or <em>closed</em>). 2379This function instance (or <em>closure</em>) 2380is the final value of the expression. 2381 2382 2383<p> 2384Parameters act as local variables that are 2385initialized with the argument values: 2386 2387<pre> 2388 parlist ::= namelist [‘<b>,</b>’ ‘<b>...</b>’] | ‘<b>...</b>’ 2389</pre><p> 2390When a function is called, 2391the list of arguments is adjusted to 2392the length of the list of parameters, 2393unless the function is a <em>vararg function</em>, 2394which is indicated by three dots ('<code>...</code>') 2395at the end of its parameter list. 2396A vararg function does not adjust its argument list; 2397instead, it collects all extra arguments and supplies them 2398to the function through a <em>vararg expression</em>, 2399which is also written as three dots. 2400The value of this expression is a list of all actual extra arguments, 2401similar to a function with multiple results. 2402If a vararg expression is used inside another expression 2403or in the middle of a list of expressions, 2404then its return list is adjusted to one element. 2405If the expression is used as the last element of a list of expressions, 2406then no adjustment is made 2407(unless that last expression is enclosed in parentheses). 2408 2409 2410<p> 2411As an example, consider the following definitions: 2412 2413<pre> 2414 function f(a, b) end 2415 function g(a, b, ...) end 2416 function r() return 1,2,3 end 2417</pre><p> 2418Then, we have the following mapping from arguments to parameters and 2419to the vararg expression: 2420 2421<pre> 2422 CALL PARAMETERS 2423 2424 f(3) a=3, b=nil 2425 f(3, 4) a=3, b=4 2426 f(3, 4, 5) a=3, b=4 2427 f(r(), 10) a=1, b=10 2428 f(r()) a=1, b=2 2429 2430 g(3) a=3, b=nil, ... --> (nothing) 2431 g(3, 4) a=3, b=4, ... --> (nothing) 2432 g(3, 4, 5, 8) a=3, b=4, ... --> 5 8 2433 g(5, r()) a=5, b=1, ... --> 2 3 2434</pre> 2435 2436<p> 2437Results are returned using the <b>return</b> statement (see <a href="#3.3.4">§3.3.4</a>). 2438If control reaches the end of a function 2439without encountering a <b>return</b> statement, 2440then the function returns with no results. 2441 2442 2443<p> 2444 2445There is a system-dependent limit on the number of values 2446that a function may return. 2447This limit is guaranteed to be larger than 1000. 2448 2449 2450<p> 2451The <em>colon</em> syntax 2452is used for defining <em>methods</em>, 2453that is, functions that have an implicit extra parameter <code>self</code>. 2454Thus, the statement 2455 2456<pre> 2457 function t.a.b.c:f (<em>params</em>) <em>body</em> end 2458</pre><p> 2459is syntactic sugar for 2460 2461<pre> 2462 t.a.b.c.f = function (self, <em>params</em>) <em>body</em> end 2463</pre> 2464 2465 2466 2467 2468 2469 2470<h2>3.5 – <a name="3.5">Visibility Rules</a></h2> 2471 2472<p> 2473 2474Lua is a lexically scoped language. 2475The scope of a local variable begins at the first statement after 2476its declaration and lasts until the last non-void statement 2477of the innermost block that includes the declaration. 2478Consider the following example: 2479 2480<pre> 2481 x = 10 -- global variable 2482 do -- new block 2483 local x = x -- new 'x', with value 10 2484 print(x) --> 10 2485 x = x+1 2486 do -- another block 2487 local x = x+1 -- another 'x' 2488 print(x) --> 12 2489 end 2490 print(x) --> 11 2491 end 2492 print(x) --> 10 (the global one) 2493</pre> 2494 2495<p> 2496Notice that, in a declaration like <code>local x = x</code>, 2497the new <code>x</code> being declared is not in scope yet, 2498and so the second <code>x</code> refers to the outside variable. 2499 2500 2501<p> 2502Because of the lexical scoping rules, 2503local variables can be freely accessed by functions 2504defined inside their scope. 2505A local variable used by an inner function is called 2506an <em>upvalue</em>, or <em>external local variable</em>, 2507inside the inner function. 2508 2509 2510<p> 2511Notice that each execution of a <b>local</b> statement 2512defines new local variables. 2513Consider the following example: 2514 2515<pre> 2516 a = {} 2517 local x = 20 2518 for i=1,10 do 2519 local y = 0 2520 a[i] = function () y=y+1; return x+y end 2521 end 2522</pre><p> 2523The loop creates ten closures 2524(that is, ten instances of the anonymous function). 2525Each of these closures uses a different <code>y</code> variable, 2526while all of them share the same <code>x</code>. 2527 2528 2529 2530 2531 2532<h1>4 – <a name="4">The Application Program Interface</a></h1> 2533 2534<p> 2535 2536This section describes the C API for Lua, that is, 2537the set of C functions available to the host program to communicate 2538with Lua. 2539All API functions and related types and constants 2540are declared in the header file <a name="pdf-lua.h"><code>lua.h</code></a>. 2541 2542 2543<p> 2544Even when we use the term "function", 2545any facility in the API may be provided as a macro instead. 2546Except where stated otherwise, 2547all such macros use each of their arguments exactly once 2548(except for the first argument, which is always a Lua state), 2549and so do not generate any hidden side-effects. 2550 2551 2552<p> 2553As in most C libraries, 2554the Lua API functions do not check their arguments for validity or consistency. 2555However, you can change this behavior by compiling Lua 2556with the macro <a name="pdf-LUA_USE_APICHECK"><code>LUA_USE_APICHECK</code></a> defined. 2557 2558 2559 2560<h2>4.1 – <a name="4.1">The Stack</a></h2> 2561 2562<p> 2563Lua uses a <em>virtual stack</em> to pass values to and from C. 2564Each element in this stack represents a Lua value 2565(<b>nil</b>, number, string, etc.). 2566 2567 2568<p> 2569Whenever Lua calls C, the called function gets a new stack, 2570which is independent of previous stacks and of stacks of 2571C functions that are still active. 2572This stack initially contains any arguments to the C function 2573and it is where the C function pushes its results 2574to be returned to the caller (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>). 2575 2576 2577<p> 2578For convenience, 2579most query operations in the API do not follow a strict stack discipline. 2580Instead, they can refer to any element in the stack 2581by using an <em>index</em>: 2582A positive index represents an absolute stack position 2583(starting at 1); 2584a negative index represents an offset relative to the top of the stack. 2585More specifically, if the stack has <em>n</em> elements, 2586then index 1 represents the first element 2587(that is, the element that was pushed onto the stack first) 2588and 2589index <em>n</em> represents the last element; 2590index -1 also represents the last element 2591(that is, the element at the top) 2592and index <em>-n</em> represents the first element. 2593 2594 2595 2596 2597 2598<h2>4.2 – <a name="4.2">Stack Size</a></h2> 2599 2600<p> 2601When you interact with the Lua API, 2602you are responsible for ensuring consistency. 2603In particular, 2604<em>you are responsible for controlling stack overflow</em>. 2605You can use the function <a href="#lua_checkstack"><code>lua_checkstack</code></a> 2606to ensure that the stack has enough space for pushing new elements. 2607 2608 2609<p> 2610Whenever Lua calls C, 2611it ensures that the stack has space for 2612at least <a name="pdf-LUA_MINSTACK"><code>LUA_MINSTACK</code></a> extra slots. 2613<code>LUA_MINSTACK</code> is defined as 20, 2614so that usually you do not have to worry about stack space 2615unless your code has loops pushing elements onto the stack. 2616 2617 2618<p> 2619When you call a Lua function 2620without a fixed number of results (see <a href="#lua_call"><code>lua_call</code></a>), 2621Lua ensures that the stack has enough space for all results, 2622but it does not ensure any extra space. 2623So, before pushing anything in the stack after such a call 2624you should use <a href="#lua_checkstack"><code>lua_checkstack</code></a>. 2625 2626 2627 2628 2629 2630<h2>4.3 – <a name="4.3">Valid and Acceptable Indices</a></h2> 2631 2632<p> 2633Any function in the API that receives stack indices 2634works only with <em>valid indices</em> or <em>acceptable indices</em>. 2635 2636 2637<p> 2638A <em>valid index</em> is an index that refers to a 2639real position within the stack, that is, 2640its position lies between 1 and the stack top 2641(<code>1 ≤ abs(index) ≤ top</code>). 2642 2643Usually, functions that can modify the value at an index 2644require valid indices. 2645 2646 2647<p> 2648Unless otherwise noted, 2649any function that accepts valid indices also accepts <em>pseudo-indices</em>, 2650which represent some Lua values that are accessible to C code 2651but which are not in the stack. 2652Pseudo-indices are used to access the registry 2653and the upvalues of a C function (see <a href="#4.4">§4.4</a>). 2654 2655 2656<p> 2657Functions that do not need a specific stack position, 2658but only a value in the stack (e.g., query functions), 2659can be called with acceptable indices. 2660An <em>acceptable index</em> can be any valid index, 2661including the pseudo-indices, 2662but it also can be any positive index after the stack top 2663within the space allocated for the stack, 2664that is, indices up to the stack size. 2665(Note that 0 is never an acceptable index.) 2666Except when noted otherwise, 2667functions in the API work with acceptable indices. 2668 2669 2670<p> 2671Acceptable indices serve to avoid extra tests 2672against the stack top when querying the stack. 2673For instance, a C function can query its third argument 2674without the need to first check whether there is a third argument, 2675that is, without the need to check whether 3 is a valid index. 2676 2677 2678<p> 2679For functions that can be called with acceptable indices, 2680any non-valid index is treated as if it 2681contains a value of a virtual type <a name="pdf-LUA_TNONE"><code>LUA_TNONE</code></a>, 2682which behaves like a nil value. 2683 2684 2685 2686 2687 2688<h2>4.4 – <a name="4.4">C Closures</a></h2> 2689 2690<p> 2691When a C function is created, 2692it is possible to associate some values with it, 2693thus creating a <em>C closure</em> 2694(see <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>); 2695these values are called <em>upvalues</em> and are 2696accessible to the function whenever it is called. 2697 2698 2699<p> 2700Whenever a C function is called, 2701its upvalues are located at specific pseudo-indices. 2702These pseudo-indices are produced by the macro 2703<a href="#lua_upvalueindex"><code>lua_upvalueindex</code></a>. 2704The first value associated with a function is at position 2705<code>lua_upvalueindex(1)</code>, and so on. 2706Any access to <code>lua_upvalueindex(<em>n</em>)</code>, 2707where <em>n</em> is greater than the number of upvalues of the 2708current function (but not greater than 256), 2709produces an acceptable but invalid index. 2710 2711 2712 2713 2714 2715<h2>4.5 – <a name="4.5">Registry</a></h2> 2716 2717<p> 2718Lua provides a <em>registry</em>, 2719a predefined table that can be used by any C code to 2720store whatever Lua values it needs to store. 2721The registry table is always located at pseudo-index 2722<a name="pdf-LUA_REGISTRYINDEX"><code>LUA_REGISTRYINDEX</code></a>, 2723which is a valid index. 2724Any C library can store data into this table, 2725but it must take care to choose keys 2726that are different from those used 2727by other libraries, to avoid collisions. 2728Typically, you should use as key a string containing your library name, 2729or a light userdata with the address of a C object in your code, 2730or any Lua object created by your code. 2731As with variable names, 2732string keys starting with an underscore followed by 2733uppercase letters are reserved for Lua. 2734 2735 2736<p> 2737The integer keys in the registry are used 2738by the reference mechanism (see <a href="#luaL_ref"><code>luaL_ref</code></a>) 2739and by some predefined values. 2740Therefore, integer keys must not be used for other purposes. 2741 2742 2743<p> 2744When you create a new Lua state, 2745its registry comes with some predefined values. 2746These predefined values are indexed with integer keys 2747defined as constants in <code>lua.h</code>. 2748The following constants are defined: 2749 2750<ul> 2751<li><b><a name="pdf-LUA_RIDX_MAINTHREAD"><code>LUA_RIDX_MAINTHREAD</code></a>: </b> At this index the registry has 2752the main thread of the state. 2753(The main thread is the one created together with the state.) 2754</li> 2755 2756<li><b><a name="pdf-LUA_RIDX_GLOBALS"><code>LUA_RIDX_GLOBALS</code></a>: </b> At this index the registry has 2757the global environment. 2758</li> 2759</ul> 2760 2761 2762 2763 2764<h2>4.6 – <a name="4.6">Error Handling in C</a></h2> 2765 2766<p> 2767Internally, Lua uses the C <code>longjmp</code> facility to handle errors. 2768(Lua will use exceptions if you compile it as C++; 2769search for <code>LUAI_THROW</code> in the source code for details.) 2770When Lua faces any error 2771(such as a memory allocation error, type errors, syntax errors, 2772and runtime errors) 2773it <em>raises</em> an error; 2774that is, it does a long jump. 2775A <em>protected environment</em> uses <code>setjmp</code> 2776to set a recovery point; 2777any error jumps to the most recent active recovery point. 2778 2779 2780<p> 2781If an error happens outside any protected environment, 2782Lua calls a <em>panic function</em> (see <a href="#lua_atpanic"><code>lua_atpanic</code></a>) 2783and then calls <code>abort</code>, 2784thus exiting the host application. 2785Your panic function can avoid this exit by 2786never returning 2787(e.g., doing a long jump to your own recovery point outside Lua). 2788 2789 2790<p> 2791The panic function runs as if it were a message handler (see <a href="#2.3">§2.3</a>); 2792in particular, the error message is at the top of the stack. 2793However, there is no guarantee about stack space. 2794To push anything on the stack, 2795the panic function must first check the available space (see <a href="#4.2">§4.2</a>). 2796 2797 2798<p> 2799Most functions in the API can raise an error, 2800for instance due to a memory allocation error. 2801The documentation for each function indicates whether 2802it can raise errors. 2803 2804 2805<p> 2806Inside a C function you can raise an error by calling <a href="#lua_error"><code>lua_error</code></a>. 2807 2808 2809 2810 2811 2812<h2>4.7 – <a name="4.7">Handling Yields in C</a></h2> 2813 2814<p> 2815Internally, Lua uses the C <code>longjmp</code> facility to yield a coroutine. 2816Therefore, if a C function <code>foo</code> calls an API function 2817and this API function yields 2818(directly or indirectly by calling another function that yields), 2819Lua cannot return to <code>foo</code> any more, 2820because the <code>longjmp</code> removes its frame from the C stack. 2821 2822 2823<p> 2824To avoid this kind of problem, 2825Lua raises an error whenever it tries to yield across an API call, 2826except for three functions: 2827<a href="#lua_yieldk"><code>lua_yieldk</code></a>, <a href="#lua_callk"><code>lua_callk</code></a>, and <a href="#lua_pcallk"><code>lua_pcallk</code></a>. 2828All those functions receive a <em>continuation function</em> 2829(as a parameter named <code>k</code>) to continue execution after a yield. 2830 2831 2832<p> 2833We need to set some terminology to explain continuations. 2834We have a C function called from Lua which we will call 2835the <em>original function</em>. 2836This original function then calls one of those three functions in the C API, 2837which we will call the <em>callee function</em>, 2838that then yields the current thread. 2839(This can happen when the callee function is <a href="#lua_yieldk"><code>lua_yieldk</code></a>, 2840or when the callee function is either <a href="#lua_callk"><code>lua_callk</code></a> or <a href="#lua_pcallk"><code>lua_pcallk</code></a> 2841and the function called by them yields.) 2842 2843 2844<p> 2845Suppose the running thread yields while executing the callee function. 2846After the thread resumes, 2847it eventually will finish running the callee function. 2848However, 2849the callee function cannot return to the original function, 2850because its frame in the C stack was destroyed by the yield. 2851Instead, Lua calls a <em>continuation function</em>, 2852which was given as an argument to the callee function. 2853As the name implies, 2854the continuation function should continue the task 2855of the original function. 2856 2857 2858<p> 2859As an illustration, consider the following function: 2860 2861<pre> 2862 int original_function (lua_State *L) { 2863 ... /* code 1 */ 2864 status = lua_pcall(L, n, m, h); /* calls Lua */ 2865 ... /* code 2 */ 2866 } 2867</pre><p> 2868Now we want to allow 2869the Lua code being run by <a href="#lua_pcall"><code>lua_pcall</code></a> to yield. 2870First, we can rewrite our function like here: 2871 2872<pre> 2873 int k (lua_State *L, int status, lua_KContext ctx) { 2874 ... /* code 2 */ 2875 } 2876 2877 int original_function (lua_State *L) { 2878 ... /* code 1 */ 2879 return k(L, lua_pcall(L, n, m, h), ctx); 2880 } 2881</pre><p> 2882In the above code, 2883the new function <code>k</code> is a 2884<em>continuation function</em> (with type <a href="#lua_KFunction"><code>lua_KFunction</code></a>), 2885which should do all the work that the original function 2886was doing after calling <a href="#lua_pcall"><code>lua_pcall</code></a>. 2887Now, we must inform Lua that it must call <code>k</code> if the Lua code 2888being executed by <a href="#lua_pcall"><code>lua_pcall</code></a> gets interrupted in some way 2889(errors or yielding), 2890so we rewrite the code as here, 2891replacing <a href="#lua_pcall"><code>lua_pcall</code></a> by <a href="#lua_pcallk"><code>lua_pcallk</code></a>: 2892 2893<pre> 2894 int original_function (lua_State *L) { 2895 ... /* code 1 */ 2896 return k(L, lua_pcallk(L, n, m, h, ctx2, k), ctx1); 2897 } 2898</pre><p> 2899Note the external, explicit call to the continuation: 2900Lua will call the continuation only if needed, that is, 2901in case of errors or resuming after a yield. 2902If the called function returns normally without ever yielding, 2903<a href="#lua_pcallk"><code>lua_pcallk</code></a> (and <a href="#lua_callk"><code>lua_callk</code></a>) will also return normally. 2904(Of course, instead of calling the continuation in that case, 2905you can do the equivalent work directly inside the original function.) 2906 2907 2908<p> 2909Besides the Lua state, 2910the continuation function has two other parameters: 2911the final status of the call plus the context value (<code>ctx</code>) that 2912was passed originally to <a href="#lua_pcallk"><code>lua_pcallk</code></a>. 2913(Lua does not use this context value; 2914it only passes this value from the original function to the 2915continuation function.) 2916For <a href="#lua_pcallk"><code>lua_pcallk</code></a>, 2917the status is the same value that would be returned by <a href="#lua_pcallk"><code>lua_pcallk</code></a>, 2918except that it is <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> when being executed after a yield 2919(instead of <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>). 2920For <a href="#lua_yieldk"><code>lua_yieldk</code></a> and <a href="#lua_callk"><code>lua_callk</code></a>, 2921the status is always <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> when Lua calls the continuation. 2922(For these two functions, 2923Lua will not call the continuation in case of errors, 2924because they do not handle errors.) 2925Similarly, when using <a href="#lua_callk"><code>lua_callk</code></a>, 2926you should call the continuation function 2927with <a href="#pdf-LUA_OK"><code>LUA_OK</code></a> as the status. 2928(For <a href="#lua_yieldk"><code>lua_yieldk</code></a>, there is not much point in calling 2929directly the continuation function, 2930because <a href="#lua_yieldk"><code>lua_yieldk</code></a> usually does not return.) 2931 2932 2933<p> 2934Lua treats the continuation function as if it were the original function. 2935The continuation function receives the same Lua stack 2936from the original function, 2937in the same state it would be if the callee function had returned. 2938(For instance, 2939after a <a href="#lua_callk"><code>lua_callk</code></a> the function and its arguments are 2940removed from the stack and replaced by the results from the call.) 2941It also has the same upvalues. 2942Whatever it returns is handled by Lua as if it were the return 2943of the original function. 2944 2945 2946 2947 2948 2949<h2>4.8 – <a name="4.8">Functions and Types</a></h2> 2950 2951<p> 2952Here we list all functions and types from the C API in 2953alphabetical order. 2954Each function has an indicator like this: 2955<span class="apii">[-o, +p, <em>x</em>]</span> 2956 2957 2958<p> 2959The first field, <code>o</code>, 2960is how many elements the function pops from the stack. 2961The second field, <code>p</code>, 2962is how many elements the function pushes onto the stack. 2963(Any function always pushes its results after popping its arguments.) 2964A field in the form <code>x|y</code> means the function can push (or pop) 2965<code>x</code> or <code>y</code> elements, 2966depending on the situation; 2967an interrogation mark '<code>?</code>' means that 2968we cannot know how many elements the function pops/pushes 2969by looking only at its arguments 2970(e.g., they may depend on what is on the stack). 2971The third field, <code>x</code>, 2972tells whether the function may raise errors: 2973'<code>-</code>' means the function never raises any error; 2974'<code>e</code>' means the function may raise errors; 2975'<code>v</code>' means the function may raise an error on purpose. 2976 2977 2978 2979<hr><h3><a name="lua_absindex"><code>lua_absindex</code></a></h3><p> 2980<span class="apii">[-0, +0, –]</span> 2981<pre>int lua_absindex (lua_State *L, int idx);</pre> 2982 2983<p> 2984Converts the acceptable index <code>idx</code> into an absolute index 2985(that is, one that does not depend on the stack top). 2986 2987 2988 2989 2990 2991<hr><h3><a name="lua_Alloc"><code>lua_Alloc</code></a></h3> 2992<pre>typedef void * (*lua_Alloc) (void *ud, 2993 void *ptr, 2994 size_t osize, 2995 size_t nsize);</pre> 2996 2997<p> 2998The type of the memory-allocation function used by Lua states. 2999The allocator function must provide a 3000functionality similar to <code>realloc</code>, 3001but not exactly the same. 3002Its arguments are 3003<code>ud</code>, an opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>; 3004<code>ptr</code>, a pointer to the block being allocated/reallocated/freed; 3005<code>osize</code>, the original size of the block or some code about what 3006is being allocated; 3007and <code>nsize</code>, the new size of the block. 3008 3009 3010<p> 3011When <code>ptr</code> is not <code>NULL</code>, 3012<code>osize</code> is the size of the block pointed by <code>ptr</code>, 3013that is, the size given when it was allocated or reallocated. 3014 3015 3016<p> 3017When <code>ptr</code> is <code>NULL</code>, 3018<code>osize</code> encodes the kind of object that Lua is allocating. 3019<code>osize</code> is any of 3020<a href="#pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>, <a href="#pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>, <a href="#pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>, 3021<a href="#pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>, or <a href="#pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a> when (and only when) 3022Lua is creating a new object of that type. 3023When <code>osize</code> is some other value, 3024Lua is allocating memory for something else. 3025 3026 3027<p> 3028Lua assumes the following behavior from the allocator function: 3029 3030 3031<p> 3032When <code>nsize</code> is zero, 3033the allocator must behave like <code>free</code> 3034and return <code>NULL</code>. 3035 3036 3037<p> 3038When <code>nsize</code> is not zero, 3039the allocator must behave like <code>realloc</code>. 3040The allocator returns <code>NULL</code> 3041if and only if it cannot fulfill the request. 3042Lua assumes that the allocator never fails when 3043<code>osize >= nsize</code>. 3044 3045 3046<p> 3047Here is a simple implementation for the allocator function. 3048It is used in the auxiliary library by <a href="#luaL_newstate"><code>luaL_newstate</code></a>. 3049 3050<pre> 3051 static void *l_alloc (void *ud, void *ptr, size_t osize, 3052 size_t nsize) { 3053 (void)ud; (void)osize; /* not used */ 3054 if (nsize == 0) { 3055 free(ptr); 3056 return NULL; 3057 } 3058 else 3059 return realloc(ptr, nsize); 3060 } 3061</pre><p> 3062Note that Standard C ensures 3063that <code>free(NULL)</code> has no effect and that 3064<code>realloc(NULL,size)</code> is equivalent to <code>malloc(size)</code>. 3065This code assumes that <code>realloc</code> does not fail when shrinking a block. 3066(Although Standard C does not ensure this behavior, 3067it seems to be a safe assumption.) 3068 3069 3070 3071 3072 3073<hr><h3><a name="lua_arith"><code>lua_arith</code></a></h3><p> 3074<span class="apii">[-(2|1), +1, <em>e</em>]</span> 3075<pre>void lua_arith (lua_State *L, int op);</pre> 3076 3077<p> 3078Performs an arithmetic or bitwise operation over the two values 3079(or one, in the case of negations) 3080at the top of the stack, 3081with the value at the top being the second operand, 3082pops these values, and pushes the result of the operation. 3083The function follows the semantics of the corresponding Lua operator 3084(that is, it may call metamethods). 3085 3086 3087<p> 3088The value of <code>op</code> must be one of the following constants: 3089 3090<ul> 3091 3092<li><b><a name="pdf-LUA_OPADD"><code>LUA_OPADD</code></a>: </b> performs addition (<code>+</code>)</li> 3093<li><b><a name="pdf-LUA_OPSUB"><code>LUA_OPSUB</code></a>: </b> performs subtraction (<code>-</code>)</li> 3094<li><b><a name="pdf-LUA_OPMUL"><code>LUA_OPMUL</code></a>: </b> performs multiplication (<code>*</code>)</li> 3095<li><b><a name="pdf-LUA_OPDIV"><code>LUA_OPDIV</code></a>: </b> performs float division (<code>/</code>)</li> 3096<li><b><a name="pdf-LUA_OPIDIV"><code>LUA_OPIDIV</code></a>: </b> performs floor division (<code>//</code>)</li> 3097<li><b><a name="pdf-LUA_OPMOD"><code>LUA_OPMOD</code></a>: </b> performs modulo (<code>%</code>)</li> 3098<li><b><a name="pdf-LUA_OPPOW"><code>LUA_OPPOW</code></a>: </b> performs exponentiation (<code>^</code>)</li> 3099<li><b><a name="pdf-LUA_OPUNM"><code>LUA_OPUNM</code></a>: </b> performs mathematical negation (unary <code>-</code>)</li> 3100<li><b><a name="pdf-LUA_OPBNOT"><code>LUA_OPBNOT</code></a>: </b> performs bitwise negation (<code>~</code>)</li> 3101<li><b><a name="pdf-LUA_OPBAND"><code>LUA_OPBAND</code></a>: </b> performs bitwise and (<code>&</code>)</li> 3102<li><b><a name="pdf-LUA_OPBOR"><code>LUA_OPBOR</code></a>: </b> performs bitwise or (<code>|</code>)</li> 3103<li><b><a name="pdf-LUA_OPBXOR"><code>LUA_OPBXOR</code></a>: </b> performs bitwise exclusive or (<code>~</code>)</li> 3104<li><b><a name="pdf-LUA_OPSHL"><code>LUA_OPSHL</code></a>: </b> performs left shift (<code><<</code>)</li> 3105<li><b><a name="pdf-LUA_OPSHR"><code>LUA_OPSHR</code></a>: </b> performs right shift (<code>>></code>)</li> 3106 3107</ul> 3108 3109 3110 3111 3112<hr><h3><a name="lua_atpanic"><code>lua_atpanic</code></a></h3><p> 3113<span class="apii">[-0, +0, –]</span> 3114<pre>lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);</pre> 3115 3116<p> 3117Sets a new panic function and returns the old one (see <a href="#4.6">§4.6</a>). 3118 3119 3120 3121 3122 3123<hr><h3><a name="lua_call"><code>lua_call</code></a></h3><p> 3124<span class="apii">[-(nargs+1), +nresults, <em>e</em>]</span> 3125<pre>void lua_call (lua_State *L, int nargs, int nresults);</pre> 3126 3127<p> 3128Calls a function. 3129 3130 3131<p> 3132To call a function you must use the following protocol: 3133first, the function to be called is pushed onto the stack; 3134then, the arguments to the function are pushed 3135in direct order; 3136that is, the first argument is pushed first. 3137Finally you call <a href="#lua_call"><code>lua_call</code></a>; 3138<code>nargs</code> is the number of arguments that you pushed onto the stack. 3139All arguments and the function value are popped from the stack 3140when the function is called. 3141The function results are pushed onto the stack when the function returns. 3142The number of results is adjusted to <code>nresults</code>, 3143unless <code>nresults</code> is <a name="pdf-LUA_MULTRET"><code>LUA_MULTRET</code></a>. 3144In this case, all results from the function are pushed. 3145Lua takes care that the returned values fit into the stack space. 3146The function results are pushed onto the stack in direct order 3147(the first result is pushed first), 3148so that after the call the last result is on the top of the stack. 3149 3150 3151<p> 3152Any error inside the called function is propagated upwards 3153(with a <code>longjmp</code>). 3154 3155 3156<p> 3157The following example shows how the host program can do the 3158equivalent to this Lua code: 3159 3160<pre> 3161 a = f("how", t.x, 14) 3162</pre><p> 3163Here it is in C: 3164 3165<pre> 3166 lua_getglobal(L, "f"); /* function to be called */ 3167 lua_pushliteral(L, "how"); /* 1st argument */ 3168 lua_getglobal(L, "t"); /* table to be indexed */ 3169 lua_getfield(L, -1, "x"); /* push result of t.x (2nd arg) */ 3170 lua_remove(L, -2); /* remove 't' from the stack */ 3171 lua_pushinteger(L, 14); /* 3rd argument */ 3172 lua_call(L, 3, 1); /* call 'f' with 3 arguments and 1 result */ 3173 lua_setglobal(L, "a"); /* set global 'a' */ 3174</pre><p> 3175Note that the code above is <em>balanced</em>: 3176at its end, the stack is back to its original configuration. 3177This is considered good programming practice. 3178 3179 3180 3181 3182 3183<hr><h3><a name="lua_callk"><code>lua_callk</code></a></h3><p> 3184<span class="apii">[-(nargs + 1), +nresults, <em>e</em>]</span> 3185<pre>void lua_callk (lua_State *L, 3186 int nargs, 3187 int nresults, 3188 lua_KContext ctx, 3189 lua_KFunction k);</pre> 3190 3191<p> 3192This function behaves exactly like <a href="#lua_call"><code>lua_call</code></a>, 3193but allows the called function to yield (see <a href="#4.7">§4.7</a>). 3194 3195 3196 3197 3198 3199<hr><h3><a name="lua_CFunction"><code>lua_CFunction</code></a></h3> 3200<pre>typedef int (*lua_CFunction) (lua_State *L);</pre> 3201 3202<p> 3203Type for C functions. 3204 3205 3206<p> 3207In order to communicate properly with Lua, 3208a C function must use the following protocol, 3209which defines the way parameters and results are passed: 3210a C function receives its arguments from Lua in its stack 3211in direct order (the first argument is pushed first). 3212So, when the function starts, 3213<code>lua_gettop(L)</code> returns the number of arguments received by the function. 3214The first argument (if any) is at index 1 3215and its last argument is at index <code>lua_gettop(L)</code>. 3216To return values to Lua, a C function just pushes them onto the stack, 3217in direct order (the first result is pushed first), 3218and returns the number of results. 3219Any other value in the stack below the results will be properly 3220discarded by Lua. 3221Like a Lua function, a C function called by Lua can also return 3222many results. 3223 3224 3225<p> 3226As an example, the following function receives a variable number 3227of numerical arguments and returns their average and their sum: 3228 3229<pre> 3230 static int foo (lua_State *L) { 3231 int n = lua_gettop(L); /* number of arguments */ 3232 lua_Number sum = 0.0; 3233 int i; 3234 for (i = 1; i <= n; i++) { 3235 if (!lua_isnumber(L, i)) { 3236 lua_pushliteral(L, "incorrect argument"); 3237 lua_error(L); 3238 } 3239 sum += lua_tonumber(L, i); 3240 } 3241 lua_pushnumber(L, sum/n); /* first result */ 3242 lua_pushnumber(L, sum); /* second result */ 3243 return 2; /* number of results */ 3244 } 3245</pre> 3246 3247 3248 3249 3250<hr><h3><a name="lua_checkstack"><code>lua_checkstack</code></a></h3><p> 3251<span class="apii">[-0, +0, –]</span> 3252<pre>int lua_checkstack (lua_State *L, int n);</pre> 3253 3254<p> 3255Ensures that the stack has space for at least <code>n</code> extra slots. 3256It returns false if it cannot fulfill the request, 3257either because it would cause the stack 3258to be larger than a fixed maximum size 3259(typically at least several thousand elements) or 3260because it cannot allocate memory for the extra space. 3261This function never shrinks the stack; 3262if the stack is already larger than the new size, 3263it is left unchanged. 3264 3265 3266 3267 3268 3269<hr><h3><a name="lua_close"><code>lua_close</code></a></h3><p> 3270<span class="apii">[-0, +0, –]</span> 3271<pre>void lua_close (lua_State *L);</pre> 3272 3273<p> 3274Destroys all objects in the given Lua state 3275(calling the corresponding garbage-collection metamethods, if any) 3276and frees all dynamic memory used by this state. 3277On several platforms, you may not need to call this function, 3278because all resources are naturally released when the host program ends. 3279On the other hand, long-running programs that create multiple states, 3280such as daemons or web servers, 3281will probably need to close states as soon as they are not needed. 3282 3283 3284 3285 3286 3287<hr><h3><a name="lua_compare"><code>lua_compare</code></a></h3><p> 3288<span class="apii">[-0, +0, <em>e</em>]</span> 3289<pre>int lua_compare (lua_State *L, int index1, int index2, int op);</pre> 3290 3291<p> 3292Compares two Lua values. 3293Returns 1 if the value at index <code>index1</code> satisfies <code>op</code> 3294when compared with the value at index <code>index2</code>, 3295following the semantics of the corresponding Lua operator 3296(that is, it may call metamethods). 3297Otherwise returns 0. 3298Also returns 0 if any of the indices is not valid. 3299 3300 3301<p> 3302The value of <code>op</code> must be one of the following constants: 3303 3304<ul> 3305 3306<li><b><a name="pdf-LUA_OPEQ"><code>LUA_OPEQ</code></a>: </b> compares for equality (<code>==</code>)</li> 3307<li><b><a name="pdf-LUA_OPLT"><code>LUA_OPLT</code></a>: </b> compares for less than (<code><</code>)</li> 3308<li><b><a name="pdf-LUA_OPLE"><code>LUA_OPLE</code></a>: </b> compares for less or equal (<code><=</code>)</li> 3309 3310</ul> 3311 3312 3313 3314 3315<hr><h3><a name="lua_concat"><code>lua_concat</code></a></h3><p> 3316<span class="apii">[-n, +1, <em>e</em>]</span> 3317<pre>void lua_concat (lua_State *L, int n);</pre> 3318 3319<p> 3320Concatenates the <code>n</code> values at the top of the stack, 3321pops them, and leaves the result at the top. 3322If <code>n</code> is 1, the result is the single value on the stack 3323(that is, the function does nothing); 3324if <code>n</code> is 0, the result is the empty string. 3325Concatenation is performed following the usual semantics of Lua 3326(see <a href="#3.4.6">§3.4.6</a>). 3327 3328 3329 3330 3331 3332<hr><h3><a name="lua_copy"><code>lua_copy</code></a></h3><p> 3333<span class="apii">[-0, +0, –]</span> 3334<pre>void lua_copy (lua_State *L, int fromidx, int toidx);</pre> 3335 3336<p> 3337Copies the element at index <code>fromidx</code> 3338into the valid index <code>toidx</code>, 3339replacing the value at that position. 3340Values at other positions are not affected. 3341 3342 3343 3344 3345 3346<hr><h3><a name="lua_createtable"><code>lua_createtable</code></a></h3><p> 3347<span class="apii">[-0, +1, <em>e</em>]</span> 3348<pre>void lua_createtable (lua_State *L, int narr, int nrec);</pre> 3349 3350<p> 3351Creates a new empty table and pushes it onto the stack. 3352Parameter <code>narr</code> is a hint for how many elements the table 3353will have as a sequence; 3354parameter <code>nrec</code> is a hint for how many other elements 3355the table will have. 3356Lua may use these hints to preallocate memory for the new table. 3357This pre-allocation is useful for performance when you know in advance 3358how many elements the table will have. 3359Otherwise you can use the function <a href="#lua_newtable"><code>lua_newtable</code></a>. 3360 3361 3362 3363 3364 3365<hr><h3><a name="lua_dump"><code>lua_dump</code></a></h3><p> 3366<span class="apii">[-0, +0, <em>e</em>]</span> 3367<pre>int lua_dump (lua_State *L, 3368 lua_Writer writer, 3369 void *data, 3370 int strip);</pre> 3371 3372<p> 3373Dumps a function as a binary chunk. 3374Receives a Lua function on the top of the stack 3375and produces a binary chunk that, 3376if loaded again, 3377results in a function equivalent to the one dumped. 3378As it produces parts of the chunk, 3379<a href="#lua_dump"><code>lua_dump</code></a> calls function <code>writer</code> (see <a href="#lua_Writer"><code>lua_Writer</code></a>) 3380with the given <code>data</code> 3381to write them. 3382 3383 3384<p> 3385If <code>strip</code> is true, 3386the binary representation is created without debug information 3387about the function. 3388 3389 3390<p> 3391The value returned is the error code returned by the last 3392call to the writer; 33930 means no errors. 3394 3395 3396<p> 3397This function does not pop the Lua function from the stack. 3398 3399 3400 3401 3402 3403<hr><h3><a name="lua_error"><code>lua_error</code></a></h3><p> 3404<span class="apii">[-1, +0, <em>v</em>]</span> 3405<pre>int lua_error (lua_State *L);</pre> 3406 3407<p> 3408Generates a Lua error, 3409using the value at the top of the stack as the error object. 3410This function does a long jump, 3411and therefore never returns 3412(see <a href="#luaL_error"><code>luaL_error</code></a>). 3413 3414 3415 3416 3417 3418<hr><h3><a name="lua_gc"><code>lua_gc</code></a></h3><p> 3419<span class="apii">[-0, +0, <em>e</em>]</span> 3420<pre>int lua_gc (lua_State *L, int what, int data);</pre> 3421 3422<p> 3423Controls the garbage collector. 3424 3425 3426<p> 3427This function performs several tasks, 3428according to the value of the parameter <code>what</code>: 3429 3430<ul> 3431 3432<li><b><code>LUA_GCSTOP</code>: </b> 3433stops the garbage collector. 3434</li> 3435 3436<li><b><code>LUA_GCRESTART</code>: </b> 3437restarts the garbage collector. 3438</li> 3439 3440<li><b><code>LUA_GCCOLLECT</code>: </b> 3441performs a full garbage-collection cycle. 3442</li> 3443 3444<li><b><code>LUA_GCCOUNT</code>: </b> 3445returns the current amount of memory (in Kbytes) in use by Lua. 3446</li> 3447 3448<li><b><code>LUA_GCCOUNTB</code>: </b> 3449returns the remainder of dividing the current amount of bytes of 3450memory in use by Lua by 1024. 3451</li> 3452 3453<li><b><code>LUA_GCSTEP</code>: </b> 3454performs an incremental step of garbage collection. 3455</li> 3456 3457<li><b><code>LUA_GCSETPAUSE</code>: </b> 3458sets <code>data</code> as the new value 3459for the <em>pause</em> of the collector (see <a href="#2.5">§2.5</a>) 3460and returns the previous value of the pause. 3461</li> 3462 3463<li><b><code>LUA_GCSETSTEPMUL</code>: </b> 3464sets <code>data</code> as the new value for the <em>step multiplier</em> of 3465the collector (see <a href="#2.5">§2.5</a>) 3466and returns the previous value of the step multiplier. 3467</li> 3468 3469<li><b><code>LUA_GCISRUNNING</code>: </b> 3470returns a boolean that tells whether the collector is running 3471(i.e., not stopped). 3472</li> 3473 3474</ul> 3475 3476<p> 3477For more details about these options, 3478see <a href="#pdf-collectgarbage"><code>collectgarbage</code></a>. 3479 3480 3481 3482 3483 3484<hr><h3><a name="lua_getallocf"><code>lua_getallocf</code></a></h3><p> 3485<span class="apii">[-0, +0, –]</span> 3486<pre>lua_Alloc lua_getallocf (lua_State *L, void **ud);</pre> 3487 3488<p> 3489Returns the memory-allocation function of a given state. 3490If <code>ud</code> is not <code>NULL</code>, Lua stores in <code>*ud</code> the 3491opaque pointer given when the memory-allocator function was set. 3492 3493 3494 3495 3496 3497<hr><h3><a name="lua_getfield"><code>lua_getfield</code></a></h3><p> 3498<span class="apii">[-0, +1, <em>e</em>]</span> 3499<pre>int lua_getfield (lua_State *L, int index, const char *k);</pre> 3500 3501<p> 3502Pushes onto the stack the value <code>t[k]</code>, 3503where <code>t</code> is the value at the given index. 3504As in Lua, this function may trigger a metamethod 3505for the "index" event (see <a href="#2.4">§2.4</a>). 3506 3507 3508<p> 3509Returns the type of the pushed value. 3510 3511 3512 3513 3514 3515<hr><h3><a name="lua_getextraspace"><code>lua_getextraspace</code></a></h3><p> 3516<span class="apii">[-0, +0, –]</span> 3517<pre>void *lua_getextraspace (lua_State *L);</pre> 3518 3519<p> 3520Returns a pointer to a raw memory area associated with the 3521given Lua state. 3522The application can use this area for any purpose; 3523Lua does not use it for anything. 3524 3525 3526<p> 3527Each new thread has this area initialized with a copy 3528of the area of the main thread. 3529 3530 3531<p> 3532By default, this area has the size of a pointer to void, 3533but you can recompile Lua with a different size for this area. 3534(See <code>LUA_EXTRASPACE</code> in <code>luaconf.h</code>.) 3535 3536 3537 3538 3539 3540<hr><h3><a name="lua_getglobal"><code>lua_getglobal</code></a></h3><p> 3541<span class="apii">[-0, +1, <em>e</em>]</span> 3542<pre>int lua_getglobal (lua_State *L, const char *name);</pre> 3543 3544<p> 3545Pushes onto the stack the value of the global <code>name</code>. 3546Returns the type of that value. 3547 3548 3549 3550 3551 3552<hr><h3><a name="lua_geti"><code>lua_geti</code></a></h3><p> 3553<span class="apii">[-0, +1, <em>e</em>]</span> 3554<pre>int lua_geti (lua_State *L, int index, lua_Integer i);</pre> 3555 3556<p> 3557Pushes onto the stack the value <code>t[i]</code>, 3558where <code>t</code> is the value at the given index. 3559As in Lua, this function may trigger a metamethod 3560for the "index" event (see <a href="#2.4">§2.4</a>). 3561 3562 3563<p> 3564Returns the type of the pushed value. 3565 3566 3567 3568 3569 3570<hr><h3><a name="lua_getmetatable"><code>lua_getmetatable</code></a></h3><p> 3571<span class="apii">[-0, +(0|1), –]</span> 3572<pre>int lua_getmetatable (lua_State *L, int index);</pre> 3573 3574<p> 3575If the value at the given index has a metatable, 3576the function pushes that metatable onto the stack and returns 1. 3577Otherwise, 3578the function returns 0 and pushes nothing on the stack. 3579 3580 3581 3582 3583 3584<hr><h3><a name="lua_gettable"><code>lua_gettable</code></a></h3><p> 3585<span class="apii">[-1, +1, <em>e</em>]</span> 3586<pre>int lua_gettable (lua_State *L, int index);</pre> 3587 3588<p> 3589Pushes onto the stack the value <code>t[k]</code>, 3590where <code>t</code> is the value at the given index 3591and <code>k</code> is the value at the top of the stack. 3592 3593 3594<p> 3595This function pops the key from the stack, 3596pushing the resulting value in its place. 3597As in Lua, this function may trigger a metamethod 3598for the "index" event (see <a href="#2.4">§2.4</a>). 3599 3600 3601<p> 3602Returns the type of the pushed value. 3603 3604 3605 3606 3607 3608<hr><h3><a name="lua_gettop"><code>lua_gettop</code></a></h3><p> 3609<span class="apii">[-0, +0, –]</span> 3610<pre>int lua_gettop (lua_State *L);</pre> 3611 3612<p> 3613Returns the index of the top element in the stack. 3614Because indices start at 1, 3615this result is equal to the number of elements in the stack; 3616in particular, 0 means an empty stack. 3617 3618 3619 3620 3621 3622<hr><h3><a name="lua_getuservalue"><code>lua_getuservalue</code></a></h3><p> 3623<span class="apii">[-0, +1, –]</span> 3624<pre>int lua_getuservalue (lua_State *L, int index);</pre> 3625 3626<p> 3627Pushes onto the stack the Lua value associated with the userdata 3628at the given index. 3629 3630 3631<p> 3632Returns the type of the pushed value. 3633 3634 3635 3636 3637 3638<hr><h3><a name="lua_insert"><code>lua_insert</code></a></h3><p> 3639<span class="apii">[-1, +1, –]</span> 3640<pre>void lua_insert (lua_State *L, int index);</pre> 3641 3642<p> 3643Moves the top element into the given valid index, 3644shifting up the elements above this index to open space. 3645This function cannot be called with a pseudo-index, 3646because a pseudo-index is not an actual stack position. 3647 3648 3649 3650 3651 3652<hr><h3><a name="lua_Integer"><code>lua_Integer</code></a></h3> 3653<pre>typedef ... lua_Integer;</pre> 3654 3655<p> 3656The type of integers in Lua. 3657 3658 3659<p> 3660By default this type is <code>long long</code>, 3661(usually a 64-bit two-complement integer), 3662but that can be changed to <code>long</code> or <code>int</code> 3663(usually a 32-bit two-complement integer). 3664(See <code>LUA_INT</code> in <code>luaconf.h</code>.) 3665 3666 3667<p> 3668Lua also defines the constants 3669<a name="pdf-LUA_MININTEGER"><code>LUA_MININTEGER</code></a> and <a name="pdf-LUA_MAXINTEGER"><code>LUA_MAXINTEGER</code></a>, 3670with the minimum and the maximum values that fit in this type. 3671 3672 3673 3674 3675 3676<hr><h3><a name="lua_isboolean"><code>lua_isboolean</code></a></h3><p> 3677<span class="apii">[-0, +0, –]</span> 3678<pre>int lua_isboolean (lua_State *L, int index);</pre> 3679 3680<p> 3681Returns 1 if the value at the given index is a boolean, 3682and 0 otherwise. 3683 3684 3685 3686 3687 3688<hr><h3><a name="lua_iscfunction"><code>lua_iscfunction</code></a></h3><p> 3689<span class="apii">[-0, +0, –]</span> 3690<pre>int lua_iscfunction (lua_State *L, int index);</pre> 3691 3692<p> 3693Returns 1 if the value at the given index is a C function, 3694and 0 otherwise. 3695 3696 3697 3698 3699 3700<hr><h3><a name="lua_isfunction"><code>lua_isfunction</code></a></h3><p> 3701<span class="apii">[-0, +0, –]</span> 3702<pre>int lua_isfunction (lua_State *L, int index);</pre> 3703 3704<p> 3705Returns 1 if the value at the given index is a function 3706(either C or Lua), and 0 otherwise. 3707 3708 3709 3710 3711 3712<hr><h3><a name="lua_isinteger"><code>lua_isinteger</code></a></h3><p> 3713<span class="apii">[-0, +0, –]</span> 3714<pre>int lua_isinteger (lua_State *L, int index);</pre> 3715 3716<p> 3717Returns 1 if the value at the given index is an integer 3718(that is, the value is a number and is represented as an integer), 3719and 0 otherwise. 3720 3721 3722 3723 3724 3725<hr><h3><a name="lua_islightuserdata"><code>lua_islightuserdata</code></a></h3><p> 3726<span class="apii">[-0, +0, –]</span> 3727<pre>int lua_islightuserdata (lua_State *L, int index);</pre> 3728 3729<p> 3730Returns 1 if the value at the given index is a light userdata, 3731and 0 otherwise. 3732 3733 3734 3735 3736 3737<hr><h3><a name="lua_isnil"><code>lua_isnil</code></a></h3><p> 3738<span class="apii">[-0, +0, –]</span> 3739<pre>int lua_isnil (lua_State *L, int index);</pre> 3740 3741<p> 3742Returns 1 if the value at the given index is <b>nil</b>, 3743and 0 otherwise. 3744 3745 3746 3747 3748 3749<hr><h3><a name="lua_isnone"><code>lua_isnone</code></a></h3><p> 3750<span class="apii">[-0, +0, –]</span> 3751<pre>int lua_isnone (lua_State *L, int index);</pre> 3752 3753<p> 3754Returns 1 if the given index is not valid, 3755and 0 otherwise. 3756 3757 3758 3759 3760 3761<hr><h3><a name="lua_isnoneornil"><code>lua_isnoneornil</code></a></h3><p> 3762<span class="apii">[-0, +0, –]</span> 3763<pre>int lua_isnoneornil (lua_State *L, int index);</pre> 3764 3765<p> 3766Returns 1 if the given index is not valid 3767or if the value at this index is <b>nil</b>, 3768and 0 otherwise. 3769 3770 3771 3772 3773 3774<hr><h3><a name="lua_isnumber"><code>lua_isnumber</code></a></h3><p> 3775<span class="apii">[-0, +0, –]</span> 3776<pre>int lua_isnumber (lua_State *L, int index);</pre> 3777 3778<p> 3779Returns 1 if the value at the given index is a number 3780or a string convertible to a number, 3781and 0 otherwise. 3782 3783 3784 3785 3786 3787<hr><h3><a name="lua_isstring"><code>lua_isstring</code></a></h3><p> 3788<span class="apii">[-0, +0, –]</span> 3789<pre>int lua_isstring (lua_State *L, int index);</pre> 3790 3791<p> 3792Returns 1 if the value at the given index is a string 3793or a number (which is always convertible to a string), 3794and 0 otherwise. 3795 3796 3797 3798 3799 3800<hr><h3><a name="lua_istable"><code>lua_istable</code></a></h3><p> 3801<span class="apii">[-0, +0, –]</span> 3802<pre>int lua_istable (lua_State *L, int index);</pre> 3803 3804<p> 3805Returns 1 if the value at the given index is a table, 3806and 0 otherwise. 3807 3808 3809 3810 3811 3812<hr><h3><a name="lua_isthread"><code>lua_isthread</code></a></h3><p> 3813<span class="apii">[-0, +0, –]</span> 3814<pre>int lua_isthread (lua_State *L, int index);</pre> 3815 3816<p> 3817Returns 1 if the value at the given index is a thread, 3818and 0 otherwise. 3819 3820 3821 3822 3823 3824<hr><h3><a name="lua_isuserdata"><code>lua_isuserdata</code></a></h3><p> 3825<span class="apii">[-0, +0, –]</span> 3826<pre>int lua_isuserdata (lua_State *L, int index);</pre> 3827 3828<p> 3829Returns 1 if the value at the given index is a userdata 3830(either full or light), and 0 otherwise. 3831 3832 3833 3834 3835 3836<hr><h3><a name="lua_isyieldable"><code>lua_isyieldable</code></a></h3><p> 3837<span class="apii">[-0, +0, –]</span> 3838<pre>int lua_isyieldable (lua_State *L);</pre> 3839 3840<p> 3841Returns 1 if the given coroutine can yield, 3842and 0 otherwise. 3843 3844 3845 3846 3847 3848<hr><h3><a name="lua_KContext"><code>lua_KContext</code></a></h3> 3849<pre>typedef ... lua_KContext;</pre> 3850 3851<p> 3852The type for continuation-function contexts. 3853It must be a numerical type. 3854This type is defined as <code>intptr_t</code> 3855when <code>intptr_t</code> is available, 3856so that it can store pointers too. 3857Otherwise, it is defined as <code>ptrdiff_t</code>. 3858 3859 3860 3861 3862 3863<hr><h3><a name="lua_KFunction"><code>lua_KFunction</code></a></h3> 3864<pre>typedef int (*lua_KFunction) (lua_State *L, int status, lua_KContext ctx);</pre> 3865 3866<p> 3867Type for continuation functions (see <a href="#4.7">§4.7</a>). 3868 3869 3870 3871 3872 3873<hr><h3><a name="lua_len"><code>lua_len</code></a></h3><p> 3874<span class="apii">[-0, +1, <em>e</em>]</span> 3875<pre>void lua_len (lua_State *L, int index);</pre> 3876 3877<p> 3878Returns the length of the value at the given index. 3879It is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.7">§3.4.7</a>) and 3880may trigger a metamethod for the "length" event (see <a href="#2.4">§2.4</a>). 3881The result is pushed on the stack. 3882 3883 3884 3885 3886 3887<hr><h3><a name="lua_load"><code>lua_load</code></a></h3><p> 3888<span class="apii">[-0, +1, –]</span> 3889<pre>int lua_load (lua_State *L, 3890 lua_Reader reader, 3891 void *data, 3892 const char *chunkname, 3893 const char *mode);</pre> 3894 3895<p> 3896Loads a Lua chunk without running it. 3897If there are no errors, 3898<code>lua_load</code> pushes the compiled chunk as a Lua 3899function on top of the stack. 3900Otherwise, it pushes an error message. 3901 3902 3903<p> 3904The return values of <code>lua_load</code> are: 3905 3906<ul> 3907 3908<li><b><a href="#pdf-LUA_OK"><code>LUA_OK</code></a>: </b> no errors;</li> 3909 3910<li><b><a name="pdf-LUA_ERRSYNTAX"><code>LUA_ERRSYNTAX</code></a>: </b> 3911syntax error during precompilation;</li> 3912 3913<li><b><a href="#pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b> 3914memory allocation error;</li> 3915 3916<li><b><a href="#pdf-LUA_ERRGCMM"><code>LUA_ERRGCMM</code></a>: </b> 3917error while running a <code>__gc</code> metamethod. 3918(This error has no relation with the chunk being loaded. 3919It is generated by the garbage collector.) 3920</li> 3921 3922</ul> 3923 3924<p> 3925The <code>lua_load</code> function uses a user-supplied <code>reader</code> function 3926to read the chunk (see <a href="#lua_Reader"><code>lua_Reader</code></a>). 3927The <code>data</code> argument is an opaque value passed to the reader function. 3928 3929 3930<p> 3931The <code>chunkname</code> argument gives a name to the chunk, 3932which is used for error messages and in debug information (see <a href="#4.9">§4.9</a>). 3933 3934 3935<p> 3936<code>lua_load</code> automatically detects whether the chunk is text or binary 3937and loads it accordingly (see program <code>luac</code>). 3938The string <code>mode</code> works as in function <a href="#pdf-load"><code>load</code></a>, 3939with the addition that 3940a <code>NULL</code> value is equivalent to the string "<code>bt</code>". 3941 3942 3943<p> 3944<code>lua_load</code> uses the stack internally, 3945so the reader function must always leave the stack 3946unmodified when returning. 3947 3948 3949<p> 3950If the resulting function has upvalues, 3951its first upvalue is set to the value of the global environment 3952stored at index <code>LUA_RIDX_GLOBALS</code> in the registry (see <a href="#4.5">§4.5</a>). 3953When loading main chunks, 3954this upvalue will be the <code>_ENV</code> variable (see <a href="#2.2">§2.2</a>). 3955Other upvalues are initialized with <b>nil</b>. 3956 3957 3958 3959 3960 3961<hr><h3><a name="lua_newstate"><code>lua_newstate</code></a></h3><p> 3962<span class="apii">[-0, +0, –]</span> 3963<pre>lua_State *lua_newstate (lua_Alloc f, void *ud);</pre> 3964 3965<p> 3966Creates a new thread running in a new, independent state. 3967Returns <code>NULL</code> if it cannot create the thread or the state 3968(due to lack of memory). 3969The argument <code>f</code> is the allocator function; 3970Lua does all memory allocation for this state through this function. 3971The second argument, <code>ud</code>, is an opaque pointer that Lua 3972passes to the allocator in every call. 3973 3974 3975 3976 3977 3978<hr><h3><a name="lua_newtable"><code>lua_newtable</code></a></h3><p> 3979<span class="apii">[-0, +1, <em>e</em>]</span> 3980<pre>void lua_newtable (lua_State *L);</pre> 3981 3982<p> 3983Creates a new empty table and pushes it onto the stack. 3984It is equivalent to <code>lua_createtable(L, 0, 0)</code>. 3985 3986 3987 3988 3989 3990<hr><h3><a name="lua_newthread"><code>lua_newthread</code></a></h3><p> 3991<span class="apii">[-0, +1, <em>e</em>]</span> 3992<pre>lua_State *lua_newthread (lua_State *L);</pre> 3993 3994<p> 3995Creates a new thread, pushes it on the stack, 3996and returns a pointer to a <a href="#lua_State"><code>lua_State</code></a> that represents this new thread. 3997The new thread returned by this function shares with the original thread 3998its global environment, 3999but has an independent execution stack. 4000 4001 4002<p> 4003There is no explicit function to close or to destroy a thread. 4004Threads are subject to garbage collection, 4005like any Lua object. 4006 4007 4008 4009 4010 4011<hr><h3><a name="lua_newuserdata"><code>lua_newuserdata</code></a></h3><p> 4012<span class="apii">[-0, +1, <em>e</em>]</span> 4013<pre>void *lua_newuserdata (lua_State *L, size_t size);</pre> 4014 4015<p> 4016This function allocates a new block of memory with the given size, 4017pushes onto the stack a new full userdata with the block address, 4018and returns this address. 4019The host program can freely use this memory. 4020 4021 4022 4023 4024 4025<hr><h3><a name="lua_next"><code>lua_next</code></a></h3><p> 4026<span class="apii">[-1, +(2|0), <em>e</em>]</span> 4027<pre>int lua_next (lua_State *L, int index);</pre> 4028 4029<p> 4030Pops a key from the stack, 4031and pushes a key–value pair from the table at the given index 4032(the "next" pair after the given key). 4033If there are no more elements in the table, 4034then <a href="#lua_next"><code>lua_next</code></a> returns 0 (and pushes nothing). 4035 4036 4037<p> 4038A typical traversal looks like this: 4039 4040<pre> 4041 /* table is in the stack at index 't' */ 4042 lua_pushnil(L); /* first key */ 4043 while (lua_next(L, t) != 0) { 4044 /* uses 'key' (at index -2) and 'value' (at index -1) */ 4045 printf("%s - %s\n", 4046 lua_typename(L, lua_type(L, -2)), 4047 lua_typename(L, lua_type(L, -1))); 4048 /* removes 'value'; keeps 'key' for next iteration */ 4049 lua_pop(L, 1); 4050 } 4051</pre> 4052 4053<p> 4054While traversing a table, 4055do not call <a href="#lua_tolstring"><code>lua_tolstring</code></a> directly on a key, 4056unless you know that the key is actually a string. 4057Recall that <a href="#lua_tolstring"><code>lua_tolstring</code></a> may change 4058the value at the given index; 4059this confuses the next call to <a href="#lua_next"><code>lua_next</code></a>. 4060 4061 4062<p> 4063See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying 4064the table during its traversal. 4065 4066 4067 4068 4069 4070<hr><h3><a name="lua_Number"><code>lua_Number</code></a></h3> 4071<pre>typedef double lua_Number;</pre> 4072 4073<p> 4074The type of floats in Lua. 4075 4076 4077<p> 4078By default this type is double, 4079but that can be changed to a single float. 4080(See <code>LUA_REAL</code> in <code>luaconf.h</code>.) 4081 4082 4083 4084 4085 4086<hr><h3><a name="lua_numbertointeger"><code>lua_numbertointeger</code></a></h3> 4087<pre>int lua_numbertointeger (lua_Number n, lua_Integer *p);</pre> 4088 4089<p> 4090Converts a Lua float to a Lua integer. 4091This macro assumes that <code>n</code> has an integral value. 4092If that value is within the range of Lua integers, 4093it is converted to an integer and assigned to <code>*p</code>. 4094The macro results in a boolean indicating whether the 4095conversion was successful. 4096(Note that this range test can be tricky to do 4097correctly without this macro, 4098due to roundings.) 4099 4100 4101<p> 4102This macro may evaluate its arguments more than once. 4103 4104 4105 4106 4107 4108<hr><h3><a name="lua_pcall"><code>lua_pcall</code></a></h3><p> 4109<span class="apii">[-(nargs + 1), +(nresults|1), –]</span> 4110<pre>int lua_pcall (lua_State *L, int nargs, int nresults, int msgh);</pre> 4111 4112<p> 4113Calls a function in protected mode. 4114 4115 4116<p> 4117Both <code>nargs</code> and <code>nresults</code> have the same meaning as 4118in <a href="#lua_call"><code>lua_call</code></a>. 4119If there are no errors during the call, 4120<a href="#lua_pcall"><code>lua_pcall</code></a> behaves exactly like <a href="#lua_call"><code>lua_call</code></a>. 4121However, if there is any error, 4122<a href="#lua_pcall"><code>lua_pcall</code></a> catches it, 4123pushes a single value on the stack (the error message), 4124and returns an error code. 4125Like <a href="#lua_call"><code>lua_call</code></a>, 4126<a href="#lua_pcall"><code>lua_pcall</code></a> always removes the function 4127and its arguments from the stack. 4128 4129 4130<p> 4131If <code>msgh</code> is 0, 4132then the error message returned on the stack 4133is exactly the original error message. 4134Otherwise, <code>msgh</code> is the stack index of a 4135<em>message handler</em>. 4136(In the current implementation, this index cannot be a pseudo-index.) 4137In case of runtime errors, 4138this function will be called with the error message 4139and its return value will be the message 4140returned on the stack by <a href="#lua_pcall"><code>lua_pcall</code></a>. 4141 4142 4143<p> 4144Typically, the message handler is used to add more debug 4145information to the error message, such as a stack traceback. 4146Such information cannot be gathered after the return of <a href="#lua_pcall"><code>lua_pcall</code></a>, 4147since by then the stack has unwound. 4148 4149 4150<p> 4151The <a href="#lua_pcall"><code>lua_pcall</code></a> function returns one of the following constants 4152(defined in <code>lua.h</code>): 4153 4154<ul> 4155 4156<li><b><a name="pdf-LUA_OK"><code>LUA_OK</code></a> (0): </b> 4157success.</li> 4158 4159<li><b><a name="pdf-LUA_ERRRUN"><code>LUA_ERRRUN</code></a>: </b> 4160a runtime error. 4161</li> 4162 4163<li><b><a name="pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b> 4164memory allocation error. 4165For such errors, Lua does not call the message handler. 4166</li> 4167 4168<li><b><a name="pdf-LUA_ERRERR"><code>LUA_ERRERR</code></a>: </b> 4169error while running the message handler. 4170</li> 4171 4172<li><b><a name="pdf-LUA_ERRGCMM"><code>LUA_ERRGCMM</code></a>: </b> 4173error while running a <code>__gc</code> metamethod. 4174(This error typically has no relation with the function being called.) 4175</li> 4176 4177</ul> 4178 4179 4180 4181 4182<hr><h3><a name="lua_pcallk"><code>lua_pcallk</code></a></h3><p> 4183<span class="apii">[-(nargs + 1), +(nresults|1), –]</span> 4184<pre>int lua_pcallk (lua_State *L, 4185 int nargs, 4186 int nresults, 4187 int msgh, 4188 lua_KContext ctx, 4189 lua_KFunction k);</pre> 4190 4191<p> 4192This function behaves exactly like <a href="#lua_pcall"><code>lua_pcall</code></a>, 4193but allows the called function to yield (see <a href="#4.7">§4.7</a>). 4194 4195 4196 4197 4198 4199<hr><h3><a name="lua_pop"><code>lua_pop</code></a></h3><p> 4200<span class="apii">[-n, +0, –]</span> 4201<pre>void lua_pop (lua_State *L, int n);</pre> 4202 4203<p> 4204Pops <code>n</code> elements from the stack. 4205 4206 4207 4208 4209 4210<hr><h3><a name="lua_pushboolean"><code>lua_pushboolean</code></a></h3><p> 4211<span class="apii">[-0, +1, –]</span> 4212<pre>void lua_pushboolean (lua_State *L, int b);</pre> 4213 4214<p> 4215Pushes a boolean value with value <code>b</code> onto the stack. 4216 4217 4218 4219 4220 4221<hr><h3><a name="lua_pushcclosure"><code>lua_pushcclosure</code></a></h3><p> 4222<span class="apii">[-n, +1, <em>e</em>]</span> 4223<pre>void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);</pre> 4224 4225<p> 4226Pushes a new C closure onto the stack. 4227 4228 4229<p> 4230When a C function is created, 4231it is possible to associate some values with it, 4232thus creating a C closure (see <a href="#4.4">§4.4</a>); 4233these values are then accessible to the function whenever it is called. 4234To associate values with a C function, 4235first these values must be pushed onto the stack 4236(when there are multiple values, the first value is pushed first). 4237Then <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> 4238is called to create and push the C function onto the stack, 4239with the argument <code>n</code> telling how many values will be 4240associated with the function. 4241<a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> also pops these values from the stack. 4242 4243 4244<p> 4245The maximum value for <code>n</code> is 255. 4246 4247 4248<p> 4249When <code>n</code> is zero, 4250this function creates a <em>light C function</em>, 4251which is just a pointer to the C function. 4252In that case, it never raises a memory error. 4253 4254 4255 4256 4257 4258<hr><h3><a name="lua_pushcfunction"><code>lua_pushcfunction</code></a></h3><p> 4259<span class="apii">[-0, +1, –]</span> 4260<pre>void lua_pushcfunction (lua_State *L, lua_CFunction f);</pre> 4261 4262<p> 4263Pushes a C function onto the stack. 4264This function receives a pointer to a C function 4265and pushes onto the stack a Lua value of type <code>function</code> that, 4266when called, invokes the corresponding C function. 4267 4268 4269<p> 4270Any function to be registered in Lua must 4271follow the correct protocol to receive its parameters 4272and return its results (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>). 4273 4274 4275<p> 4276<code>lua_pushcfunction</code> is defined as a macro: 4277 4278<pre> 4279 #define lua_pushcfunction(L,f) lua_pushcclosure(L,f,0) 4280</pre><p> 4281Note that <code>f</code> is used twice. 4282 4283 4284 4285 4286 4287<hr><h3><a name="lua_pushfstring"><code>lua_pushfstring</code></a></h3><p> 4288<span class="apii">[-0, +1, <em>e</em>]</span> 4289<pre>const char *lua_pushfstring (lua_State *L, const char *fmt, ...);</pre> 4290 4291<p> 4292Pushes onto the stack a formatted string 4293and returns a pointer to this string. 4294It is similar to the ISO C function <code>sprintf</code>, 4295but has some important differences: 4296 4297<ul> 4298 4299<li> 4300You do not have to allocate space for the result: 4301the result is a Lua string and Lua takes care of memory allocation 4302(and deallocation, through garbage collection). 4303</li> 4304 4305<li> 4306The conversion specifiers are quite restricted. 4307There are no flags, widths, or precisions. 4308The conversion specifiers can only be 4309'<code>%%</code>' (inserts the character '<code>%</code>'), 4310'<code>%s</code>' (inserts a zero-terminated string, with no size restrictions), 4311'<code>%f</code>' (inserts a <a href="#lua_Number"><code>lua_Number</code></a>), 4312'<code>%L</code>' (inserts a <a href="#lua_Integer"><code>lua_Integer</code></a>), 4313'<code>%p</code>' (inserts a pointer as a hexadecimal numeral), 4314'<code>%d</code>' (inserts an <code>int</code>), 4315'<code>%c</code>' (inserts an <code>int</code> as a one-byte character), and 4316'<code>%U</code>' (inserts a <code>long int</code> as a UTF-8 byte sequence). 4317</li> 4318 4319</ul> 4320 4321 4322 4323 4324<hr><h3><a name="lua_pushglobaltable"><code>lua_pushglobaltable</code></a></h3><p> 4325<span class="apii">[-0, +1, –]</span> 4326<pre>void lua_pushglobaltable (lua_State *L);</pre> 4327 4328<p> 4329Pushes the global environment onto the stack. 4330 4331 4332 4333 4334 4335<hr><h3><a name="lua_pushinteger"><code>lua_pushinteger</code></a></h3><p> 4336<span class="apii">[-0, +1, –]</span> 4337<pre>void lua_pushinteger (lua_State *L, lua_Integer n);</pre> 4338 4339<p> 4340Pushes an integer with value <code>n</code> onto the stack. 4341 4342 4343 4344 4345 4346<hr><h3><a name="lua_pushlightuserdata"><code>lua_pushlightuserdata</code></a></h3><p> 4347<span class="apii">[-0, +1, –]</span> 4348<pre>void lua_pushlightuserdata (lua_State *L, void *p);</pre> 4349 4350<p> 4351Pushes a light userdata onto the stack. 4352 4353 4354<p> 4355Userdata represent C values in Lua. 4356A <em>light userdata</em> represents a pointer, a <code>void*</code>. 4357It is a value (like a number): 4358you do not create it, it has no individual metatable, 4359and it is not collected (as it was never created). 4360A light userdata is equal to "any" 4361light userdata with the same C address. 4362 4363 4364 4365 4366 4367<hr><h3><a name="lua_pushliteral"><code>lua_pushliteral</code></a></h3><p> 4368<span class="apii">[-0, +1, <em>e</em>]</span> 4369<pre>const char *lua_pushliteral (lua_State *L, const char *s);</pre> 4370 4371<p> 4372This macro is equivalent to <a href="#lua_pushlstring"><code>lua_pushlstring</code></a>, 4373but can be used only when <code>s</code> is a literal string. 4374It automatically provides the string length. 4375 4376 4377 4378 4379 4380<hr><h3><a name="lua_pushlstring"><code>lua_pushlstring</code></a></h3><p> 4381<span class="apii">[-0, +1, <em>e</em>]</span> 4382<pre>const char *lua_pushlstring (lua_State *L, const char *s, size_t len);</pre> 4383 4384<p> 4385Pushes the string pointed to by <code>s</code> with size <code>len</code> 4386onto the stack. 4387Lua makes (or reuses) an internal copy of the given string, 4388so the memory at <code>s</code> can be freed or reused immediately after 4389the function returns. 4390The string can contain any binary data, 4391including embedded zeros. 4392 4393 4394<p> 4395Returns a pointer to the internal copy of the string. 4396 4397 4398 4399 4400 4401<hr><h3><a name="lua_pushnil"><code>lua_pushnil</code></a></h3><p> 4402<span class="apii">[-0, +1, –]</span> 4403<pre>void lua_pushnil (lua_State *L);</pre> 4404 4405<p> 4406Pushes a nil value onto the stack. 4407 4408 4409 4410 4411 4412<hr><h3><a name="lua_pushnumber"><code>lua_pushnumber</code></a></h3><p> 4413<span class="apii">[-0, +1, –]</span> 4414<pre>void lua_pushnumber (lua_State *L, lua_Number n);</pre> 4415 4416<p> 4417Pushes a float with value <code>n</code> onto the stack. 4418 4419 4420 4421 4422 4423<hr><h3><a name="lua_pushstring"><code>lua_pushstring</code></a></h3><p> 4424<span class="apii">[-0, +1, <em>e</em>]</span> 4425<pre>const char *lua_pushstring (lua_State *L, const char *s);</pre> 4426 4427<p> 4428Pushes the zero-terminated string pointed to by <code>s</code> 4429onto the stack. 4430Lua makes (or reuses) an internal copy of the given string, 4431so the memory at <code>s</code> can be freed or reused immediately after 4432the function returns. 4433 4434 4435<p> 4436Returns a pointer to the internal copy of the string. 4437 4438 4439<p> 4440If <code>s</code> is <code>NULL</code>, pushes <b>nil</b> and returns <code>NULL</code>. 4441 4442 4443 4444 4445 4446<hr><h3><a name="lua_pushthread"><code>lua_pushthread</code></a></h3><p> 4447<span class="apii">[-0, +1, –]</span> 4448<pre>int lua_pushthread (lua_State *L);</pre> 4449 4450<p> 4451Pushes the thread represented by <code>L</code> onto the stack. 4452Returns 1 if this thread is the main thread of its state. 4453 4454 4455 4456 4457 4458<hr><h3><a name="lua_pushvalue"><code>lua_pushvalue</code></a></h3><p> 4459<span class="apii">[-0, +1, –]</span> 4460<pre>void lua_pushvalue (lua_State *L, int index);</pre> 4461 4462<p> 4463Pushes a copy of the element at the given index 4464onto the stack. 4465 4466 4467 4468 4469 4470<hr><h3><a name="lua_pushvfstring"><code>lua_pushvfstring</code></a></h3><p> 4471<span class="apii">[-0, +1, <em>e</em>]</span> 4472<pre>const char *lua_pushvfstring (lua_State *L, 4473 const char *fmt, 4474 va_list argp);</pre> 4475 4476<p> 4477Equivalent to <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>, except that it receives a <code>va_list</code> 4478instead of a variable number of arguments. 4479 4480 4481 4482 4483 4484<hr><h3><a name="lua_rawequal"><code>lua_rawequal</code></a></h3><p> 4485<span class="apii">[-0, +0, –]</span> 4486<pre>int lua_rawequal (lua_State *L, int index1, int index2);</pre> 4487 4488<p> 4489Returns 1 if the two values in indices <code>index1</code> and 4490<code>index2</code> are primitively equal 4491(that is, without calling metamethods). 4492Otherwise returns 0. 4493Also returns 0 if any of the indices are not valid. 4494 4495 4496 4497 4498 4499<hr><h3><a name="lua_rawget"><code>lua_rawget</code></a></h3><p> 4500<span class="apii">[-1, +1, –]</span> 4501<pre>int lua_rawget (lua_State *L, int index);</pre> 4502 4503<p> 4504Similar to <a href="#lua_gettable"><code>lua_gettable</code></a>, but does a raw access 4505(i.e., without metamethods). 4506 4507 4508 4509 4510 4511<hr><h3><a name="lua_rawgeti"><code>lua_rawgeti</code></a></h3><p> 4512<span class="apii">[-0, +1, –]</span> 4513<pre>int lua_rawgeti (lua_State *L, int index, lua_Integer n);</pre> 4514 4515<p> 4516Pushes onto the stack the value <code>t[n]</code>, 4517where <code>t</code> is the table at the given index. 4518The access is raw; 4519that is, it does not invoke metamethods. 4520 4521 4522<p> 4523Returns the type of the pushed value. 4524 4525 4526 4527 4528 4529<hr><h3><a name="lua_rawgetp"><code>lua_rawgetp</code></a></h3><p> 4530<span class="apii">[-0, +1, –]</span> 4531<pre>int lua_rawgetp (lua_State *L, int index, const void *p);</pre> 4532 4533<p> 4534Pushes onto the stack the value <code>t[k]</code>, 4535where <code>t</code> is the table at the given index and 4536<code>k</code> is the pointer <code>p</code> represented as a light userdata. 4537The access is raw; 4538that is, it does not invoke metamethods. 4539 4540 4541<p> 4542Returns the type of the pushed value. 4543 4544 4545 4546 4547 4548<hr><h3><a name="lua_rawlen"><code>lua_rawlen</code></a></h3><p> 4549<span class="apii">[-0, +0, –]</span> 4550<pre>size_t lua_rawlen (lua_State *L, int index);</pre> 4551 4552<p> 4553Returns the raw "length" of the value at the given index: 4554for strings, this is the string length; 4555for tables, this is the result of the length operator ('<code>#</code>') 4556with no metamethods; 4557for userdata, this is the size of the block of memory allocated 4558for the userdata; 4559for other values, it is 0. 4560 4561 4562 4563 4564 4565<hr><h3><a name="lua_rawset"><code>lua_rawset</code></a></h3><p> 4566<span class="apii">[-2, +0, <em>e</em>]</span> 4567<pre>void lua_rawset (lua_State *L, int index);</pre> 4568 4569<p> 4570Similar to <a href="#lua_settable"><code>lua_settable</code></a>, but does a raw assignment 4571(i.e., without metamethods). 4572 4573 4574 4575 4576 4577<hr><h3><a name="lua_rawseti"><code>lua_rawseti</code></a></h3><p> 4578<span class="apii">[-1, +0, <em>e</em>]</span> 4579<pre>void lua_rawseti (lua_State *L, int index, lua_Integer i);</pre> 4580 4581<p> 4582Does the equivalent of <code>t[i] = v</code>, 4583where <code>t</code> is the table at the given index 4584and <code>v</code> is the value at the top of the stack. 4585 4586 4587<p> 4588This function pops the value from the stack. 4589The assignment is raw; 4590that is, it does not invoke metamethods. 4591 4592 4593 4594 4595 4596<hr><h3><a name="lua_rawsetp"><code>lua_rawsetp</code></a></h3><p> 4597<span class="apii">[-1, +0, <em>e</em>]</span> 4598<pre>void lua_rawsetp (lua_State *L, int index, const void *p);</pre> 4599 4600<p> 4601Does the equivalent of <code>t[k] = v</code>, 4602where <code>t</code> is the table at the given index, 4603<code>k</code> is the pointer <code>p</code> represented as a light userdata, 4604and <code>v</code> is the value at the top of the stack. 4605 4606 4607<p> 4608This function pops the value from the stack. 4609The assignment is raw; 4610that is, it does not invoke metamethods. 4611 4612 4613 4614 4615 4616<hr><h3><a name="lua_Reader"><code>lua_Reader</code></a></h3> 4617<pre>typedef const char * (*lua_Reader) (lua_State *L, 4618 void *data, 4619 size_t *size);</pre> 4620 4621<p> 4622The reader function used by <a href="#lua_load"><code>lua_load</code></a>. 4623Every time it needs another piece of the chunk, 4624<a href="#lua_load"><code>lua_load</code></a> calls the reader, 4625passing along its <code>data</code> parameter. 4626The reader must return a pointer to a block of memory 4627with a new piece of the chunk 4628and set <code>size</code> to the block size. 4629The block must exist until the reader function is called again. 4630To signal the end of the chunk, 4631the reader must return <code>NULL</code> or set <code>size</code> to zero. 4632The reader function may return pieces of any size greater than zero. 4633 4634 4635 4636 4637 4638<hr><h3><a name="lua_register"><code>lua_register</code></a></h3><p> 4639<span class="apii">[-0, +0, <em>e</em>]</span> 4640<pre>void lua_register (lua_State *L, const char *name, lua_CFunction f);</pre> 4641 4642<p> 4643Sets the C function <code>f</code> as the new value of global <code>name</code>. 4644It is defined as a macro: 4645 4646<pre> 4647 #define lua_register(L,n,f) \ 4648 (lua_pushcfunction(L, f), lua_setglobal(L, n)) 4649</pre> 4650 4651 4652 4653 4654<hr><h3><a name="lua_remove"><code>lua_remove</code></a></h3><p> 4655<span class="apii">[-1, +0, –]</span> 4656<pre>void lua_remove (lua_State *L, int index);</pre> 4657 4658<p> 4659Removes the element at the given valid index, 4660shifting down the elements above this index to fill the gap. 4661This function cannot be called with a pseudo-index, 4662because a pseudo-index is not an actual stack position. 4663 4664 4665 4666 4667 4668<hr><h3><a name="lua_replace"><code>lua_replace</code></a></h3><p> 4669<span class="apii">[-1, +0, –]</span> 4670<pre>void lua_replace (lua_State *L, int index);</pre> 4671 4672<p> 4673Moves the top element into the given valid index 4674without shifting any element 4675(therefore replacing the value at the given index), 4676and then pops the top element. 4677 4678 4679 4680 4681 4682<hr><h3><a name="lua_resume"><code>lua_resume</code></a></h3><p> 4683<span class="apii">[-?, +?, –]</span> 4684<pre>int lua_resume (lua_State *L, lua_State *from, int nargs);</pre> 4685 4686<p> 4687Starts and resumes a coroutine in a given thread. 4688 4689 4690<p> 4691To start a coroutine, 4692you push onto the thread stack the main function plus any arguments; 4693then you call <a href="#lua_resume"><code>lua_resume</code></a>, 4694with <code>nargs</code> being the number of arguments. 4695This call returns when the coroutine suspends or finishes its execution. 4696When it returns, the stack contains all values passed to <a href="#lua_yield"><code>lua_yield</code></a>, 4697or all values returned by the body function. 4698<a href="#lua_resume"><code>lua_resume</code></a> returns 4699<a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the coroutine yields, 4700<a href="#pdf-LUA_OK"><code>LUA_OK</code></a> if the coroutine finishes its execution 4701without errors, 4702or an error code in case of errors (see <a href="#lua_pcall"><code>lua_pcall</code></a>). 4703 4704 4705<p> 4706In case of errors, 4707the stack is not unwound, 4708so you can use the debug API over it. 4709The error message is on the top of the stack. 4710 4711 4712<p> 4713To resume a coroutine, 4714you remove any results from the last <a href="#lua_yield"><code>lua_yield</code></a>, 4715put on its stack only the values to 4716be passed as results from <code>yield</code>, 4717and then call <a href="#lua_resume"><code>lua_resume</code></a>. 4718 4719 4720<p> 4721The parameter <code>from</code> represents the coroutine that is resuming <code>L</code>. 4722If there is no such coroutine, 4723this parameter can be <code>NULL</code>. 4724 4725 4726 4727 4728 4729<hr><h3><a name="lua_rotate"><code>lua_rotate</code></a></h3><p> 4730<span class="apii">[-0, +0, –]</span> 4731<pre>void lua_rotate (lua_State *L, int idx, int n);</pre> 4732 4733<p> 4734Rotates the stack elements from <code>idx</code> to the top <code>n</code> positions 4735in the direction of the top, for a positive <code>n</code>, 4736or <code>-n</code> positions in the direction of the bottom, 4737for a negative <code>n</code>. 4738The absolute value of <code>n</code> must not be greater than the size 4739of the slice being rotated. 4740 4741 4742 4743 4744 4745<hr><h3><a name="lua_setallocf"><code>lua_setallocf</code></a></h3><p> 4746<span class="apii">[-0, +0, –]</span> 4747<pre>void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);</pre> 4748 4749<p> 4750Changes the allocator function of a given state to <code>f</code> 4751with user data <code>ud</code>. 4752 4753 4754 4755 4756 4757<hr><h3><a name="lua_setfield"><code>lua_setfield</code></a></h3><p> 4758<span class="apii">[-1, +0, <em>e</em>]</span> 4759<pre>void lua_setfield (lua_State *L, int index, const char *k);</pre> 4760 4761<p> 4762Does the equivalent to <code>t[k] = v</code>, 4763where <code>t</code> is the value at the given index 4764and <code>v</code> is the value at the top of the stack. 4765 4766 4767<p> 4768This function pops the value from the stack. 4769As in Lua, this function may trigger a metamethod 4770for the "newindex" event (see <a href="#2.4">§2.4</a>). 4771 4772 4773 4774 4775 4776<hr><h3><a name="lua_setglobal"><code>lua_setglobal</code></a></h3><p> 4777<span class="apii">[-1, +0, <em>e</em>]</span> 4778<pre>void lua_setglobal (lua_State *L, const char *name);</pre> 4779 4780<p> 4781Pops a value from the stack and 4782sets it as the new value of global <code>name</code>. 4783 4784 4785 4786 4787 4788<hr><h3><a name="lua_seti"><code>lua_seti</code></a></h3><p> 4789<span class="apii">[-1, +0, <em>e</em>]</span> 4790<pre>void lua_seti (lua_State *L, int index, lua_Integer n);</pre> 4791 4792<p> 4793Does the equivalent to <code>t[n] = v</code>, 4794where <code>t</code> is the value at the given index 4795and <code>v</code> is the value at the top of the stack. 4796 4797 4798<p> 4799This function pops the value from the stack. 4800As in Lua, this function may trigger a metamethod 4801for the "newindex" event (see <a href="#2.4">§2.4</a>). 4802 4803 4804 4805 4806 4807<hr><h3><a name="lua_setmetatable"><code>lua_setmetatable</code></a></h3><p> 4808<span class="apii">[-1, +0, –]</span> 4809<pre>void lua_setmetatable (lua_State *L, int index);</pre> 4810 4811<p> 4812Pops a table from the stack and 4813sets it as the new metatable for the value at the given index. 4814 4815 4816 4817 4818 4819<hr><h3><a name="lua_settable"><code>lua_settable</code></a></h3><p> 4820<span class="apii">[-2, +0, <em>e</em>]</span> 4821<pre>void lua_settable (lua_State *L, int index);</pre> 4822 4823<p> 4824Does the equivalent to <code>t[k] = v</code>, 4825where <code>t</code> is the value at the given index, 4826<code>v</code> is the value at the top of the stack, 4827and <code>k</code> is the value just below the top. 4828 4829 4830<p> 4831This function pops both the key and the value from the stack. 4832As in Lua, this function may trigger a metamethod 4833for the "newindex" event (see <a href="#2.4">§2.4</a>). 4834 4835 4836 4837 4838 4839<hr><h3><a name="lua_settop"><code>lua_settop</code></a></h3><p> 4840<span class="apii">[-?, +?, –]</span> 4841<pre>void lua_settop (lua_State *L, int index);</pre> 4842 4843<p> 4844Accepts any index, or 0, 4845and sets the stack top to this index. 4846If the new top is larger than the old one, 4847then the new elements are filled with <b>nil</b>. 4848If <code>index</code> is 0, then all stack elements are removed. 4849 4850 4851 4852 4853 4854<hr><h3><a name="lua_setuservalue"><code>lua_setuservalue</code></a></h3><p> 4855<span class="apii">[-1, +0, –]</span> 4856<pre>void lua_setuservalue (lua_State *L, int index);</pre> 4857 4858<p> 4859Pops a value from the stack and sets it as 4860the new value associated to the userdata at the given index. 4861 4862 4863 4864 4865 4866<hr><h3><a name="lua_State"><code>lua_State</code></a></h3> 4867<pre>typedef struct lua_State lua_State;</pre> 4868 4869<p> 4870An opaque structure that points to a thread and indirectly 4871(through the thread) to the whole state of a Lua interpreter. 4872The Lua library is fully reentrant: 4873it has no global variables. 4874All information about a state is accessible through this structure. 4875 4876 4877<p> 4878A pointer to this structure must be passed as the first argument to 4879every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>, 4880which creates a Lua state from scratch. 4881 4882 4883 4884 4885 4886<hr><h3><a name="lua_status"><code>lua_status</code></a></h3><p> 4887<span class="apii">[-0, +0, –]</span> 4888<pre>int lua_status (lua_State *L);</pre> 4889 4890<p> 4891Returns the status of the thread <code>L</code>. 4892 4893 4894<p> 4895The status can be 0 (<a href="#pdf-LUA_OK"><code>LUA_OK</code></a>) for a normal thread, 4896an error code if the thread finished the execution 4897of a <a href="#lua_resume"><code>lua_resume</code></a> with an error, 4898or <a name="pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the thread is suspended. 4899 4900 4901<p> 4902You can only call functions in threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>. 4903You can resume threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a> 4904(to start a new coroutine) or <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> 4905(to resume a coroutine). 4906 4907 4908 4909 4910 4911<hr><h3><a name="lua_stringtonumber"><code>lua_stringtonumber</code></a></h3><p> 4912<span class="apii">[-0, +1, –]</span> 4913<pre>size_t lua_stringtonumber (lua_State *L, const char *s);</pre> 4914 4915<p> 4916Converts the zero-terminated string <code>s</code> to a number, 4917pushes that number into the stack, 4918and returns the total size of the string, 4919that is, its length plus one. 4920The conversion can result in an integer or a float, 4921according to the lexical conventions of Lua (see <a href="#3.1">§3.1</a>). 4922The string may have leading and trailing spaces and a sign. 4923If the string is not a valid numeral, 4924returns 0 and pushes nothing. 4925(Note that the result can be used as a boolean, 4926true if the conversion succeeds.) 4927 4928 4929 4930 4931 4932<hr><h3><a name="lua_toboolean"><code>lua_toboolean</code></a></h3><p> 4933<span class="apii">[-0, +0, –]</span> 4934<pre>int lua_toboolean (lua_State *L, int index);</pre> 4935 4936<p> 4937Converts the Lua value at the given index to a C boolean 4938value (0 or 1). 4939Like all tests in Lua, 4940<a href="#lua_toboolean"><code>lua_toboolean</code></a> returns true for any Lua value 4941different from <b>false</b> and <b>nil</b>; 4942otherwise it returns false. 4943(If you want to accept only actual boolean values, 4944use <a href="#lua_isboolean"><code>lua_isboolean</code></a> to test the value's type.) 4945 4946 4947 4948 4949 4950<hr><h3><a name="lua_tocfunction"><code>lua_tocfunction</code></a></h3><p> 4951<span class="apii">[-0, +0, –]</span> 4952<pre>lua_CFunction lua_tocfunction (lua_State *L, int index);</pre> 4953 4954<p> 4955Converts a value at the given index to a C function. 4956That value must be a C function; 4957otherwise, returns <code>NULL</code>. 4958 4959 4960 4961 4962 4963<hr><h3><a name="lua_tointeger"><code>lua_tointeger</code></a></h3><p> 4964<span class="apii">[-0, +0, –]</span> 4965<pre>lua_Integer lua_tointeger (lua_State *L, int index);</pre> 4966 4967<p> 4968Equivalent to <a href="#lua_tointegerx"><code>lua_tointegerx</code></a> with <code>isnum</code> equal to <code>NULL</code>. 4969 4970 4971 4972 4973 4974<hr><h3><a name="lua_tointegerx"><code>lua_tointegerx</code></a></h3><p> 4975<span class="apii">[-0, +0, –]</span> 4976<pre>lua_Integer lua_tointegerx (lua_State *L, int index, int *isnum);</pre> 4977 4978<p> 4979Converts the Lua value at the given index 4980to the signed integral type <a href="#lua_Integer"><code>lua_Integer</code></a>. 4981The Lua value must be an integer, 4982or a number or string convertible to an integer (see <a href="#3.4.3">§3.4.3</a>); 4983otherwise, <code>lua_tointegerx</code> returns 0. 4984 4985 4986<p> 4987If <code>isnum</code> is not <code>NULL</code>, 4988its referent is assigned a boolean value that 4989indicates whether the operation succeeded. 4990 4991 4992 4993 4994 4995<hr><h3><a name="lua_tolstring"><code>lua_tolstring</code></a></h3><p> 4996<span class="apii">[-0, +0, <em>e</em>]</span> 4997<pre>const char *lua_tolstring (lua_State *L, int index, size_t *len);</pre> 4998 4999<p> 5000Converts the Lua value at the given index to a C string. 5001If <code>len</code> is not <code>NULL</code>, 5002it also sets <code>*len</code> with the string length. 5003The Lua value must be a string or a number; 5004otherwise, the function returns <code>NULL</code>. 5005If the value is a number, 5006then <code>lua_tolstring</code> also 5007<em>changes the actual value in the stack to a string</em>. 5008(This change confuses <a href="#lua_next"><code>lua_next</code></a> 5009when <code>lua_tolstring</code> is applied to keys during a table traversal.) 5010 5011 5012<p> 5013<code>lua_tolstring</code> returns a fully aligned pointer 5014to a string inside the Lua state. 5015This string always has a zero ('<code>\0</code>') 5016after its last character (as in C), 5017but can contain other zeros in its body. 5018 5019 5020<p> 5021Because Lua has garbage collection, 5022there is no guarantee that the pointer returned by <code>lua_tolstring</code> 5023will be valid after the corresponding Lua value is removed from the stack. 5024 5025 5026 5027 5028 5029<hr><h3><a name="lua_tonumber"><code>lua_tonumber</code></a></h3><p> 5030<span class="apii">[-0, +0, –]</span> 5031<pre>lua_Number lua_tonumber (lua_State *L, int index);</pre> 5032 5033<p> 5034Equivalent to <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> with <code>isnum</code> equal to <code>NULL</code>. 5035 5036 5037 5038 5039 5040<hr><h3><a name="lua_tonumberx"><code>lua_tonumberx</code></a></h3><p> 5041<span class="apii">[-0, +0, –]</span> 5042<pre>lua_Number lua_tonumberx (lua_State *L, int index, int *isnum);</pre> 5043 5044<p> 5045Converts the Lua value at the given index 5046to the C type <a href="#lua_Number"><code>lua_Number</code></a> (see <a href="#lua_Number"><code>lua_Number</code></a>). 5047The Lua value must be a number or a string convertible to a number 5048(see <a href="#3.4.3">§3.4.3</a>); 5049otherwise, <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> returns 0. 5050 5051 5052<p> 5053If <code>isnum</code> is not <code>NULL</code>, 5054its referent is assigned a boolean value that 5055indicates whether the operation succeeded. 5056 5057 5058 5059 5060 5061<hr><h3><a name="lua_topointer"><code>lua_topointer</code></a></h3><p> 5062<span class="apii">[-0, +0, –]</span> 5063<pre>const void *lua_topointer (lua_State *L, int index);</pre> 5064 5065<p> 5066Converts the value at the given index to a generic 5067C pointer (<code>void*</code>). 5068The value can be a userdata, a table, a thread, or a function; 5069otherwise, <code>lua_topointer</code> returns <code>NULL</code>. 5070Different objects will give different pointers. 5071There is no way to convert the pointer back to its original value. 5072 5073 5074<p> 5075Typically this function is used only for debug information. 5076 5077 5078 5079 5080 5081<hr><h3><a name="lua_tostring"><code>lua_tostring</code></a></h3><p> 5082<span class="apii">[-0, +0, <em>e</em>]</span> 5083<pre>const char *lua_tostring (lua_State *L, int index);</pre> 5084 5085<p> 5086Equivalent to <a href="#lua_tolstring"><code>lua_tolstring</code></a> with <code>len</code> equal to <code>NULL</code>. 5087 5088 5089 5090 5091 5092<hr><h3><a name="lua_tothread"><code>lua_tothread</code></a></h3><p> 5093<span class="apii">[-0, +0, –]</span> 5094<pre>lua_State *lua_tothread (lua_State *L, int index);</pre> 5095 5096<p> 5097Converts the value at the given index to a Lua thread 5098(represented as <code>lua_State*</code>). 5099This value must be a thread; 5100otherwise, the function returns <code>NULL</code>. 5101 5102 5103 5104 5105 5106<hr><h3><a name="lua_touserdata"><code>lua_touserdata</code></a></h3><p> 5107<span class="apii">[-0, +0, –]</span> 5108<pre>void *lua_touserdata (lua_State *L, int index);</pre> 5109 5110<p> 5111If the value at the given index is a full userdata, 5112returns its block address. 5113If the value is a light userdata, 5114returns its pointer. 5115Otherwise, returns <code>NULL</code>. 5116 5117 5118 5119 5120 5121<hr><h3><a name="lua_type"><code>lua_type</code></a></h3><p> 5122<span class="apii">[-0, +0, –]</span> 5123<pre>int lua_type (lua_State *L, int index);</pre> 5124 5125<p> 5126Returns the type of the value in the given valid index, 5127or <code>LUA_TNONE</code> for a non-valid (but acceptable) index. 5128The types returned by <a href="#lua_type"><code>lua_type</code></a> are coded by the following constants 5129defined in <code>lua.h</code>: 5130<a name="pdf-LUA_TNIL"><code>LUA_TNIL</code></a>, 5131<a name="pdf-LUA_TNUMBER"><code>LUA_TNUMBER</code></a>, 5132<a name="pdf-LUA_TBOOLEAN"><code>LUA_TBOOLEAN</code></a>, 5133<a name="pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>, 5134<a name="pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>, 5135<a name="pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>, 5136<a name="pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>, 5137<a name="pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a>, 5138and 5139<a name="pdf-LUA_TLIGHTUSERDATA"><code>LUA_TLIGHTUSERDATA</code></a>. 5140 5141 5142 5143 5144 5145<hr><h3><a name="lua_typename"><code>lua_typename</code></a></h3><p> 5146<span class="apii">[-0, +0, –]</span> 5147<pre>const char *lua_typename (lua_State *L, int tp);</pre> 5148 5149<p> 5150Returns the name of the type encoded by the value <code>tp</code>, 5151which must be one the values returned by <a href="#lua_type"><code>lua_type</code></a>. 5152 5153 5154 5155 5156 5157<hr><h3><a name="lua_Unsigned"><code>lua_Unsigned</code></a></h3> 5158<pre>typedef ... lua_Unsigned;</pre> 5159 5160<p> 5161The unsigned version of <a href="#lua_Integer"><code>lua_Integer</code></a>. 5162 5163 5164 5165 5166 5167<hr><h3><a name="lua_upvalueindex"><code>lua_upvalueindex</code></a></h3><p> 5168<span class="apii">[-0, +0, –]</span> 5169<pre>int lua_upvalueindex (int i);</pre> 5170 5171<p> 5172Returns the pseudo-index that represents the <code>i</code>-th upvalue of 5173the running function (see <a href="#4.4">§4.4</a>). 5174 5175 5176 5177 5178 5179<hr><h3><a name="lua_version"><code>lua_version</code></a></h3><p> 5180<span class="apii">[-0, +0, <em>v</em>]</span> 5181<pre>const lua_Number *lua_version (lua_State *L);</pre> 5182 5183<p> 5184Returns the address of the version number stored in the Lua core. 5185When called with a valid <a href="#lua_State"><code>lua_State</code></a>, 5186returns the address of the version used to create that state. 5187When called with <code>NULL</code>, 5188returns the address of the version running the call. 5189 5190 5191 5192 5193 5194<hr><h3><a name="lua_Writer"><code>lua_Writer</code></a></h3> 5195<pre>typedef int (*lua_Writer) (lua_State *L, 5196 const void* p, 5197 size_t sz, 5198 void* ud);</pre> 5199 5200<p> 5201The type of the writer function used by <a href="#lua_dump"><code>lua_dump</code></a>. 5202Every time it produces another piece of chunk, 5203<a href="#lua_dump"><code>lua_dump</code></a> calls the writer, 5204passing along the buffer to be written (<code>p</code>), 5205its size (<code>sz</code>), 5206and the <code>data</code> parameter supplied to <a href="#lua_dump"><code>lua_dump</code></a>. 5207 5208 5209<p> 5210The writer returns an error code: 52110 means no errors; 5212any other value means an error and stops <a href="#lua_dump"><code>lua_dump</code></a> from 5213calling the writer again. 5214 5215 5216 5217 5218 5219<hr><h3><a name="lua_xmove"><code>lua_xmove</code></a></h3><p> 5220<span class="apii">[-?, +?, –]</span> 5221<pre>void lua_xmove (lua_State *from, lua_State *to, int n);</pre> 5222 5223<p> 5224Exchange values between different threads of the same state. 5225 5226 5227<p> 5228This function pops <code>n</code> values from the stack <code>from</code>, 5229and pushes them onto the stack <code>to</code>. 5230 5231 5232 5233 5234 5235<hr><h3><a name="lua_yield"><code>lua_yield</code></a></h3><p> 5236<span class="apii">[-?, +?, <em>e</em>]</span> 5237<pre>int lua_yield (lua_State *L, int nresults);</pre> 5238 5239<p> 5240This function is equivalent to <a href="#lua_yieldk"><code>lua_yieldk</code></a>, 5241but it has no continuation (see <a href="#4.7">§4.7</a>). 5242Therefore, when the thread resumes, 5243it continues the function that called 5244the function calling <code>lua_yield</code>. 5245 5246 5247 5248 5249 5250<hr><h3><a name="lua_yieldk"><code>lua_yieldk</code></a></h3><p> 5251<span class="apii">[-?, +?, <em>e</em>]</span> 5252<pre>int lua_yieldk (lua_State *L, 5253 int nresults, 5254 lua_KContext ctx, 5255 lua_KFunction k);</pre> 5256 5257<p> 5258Yields a coroutine (thread). 5259 5260 5261<p> 5262When a C function calls <a href="#lua_yieldk"><code>lua_yieldk</code></a>, 5263the running coroutine suspends its execution, 5264and the call to <a href="#lua_resume"><code>lua_resume</code></a> that started this coroutine returns. 5265The parameter <code>nresults</code> is the number of values from the stack 5266that will be passed as results to <a href="#lua_resume"><code>lua_resume</code></a>. 5267 5268 5269<p> 5270When the coroutine is resumed again, 5271Lua calls the given continuation function <code>k</code> to continue 5272the execution of the C function that yielded (see <a href="#4.7">§4.7</a>). 5273This continuation function receives the same stack 5274from the previous function, 5275with the <code>n</code> results removed and 5276replaced by the arguments passed to <a href="#lua_resume"><code>lua_resume</code></a>. 5277Moreover, 5278the continuation function receives the value <code>ctx</code> 5279that was passed to <a href="#lua_yieldk"><code>lua_yieldk</code></a>. 5280 5281 5282<p> 5283Usually, this function does not return; 5284when the coroutine eventually resumes, 5285it continues executing the continuation function. 5286However, there is one special case, 5287which is when this function is called 5288from inside a line hook (see <a href="#4.9">§4.9</a>). 5289In that case, <code>lua_yieldk</code> should be called with no continuation 5290(probably in the form of <a href="#lua_yield"><code>lua_yield</code></a>), 5291and the hook should return immediately after the call. 5292Lua will yield and, 5293when the coroutine resumes again, 5294it will continue the normal execution 5295of the (Lua) function that triggered the hook. 5296 5297 5298<p> 5299This function can raise an error if it is called from a thread 5300with a pending C call with no continuation function, 5301or it is called from a thread that is not running inside a resume 5302(e.g., the main thread). 5303 5304 5305 5306 5307 5308 5309 5310<h2>4.9 – <a name="4.9">The Debug Interface</a></h2> 5311 5312<p> 5313Lua has no built-in debugging facilities. 5314Instead, it offers a special interface 5315by means of functions and <em>hooks</em>. 5316This interface allows the construction of different 5317kinds of debuggers, profilers, and other tools 5318that need "inside information" from the interpreter. 5319 5320 5321 5322<hr><h3><a name="lua_Debug"><code>lua_Debug</code></a></h3> 5323<pre>typedef struct lua_Debug { 5324 int event; 5325 const char *name; /* (n) */ 5326 const char *namewhat; /* (n) */ 5327 const char *what; /* (S) */ 5328 const char *source; /* (S) */ 5329 int currentline; /* (l) */ 5330 int linedefined; /* (S) */ 5331 int lastlinedefined; /* (S) */ 5332 unsigned char nups; /* (u) number of upvalues */ 5333 unsigned char nparams; /* (u) number of parameters */ 5334 char isvararg; /* (u) */ 5335 char istailcall; /* (t) */ 5336 char short_src[LUA_IDSIZE]; /* (S) */ 5337 /* private part */ 5338 <em>other fields</em> 5339} lua_Debug;</pre> 5340 5341<p> 5342A structure used to carry different pieces of 5343information about a function or an activation record. 5344<a href="#lua_getstack"><code>lua_getstack</code></a> fills only the private part 5345of this structure, for later use. 5346To fill the other fields of <a href="#lua_Debug"><code>lua_Debug</code></a> with useful information, 5347call <a href="#lua_getinfo"><code>lua_getinfo</code></a>. 5348 5349 5350<p> 5351The fields of <a href="#lua_Debug"><code>lua_Debug</code></a> have the following meaning: 5352 5353<ul> 5354 5355<li><b><code>source</code>: </b> 5356the name of the chunk that created the function. 5357If <code>source</code> starts with a '<code>@</code>', 5358it means that the function was defined in a file where 5359the file name follows the '<code>@</code>'. 5360If <code>source</code> starts with a '<code>=</code>', 5361the remainder of its contents describe the source in a user-dependent manner. 5362Otherwise, 5363the function was defined in a string where 5364<code>source</code> is that string. 5365</li> 5366 5367<li><b><code>short_src</code>: </b> 5368a "printable" version of <code>source</code>, to be used in error messages. 5369</li> 5370 5371<li><b><code>linedefined</code>: </b> 5372the line number where the definition of the function starts. 5373</li> 5374 5375<li><b><code>lastlinedefined</code>: </b> 5376the line number where the definition of the function ends. 5377</li> 5378 5379<li><b><code>what</code>: </b> 5380the string <code>"Lua"</code> if the function is a Lua function, 5381<code>"C"</code> if it is a C function, 5382<code>"main"</code> if it is the main part of a chunk. 5383</li> 5384 5385<li><b><code>currentline</code>: </b> 5386the current line where the given function is executing. 5387When no line information is available, 5388<code>currentline</code> is set to -1. 5389</li> 5390 5391<li><b><code>name</code>: </b> 5392a reasonable name for the given function. 5393Because functions in Lua are first-class values, 5394they do not have a fixed name: 5395some functions can be the value of multiple global variables, 5396while others can be stored only in a table field. 5397The <code>lua_getinfo</code> function checks how the function was 5398called to find a suitable name. 5399If it cannot find a name, 5400then <code>name</code> is set to <code>NULL</code>. 5401</li> 5402 5403<li><b><code>namewhat</code>: </b> 5404explains the <code>name</code> field. 5405The value of <code>namewhat</code> can be 5406<code>"global"</code>, <code>"local"</code>, <code>"method"</code>, 5407<code>"field"</code>, <code>"upvalue"</code>, or <code>""</code> (the empty string), 5408according to how the function was called. 5409(Lua uses the empty string when no other option seems to apply.) 5410</li> 5411 5412<li><b><code>istailcall</code>: </b> 5413true if this function invocation was called by a tail call. 5414In this case, the caller of this level is not in the stack. 5415</li> 5416 5417<li><b><code>nups</code>: </b> 5418the number of upvalues of the function. 5419</li> 5420 5421<li><b><code>nparams</code>: </b> 5422the number of fixed parameters of the function 5423(always 0 for C functions). 5424</li> 5425 5426<li><b><code>isvararg</code>: </b> 5427true if the function is a vararg function 5428(always true for C functions). 5429</li> 5430 5431</ul> 5432 5433 5434 5435 5436<hr><h3><a name="lua_gethook"><code>lua_gethook</code></a></h3><p> 5437<span class="apii">[-0, +0, –]</span> 5438<pre>lua_Hook lua_gethook (lua_State *L);</pre> 5439 5440<p> 5441Returns the current hook function. 5442 5443 5444 5445 5446 5447<hr><h3><a name="lua_gethookcount"><code>lua_gethookcount</code></a></h3><p> 5448<span class="apii">[-0, +0, –]</span> 5449<pre>int lua_gethookcount (lua_State *L);</pre> 5450 5451<p> 5452Returns the current hook count. 5453 5454 5455 5456 5457 5458<hr><h3><a name="lua_gethookmask"><code>lua_gethookmask</code></a></h3><p> 5459<span class="apii">[-0, +0, –]</span> 5460<pre>int lua_gethookmask (lua_State *L);</pre> 5461 5462<p> 5463Returns the current hook mask. 5464 5465 5466 5467 5468 5469<hr><h3><a name="lua_getinfo"><code>lua_getinfo</code></a></h3><p> 5470<span class="apii">[-(0|1), +(0|1|2), <em>e</em>]</span> 5471<pre>int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);</pre> 5472 5473<p> 5474Gets information about a specific function or function invocation. 5475 5476 5477<p> 5478To get information about a function invocation, 5479the parameter <code>ar</code> must be a valid activation record that was 5480filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or 5481given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>). 5482 5483 5484<p> 5485To get information about a function you push it onto the stack 5486and start the <code>what</code> string with the character '<code>></code>'. 5487(In that case, 5488<code>lua_getinfo</code> pops the function from the top of the stack.) 5489For instance, to know in which line a function <code>f</code> was defined, 5490you can write the following code: 5491 5492<pre> 5493 lua_Debug ar; 5494 lua_getglobal(L, "f"); /* get global 'f' */ 5495 lua_getinfo(L, ">S", &ar); 5496 printf("%d\n", ar.linedefined); 5497</pre> 5498 5499<p> 5500Each character in the string <code>what</code> 5501selects some fields of the structure <code>ar</code> to be filled or 5502a value to be pushed on the stack: 5503 5504<ul> 5505 5506<li><b>'<code>n</code>': </b> fills in the field <code>name</code> and <code>namewhat</code>; 5507</li> 5508 5509<li><b>'<code>S</code>': </b> 5510fills in the fields <code>source</code>, <code>short_src</code>, 5511<code>linedefined</code>, <code>lastlinedefined</code>, and <code>what</code>; 5512</li> 5513 5514<li><b>'<code>l</code>': </b> fills in the field <code>currentline</code>; 5515</li> 5516 5517<li><b>'<code>t</code>': </b> fills in the field <code>istailcall</code>; 5518</li> 5519 5520<li><b>'<code>u</code>': </b> fills in the fields 5521<code>nups</code>, <code>nparams</code>, and <code>isvararg</code>; 5522</li> 5523 5524<li><b>'<code>f</code>': </b> 5525pushes onto the stack the function that is 5526running at the given level; 5527</li> 5528 5529<li><b>'<code>L</code>': </b> 5530pushes onto the stack a table whose indices are the 5531numbers of the lines that are valid on the function. 5532(A <em>valid line</em> is a line with some associated code, 5533that is, a line where you can put a break point. 5534Non-valid lines include empty lines and comments.) 5535 5536 5537<p> 5538If this option is given together with option '<code>f</code>', 5539its table is pushed after the function. 5540</li> 5541 5542</ul> 5543 5544<p> 5545This function returns 0 on error 5546(for instance, an invalid option in <code>what</code>). 5547 5548 5549 5550 5551 5552<hr><h3><a name="lua_getlocal"><code>lua_getlocal</code></a></h3><p> 5553<span class="apii">[-0, +(0|1), –]</span> 5554<pre>const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);</pre> 5555 5556<p> 5557Gets information about a local variable of 5558a given activation record or a given function. 5559 5560 5561<p> 5562In the first case, 5563the parameter <code>ar</code> must be a valid activation record that was 5564filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or 5565given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>). 5566The index <code>n</code> selects which local variable to inspect; 5567see <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for details about variable indices 5568and names. 5569 5570 5571<p> 5572<a href="#lua_getlocal"><code>lua_getlocal</code></a> pushes the variable's value onto the stack 5573and returns its name. 5574 5575 5576<p> 5577In the second case, <code>ar</code> must be <code>NULL</code> and the function 5578to be inspected must be at the top of the stack. 5579In this case, only parameters of Lua functions are visible 5580(as there is no information about what variables are active) 5581and no values are pushed onto the stack. 5582 5583 5584<p> 5585Returns <code>NULL</code> (and pushes nothing) 5586when the index is greater than 5587the number of active local variables. 5588 5589 5590 5591 5592 5593<hr><h3><a name="lua_getstack"><code>lua_getstack</code></a></h3><p> 5594<span class="apii">[-0, +0, –]</span> 5595<pre>int lua_getstack (lua_State *L, int level, lua_Debug *ar);</pre> 5596 5597<p> 5598Gets information about the interpreter runtime stack. 5599 5600 5601<p> 5602This function fills parts of a <a href="#lua_Debug"><code>lua_Debug</code></a> structure with 5603an identification of the <em>activation record</em> 5604of the function executing at a given level. 5605Level 0 is the current running function, 5606whereas level <em>n+1</em> is the function that has called level <em>n</em> 5607(except for tail calls, which do not count on the stack). 5608When there are no errors, <a href="#lua_getstack"><code>lua_getstack</code></a> returns 1; 5609when called with a level greater than the stack depth, 5610it returns 0. 5611 5612 5613 5614 5615 5616<hr><h3><a name="lua_getupvalue"><code>lua_getupvalue</code></a></h3><p> 5617<span class="apii">[-0, +(0|1), –]</span> 5618<pre>const char *lua_getupvalue (lua_State *L, int funcindex, int n);</pre> 5619 5620<p> 5621Gets information about a closure's upvalue. 5622(For Lua functions, 5623upvalues are the external local variables that the function uses, 5624and that are consequently included in its closure.) 5625<a href="#lua_getupvalue"><code>lua_getupvalue</code></a> gets the index <code>n</code> of an upvalue, 5626pushes the upvalue's value onto the stack, 5627and returns its name. 5628<code>funcindex</code> points to the closure in the stack. 5629(Upvalues have no particular order, 5630as they are active through the whole function. 5631So, they are numbered in an arbitrary order.) 5632 5633 5634<p> 5635Returns <code>NULL</code> (and pushes nothing) 5636when the index is greater than the number of upvalues. 5637For C functions, this function uses the empty string <code>""</code> 5638as a name for all upvalues. 5639 5640 5641 5642 5643 5644<hr><h3><a name="lua_Hook"><code>lua_Hook</code></a></h3> 5645<pre>typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);</pre> 5646 5647<p> 5648Type for debugging hook functions. 5649 5650 5651<p> 5652Whenever a hook is called, its <code>ar</code> argument has its field 5653<code>event</code> set to the specific event that triggered the hook. 5654Lua identifies these events with the following constants: 5655<a name="pdf-LUA_HOOKCALL"><code>LUA_HOOKCALL</code></a>, <a name="pdf-LUA_HOOKRET"><code>LUA_HOOKRET</code></a>, 5656<a name="pdf-LUA_HOOKTAILCALL"><code>LUA_HOOKTAILCALL</code></a>, <a name="pdf-LUA_HOOKLINE"><code>LUA_HOOKLINE</code></a>, 5657and <a name="pdf-LUA_HOOKCOUNT"><code>LUA_HOOKCOUNT</code></a>. 5658Moreover, for line events, the field <code>currentline</code> is also set. 5659To get the value of any other field in <code>ar</code>, 5660the hook must call <a href="#lua_getinfo"><code>lua_getinfo</code></a>. 5661 5662 5663<p> 5664For call events, <code>event</code> can be <code>LUA_HOOKCALL</code>, 5665the normal value, or <code>LUA_HOOKTAILCALL</code>, for a tail call; 5666in this case, there will be no corresponding return event. 5667 5668 5669<p> 5670While Lua is running a hook, it disables other calls to hooks. 5671Therefore, if a hook calls back Lua to execute a function or a chunk, 5672this execution occurs without any calls to hooks. 5673 5674 5675<p> 5676Hook functions cannot have continuations, 5677that is, they cannot call <a href="#lua_yieldk"><code>lua_yieldk</code></a>, 5678<a href="#lua_pcallk"><code>lua_pcallk</code></a>, or <a href="#lua_callk"><code>lua_callk</code></a> with a non-null <code>k</code>. 5679 5680 5681<p> 5682Hook functions can yield under the following conditions: 5683Only count and line events can yield 5684and they cannot yield any value; 5685to yield a hook function must finish its execution 5686calling <a href="#lua_yield"><code>lua_yield</code></a> with <code>nresults</code> equal to zero. 5687 5688 5689 5690 5691 5692<hr><h3><a name="lua_sethook"><code>lua_sethook</code></a></h3><p> 5693<span class="apii">[-0, +0, –]</span> 5694<pre>void lua_sethook (lua_State *L, lua_Hook f, int mask, int count);</pre> 5695 5696<p> 5697Sets the debugging hook function. 5698 5699 5700<p> 5701Argument <code>f</code> is the hook function. 5702<code>mask</code> specifies on which events the hook will be called: 5703it is formed by a bitwise or of the constants 5704<a name="pdf-LUA_MASKCALL"><code>LUA_MASKCALL</code></a>, 5705<a name="pdf-LUA_MASKRET"><code>LUA_MASKRET</code></a>, 5706<a name="pdf-LUA_MASKLINE"><code>LUA_MASKLINE</code></a>, 5707and <a name="pdf-LUA_MASKCOUNT"><code>LUA_MASKCOUNT</code></a>. 5708The <code>count</code> argument is only meaningful when the mask 5709includes <code>LUA_MASKCOUNT</code>. 5710For each event, the hook is called as explained below: 5711 5712<ul> 5713 5714<li><b>The call hook: </b> is called when the interpreter calls a function. 5715The hook is called just after Lua enters the new function, 5716before the function gets its arguments. 5717</li> 5718 5719<li><b>The return hook: </b> is called when the interpreter returns from a function. 5720The hook is called just before Lua leaves the function. 5721There is no standard way to access the values 5722to be returned by the function. 5723</li> 5724 5725<li><b>The line hook: </b> is called when the interpreter is about to 5726start the execution of a new line of code, 5727or when it jumps back in the code (even to the same line). 5728(This event only happens while Lua is executing a Lua function.) 5729</li> 5730 5731<li><b>The count hook: </b> is called after the interpreter executes every 5732<code>count</code> instructions. 5733(This event only happens while Lua is executing a Lua function.) 5734</li> 5735 5736</ul> 5737 5738<p> 5739A hook is disabled by setting <code>mask</code> to zero. 5740 5741 5742 5743 5744 5745<hr><h3><a name="lua_setlocal"><code>lua_setlocal</code></a></h3><p> 5746<span class="apii">[-(0|1), +0, –]</span> 5747<pre>const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);</pre> 5748 5749<p> 5750Sets the value of a local variable of a given activation record. 5751Parameters <code>ar</code> and <code>n</code> are as in <a href="#lua_getlocal"><code>lua_getlocal</code></a> 5752(see <a href="#lua_getlocal"><code>lua_getlocal</code></a>). 5753<a href="#lua_setlocal"><code>lua_setlocal</code></a> assigns the value at the top of the stack 5754to the variable and returns its name. 5755It also pops the value from the stack. 5756 5757 5758<p> 5759Returns <code>NULL</code> (and pops nothing) 5760when the index is greater than 5761the number of active local variables. 5762 5763 5764 5765 5766 5767<hr><h3><a name="lua_setupvalue"><code>lua_setupvalue</code></a></h3><p> 5768<span class="apii">[-(0|1), +0, –]</span> 5769<pre>const char *lua_setupvalue (lua_State *L, int funcindex, int n);</pre> 5770 5771<p> 5772Sets the value of a closure's upvalue. 5773It assigns the value at the top of the stack 5774to the upvalue and returns its name. 5775It also pops the value from the stack. 5776Parameters <code>funcindex</code> and <code>n</code> are as in the <a href="#lua_getupvalue"><code>lua_getupvalue</code></a> 5777(see <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>). 5778 5779 5780<p> 5781Returns <code>NULL</code> (and pops nothing) 5782when the index is greater than the number of upvalues. 5783 5784 5785 5786 5787 5788<hr><h3><a name="lua_upvalueid"><code>lua_upvalueid</code></a></h3><p> 5789<span class="apii">[-0, +0, –]</span> 5790<pre>void *lua_upvalueid (lua_State *L, int funcindex, int n);</pre> 5791 5792<p> 5793Returns a unique identifier for the upvalue numbered <code>n</code> 5794from the closure at index <code>funcindex</code>. 5795Parameters <code>funcindex</code> and <code>n</code> are as in the <a href="#lua_getupvalue"><code>lua_getupvalue</code></a> 5796(see <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>) 5797(but <code>n</code> cannot be greater than the number of upvalues). 5798 5799 5800<p> 5801These unique identifiers allow a program to check whether different 5802closures share upvalues. 5803Lua closures that share an upvalue 5804(that is, that access a same external local variable) 5805will return identical ids for those upvalue indices. 5806 5807 5808 5809 5810 5811<hr><h3><a name="lua_upvaluejoin"><code>lua_upvaluejoin</code></a></h3><p> 5812<span class="apii">[-0, +0, –]</span> 5813<pre>void lua_upvaluejoin (lua_State *L, int funcindex1, int n1, 5814 int funcindex2, int n2);</pre> 5815 5816<p> 5817Make the <code>n1</code>-th upvalue of the Lua closure at index <code>funcindex1</code> 5818refer to the <code>n2</code>-th upvalue of the Lua closure at index <code>funcindex2</code>. 5819 5820 5821 5822 5823 5824 5825 5826<h1>5 – <a name="5">The Auxiliary Library</a></h1> 5827 5828<p> 5829 5830The <em>auxiliary library</em> provides several convenient functions 5831to interface C with Lua. 5832While the basic API provides the primitive functions for all 5833interactions between C and Lua, 5834the auxiliary library provides higher-level functions for some 5835common tasks. 5836 5837 5838<p> 5839All functions and types from the auxiliary library 5840are defined in header file <code>lauxlib.h</code> and 5841have a prefix <code>luaL_</code>. 5842 5843 5844<p> 5845All functions in the auxiliary library are built on 5846top of the basic API, 5847and so they provide nothing that cannot be done with that API. 5848Nevertheless, the use of the auxiliary library ensures 5849more consistency to your code. 5850 5851 5852<p> 5853Several functions in the auxiliary library use internally some 5854extra stack slots. 5855When a function in the auxiliary library uses less than five slots, 5856it does not check the stack size; 5857it simply assumes that there are enough slots. 5858 5859 5860<p> 5861Several functions in the auxiliary library are used to 5862check C function arguments. 5863Because the error message is formatted for arguments 5864(e.g., "<code>bad argument #1</code>"), 5865you should not use these functions for other stack values. 5866 5867 5868<p> 5869Functions called <code>luaL_check*</code> 5870always raise an error if the check is not satisfied. 5871 5872 5873 5874<h2>5.1 – <a name="5.1">Functions and Types</a></h2> 5875 5876<p> 5877Here we list all functions and types from the auxiliary library 5878in alphabetical order. 5879 5880 5881 5882<hr><h3><a name="luaL_addchar"><code>luaL_addchar</code></a></h3><p> 5883<span class="apii">[-?, +?, <em>e</em>]</span> 5884<pre>void luaL_addchar (luaL_Buffer *B, char c);</pre> 5885 5886<p> 5887Adds the byte <code>c</code> to the buffer <code>B</code> 5888(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 5889 5890 5891 5892 5893 5894<hr><h3><a name="luaL_addlstring"><code>luaL_addlstring</code></a></h3><p> 5895<span class="apii">[-?, +?, <em>e</em>]</span> 5896<pre>void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);</pre> 5897 5898<p> 5899Adds the string pointed to by <code>s</code> with length <code>l</code> to 5900the buffer <code>B</code> 5901(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 5902The string can contain embedded zeros. 5903 5904 5905 5906 5907 5908<hr><h3><a name="luaL_addsize"><code>luaL_addsize</code></a></h3><p> 5909<span class="apii">[-?, +?, <em>e</em>]</span> 5910<pre>void luaL_addsize (luaL_Buffer *B, size_t n);</pre> 5911 5912<p> 5913Adds to the buffer <code>B</code> (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>) 5914a string of length <code>n</code> previously copied to the 5915buffer area (see <a href="#luaL_prepbuffer"><code>luaL_prepbuffer</code></a>). 5916 5917 5918 5919 5920 5921<hr><h3><a name="luaL_addstring"><code>luaL_addstring</code></a></h3><p> 5922<span class="apii">[-?, +?, <em>e</em>]</span> 5923<pre>void luaL_addstring (luaL_Buffer *B, const char *s);</pre> 5924 5925<p> 5926Adds the zero-terminated string pointed to by <code>s</code> 5927to the buffer <code>B</code> 5928(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 5929 5930 5931 5932 5933 5934<hr><h3><a name="luaL_addvalue"><code>luaL_addvalue</code></a></h3><p> 5935<span class="apii">[-1, +?, <em>e</em>]</span> 5936<pre>void luaL_addvalue (luaL_Buffer *B);</pre> 5937 5938<p> 5939Adds the value at the top of the stack 5940to the buffer <code>B</code> 5941(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 5942Pops the value. 5943 5944 5945<p> 5946This is the only function on string buffers that can (and must) 5947be called with an extra element on the stack, 5948which is the value to be added to the buffer. 5949 5950 5951 5952 5953 5954<hr><h3><a name="luaL_argcheck"><code>luaL_argcheck</code></a></h3><p> 5955<span class="apii">[-0, +0, <em>v</em>]</span> 5956<pre>void luaL_argcheck (lua_State *L, 5957 int cond, 5958 int arg, 5959 const char *extramsg);</pre> 5960 5961<p> 5962Checks whether <code>cond</code> is true. 5963If it is not, raises an error with a standard message (see <a href="#luaL_argerror"><code>luaL_argerror</code></a>). 5964 5965 5966 5967 5968 5969<hr><h3><a name="luaL_argerror"><code>luaL_argerror</code></a></h3><p> 5970<span class="apii">[-0, +0, <em>v</em>]</span> 5971<pre>int luaL_argerror (lua_State *L, int arg, const char *extramsg);</pre> 5972 5973<p> 5974Raises an error reporting a problem with argument <code>arg</code> 5975of the C function that called it, 5976using a standard message 5977that includes <code>extramsg</code> as a comment: 5978 5979<pre> 5980 bad argument #<em>arg</em> to '<em>funcname</em>' (<em>extramsg</em>) 5981</pre><p> 5982This function never returns. 5983 5984 5985 5986 5987 5988<hr><h3><a name="luaL_Buffer"><code>luaL_Buffer</code></a></h3> 5989<pre>typedef struct luaL_Buffer luaL_Buffer;</pre> 5990 5991<p> 5992Type for a <em>string buffer</em>. 5993 5994 5995<p> 5996A string buffer allows C code to build Lua strings piecemeal. 5997Its pattern of use is as follows: 5998 5999<ul> 6000 6001<li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li> 6002 6003<li>Then initialize it with a call <code>luaL_buffinit(L, &b)</code>.</li> 6004 6005<li> 6006Then add string pieces to the buffer calling any of 6007the <code>luaL_add*</code> functions. 6008</li> 6009 6010<li> 6011Finish by calling <code>luaL_pushresult(&b)</code>. 6012This call leaves the final string on the top of the stack. 6013</li> 6014 6015</ul> 6016 6017<p> 6018If you know beforehand the total size of the resulting string, 6019you can use the buffer like this: 6020 6021<ul> 6022 6023<li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li> 6024 6025<li>Then initialize it and preallocate a space of 6026size <code>sz</code> with a call <code>luaL_buffinitsize(L, &b, sz)</code>.</li> 6027 6028<li>Then copy the string into that space.</li> 6029 6030<li> 6031Finish by calling <code>luaL_pushresultsize(&b, sz)</code>, 6032where <code>sz</code> is the total size of the resulting string 6033copied into that space. 6034</li> 6035 6036</ul> 6037 6038<p> 6039During its normal operation, 6040a string buffer uses a variable number of stack slots. 6041So, while using a buffer, you cannot assume that you know where 6042the top of the stack is. 6043You can use the stack between successive calls to buffer operations 6044as long as that use is balanced; 6045that is, 6046when you call a buffer operation, 6047the stack is at the same level 6048it was immediately after the previous buffer operation. 6049(The only exception to this rule is <a href="#luaL_addvalue"><code>luaL_addvalue</code></a>.) 6050After calling <a href="#luaL_pushresult"><code>luaL_pushresult</code></a> the stack is back to its 6051level when the buffer was initialized, 6052plus the final string on its top. 6053 6054 6055 6056 6057 6058<hr><h3><a name="luaL_buffinit"><code>luaL_buffinit</code></a></h3><p> 6059<span class="apii">[-0, +0, –]</span> 6060<pre>void luaL_buffinit (lua_State *L, luaL_Buffer *B);</pre> 6061 6062<p> 6063Initializes a buffer <code>B</code>. 6064This function does not allocate any space; 6065the buffer must be declared as a variable 6066(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 6067 6068 6069 6070 6071 6072<hr><h3><a name="luaL_buffinitsize"><code>luaL_buffinitsize</code></a></h3><p> 6073<span class="apii">[-?, +?, <em>e</em>]</span> 6074<pre>char *luaL_buffinitsize (lua_State *L, luaL_Buffer *B, size_t sz);</pre> 6075 6076<p> 6077Equivalent to the sequence 6078<a href="#luaL_buffinit"><code>luaL_buffinit</code></a>, <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a>. 6079 6080 6081 6082 6083 6084<hr><h3><a name="luaL_callmeta"><code>luaL_callmeta</code></a></h3><p> 6085<span class="apii">[-0, +(0|1), <em>e</em>]</span> 6086<pre>int luaL_callmeta (lua_State *L, int obj, const char *e);</pre> 6087 6088<p> 6089Calls a metamethod. 6090 6091 6092<p> 6093If the object at index <code>obj</code> has a metatable and this 6094metatable has a field <code>e</code>, 6095this function calls this field passing the object as its only argument. 6096In this case this function returns true and pushes onto the 6097stack the value returned by the call. 6098If there is no metatable or no metamethod, 6099this function returns false (without pushing any value on the stack). 6100 6101 6102 6103 6104 6105<hr><h3><a name="luaL_checkany"><code>luaL_checkany</code></a></h3><p> 6106<span class="apii">[-0, +0, <em>v</em>]</span> 6107<pre>void luaL_checkany (lua_State *L, int arg);</pre> 6108 6109<p> 6110Checks whether the function has an argument 6111of any type (including <b>nil</b>) at position <code>arg</code>. 6112 6113 6114 6115 6116 6117<hr><h3><a name="luaL_checkinteger"><code>luaL_checkinteger</code></a></h3><p> 6118<span class="apii">[-0, +0, <em>v</em>]</span> 6119<pre>lua_Integer luaL_checkinteger (lua_State *L, int arg);</pre> 6120 6121<p> 6122Checks whether the function argument <code>arg</code> is an integer 6123(or can be converted to an integer) 6124and returns this integer cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>. 6125 6126 6127 6128 6129 6130<hr><h3><a name="luaL_checklstring"><code>luaL_checklstring</code></a></h3><p> 6131<span class="apii">[-0, +0, <em>v</em>]</span> 6132<pre>const char *luaL_checklstring (lua_State *L, int arg, size_t *l);</pre> 6133 6134<p> 6135Checks whether the function argument <code>arg</code> is a string 6136and returns this string; 6137if <code>l</code> is not <code>NULL</code> fills <code>*l</code> 6138with the string's length. 6139 6140 6141<p> 6142This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result, 6143so all conversions and caveats of that function apply here. 6144 6145 6146 6147 6148 6149<hr><h3><a name="luaL_checknumber"><code>luaL_checknumber</code></a></h3><p> 6150<span class="apii">[-0, +0, <em>v</em>]</span> 6151<pre>lua_Number luaL_checknumber (lua_State *L, int arg);</pre> 6152 6153<p> 6154Checks whether the function argument <code>arg</code> is a number 6155and returns this number. 6156 6157 6158 6159 6160 6161<hr><h3><a name="luaL_checkoption"><code>luaL_checkoption</code></a></h3><p> 6162<span class="apii">[-0, +0, <em>v</em>]</span> 6163<pre>int luaL_checkoption (lua_State *L, 6164 int arg, 6165 const char *def, 6166 const char *const lst[]);</pre> 6167 6168<p> 6169Checks whether the function argument <code>arg</code> is a string and 6170searches for this string in the array <code>lst</code> 6171(which must be NULL-terminated). 6172Returns the index in the array where the string was found. 6173Raises an error if the argument is not a string or 6174if the string cannot be found. 6175 6176 6177<p> 6178If <code>def</code> is not <code>NULL</code>, 6179the function uses <code>def</code> as a default value when 6180there is no argument <code>arg</code> or when this argument is <b>nil</b>. 6181 6182 6183<p> 6184This is a useful function for mapping strings to C enums. 6185(The usual convention in Lua libraries is 6186to use strings instead of numbers to select options.) 6187 6188 6189 6190 6191 6192<hr><h3><a name="luaL_checkstack"><code>luaL_checkstack</code></a></h3><p> 6193<span class="apii">[-0, +0, <em>v</em>]</span> 6194<pre>void luaL_checkstack (lua_State *L, int sz, const char *msg);</pre> 6195 6196<p> 6197Grows the stack size to <code>top + sz</code> elements, 6198raising an error if the stack cannot grow to that size. 6199<code>msg</code> is an additional text to go into the error message 6200(or <code>NULL</code> for no additional text). 6201 6202 6203 6204 6205 6206<hr><h3><a name="luaL_checkstring"><code>luaL_checkstring</code></a></h3><p> 6207<span class="apii">[-0, +0, <em>v</em>]</span> 6208<pre>const char *luaL_checkstring (lua_State *L, int arg);</pre> 6209 6210<p> 6211Checks whether the function argument <code>arg</code> is a string 6212and returns this string. 6213 6214 6215<p> 6216This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result, 6217so all conversions and caveats of that function apply here. 6218 6219 6220 6221 6222 6223<hr><h3><a name="luaL_checktype"><code>luaL_checktype</code></a></h3><p> 6224<span class="apii">[-0, +0, <em>v</em>]</span> 6225<pre>void luaL_checktype (lua_State *L, int arg, int t);</pre> 6226 6227<p> 6228Checks whether the function argument <code>arg</code> has type <code>t</code>. 6229See <a href="#lua_type"><code>lua_type</code></a> for the encoding of types for <code>t</code>. 6230 6231 6232 6233 6234 6235<hr><h3><a name="luaL_checkudata"><code>luaL_checkudata</code></a></h3><p> 6236<span class="apii">[-0, +0, <em>v</em>]</span> 6237<pre>void *luaL_checkudata (lua_State *L, int arg, const char *tname);</pre> 6238 6239<p> 6240Checks whether the function argument <code>arg</code> is a userdata 6241of the type <code>tname</code> (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>) and 6242returns the userdata address (see <a href="#lua_touserdata"><code>lua_touserdata</code></a>). 6243 6244 6245 6246 6247 6248<hr><h3><a name="luaL_checkversion"><code>luaL_checkversion</code></a></h3><p> 6249<span class="apii">[-0, +0, –]</span> 6250<pre>void luaL_checkversion (lua_State *L);</pre> 6251 6252<p> 6253Checks whether the core running the call, 6254the core that created the Lua state, 6255and the code making the call are all using the same version of Lua. 6256Also checks whether the core running the call 6257and the core that created the Lua state 6258are using the same address space. 6259 6260 6261 6262 6263 6264<hr><h3><a name="luaL_dofile"><code>luaL_dofile</code></a></h3><p> 6265<span class="apii">[-0, +?, <em>e</em>]</span> 6266<pre>int luaL_dofile (lua_State *L, const char *filename);</pre> 6267 6268<p> 6269Loads and runs the given file. 6270It is defined as the following macro: 6271 6272<pre> 6273 (luaL_loadfile(L, filename) || lua_pcall(L, 0, LUA_MULTRET, 0)) 6274</pre><p> 6275It returns false if there are no errors 6276or true in case of errors. 6277 6278 6279 6280 6281 6282<hr><h3><a name="luaL_dostring"><code>luaL_dostring</code></a></h3><p> 6283<span class="apii">[-0, +?, –]</span> 6284<pre>int luaL_dostring (lua_State *L, const char *str);</pre> 6285 6286<p> 6287Loads and runs the given string. 6288It is defined as the following macro: 6289 6290<pre> 6291 (luaL_loadstring(L, str) || lua_pcall(L, 0, LUA_MULTRET, 0)) 6292</pre><p> 6293It returns false if there are no errors 6294or true in case of errors. 6295 6296 6297 6298 6299 6300<hr><h3><a name="luaL_error"><code>luaL_error</code></a></h3><p> 6301<span class="apii">[-0, +0, <em>v</em>]</span> 6302<pre>int luaL_error (lua_State *L, const char *fmt, ...);</pre> 6303 6304<p> 6305Raises an error. 6306The error message format is given by <code>fmt</code> 6307plus any extra arguments, 6308following the same rules of <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>. 6309It also adds at the beginning of the message the file name and 6310the line number where the error occurred, 6311if this information is available. 6312 6313 6314<p> 6315This function never returns, 6316but it is an idiom to use it in C functions 6317as <code>return luaL_error(<em>args</em>)</code>. 6318 6319 6320 6321 6322 6323<hr><h3><a name="luaL_execresult"><code>luaL_execresult</code></a></h3><p> 6324<span class="apii">[-0, +3, <em>e</em>]</span> 6325<pre>int luaL_execresult (lua_State *L, int stat);</pre> 6326 6327<p> 6328This function produces the return values for 6329process-related functions in the standard library 6330(<a href="#pdf-os.execute"><code>os.execute</code></a> and <a href="#pdf-io.close"><code>io.close</code></a>). 6331 6332 6333 6334 6335 6336<hr><h3><a name="luaL_fileresult"><code>luaL_fileresult</code></a></h3><p> 6337<span class="apii">[-0, +(1|3), <em>e</em>]</span> 6338<pre>int luaL_fileresult (lua_State *L, int stat, const char *fname);</pre> 6339 6340<p> 6341This function produces the return values for 6342file-related functions in the standard library 6343(<a href="#pdf-io.open"><code>io.open</code></a>, <a href="#pdf-os.rename"><code>os.rename</code></a>, <a href="#pdf-file:seek"><code>file:seek</code></a>, etc.). 6344 6345 6346 6347 6348 6349<hr><h3><a name="luaL_getmetafield"><code>luaL_getmetafield</code></a></h3><p> 6350<span class="apii">[-0, +(0|1), <em>e</em>]</span> 6351<pre>int luaL_getmetafield (lua_State *L, int obj, const char *e);</pre> 6352 6353<p> 6354Pushes onto the stack the field <code>e</code> from the metatable 6355of the object at index <code>obj</code> and returns the type of pushed value. 6356If the object does not have a metatable, 6357or if the metatable does not have this field, 6358pushes nothing and returns <code>LUA_TNIL</code>. 6359 6360 6361 6362 6363 6364<hr><h3><a name="luaL_getmetatable"><code>luaL_getmetatable</code></a></h3><p> 6365<span class="apii">[-0, +1, –]</span> 6366<pre>int luaL_getmetatable (lua_State *L, const char *tname);</pre> 6367 6368<p> 6369Pushes onto the stack the metatable associated with name <code>tname</code> 6370in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>). 6371If there is no metatable associated with <code>tname</code>, 6372returns false and pushes <b>nil</b>. 6373 6374 6375 6376 6377 6378<hr><h3><a name="luaL_getsubtable"><code>luaL_getsubtable</code></a></h3><p> 6379<span class="apii">[-0, +1, <em>e</em>]</span> 6380<pre>int luaL_getsubtable (lua_State *L, int idx, const char *fname);</pre> 6381 6382<p> 6383Ensures that the value <code>t[fname]</code>, 6384where <code>t</code> is the value at index <code>idx</code>, 6385is a table, 6386and pushes that table onto the stack. 6387Returns true if it finds a previous table there 6388and false if it creates a new table. 6389 6390 6391 6392 6393 6394<hr><h3><a name="luaL_gsub"><code>luaL_gsub</code></a></h3><p> 6395<span class="apii">[-0, +1, <em>e</em>]</span> 6396<pre>const char *luaL_gsub (lua_State *L, 6397 const char *s, 6398 const char *p, 6399 const char *r);</pre> 6400 6401<p> 6402Creates a copy of string <code>s</code> by replacing 6403any occurrence of the string <code>p</code> 6404with the string <code>r</code>. 6405Pushes the resulting string on the stack and returns it. 6406 6407 6408 6409 6410 6411<hr><h3><a name="luaL_len"><code>luaL_len</code></a></h3><p> 6412<span class="apii">[-0, +0, <em>e</em>]</span> 6413<pre>lua_Integer luaL_len (lua_State *L, int index);</pre> 6414 6415<p> 6416Returns the "length" of the value at the given index 6417as a number; 6418it is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.7">§3.4.7</a>). 6419Raises an error if the result of the operation is not an integer. 6420(This case only can happen through metamethods.) 6421 6422 6423 6424 6425 6426<hr><h3><a name="luaL_loadbuffer"><code>luaL_loadbuffer</code></a></h3><p> 6427<span class="apii">[-0, +1, –]</span> 6428<pre>int luaL_loadbuffer (lua_State *L, 6429 const char *buff, 6430 size_t sz, 6431 const char *name);</pre> 6432 6433<p> 6434Equivalent to <a href="#luaL_loadbufferx"><code>luaL_loadbufferx</code></a> with <code>mode</code> equal to <code>NULL</code>. 6435 6436 6437 6438 6439 6440<hr><h3><a name="luaL_loadbufferx"><code>luaL_loadbufferx</code></a></h3><p> 6441<span class="apii">[-0, +1, –]</span> 6442<pre>int luaL_loadbufferx (lua_State *L, 6443 const char *buff, 6444 size_t sz, 6445 const char *name, 6446 const char *mode);</pre> 6447 6448<p> 6449Loads a buffer as a Lua chunk. 6450This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the 6451buffer pointed to by <code>buff</code> with size <code>sz</code>. 6452 6453 6454<p> 6455This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>. 6456<code>name</code> is the chunk name, 6457used for debug information and error messages. 6458The string <code>mode</code> works as in function <a href="#lua_load"><code>lua_load</code></a>. 6459 6460 6461 6462 6463 6464<hr><h3><a name="luaL_loadfile"><code>luaL_loadfile</code></a></h3><p> 6465<span class="apii">[-0, +1, <em>e</em>]</span> 6466<pre>int luaL_loadfile (lua_State *L, const char *filename);</pre> 6467 6468<p> 6469Equivalent to <a href="#luaL_loadfilex"><code>luaL_loadfilex</code></a> with <code>mode</code> equal to <code>NULL</code>. 6470 6471 6472 6473 6474 6475<hr><h3><a name="luaL_loadfilex"><code>luaL_loadfilex</code></a></h3><p> 6476<span class="apii">[-0, +1, <em>e</em>]</span> 6477<pre>int luaL_loadfilex (lua_State *L, const char *filename, 6478 const char *mode);</pre> 6479 6480<p> 6481Loads a file as a Lua chunk. 6482This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the file 6483named <code>filename</code>. 6484If <code>filename</code> is <code>NULL</code>, 6485then it loads from the standard input. 6486The first line in the file is ignored if it starts with a <code>#</code>. 6487 6488 6489<p> 6490The string <code>mode</code> works as in function <a href="#lua_load"><code>lua_load</code></a>. 6491 6492 6493<p> 6494This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>, 6495but it has an extra error code <a name="pdf-LUA_ERRFILE"><code>LUA_ERRFILE</code></a> 6496if it cannot open/read the file or the file has a wrong mode. 6497 6498 6499<p> 6500As <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk; 6501it does not run it. 6502 6503 6504 6505 6506 6507<hr><h3><a name="luaL_loadstring"><code>luaL_loadstring</code></a></h3><p> 6508<span class="apii">[-0, +1, –]</span> 6509<pre>int luaL_loadstring (lua_State *L, const char *s);</pre> 6510 6511<p> 6512Loads a string as a Lua chunk. 6513This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in 6514the zero-terminated string <code>s</code>. 6515 6516 6517<p> 6518This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>. 6519 6520 6521<p> 6522Also as <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk; 6523it does not run it. 6524 6525 6526 6527 6528 6529<hr><h3><a name="luaL_newlib"><code>luaL_newlib</code></a></h3><p> 6530<span class="apii">[-0, +1, <em>e</em>]</span> 6531<pre>void luaL_newlib (lua_State *L, const luaL_Reg l[]);</pre> 6532 6533<p> 6534Creates a new table and registers there 6535the functions in list <code>l</code>. 6536 6537 6538<p> 6539It is implemented as the following macro: 6540 6541<pre> 6542 (luaL_newlibtable(L,l), luaL_setfuncs(L,l,0)) 6543</pre><p> 6544The array <code>l</code> must be the actual array, 6545not a pointer to it. 6546 6547 6548 6549 6550 6551<hr><h3><a name="luaL_newlibtable"><code>luaL_newlibtable</code></a></h3><p> 6552<span class="apii">[-0, +1, <em>e</em>]</span> 6553<pre>void luaL_newlibtable (lua_State *L, const luaL_Reg l[]);</pre> 6554 6555<p> 6556Creates a new table with a size optimized 6557to store all entries in the array <code>l</code> 6558(but does not actually store them). 6559It is intended to be used in conjunction with <a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a> 6560(see <a href="#luaL_newlib"><code>luaL_newlib</code></a>). 6561 6562 6563<p> 6564It is implemented as a macro. 6565The array <code>l</code> must be the actual array, 6566not a pointer to it. 6567 6568 6569 6570 6571 6572<hr><h3><a name="luaL_newmetatable"><code>luaL_newmetatable</code></a></h3><p> 6573<span class="apii">[-0, +1, <em>e</em>]</span> 6574<pre>int luaL_newmetatable (lua_State *L, const char *tname);</pre> 6575 6576<p> 6577If the registry already has the key <code>tname</code>, 6578returns 0. 6579Otherwise, 6580creates a new table to be used as a metatable for userdata, 6581adds to this new table the pair <code>__name = tname</code>, 6582adds to the registry the pair <code>[tname] = new table</code>, 6583and returns 1. 6584(The entry <code>__name</code> is used by some error-reporting functions.) 6585 6586 6587<p> 6588In both cases pushes onto the stack the final value associated 6589with <code>tname</code> in the registry. 6590 6591 6592 6593 6594 6595<hr><h3><a name="luaL_newstate"><code>luaL_newstate</code></a></h3><p> 6596<span class="apii">[-0, +0, –]</span> 6597<pre>lua_State *luaL_newstate (void);</pre> 6598 6599<p> 6600Creates a new Lua state. 6601It calls <a href="#lua_newstate"><code>lua_newstate</code></a> with an 6602allocator based on the standard C <code>realloc</code> function 6603and then sets a panic function (see <a href="#4.6">§4.6</a>) that prints 6604an error message to the standard error output in case of fatal 6605errors. 6606 6607 6608<p> 6609Returns the new state, 6610or <code>NULL</code> if there is a memory allocation error. 6611 6612 6613 6614 6615 6616<hr><h3><a name="luaL_openlibs"><code>luaL_openlibs</code></a></h3><p> 6617<span class="apii">[-0, +0, <em>e</em>]</span> 6618<pre>void luaL_openlibs (lua_State *L);</pre> 6619 6620<p> 6621Opens all standard Lua libraries into the given state. 6622 6623 6624 6625 6626 6627<hr><h3><a name="luaL_optinteger"><code>luaL_optinteger</code></a></h3><p> 6628<span class="apii">[-0, +0, <em>v</em>]</span> 6629<pre>lua_Integer luaL_optinteger (lua_State *L, 6630 int arg, 6631 lua_Integer d);</pre> 6632 6633<p> 6634If the function argument <code>arg</code> is an integer 6635(or convertible to an integer), 6636returns this integer. 6637If this argument is absent or is <b>nil</b>, 6638returns <code>d</code>. 6639Otherwise, raises an error. 6640 6641 6642 6643 6644 6645<hr><h3><a name="luaL_optlstring"><code>luaL_optlstring</code></a></h3><p> 6646<span class="apii">[-0, +0, <em>v</em>]</span> 6647<pre>const char *luaL_optlstring (lua_State *L, 6648 int arg, 6649 const char *d, 6650 size_t *l);</pre> 6651 6652<p> 6653If the function argument <code>arg</code> is a string, 6654returns this string. 6655If this argument is absent or is <b>nil</b>, 6656returns <code>d</code>. 6657Otherwise, raises an error. 6658 6659 6660<p> 6661If <code>l</code> is not <code>NULL</code>, 6662fills the position <code>*l</code> with the result's length. 6663 6664 6665 6666 6667 6668<hr><h3><a name="luaL_optnumber"><code>luaL_optnumber</code></a></h3><p> 6669<span class="apii">[-0, +0, <em>v</em>]</span> 6670<pre>lua_Number luaL_optnumber (lua_State *L, int arg, lua_Number d);</pre> 6671 6672<p> 6673If the function argument <code>arg</code> is a number, 6674returns this number. 6675If this argument is absent or is <b>nil</b>, 6676returns <code>d</code>. 6677Otherwise, raises an error. 6678 6679 6680 6681 6682 6683<hr><h3><a name="luaL_optstring"><code>luaL_optstring</code></a></h3><p> 6684<span class="apii">[-0, +0, <em>v</em>]</span> 6685<pre>const char *luaL_optstring (lua_State *L, 6686 int arg, 6687 const char *d);</pre> 6688 6689<p> 6690If the function argument <code>arg</code> is a string, 6691returns this string. 6692If this argument is absent or is <b>nil</b>, 6693returns <code>d</code>. 6694Otherwise, raises an error. 6695 6696 6697 6698 6699 6700<hr><h3><a name="luaL_prepbuffer"><code>luaL_prepbuffer</code></a></h3><p> 6701<span class="apii">[-?, +?, <em>e</em>]</span> 6702<pre>char *luaL_prepbuffer (luaL_Buffer *B);</pre> 6703 6704<p> 6705Equivalent to <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a> 6706with the predefined size <a name="pdf-LUAL_BUFFERSIZE"><code>LUAL_BUFFERSIZE</code></a>. 6707 6708 6709 6710 6711 6712<hr><h3><a name="luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a></h3><p> 6713<span class="apii">[-?, +?, <em>e</em>]</span> 6714<pre>char *luaL_prepbuffsize (luaL_Buffer *B, size_t sz);</pre> 6715 6716<p> 6717Returns an address to a space of size <code>sz</code> 6718where you can copy a string to be added to buffer <code>B</code> 6719(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 6720After copying the string into this space you must call 6721<a href="#luaL_addsize"><code>luaL_addsize</code></a> with the size of the string to actually add 6722it to the buffer. 6723 6724 6725 6726 6727 6728<hr><h3><a name="luaL_pushresult"><code>luaL_pushresult</code></a></h3><p> 6729<span class="apii">[-?, +1, <em>e</em>]</span> 6730<pre>void luaL_pushresult (luaL_Buffer *B);</pre> 6731 6732<p> 6733Finishes the use of buffer <code>B</code> leaving the final string on 6734the top of the stack. 6735 6736 6737 6738 6739 6740<hr><h3><a name="luaL_pushresultsize"><code>luaL_pushresultsize</code></a></h3><p> 6741<span class="apii">[-?, +1, <em>e</em>]</span> 6742<pre>void luaL_pushresultsize (luaL_Buffer *B, size_t sz);</pre> 6743 6744<p> 6745Equivalent to the sequence <a href="#luaL_addsize"><code>luaL_addsize</code></a>, <a href="#luaL_pushresult"><code>luaL_pushresult</code></a>. 6746 6747 6748 6749 6750 6751<hr><h3><a name="luaL_ref"><code>luaL_ref</code></a></h3><p> 6752<span class="apii">[-1, +0, <em>e</em>]</span> 6753<pre>int luaL_ref (lua_State *L, int t);</pre> 6754 6755<p> 6756Creates and returns a <em>reference</em>, 6757in the table at index <code>t</code>, 6758for the object at the top of the stack (and pops the object). 6759 6760 6761<p> 6762A reference is a unique integer key. 6763As long as you do not manually add integer keys into table <code>t</code>, 6764<a href="#luaL_ref"><code>luaL_ref</code></a> ensures the uniqueness of the key it returns. 6765You can retrieve an object referred by reference <code>r</code> 6766by calling <code>lua_rawgeti(L, t, r)</code>. 6767Function <a href="#luaL_unref"><code>luaL_unref</code></a> frees a reference and its associated object. 6768 6769 6770<p> 6771If the object at the top of the stack is <b>nil</b>, 6772<a href="#luaL_ref"><code>luaL_ref</code></a> returns the constant <a name="pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>. 6773The constant <a name="pdf-LUA_NOREF"><code>LUA_NOREF</code></a> is guaranteed to be different 6774from any reference returned by <a href="#luaL_ref"><code>luaL_ref</code></a>. 6775 6776 6777 6778 6779 6780<hr><h3><a name="luaL_Reg"><code>luaL_Reg</code></a></h3> 6781<pre>typedef struct luaL_Reg { 6782 const char *name; 6783 lua_CFunction func; 6784} luaL_Reg;</pre> 6785 6786<p> 6787Type for arrays of functions to be registered by 6788<a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a>. 6789<code>name</code> is the function name and <code>func</code> is a pointer to 6790the function. 6791Any array of <a href="#luaL_Reg"><code>luaL_Reg</code></a> must end with a sentinel entry 6792in which both <code>name</code> and <code>func</code> are <code>NULL</code>. 6793 6794 6795 6796 6797 6798<hr><h3><a name="luaL_requiref"><code>luaL_requiref</code></a></h3><p> 6799<span class="apii">[-0, +1, <em>e</em>]</span> 6800<pre>void luaL_requiref (lua_State *L, const char *modname, 6801 lua_CFunction openf, int glb);</pre> 6802 6803<p> 6804If <code>modname</code> is not already present in <a href="#pdf-package.loaded"><code>package.loaded</code></a>, 6805calls function <code>openf</code> with string <code>modname</code> as an argument 6806and sets the call result in <code>package.loaded[modname]</code>, 6807as if that function has been called through <a href="#pdf-require"><code>require</code></a>. 6808 6809 6810<p> 6811If <code>glb</code> is true, 6812also stores the module into global <code>modname</code>. 6813 6814 6815<p> 6816Leaves a copy of the module on the stack. 6817 6818 6819 6820 6821 6822<hr><h3><a name="luaL_setfuncs"><code>luaL_setfuncs</code></a></h3><p> 6823<span class="apii">[-nup, +0, <em>e</em>]</span> 6824<pre>void luaL_setfuncs (lua_State *L, const luaL_Reg *l, int nup);</pre> 6825 6826<p> 6827Registers all functions in the array <code>l</code> 6828(see <a href="#luaL_Reg"><code>luaL_Reg</code></a>) into the table on the top of the stack 6829(below optional upvalues, see next). 6830 6831 6832<p> 6833When <code>nup</code> is not zero, 6834all functions are created sharing <code>nup</code> upvalues, 6835which must be previously pushed on the stack 6836on top of the library table. 6837These values are popped from the stack after the registration. 6838 6839 6840 6841 6842 6843<hr><h3><a name="luaL_setmetatable"><code>luaL_setmetatable</code></a></h3><p> 6844<span class="apii">[-0, +0, –]</span> 6845<pre>void luaL_setmetatable (lua_State *L, const char *tname);</pre> 6846 6847<p> 6848Sets the metatable of the object at the top of the stack 6849as the metatable associated with name <code>tname</code> 6850in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>). 6851 6852 6853 6854 6855 6856<hr><h3><a name="luaL_Stream"><code>luaL_Stream</code></a></h3> 6857<pre>typedef struct luaL_Stream { 6858 FILE *f; 6859 lua_CFunction closef; 6860} luaL_Stream;</pre> 6861 6862<p> 6863The standard representation for file handles, 6864which is used by the standard I/O library. 6865 6866 6867<p> 6868A file handle is implemented as a full userdata, 6869with a metatable called <code>LUA_FILEHANDLE</code> 6870(where <code>LUA_FILEHANDLE</code> is a macro with the actual metatable's name). 6871The metatable is created by the I/O library 6872(see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>). 6873 6874 6875<p> 6876This userdata must start with the structure <code>luaL_Stream</code>; 6877it can contain other data after this initial structure. 6878Field <code>f</code> points to the corresponding C stream 6879(or it can be <code>NULL</code> to indicate an incompletely created handle). 6880Field <code>closef</code> points to a Lua function 6881that will be called to close the stream 6882when the handle is closed or collected; 6883this function receives the file handle as its sole argument and 6884must return either <b>true</b> (in case of success) 6885or <b>nil</b> plus an error message (in case of error). 6886Once Lua calls this field, 6887the field value is changed to <code>NULL</code> 6888to signal that the handle is closed. 6889 6890 6891 6892 6893 6894<hr><h3><a name="luaL_testudata"><code>luaL_testudata</code></a></h3><p> 6895<span class="apii">[-0, +0, <em>e</em>]</span> 6896<pre>void *luaL_testudata (lua_State *L, int arg, const char *tname);</pre> 6897 6898<p> 6899This function works like <a href="#luaL_checkudata"><code>luaL_checkudata</code></a>, 6900except that, when the test fails, 6901it returns <code>NULL</code> instead of raising an error. 6902 6903 6904 6905 6906 6907<hr><h3><a name="luaL_tolstring"><code>luaL_tolstring</code></a></h3><p> 6908<span class="apii">[-0, +1, <em>e</em>]</span> 6909<pre>const char *luaL_tolstring (lua_State *L, int idx, size_t *len);</pre> 6910 6911<p> 6912Converts any Lua value at the given index to a C string 6913in a reasonable format. 6914The resulting string is pushed onto the stack and also 6915returned by the function. 6916If <code>len</code> is not <code>NULL</code>, 6917the function also sets <code>*len</code> with the string length. 6918 6919 6920<p> 6921If the value has a metatable with a <code>"__tostring"</code> field, 6922then <code>luaL_tolstring</code> calls the corresponding metamethod 6923with the value as argument, 6924and uses the result of the call as its result. 6925 6926 6927 6928 6929 6930<hr><h3><a name="luaL_traceback"><code>luaL_traceback</code></a></h3><p> 6931<span class="apii">[-0, +1, <em>e</em>]</span> 6932<pre>void luaL_traceback (lua_State *L, lua_State *L1, const char *msg, 6933 int level);</pre> 6934 6935<p> 6936Creates and pushes a traceback of the stack <code>L1</code>. 6937If <code>msg</code> is not <code>NULL</code> it is appended 6938at the beginning of the traceback. 6939The <code>level</code> parameter tells at which level 6940to start the traceback. 6941 6942 6943 6944 6945 6946<hr><h3><a name="luaL_typename"><code>luaL_typename</code></a></h3><p> 6947<span class="apii">[-0, +0, –]</span> 6948<pre>const char *luaL_typename (lua_State *L, int index);</pre> 6949 6950<p> 6951Returns the name of the type of the value at the given index. 6952 6953 6954 6955 6956 6957<hr><h3><a name="luaL_unref"><code>luaL_unref</code></a></h3><p> 6958<span class="apii">[-0, +0, –]</span> 6959<pre>void luaL_unref (lua_State *L, int t, int ref);</pre> 6960 6961<p> 6962Releases reference <code>ref</code> from the table at index <code>t</code> 6963(see <a href="#luaL_ref"><code>luaL_ref</code></a>). 6964The entry is removed from the table, 6965so that the referred object can be collected. 6966The reference <code>ref</code> is also freed to be used again. 6967 6968 6969<p> 6970If <code>ref</code> is <a href="#pdf-LUA_NOREF"><code>LUA_NOREF</code></a> or <a href="#pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>, 6971<a href="#luaL_unref"><code>luaL_unref</code></a> does nothing. 6972 6973 6974 6975 6976 6977<hr><h3><a name="luaL_where"><code>luaL_where</code></a></h3><p> 6978<span class="apii">[-0, +1, <em>e</em>]</span> 6979<pre>void luaL_where (lua_State *L, int lvl);</pre> 6980 6981<p> 6982Pushes onto the stack a string identifying the current position 6983of the control at level <code>lvl</code> in the call stack. 6984Typically this string has the following format: 6985 6986<pre> 6987 <em>chunkname</em>:<em>currentline</em>: 6988</pre><p> 6989Level 0 is the running function, 6990level 1 is the function that called the running function, 6991etc. 6992 6993 6994<p> 6995This function is used to build a prefix for error messages. 6996 6997 6998 6999 7000 7001 7002 7003<h1>6 – <a name="6">Standard Libraries</a></h1> 7004 7005<p> 7006The standard Lua libraries provide useful functions 7007that are implemented directly through the C API. 7008Some of these functions provide essential services to the language 7009(e.g., <a href="#pdf-type"><code>type</code></a> and <a href="#pdf-getmetatable"><code>getmetatable</code></a>); 7010others provide access to "outside" services (e.g., I/O); 7011and others could be implemented in Lua itself, 7012but are quite useful or have critical performance requirements that 7013deserve an implementation in C (e.g., <a href="#pdf-table.sort"><code>table.sort</code></a>). 7014 7015 7016<p> 7017All libraries are implemented through the official C API 7018and are provided as separate C modules. 7019Currently, Lua has the following standard libraries: 7020 7021<ul> 7022 7023<li>basic library (<a href="#6.1">§6.1</a>);</li> 7024 7025<li>coroutine library (<a href="#6.2">§6.2</a>);</li> 7026 7027<li>package library (<a href="#6.3">§6.3</a>);</li> 7028 7029<li>string manipulation (<a href="#6.4">§6.4</a>);</li> 7030 7031<li>basic UTF-8 support (<a href="#6.5">§6.5</a>);</li> 7032 7033<li>table manipulation (<a href="#6.6">§6.6</a>);</li> 7034 7035<li>mathematical functions (<a href="#6.7">§6.7</a>) (sin, log, etc.);</li> 7036 7037<li>input and output (<a href="#6.8">§6.8</a>);</li> 7038 7039<li>operating system facilities (<a href="#6.9">§6.9</a>);</li> 7040 7041<li>debug facilities (<a href="#6.10">§6.10</a>).</li> 7042 7043</ul><p> 7044Except for the basic and the package libraries, 7045each library provides all its functions as fields of a global table 7046or as methods of its objects. 7047 7048 7049<p> 7050To have access to these libraries, 7051the C host program should call the <a href="#luaL_openlibs"><code>luaL_openlibs</code></a> function, 7052which opens all standard libraries. 7053Alternatively, 7054the host program can open them individually by using 7055<a href="#luaL_requiref"><code>luaL_requiref</code></a> to call 7056<a name="pdf-luaopen_base"><code>luaopen_base</code></a> (for the basic library), 7057<a name="pdf-luaopen_package"><code>luaopen_package</code></a> (for the package library), 7058<a name="pdf-luaopen_coroutine"><code>luaopen_coroutine</code></a> (for the coroutine library), 7059<a name="pdf-luaopen_string"><code>luaopen_string</code></a> (for the string library), 7060<a name="pdf-luaopen_utf8"><code>luaopen_utf8</code></a> (for the UTF8 library), 7061<a name="pdf-luaopen_table"><code>luaopen_table</code></a> (for the table library), 7062<a name="pdf-luaopen_math"><code>luaopen_math</code></a> (for the mathematical library), 7063<a name="pdf-luaopen_io"><code>luaopen_io</code></a> (for the I/O library), 7064<a name="pdf-luaopen_os"><code>luaopen_os</code></a> (for the operating system library), 7065and <a name="pdf-luaopen_debug"><code>luaopen_debug</code></a> (for the debug library). 7066These functions are declared in <a name="pdf-lualib.h"><code>lualib.h</code></a>. 7067 7068 7069 7070<h2>6.1 – <a name="6.1">Basic Functions</a></h2> 7071 7072<p> 7073The basic library provides core functions to Lua. 7074If you do not include this library in your application, 7075you should check carefully whether you need to provide 7076implementations for some of its facilities. 7077 7078 7079<p> 7080<hr><h3><a name="pdf-assert"><code>assert (v [, message])</code></a></h3> 7081 7082 7083<p> 7084Calls <a href="#pdf-error"><code>error</code></a> if 7085the value of its argument <code>v</code> is false (i.e., <b>nil</b> or <b>false</b>); 7086otherwise, returns all its arguments. 7087In case of error, 7088<code>message</code> is the error object; 7089when absent, it defaults to "<code>assertion failed!</code>" 7090 7091 7092 7093 7094<p> 7095<hr><h3><a name="pdf-collectgarbage"><code>collectgarbage ([opt [, arg]])</code></a></h3> 7096 7097 7098<p> 7099This function is a generic interface to the garbage collector. 7100It performs different functions according to its first argument, <code>opt</code>: 7101 7102<ul> 7103 7104<li><b>"<code>collect</code>": </b> 7105performs a full garbage-collection cycle. 7106This is the default option. 7107</li> 7108 7109<li><b>"<code>stop</code>": </b> 7110stops automatic execution of the garbage collector. 7111The collector will run only when explicitly invoked, 7112until a call to restart it. 7113</li> 7114 7115<li><b>"<code>restart</code>": </b> 7116restarts automatic execution of the garbage collector. 7117</li> 7118 7119<li><b>"<code>count</code>": </b> 7120returns the total memory in use by Lua in Kbytes. 7121The value has a fractional part, 7122so that it multiplied by 1024 7123gives the exact number of bytes in use by Lua 7124(except for overflows). 7125</li> 7126 7127<li><b>"<code>step</code>": </b> 7128performs a garbage-collection step. 7129The step "size" is controlled by <code>arg</code>. 7130With a zero value, 7131the collector will perform one basic (indivisible) step. 7132For non-zero values, 7133the collector will perform as if that amount of memory 7134(in KBytes) had been allocated by Lua. 7135Returns <b>true</b> if the step finished a collection cycle. 7136</li> 7137 7138<li><b>"<code>setpause</code>": </b> 7139sets <code>arg</code> as the new value for the <em>pause</em> of 7140the collector (see <a href="#2.5">§2.5</a>). 7141Returns the previous value for <em>pause</em>. 7142</li> 7143 7144<li><b>"<code>setstepmul</code>": </b> 7145sets <code>arg</code> as the new value for the <em>step multiplier</em> of 7146the collector (see <a href="#2.5">§2.5</a>). 7147Returns the previous value for <em>step</em>. 7148</li> 7149 7150<li><b>"<code>isrunning</code>": </b> 7151returns a boolean that tells whether the collector is running 7152(i.e., not stopped). 7153</li> 7154 7155</ul> 7156 7157 7158 7159<p> 7160<hr><h3><a name="pdf-dofile"><code>dofile ([filename])</code></a></h3> 7161Opens the named file and executes its contents as a Lua chunk. 7162When called without arguments, 7163<code>dofile</code> executes the contents of the standard input (<code>stdin</code>). 7164Returns all values returned by the chunk. 7165In case of errors, <code>dofile</code> propagates the error 7166to its caller (that is, <code>dofile</code> does not run in protected mode). 7167 7168 7169 7170 7171<p> 7172<hr><h3><a name="pdf-error"><code>error (message [, level])</code></a></h3> 7173Terminates the last protected function called 7174and returns <code>message</code> as the error object. 7175Function <code>error</code> never returns. 7176 7177 7178<p> 7179Usually, <code>error</code> adds some information about the error position 7180at the beginning of the message, if the message is a string. 7181The <code>level</code> argument specifies how to get the error position. 7182With level 1 (the default), the error position is where the 7183<code>error</code> function was called. 7184Level 2 points the error to where the function 7185that called <code>error</code> was called; and so on. 7186Passing a level 0 avoids the addition of error position information 7187to the message. 7188 7189 7190 7191 7192<p> 7193<hr><h3><a name="pdf-_G"><code>_G</code></a></h3> 7194A global variable (not a function) that 7195holds the global environment (see <a href="#2.2">§2.2</a>). 7196Lua itself does not use this variable; 7197changing its value does not affect any environment, 7198nor vice versa. 7199 7200 7201 7202 7203<p> 7204<hr><h3><a name="pdf-getmetatable"><code>getmetatable (object)</code></a></h3> 7205 7206 7207<p> 7208If <code>object</code> does not have a metatable, returns <b>nil</b>. 7209Otherwise, 7210if the object's metatable has a <code>"__metatable"</code> field, 7211returns the associated value. 7212Otherwise, returns the metatable of the given object. 7213 7214 7215 7216 7217<p> 7218<hr><h3><a name="pdf-ipairs"><code>ipairs (t)</code></a></h3> 7219 7220 7221<p> 7222Returns three values (an iterator function, the table <code>t</code>, and 0) 7223so that the construction 7224 7225<pre> 7226 for i,v in ipairs(t) do <em>body</em> end 7227</pre><p> 7228will iterate over the key–value pairs 7229(<code>1,t[1]</code>), (<code>2,t[2]</code>), ..., 7230up to the first nil value. 7231 7232 7233 7234 7235<p> 7236<hr><h3><a name="pdf-load"><code>load (chunk [, chunkname [, mode [, env]]])</code></a></h3> 7237 7238 7239<p> 7240Loads a chunk. 7241 7242 7243<p> 7244If <code>chunk</code> is a string, the chunk is this string. 7245If <code>chunk</code> is a function, 7246<code>load</code> calls it repeatedly to get the chunk pieces. 7247Each call to <code>chunk</code> must return a string that concatenates 7248with previous results. 7249A return of an empty string, <b>nil</b>, or no value signals the end of the chunk. 7250 7251 7252<p> 7253If there are no syntactic errors, 7254returns the compiled chunk as a function; 7255otherwise, returns <b>nil</b> plus the error message. 7256 7257 7258<p> 7259If the resulting function has upvalues, 7260the first upvalue is set to the value of <code>env</code>, 7261if that parameter is given, 7262or to the value of the global environment. 7263Other upvalues are initialized with <b>nil</b>. 7264(When you load a main chunk, 7265the resulting function will always have exactly one upvalue, 7266the <code>_ENV</code> variable (see <a href="#2.2">§2.2</a>). 7267However, 7268when you load a binary chunk created from a function (see <a href="#pdf-string.dump"><code>string.dump</code></a>), 7269the resulting function can have an arbitrary number of upvalues.) 7270All upvalues are fresh, that is, 7271they are not shared with any other function. 7272 7273 7274<p> 7275<code>chunkname</code> is used as the name of the chunk for error messages 7276and debug information (see <a href="#4.9">§4.9</a>). 7277When absent, 7278it defaults to <code>chunk</code>, if <code>chunk</code> is a string, 7279or to "<code>=(load)</code>" otherwise. 7280 7281 7282<p> 7283The string <code>mode</code> controls whether the chunk can be text or binary 7284(that is, a precompiled chunk). 7285It may be the string "<code>b</code>" (only binary chunks), 7286"<code>t</code>" (only text chunks), 7287or "<code>bt</code>" (both binary and text). 7288The default is "<code>bt</code>". 7289 7290 7291<p> 7292Lua does not check the consistency of binary chunks. 7293Maliciously crafted binary chunks can crash 7294the interpreter. 7295 7296 7297 7298 7299<p> 7300<hr><h3><a name="pdf-loadfile"><code>loadfile ([filename [, mode [, env]]])</code></a></h3> 7301 7302 7303<p> 7304Similar to <a href="#pdf-load"><code>load</code></a>, 7305but gets the chunk from file <code>filename</code> 7306or from the standard input, 7307if no file name is given. 7308 7309 7310 7311 7312<p> 7313<hr><h3><a name="pdf-next"><code>next (table [, index])</code></a></h3> 7314 7315 7316<p> 7317Allows a program to traverse all fields of a table. 7318Its first argument is a table and its second argument 7319is an index in this table. 7320<code>next</code> returns the next index of the table 7321and its associated value. 7322When called with <b>nil</b> as its second argument, 7323<code>next</code> returns an initial index 7324and its associated value. 7325When called with the last index, 7326or with <b>nil</b> in an empty table, 7327<code>next</code> returns <b>nil</b>. 7328If the second argument is absent, then it is interpreted as <b>nil</b>. 7329In particular, 7330you can use <code>next(t)</code> to check whether a table is empty. 7331 7332 7333<p> 7334The order in which the indices are enumerated is not specified, 7335<em>even for numeric indices</em>. 7336(To traverse a table in numeric order, 7337use a numerical <b>for</b>.) 7338 7339 7340<p> 7341The behavior of <code>next</code> is undefined if, 7342during the traversal, 7343you assign any value to a non-existent field in the table. 7344You may however modify existing fields. 7345In particular, you may clear existing fields. 7346 7347 7348 7349 7350<p> 7351<hr><h3><a name="pdf-pairs"><code>pairs (t)</code></a></h3> 7352 7353 7354<p> 7355If <code>t</code> has a metamethod <code>__pairs</code>, 7356calls it with <code>t</code> as argument and returns the first three 7357results from the call. 7358 7359 7360<p> 7361Otherwise, 7362returns three values: the <a href="#pdf-next"><code>next</code></a> function, the table <code>t</code>, and <b>nil</b>, 7363so that the construction 7364 7365<pre> 7366 for k,v in pairs(t) do <em>body</em> end 7367</pre><p> 7368will iterate over all key–value pairs of table <code>t</code>. 7369 7370 7371<p> 7372See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying 7373the table during its traversal. 7374 7375 7376 7377 7378<p> 7379<hr><h3><a name="pdf-pcall"><code>pcall (f [, arg1, ···])</code></a></h3> 7380 7381 7382<p> 7383Calls function <code>f</code> with 7384the given arguments in <em>protected mode</em>. 7385This means that any error inside <code>f</code> is not propagated; 7386instead, <code>pcall</code> catches the error 7387and returns a status code. 7388Its first result is the status code (a boolean), 7389which is true if the call succeeds without errors. 7390In such case, <code>pcall</code> also returns all results from the call, 7391after this first result. 7392In case of any error, <code>pcall</code> returns <b>false</b> plus the error message. 7393 7394 7395 7396 7397<p> 7398<hr><h3><a name="pdf-print"><code>print (···)</code></a></h3> 7399Receives any number of arguments 7400and prints their values to <code>stdout</code>, 7401using the <a href="#pdf-tostring"><code>tostring</code></a> function to convert each argument to a string. 7402<code>print</code> is not intended for formatted output, 7403but only as a quick way to show a value, 7404for instance for debugging. 7405For complete control over the output, 7406use <a href="#pdf-string.format"><code>string.format</code></a> and <a href="#pdf-io.write"><code>io.write</code></a>. 7407 7408 7409 7410 7411<p> 7412<hr><h3><a name="pdf-rawequal"><code>rawequal (v1, v2)</code></a></h3> 7413Checks whether <code>v1</code> is equal to <code>v2</code>, 7414without invoking any metamethod. 7415Returns a boolean. 7416 7417 7418 7419 7420<p> 7421<hr><h3><a name="pdf-rawget"><code>rawget (table, index)</code></a></h3> 7422Gets the real value of <code>table[index]</code>, 7423without invoking any metamethod. 7424<code>table</code> must be a table; 7425<code>index</code> may be any value. 7426 7427 7428 7429 7430<p> 7431<hr><h3><a name="pdf-rawlen"><code>rawlen (v)</code></a></h3> 7432Returns the length of the object <code>v</code>, 7433which must be a table or a string, 7434without invoking any metamethod. 7435Returns an integer. 7436 7437 7438 7439 7440<p> 7441<hr><h3><a name="pdf-rawset"><code>rawset (table, index, value)</code></a></h3> 7442Sets the real value of <code>table[index]</code> to <code>value</code>, 7443without invoking any metamethod. 7444<code>table</code> must be a table, 7445<code>index</code> any value different from <b>nil</b> and NaN, 7446and <code>value</code> any Lua value. 7447 7448 7449<p> 7450This function returns <code>table</code>. 7451 7452 7453 7454 7455<p> 7456<hr><h3><a name="pdf-select"><code>select (index, ···)</code></a></h3> 7457 7458 7459<p> 7460If <code>index</code> is a number, 7461returns all arguments after argument number <code>index</code>; 7462a negative number indexes from the end (-1 is the last argument). 7463Otherwise, <code>index</code> must be the string <code>"#"</code>, 7464and <code>select</code> returns the total number of extra arguments it received. 7465 7466 7467 7468 7469<p> 7470<hr><h3><a name="pdf-setmetatable"><code>setmetatable (table, metatable)</code></a></h3> 7471 7472 7473<p> 7474Sets the metatable for the given table. 7475(You cannot change the metatable of other types from Lua, only from C.) 7476If <code>metatable</code> is <b>nil</b>, 7477removes the metatable of the given table. 7478If the original metatable has a <code>"__metatable"</code> field, 7479raises an error. 7480 7481 7482<p> 7483This function returns <code>table</code>. 7484 7485 7486 7487 7488<p> 7489<hr><h3><a name="pdf-tonumber"><code>tonumber (e [, base])</code></a></h3> 7490 7491 7492<p> 7493When called with no <code>base</code>, 7494<code>tonumber</code> tries to convert its argument to a number. 7495If the argument is already a number or 7496a string convertible to a number, 7497then <code>tonumber</code> returns this number; 7498otherwise, it returns <b>nil</b>. 7499 7500 7501<p> 7502The conversion of strings can result in integers or floats, 7503according to the lexical conventions of Lua (see <a href="#3.1">§3.1</a>). 7504(The string may have leading and trailing spaces and a sign.) 7505 7506 7507<p> 7508When called with <code>base</code>, 7509then <code>e</code> must be a string to be interpreted as 7510an integer numeral in that base. 7511The base may be any integer between 2 and 36, inclusive. 7512In bases above 10, the letter '<code>A</code>' (in either upper or lower case) 7513represents 10, '<code>B</code>' represents 11, and so forth, 7514with '<code>Z</code>' representing 35. 7515If the string <code>e</code> is not a valid numeral in the given base, 7516the function returns <b>nil</b>. 7517 7518 7519 7520 7521<p> 7522<hr><h3><a name="pdf-tostring"><code>tostring (v)</code></a></h3> 7523Receives a value of any type and 7524converts it to a string in a human-readable format. 7525Floats always produce strings with some 7526floating-point indication (either a decimal dot or an exponent). 7527(For complete control of how numbers are converted, 7528use <a href="#pdf-string.format"><code>string.format</code></a>.) 7529 7530 7531<p> 7532If the metatable of <code>v</code> has a <code>"__tostring"</code> field, 7533then <code>tostring</code> calls the corresponding value 7534with <code>v</code> as argument, 7535and uses the result of the call as its result. 7536 7537 7538 7539 7540<p> 7541<hr><h3><a name="pdf-type"><code>type (v)</code></a></h3> 7542Returns the type of its only argument, coded as a string. 7543The possible results of this function are 7544"<code>nil</code>" (a string, not the value <b>nil</b>), 7545"<code>number</code>", 7546"<code>string</code>", 7547"<code>boolean</code>", 7548"<code>table</code>", 7549"<code>function</code>", 7550"<code>thread</code>", 7551and "<code>userdata</code>". 7552 7553 7554 7555 7556<p> 7557<hr><h3><a name="pdf-_VERSION"><code>_VERSION</code></a></h3> 7558A global variable (not a function) that 7559holds a string containing the current interpreter version. 7560The current value of this variable is "<code>Lua 5.3</code>". 7561 7562 7563 7564 7565<p> 7566<hr><h3><a name="pdf-xpcall"><code>xpcall (f, msgh [, arg1, ···])</code></a></h3> 7567 7568 7569<p> 7570This function is similar to <a href="#pdf-pcall"><code>pcall</code></a>, 7571except that it sets a new message handler <code>msgh</code>. 7572 7573 7574 7575 7576 7577 7578 7579<h2>6.2 – <a name="6.2">Coroutine Manipulation</a></h2> 7580 7581<p> 7582The operations related to coroutines comprise a sub-library of 7583the basic library and come inside the table <a name="pdf-coroutine"><code>coroutine</code></a>. 7584See <a href="#2.6">§2.6</a> for a general description of coroutines. 7585 7586 7587<p> 7588<hr><h3><a name="pdf-coroutine.create"><code>coroutine.create (f)</code></a></h3> 7589 7590 7591<p> 7592Creates a new coroutine, with body <code>f</code>. 7593<code>f</code> must be a Lua function. 7594Returns this new coroutine, 7595an object with type <code>"thread"</code>. 7596 7597 7598 7599 7600<p> 7601<hr><h3><a name="pdf-coroutine.isyieldable"><code>coroutine.isyieldable ()</code></a></h3> 7602 7603 7604<p> 7605Returns true when the running coroutine can yield. 7606 7607 7608<p> 7609A running coroutine is yieldable if it is not the main thread and 7610it is not inside a non-yieldable C function. 7611 7612 7613 7614 7615<p> 7616<hr><h3><a name="pdf-coroutine.resume"><code>coroutine.resume (co [, val1, ···])</code></a></h3> 7617 7618 7619<p> 7620Starts or continues the execution of coroutine <code>co</code>. 7621The first time you resume a coroutine, 7622it starts running its body. 7623The values <code>val1</code>, ... are passed 7624as the arguments to the body function. 7625If the coroutine has yielded, 7626<code>resume</code> restarts it; 7627the values <code>val1</code>, ... are passed 7628as the results from the yield. 7629 7630 7631<p> 7632If the coroutine runs without any errors, 7633<code>resume</code> returns <b>true</b> plus any values passed to <code>yield</code> 7634(when the coroutine yields) or any values returned by the body function 7635(when the coroutine terminates). 7636If there is any error, 7637<code>resume</code> returns <b>false</b> plus the error message. 7638 7639 7640 7641 7642<p> 7643<hr><h3><a name="pdf-coroutine.running"><code>coroutine.running ()</code></a></h3> 7644 7645 7646<p> 7647Returns the running coroutine plus a boolean, 7648true when the running coroutine is the main one. 7649 7650 7651 7652 7653<p> 7654<hr><h3><a name="pdf-coroutine.status"><code>coroutine.status (co)</code></a></h3> 7655 7656 7657<p> 7658Returns the status of coroutine <code>co</code>, as a string: 7659<code>"running"</code>, 7660if the coroutine is running (that is, it called <code>status</code>); 7661<code>"suspended"</code>, if the coroutine is suspended in a call to <code>yield</code>, 7662or if it has not started running yet; 7663<code>"normal"</code> if the coroutine is active but not running 7664(that is, it has resumed another coroutine); 7665and <code>"dead"</code> if the coroutine has finished its body function, 7666or if it has stopped with an error. 7667 7668 7669 7670 7671<p> 7672<hr><h3><a name="pdf-coroutine.wrap"><code>coroutine.wrap (f)</code></a></h3> 7673 7674 7675<p> 7676Creates a new coroutine, with body <code>f</code>. 7677<code>f</code> must be a Lua function. 7678Returns a function that resumes the coroutine each time it is called. 7679Any arguments passed to the function behave as the 7680extra arguments to <code>resume</code>. 7681Returns the same values returned by <code>resume</code>, 7682except the first boolean. 7683In case of error, propagates the error. 7684 7685 7686 7687 7688<p> 7689<hr><h3><a name="pdf-coroutine.yield"><code>coroutine.yield (···)</code></a></h3> 7690 7691 7692<p> 7693Suspends the execution of the calling coroutine. 7694Any arguments to <code>yield</code> are passed as extra results to <code>resume</code>. 7695 7696 7697 7698 7699 7700 7701 7702<h2>6.3 – <a name="6.3">Modules</a></h2> 7703 7704<p> 7705The package library provides basic 7706facilities for loading modules in Lua. 7707It exports one function directly in the global environment: 7708<a href="#pdf-require"><code>require</code></a>. 7709Everything else is exported in a table <a name="pdf-package"><code>package</code></a>. 7710 7711 7712<p> 7713<hr><h3><a name="pdf-require"><code>require (modname)</code></a></h3> 7714 7715 7716<p> 7717Loads the given module. 7718The function starts by looking into the <a href="#pdf-package.loaded"><code>package.loaded</code></a> table 7719to determine whether <code>modname</code> is already loaded. 7720If it is, then <code>require</code> returns the value stored 7721at <code>package.loaded[modname]</code>. 7722Otherwise, it tries to find a <em>loader</em> for the module. 7723 7724 7725<p> 7726To find a loader, 7727<code>require</code> is guided by the <a href="#pdf-package.searchers"><code>package.searchers</code></a> sequence. 7728By changing this sequence, 7729we can change how <code>require</code> looks for a module. 7730The following explanation is based on the default configuration 7731for <a href="#pdf-package.searchers"><code>package.searchers</code></a>. 7732 7733 7734<p> 7735First <code>require</code> queries <code>package.preload[modname]</code>. 7736If it has a value, 7737this value (which must be a function) is the loader. 7738Otherwise <code>require</code> searches for a Lua loader using the 7739path stored in <a href="#pdf-package.path"><code>package.path</code></a>. 7740If that also fails, it searches for a C loader using the 7741path stored in <a href="#pdf-package.cpath"><code>package.cpath</code></a>. 7742If that also fails, 7743it tries an <em>all-in-one</em> loader (see <a href="#pdf-package.searchers"><code>package.searchers</code></a>). 7744 7745 7746<p> 7747Once a loader is found, 7748<code>require</code> calls the loader with two arguments: 7749<code>modname</code> and an extra value dependent on how it got the loader. 7750(If the loader came from a file, 7751this extra value is the file name.) 7752If the loader returns any non-nil value, 7753<code>require</code> assigns the returned value to <code>package.loaded[modname]</code>. 7754If the loader does not return a non-nil value and 7755has not assigned any value to <code>package.loaded[modname]</code>, 7756then <code>require</code> assigns <b>true</b> to this entry. 7757In any case, <code>require</code> returns the 7758final value of <code>package.loaded[modname]</code>. 7759 7760 7761<p> 7762If there is any error loading or running the module, 7763or if it cannot find any loader for the module, 7764then <code>require</code> raises an error. 7765 7766 7767 7768 7769<p> 7770<hr><h3><a name="pdf-package.config"><code>package.config</code></a></h3> 7771 7772 7773<p> 7774A string describing some compile-time configurations for packages. 7775This string is a sequence of lines: 7776 7777<ul> 7778 7779<li>The first line is the directory separator string. 7780Default is '<code>\</code>' for Windows and '<code>/</code>' for all other systems.</li> 7781 7782<li>The second line is the character that separates templates in a path. 7783Default is '<code>;</code>'.</li> 7784 7785<li>The third line is the string that marks the 7786substitution points in a template. 7787Default is '<code>?</code>'.</li> 7788 7789<li>The fourth line is a string that, in a path in Windows, 7790is replaced by the executable's directory. 7791Default is '<code>!</code>'.</li> 7792 7793<li>The fifth line is a mark to ignore all text after it 7794when building the <code>luaopen_</code> function name. 7795Default is '<code>-</code>'.</li> 7796 7797</ul> 7798 7799 7800 7801<p> 7802<hr><h3><a name="pdf-package.cpath"><code>package.cpath</code></a></h3> 7803 7804 7805<p> 7806The path used by <a href="#pdf-require"><code>require</code></a> to search for a C loader. 7807 7808 7809<p> 7810Lua initializes the C path <a href="#pdf-package.cpath"><code>package.cpath</code></a> in the same way 7811it initializes the Lua path <a href="#pdf-package.path"><code>package.path</code></a>, 7812using the environment variable <a name="pdf-LUA_CPATH_5_3"><code>LUA_CPATH_5_3</code></a> 7813or the environment variable <a name="pdf-LUA_CPATH"><code>LUA_CPATH</code></a> 7814or a default path defined in <code>luaconf.h</code>. 7815 7816 7817 7818 7819<p> 7820<hr><h3><a name="pdf-package.loaded"><code>package.loaded</code></a></h3> 7821 7822 7823<p> 7824A table used by <a href="#pdf-require"><code>require</code></a> to control which 7825modules are already loaded. 7826When you require a module <code>modname</code> and 7827<code>package.loaded[modname]</code> is not false, 7828<a href="#pdf-require"><code>require</code></a> simply returns the value stored there. 7829 7830 7831<p> 7832This variable is only a reference to the real table; 7833assignments to this variable do not change the 7834table used by <a href="#pdf-require"><code>require</code></a>. 7835 7836 7837 7838 7839<p> 7840<hr><h3><a name="pdf-package.loadlib"><code>package.loadlib (libname, funcname)</code></a></h3> 7841 7842 7843<p> 7844Dynamically links the host program with the C library <code>libname</code>. 7845 7846 7847<p> 7848If <code>funcname</code> is "<code>*</code>", 7849then it only links with the library, 7850making the symbols exported by the library 7851available to other dynamically linked libraries. 7852Otherwise, 7853it looks for a function <code>funcname</code> inside the library 7854and returns this function as a C function. 7855So, <code>funcname</code> must follow the <a href="#lua_CFunction"><code>lua_CFunction</code></a> prototype 7856(see <a href="#lua_CFunction"><code>lua_CFunction</code></a>). 7857 7858 7859<p> 7860This is a low-level function. 7861It completely bypasses the package and module system. 7862Unlike <a href="#pdf-require"><code>require</code></a>, 7863it does not perform any path searching and 7864does not automatically adds extensions. 7865<code>libname</code> must be the complete file name of the C library, 7866including if necessary a path and an extension. 7867<code>funcname</code> must be the exact name exported by the C library 7868(which may depend on the C compiler and linker used). 7869 7870 7871<p> 7872This function is not supported by Standard C. 7873As such, it is only available on some platforms 7874(Windows, Linux, Mac OS X, Solaris, BSD, 7875plus other Unix systems that support the <code>dlfcn</code> standard). 7876 7877 7878 7879 7880<p> 7881<hr><h3><a name="pdf-package.path"><code>package.path</code></a></h3> 7882 7883 7884<p> 7885The path used by <a href="#pdf-require"><code>require</code></a> to search for a Lua loader. 7886 7887 7888<p> 7889At start-up, Lua initializes this variable with 7890the value of the environment variable <a name="pdf-LUA_PATH_5_3"><code>LUA_PATH_5_3</code></a> or 7891the environment variable <a name="pdf-LUA_PATH"><code>LUA_PATH</code></a> or 7892with a default path defined in <code>luaconf.h</code>, 7893if those environment variables are not defined. 7894Any "<code>;;</code>" in the value of the environment variable 7895is replaced by the default path. 7896 7897 7898 7899 7900<p> 7901<hr><h3><a name="pdf-package.preload"><code>package.preload</code></a></h3> 7902 7903 7904<p> 7905A table to store loaders for specific modules 7906(see <a href="#pdf-require"><code>require</code></a>). 7907 7908 7909<p> 7910This variable is only a reference to the real table; 7911assignments to this variable do not change the 7912table used by <a href="#pdf-require"><code>require</code></a>. 7913 7914 7915 7916 7917<p> 7918<hr><h3><a name="pdf-package.searchers"><code>package.searchers</code></a></h3> 7919 7920 7921<p> 7922A table used by <a href="#pdf-require"><code>require</code></a> to control how to load modules. 7923 7924 7925<p> 7926Each entry in this table is a <em>searcher function</em>. 7927When looking for a module, 7928<a href="#pdf-require"><code>require</code></a> calls each of these searchers in ascending order, 7929with the module name (the argument given to <a href="#pdf-require"><code>require</code></a>) as its 7930sole parameter. 7931The function can return another function (the module <em>loader</em>) 7932plus an extra value that will be passed to that loader, 7933or a string explaining why it did not find that module 7934(or <b>nil</b> if it has nothing to say). 7935 7936 7937<p> 7938Lua initializes this table with four searcher functions. 7939 7940 7941<p> 7942The first searcher simply looks for a loader in the 7943<a href="#pdf-package.preload"><code>package.preload</code></a> table. 7944 7945 7946<p> 7947The second searcher looks for a loader as a Lua library, 7948using the path stored at <a href="#pdf-package.path"><code>package.path</code></a>. 7949The search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>. 7950 7951 7952<p> 7953The third searcher looks for a loader as a C library, 7954using the path given by the variable <a href="#pdf-package.cpath"><code>package.cpath</code></a>. 7955Again, 7956the search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>. 7957For instance, 7958if the C path is the string 7959 7960<pre> 7961 "./?.so;./?.dll;/usr/local/?/init.so" 7962</pre><p> 7963the searcher for module <code>foo</code> 7964will try to open the files <code>./foo.so</code>, <code>./foo.dll</code>, 7965and <code>/usr/local/foo/init.so</code>, in that order. 7966Once it finds a C library, 7967this searcher first uses a dynamic link facility to link the 7968application with the library. 7969Then it tries to find a C function inside the library to 7970be used as the loader. 7971The name of this C function is the string "<code>luaopen_</code>" 7972concatenated with a copy of the module name where each dot 7973is replaced by an underscore. 7974Moreover, if the module name has a hyphen, 7975its suffix after (and including) the first hyphen is removed. 7976For instance, if the module name is <code>a.b.c-v2.1</code>, 7977the function name will be <code>luaopen_a_b_c</code>. 7978 7979 7980<p> 7981The fourth searcher tries an <em>all-in-one loader</em>. 7982It searches the C path for a library for 7983the root name of the given module. 7984For instance, when requiring <code>a.b.c</code>, 7985it will search for a C library for <code>a</code>. 7986If found, it looks into it for an open function for 7987the submodule; 7988in our example, that would be <code>luaopen_a_b_c</code>. 7989With this facility, a package can pack several C submodules 7990into one single library, 7991with each submodule keeping its original open function. 7992 7993 7994<p> 7995All searchers except the first one (preload) return as the extra value 7996the file name where the module was found, 7997as returned by <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>. 7998The first searcher returns no extra value. 7999 8000 8001 8002 8003<p> 8004<hr><h3><a name="pdf-package.searchpath"><code>package.searchpath (name, path [, sep [, rep]])</code></a></h3> 8005 8006 8007<p> 8008Searches for the given <code>name</code> in the given <code>path</code>. 8009 8010 8011<p> 8012A path is a string containing a sequence of 8013<em>templates</em> separated by semicolons. 8014For each template, 8015the function replaces each interrogation mark (if any) 8016in the template with a copy of <code>name</code> 8017wherein all occurrences of <code>sep</code> 8018(a dot, by default) 8019were replaced by <code>rep</code> 8020(the system's directory separator, by default), 8021and then tries to open the resulting file name. 8022 8023 8024<p> 8025For instance, if the path is the string 8026 8027<pre> 8028 "./?.lua;./?.lc;/usr/local/?/init.lua" 8029</pre><p> 8030the search for the name <code>foo.a</code> 8031will try to open the files 8032<code>./foo/a.lua</code>, <code>./foo/a.lc</code>, and 8033<code>/usr/local/foo/a/init.lua</code>, in that order. 8034 8035 8036<p> 8037Returns the resulting name of the first file that it can 8038open in read mode (after closing the file), 8039or <b>nil</b> plus an error message if none succeeds. 8040(This error message lists all file names it tried to open.) 8041 8042 8043 8044 8045 8046 8047 8048<h2>6.4 – <a name="6.4">String Manipulation</a></h2> 8049 8050<p> 8051This library provides generic functions for string manipulation, 8052such as finding and extracting substrings, and pattern matching. 8053When indexing a string in Lua, the first character is at position 1 8054(not at 0, as in C). 8055Indices are allowed to be negative and are interpreted as indexing backwards, 8056from the end of the string. 8057Thus, the last character is at position -1, and so on. 8058 8059 8060<p> 8061The string library provides all its functions inside the table 8062<a name="pdf-string"><code>string</code></a>. 8063It also sets a metatable for strings 8064where the <code>__index</code> field points to the <code>string</code> table. 8065Therefore, you can use the string functions in object-oriented style. 8066For instance, <code>string.byte(s,i)</code> 8067can be written as <code>s:byte(i)</code>. 8068 8069 8070<p> 8071The string library assumes one-byte character encodings. 8072 8073 8074<p> 8075<hr><h3><a name="pdf-string.byte"><code>string.byte (s [, i [, j]])</code></a></h3> 8076Returns the internal numerical codes of the characters <code>s[i]</code>, 8077<code>s[i+1]</code>, ..., <code>s[j]</code>. 8078The default value for <code>i</code> is 1; 8079the default value for <code>j</code> is <code>i</code>. 8080These indices are corrected 8081following the same rules of function <a href="#pdf-string.sub"><code>string.sub</code></a>. 8082 8083 8084<p> 8085Numerical codes are not necessarily portable across platforms. 8086 8087 8088 8089 8090<p> 8091<hr><h3><a name="pdf-string.char"><code>string.char (···)</code></a></h3> 8092Receives zero or more integers. 8093Returns a string with length equal to the number of arguments, 8094in which each character has the internal numerical code equal 8095to its corresponding argument. 8096 8097 8098<p> 8099Numerical codes are not necessarily portable across platforms. 8100 8101 8102 8103 8104<p> 8105<hr><h3><a name="pdf-string.dump"><code>string.dump (function [, strip])</code></a></h3> 8106 8107 8108<p> 8109Returns a string containing a binary representation 8110(a <em>binary chunk</em>) 8111of the given function, 8112so that a later <a href="#pdf-load"><code>load</code></a> on this string returns 8113a copy of the function (but with new upvalues). 8114If <code>strip</code> is a true value, 8115the binary representation is created without debug information 8116about the function 8117(local variable names, lines, etc.). 8118 8119 8120<p> 8121Functions with upvalues have only their number of upvalues saved. 8122When (re)loaded, 8123those upvalues receive fresh instances containing <b>nil</b>. 8124(You can use the debug library to serialize 8125and reload the upvalues of a function 8126in a way adequate to your needs.) 8127 8128 8129 8130 8131<p> 8132<hr><h3><a name="pdf-string.find"><code>string.find (s, pattern [, init [, plain]])</code></a></h3> 8133 8134 8135<p> 8136Looks for the first match of 8137<code>pattern</code> (see <a href="#6.4.1">§6.4.1</a>) in the string <code>s</code>. 8138If it finds a match, then <code>find</code> returns the indices of <code>s</code> 8139where this occurrence starts and ends; 8140otherwise, it returns <b>nil</b>. 8141A third, optional numerical argument <code>init</code> specifies 8142where to start the search; 8143its default value is 1 and can be negative. 8144A value of <b>true</b> as a fourth, optional argument <code>plain</code> 8145turns off the pattern matching facilities, 8146so the function does a plain "find substring" operation, 8147with no characters in <code>pattern</code> being considered magic. 8148Note that if <code>plain</code> is given, then <code>init</code> must be given as well. 8149 8150 8151<p> 8152If the pattern has captures, 8153then in a successful match 8154the captured values are also returned, 8155after the two indices. 8156 8157 8158 8159 8160<p> 8161<hr><h3><a name="pdf-string.format"><code>string.format (formatstring, ···)</code></a></h3> 8162 8163 8164<p> 8165Returns a formatted version of its variable number of arguments 8166following the description given in its first argument (which must be a string). 8167The format string follows the same rules as the ISO C function <code>sprintf</code>. 8168The only differences are that the options/modifiers 8169<code>*</code>, <code>h</code>, <code>L</code>, <code>l</code>, <code>n</code>, 8170and <code>p</code> are not supported 8171and that there is an extra option, <code>q</code>. 8172The <code>q</code> option formats a string between double quotes, 8173using escape sequences when necessary to ensure that 8174it can safely be read back by the Lua interpreter. 8175For instance, the call 8176 8177<pre> 8178 string.format('%q', 'a string with "quotes" and \n new line') 8179</pre><p> 8180may produce the string: 8181 8182<pre> 8183 "a string with \"quotes\" and \ 8184 new line" 8185</pre> 8186 8187<p> 8188Options 8189<code>A</code> and <code>a</code> (when available), 8190<code>E</code>, <code>e</code>, <code>f</code>, 8191<code>G</code>, and <code>g</code> all expect a number as argument. 8192Options <code>c</code>, <code>d</code>, 8193<code>i</code>, <code>o</code>, <code>u</code>, <code>X</code>, and <code>x</code> 8194expect an integer. 8195Option <code>q</code> expects a string; 8196option <code>s</code> expects a string without embedded zeros. 8197If the argument to option <code>s</code> is not a string, 8198it is converted to one following the same rules of <a href="#pdf-tostring"><code>tostring</code></a>. 8199 8200 8201 8202 8203<p> 8204<hr><h3><a name="pdf-string.gmatch"><code>string.gmatch (s, pattern)</code></a></h3> 8205Returns an iterator function that, 8206each time it is called, 8207returns the next captures from <code>pattern</code> (see <a href="#6.4.1">§6.4.1</a>) 8208over the string <code>s</code>. 8209If <code>pattern</code> specifies no captures, 8210then the whole match is produced in each call. 8211 8212 8213<p> 8214As an example, the following loop 8215will iterate over all the words from string <code>s</code>, 8216printing one per line: 8217 8218<pre> 8219 s = "hello world from Lua" 8220 for w in string.gmatch(s, "%a+") do 8221 print(w) 8222 end 8223</pre><p> 8224The next example collects all pairs <code>key=value</code> from the 8225given string into a table: 8226 8227<pre> 8228 t = {} 8229 s = "from=world, to=Lua" 8230 for k, v in string.gmatch(s, "(%w+)=(%w+)") do 8231 t[k] = v 8232 end 8233</pre> 8234 8235<p> 8236For this function, a caret '<code>^</code>' at the start of a pattern does not 8237work as an anchor, as this would prevent the iteration. 8238 8239 8240 8241 8242<p> 8243<hr><h3><a name="pdf-string.gsub"><code>string.gsub (s, pattern, repl [, n])</code></a></h3> 8244Returns a copy of <code>s</code> 8245in which all (or the first <code>n</code>, if given) 8246occurrences of the <code>pattern</code> (see <a href="#6.4.1">§6.4.1</a>) have been 8247replaced by a replacement string specified by <code>repl</code>, 8248which can be a string, a table, or a function. 8249<code>gsub</code> also returns, as its second value, 8250the total number of matches that occurred. 8251The name <code>gsub</code> comes from <em>Global SUBstitution</em>. 8252 8253 8254<p> 8255If <code>repl</code> is a string, then its value is used for replacement. 8256The character <code>%</code> works as an escape character: 8257any sequence in <code>repl</code> of the form <code>%<em>d</em></code>, 8258with <em>d</em> between 1 and 9, 8259stands for the value of the <em>d</em>-th captured substring. 8260The sequence <code>%0</code> stands for the whole match. 8261The sequence <code>%%</code> stands for a single <code>%</code>. 8262 8263 8264<p> 8265If <code>repl</code> is a table, then the table is queried for every match, 8266using the first capture as the key. 8267 8268 8269<p> 8270If <code>repl</code> is a function, then this function is called every time a 8271match occurs, with all captured substrings passed as arguments, 8272in order. 8273 8274 8275<p> 8276In any case, 8277if the pattern specifies no captures, 8278then it behaves as if the whole pattern was inside a capture. 8279 8280 8281<p> 8282If the value returned by the table query or by the function call 8283is a string or a number, 8284then it is used as the replacement string; 8285otherwise, if it is <b>false</b> or <b>nil</b>, 8286then there is no replacement 8287(that is, the original match is kept in the string). 8288 8289 8290<p> 8291Here are some examples: 8292 8293<pre> 8294 x = string.gsub("hello world", "(%w+)", "%1 %1") 8295 --> x="hello hello world world" 8296 8297 x = string.gsub("hello world", "%w+", "%0 %0", 1) 8298 --> x="hello hello world" 8299 8300 x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1") 8301 --> x="world hello Lua from" 8302 8303 x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv) 8304 --> x="home = /home/roberto, user = roberto" 8305 8306 x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s) 8307 return load(s)() 8308 end) 8309 --> x="4+5 = 9" 8310 8311 local t = {name="lua", version="5.3"} 8312 x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t) 8313 --> x="lua-5.3.tar.gz" 8314</pre> 8315 8316 8317 8318<p> 8319<hr><h3><a name="pdf-string.len"><code>string.len (s)</code></a></h3> 8320Receives a string and returns its length. 8321The empty string <code>""</code> has length 0. 8322Embedded zeros are counted, 8323so <code>"a\000bc\000"</code> has length 5. 8324 8325 8326 8327 8328<p> 8329<hr><h3><a name="pdf-string.lower"><code>string.lower (s)</code></a></h3> 8330Receives a string and returns a copy of this string with all 8331uppercase letters changed to lowercase. 8332All other characters are left unchanged. 8333The definition of what an uppercase letter is depends on the current locale. 8334 8335 8336 8337 8338<p> 8339<hr><h3><a name="pdf-string.match"><code>string.match (s, pattern [, init])</code></a></h3> 8340Looks for the first <em>match</em> of 8341<code>pattern</code> (see <a href="#6.4.1">§6.4.1</a>) in the string <code>s</code>. 8342If it finds one, then <code>match</code> returns 8343the captures from the pattern; 8344otherwise it returns <b>nil</b>. 8345If <code>pattern</code> specifies no captures, 8346then the whole match is returned. 8347A third, optional numerical argument <code>init</code> specifies 8348where to start the search; 8349its default value is 1 and can be negative. 8350 8351 8352 8353 8354<p> 8355<hr><h3><a name="pdf-string.pack"><code>string.pack (fmt, v1, v2, ···)</code></a></h3> 8356 8357 8358<p> 8359Returns a binary string containing the values <code>v1</code>, <code>v2</code>, etc. 8360packed (that is, serialized in binary form) 8361according to the format string <code>fmt</code> (see <a href="#6.4.2">§6.4.2</a>). 8362 8363 8364 8365 8366<p> 8367<hr><h3><a name="pdf-string.packsize"><code>string.packsize (fmt)</code></a></h3> 8368 8369 8370<p> 8371Returns the size of a string resulting from <a href="#pdf-string.pack"><code>string.pack</code></a> 8372with the given format. 8373The format string cannot have the variable-length options 8374'<code>s</code>' or '<code>z</code>' (see <a href="#6.4.2">§6.4.2</a>). 8375 8376 8377 8378 8379<p> 8380<hr><h3><a name="pdf-string.rep"><code>string.rep (s, n [, sep])</code></a></h3> 8381Returns a string that is the concatenation of <code>n</code> copies of 8382the string <code>s</code> separated by the string <code>sep</code>. 8383The default value for <code>sep</code> is the empty string 8384(that is, no separator). 8385Returns the empty string if <code>n</code> is not positive. 8386 8387 8388 8389 8390<p> 8391<hr><h3><a name="pdf-string.reverse"><code>string.reverse (s)</code></a></h3> 8392Returns a string that is the string <code>s</code> reversed. 8393 8394 8395 8396 8397<p> 8398<hr><h3><a name="pdf-string.sub"><code>string.sub (s, i [, j])</code></a></h3> 8399Returns the substring of <code>s</code> that 8400starts at <code>i</code> and continues until <code>j</code>; 8401<code>i</code> and <code>j</code> can be negative. 8402If <code>j</code> is absent, then it is assumed to be equal to -1 8403(which is the same as the string length). 8404In particular, 8405the call <code>string.sub(s,1,j)</code> returns a prefix of <code>s</code> 8406with length <code>j</code>, 8407and <code>string.sub(s, -i)</code> returns a suffix of <code>s</code> 8408with length <code>i</code>. 8409 8410 8411<p> 8412If, after the translation of negative indices, 8413<code>i</code> is less than 1, 8414it is corrected to 1. 8415If <code>j</code> is greater than the string length, 8416it is corrected to that length. 8417If, after these corrections, 8418<code>i</code> is greater than <code>j</code>, 8419the function returns the empty string. 8420 8421 8422 8423 8424<p> 8425<hr><h3><a name="pdf-string.unpack"><code>string.unpack (fmt, s [, pos])</code></a></h3> 8426 8427 8428<p> 8429Returns the values packed in string <code>s</code> (see <a href="#pdf-string.pack"><code>string.pack</code></a>) 8430according to the format string <code>fmt</code> (see <a href="#6.4.2">§6.4.2</a>). 8431An optional <code>pos</code> marks where 8432to start reading in <code>s</code> (default is 1). 8433After the read values, 8434this function also returns the index of the first unread byte in <code>s</code>. 8435 8436 8437 8438 8439<p> 8440<hr><h3><a name="pdf-string.upper"><code>string.upper (s)</code></a></h3> 8441Receives a string and returns a copy of this string with all 8442lowercase letters changed to uppercase. 8443All other characters are left unchanged. 8444The definition of what a lowercase letter is depends on the current locale. 8445 8446 8447 8448 8449 8450<h3>6.4.1 – <a name="6.4.1">Patterns</a></h3> 8451 8452<p> 8453Patterns in Lua are described by regular strings, 8454which are interpreted as patterns by the pattern-matching functions 8455<a href="#pdf-string.find"><code>string.find</code></a>, 8456<a href="#pdf-string.gmatch"><code>string.gmatch</code></a>, 8457<a href="#pdf-string.gsub"><code>string.gsub</code></a>, 8458and <a href="#pdf-string.match"><code>string.match</code></a>. 8459This section describes the syntax and the meaning 8460(that is, what they match) of these strings. 8461 8462 8463 8464<h4>Character Class:</h4><p> 8465A <em>character class</em> is used to represent a set of characters. 8466The following combinations are allowed in describing a character class: 8467 8468<ul> 8469 8470<li><b><em>x</em>: </b> 8471(where <em>x</em> is not one of the <em>magic characters</em> 8472<code>^$()%.[]*+-?</code>) 8473represents the character <em>x</em> itself. 8474</li> 8475 8476<li><b><code>.</code>: </b> (a dot) represents all characters.</li> 8477 8478<li><b><code>%a</code>: </b> represents all letters.</li> 8479 8480<li><b><code>%c</code>: </b> represents all control characters.</li> 8481 8482<li><b><code>%d</code>: </b> represents all digits.</li> 8483 8484<li><b><code>%g</code>: </b> represents all printable characters except space.</li> 8485 8486<li><b><code>%l</code>: </b> represents all lowercase letters.</li> 8487 8488<li><b><code>%p</code>: </b> represents all punctuation characters.</li> 8489 8490<li><b><code>%s</code>: </b> represents all space characters.</li> 8491 8492<li><b><code>%u</code>: </b> represents all uppercase letters.</li> 8493 8494<li><b><code>%w</code>: </b> represents all alphanumeric characters.</li> 8495 8496<li><b><code>%x</code>: </b> represents all hexadecimal digits.</li> 8497 8498<li><b><code>%<em>x</em></code>: </b> (where <em>x</em> is any non-alphanumeric character) 8499represents the character <em>x</em>. 8500This is the standard way to escape the magic characters. 8501Any non-alphanumeric character 8502(including all punctuations, even the non-magical) 8503can be preceded by a '<code>%</code>' 8504when used to represent itself in a pattern. 8505</li> 8506 8507<li><b><code>[<em>set</em>]</code>: </b> 8508represents the class which is the union of all 8509characters in <em>set</em>. 8510A range of characters can be specified by 8511separating the end characters of the range, 8512in ascending order, with a '<code>-</code>'. 8513All classes <code>%</code><em>x</em> described above can also be used as 8514components in <em>set</em>. 8515All other characters in <em>set</em> represent themselves. 8516For example, <code>[%w_]</code> (or <code>[_%w]</code>) 8517represents all alphanumeric characters plus the underscore, 8518<code>[0-7]</code> represents the octal digits, 8519and <code>[0-7%l%-]</code> represents the octal digits plus 8520the lowercase letters plus the '<code>-</code>' character. 8521 8522 8523<p> 8524The interaction between ranges and classes is not defined. 8525Therefore, patterns like <code>[%a-z]</code> or <code>[a-%%]</code> 8526have no meaning. 8527</li> 8528 8529<li><b><code>[^<em>set</em>]</code>: </b> 8530represents the complement of <em>set</em>, 8531where <em>set</em> is interpreted as above. 8532</li> 8533 8534</ul><p> 8535For all classes represented by single letters (<code>%a</code>, <code>%c</code>, etc.), 8536the corresponding uppercase letter represents the complement of the class. 8537For instance, <code>%S</code> represents all non-space characters. 8538 8539 8540<p> 8541The definitions of letter, space, and other character groups 8542depend on the current locale. 8543In particular, the class <code>[a-z]</code> may not be equivalent to <code>%l</code>. 8544 8545 8546 8547 8548 8549<h4>Pattern Item:</h4><p> 8550A <em>pattern item</em> can be 8551 8552<ul> 8553 8554<li> 8555a single character class, 8556which matches any single character in the class; 8557</li> 8558 8559<li> 8560a single character class followed by '<code>*</code>', 8561which matches zero or more repetitions of characters in the class. 8562These repetition items will always match the longest possible sequence; 8563</li> 8564 8565<li> 8566a single character class followed by '<code>+</code>', 8567which matches one or more repetitions of characters in the class. 8568These repetition items will always match the longest possible sequence; 8569</li> 8570 8571<li> 8572a single character class followed by '<code>-</code>', 8573which also matches zero or more repetitions of characters in the class. 8574Unlike '<code>*</code>', 8575these repetition items will always match the shortest possible sequence; 8576</li> 8577 8578<li> 8579a single character class followed by '<code>?</code>', 8580which matches zero or one occurrence of a character in the class. 8581It always matches one occurrence if possible; 8582</li> 8583 8584<li> 8585<code>%<em>n</em></code>, for <em>n</em> between 1 and 9; 8586such item matches a substring equal to the <em>n</em>-th captured string 8587(see below); 8588</li> 8589 8590<li> 8591<code>%b<em>xy</em></code>, where <em>x</em> and <em>y</em> are two distinct characters; 8592such item matches strings that start with <em>x</em>, end with <em>y</em>, 8593and where the <em>x</em> and <em>y</em> are <em>balanced</em>. 8594This means that, if one reads the string from left to right, 8595counting <em>+1</em> for an <em>x</em> and <em>-1</em> for a <em>y</em>, 8596the ending <em>y</em> is the first <em>y</em> where the count reaches 0. 8597For instance, the item <code>%b()</code> matches expressions with 8598balanced parentheses. 8599</li> 8600 8601<li> 8602<code>%f[<em>set</em>]</code>, a <em>frontier pattern</em>; 8603such item matches an empty string at any position such that 8604the next character belongs to <em>set</em> 8605and the previous character does not belong to <em>set</em>. 8606The set <em>set</em> is interpreted as previously described. 8607The beginning and the end of the subject are handled as if 8608they were the character '<code>\0</code>'. 8609</li> 8610 8611</ul> 8612 8613 8614 8615 8616<h4>Pattern:</h4><p> 8617A <em>pattern</em> is a sequence of pattern items. 8618A caret '<code>^</code>' at the beginning of a pattern anchors the match at the 8619beginning of the subject string. 8620A '<code>$</code>' at the end of a pattern anchors the match at the 8621end of the subject string. 8622At other positions, 8623'<code>^</code>' and '<code>$</code>' have no special meaning and represent themselves. 8624 8625 8626 8627 8628 8629<h4>Captures:</h4><p> 8630A pattern can contain sub-patterns enclosed in parentheses; 8631they describe <em>captures</em>. 8632When a match succeeds, the substrings of the subject string 8633that match captures are stored (<em>captured</em>) for future use. 8634Captures are numbered according to their left parentheses. 8635For instance, in the pattern <code>"(a*(.)%w(%s*))"</code>, 8636the part of the string matching <code>"a*(.)%w(%s*)"</code> is 8637stored as the first capture (and therefore has number 1); 8638the character matching "<code>.</code>" is captured with number 2, 8639and the part matching "<code>%s*</code>" has number 3. 8640 8641 8642<p> 8643As a special case, the empty capture <code>()</code> captures 8644the current string position (a number). 8645For instance, if we apply the pattern <code>"()aa()"</code> on the 8646string <code>"flaaap"</code>, there will be two captures: 3 and 5. 8647 8648 8649 8650 8651 8652 8653 8654<h3>6.4.2 – <a name="6.4.2">Format Strings for Pack and Unpack</a></h3> 8655 8656<p> 8657The first argument to <a href="#pdf-string.pack"><code>string.pack</code></a>, 8658<a href="#pdf-string.packsize"><code>string.packsize</code></a>, and <a href="#pdf-string.unpack"><code>string.unpack</code></a> 8659is a format string, 8660which describes the layout of the structure being created or read. 8661 8662 8663<p> 8664A format string is a sequence of conversion options. 8665The conversion options are as follows: 8666 8667<ul> 8668<li><b><code><</code>: </b>sets little endian</li> 8669<li><b><code>></code>: </b>sets big endian</li> 8670<li><b><code>=</code>: </b>sets native endian</li> 8671<li><b><code>![<em>n</em>]</code>: </b>sets maximum alignment to <code>n</code> 8672(default is native alignment)</li> 8673<li><b><code>b</code>: </b>a signed byte (<code>char</code>)</li> 8674<li><b><code>B</code>: </b>an unsigned byte (<code>char</code>)</li> 8675<li><b><code>h</code>: </b>a signed <code>short</code> (native size)</li> 8676<li><b><code>H</code>: </b>an unsigned <code>short</code> (native size)</li> 8677<li><b><code>l</code>: </b>a signed <code>long</code> (native size)</li> 8678<li><b><code>L</code>: </b>an unsigned <code>long</code> (native size)</li> 8679<li><b><code>j</code>: </b>a <code>lua_Integer</code></li> 8680<li><b><code>J</code>: </b>a <code>lua_Unsigned</code></li> 8681<li><b><code>T</code>: </b>a <code>size_t</code> (native size)</li> 8682<li><b><code>i[<em>n</em>]</code>: </b>a signed <code>int</code> with <code>n</code> bytes 8683(default is native size)</li> 8684<li><b><code>I[<em>n</em>]</code>: </b>an unsigned <code>int</code> with <code>n</code> bytes 8685(default is native size)</li> 8686<li><b><code>f</code>: </b>a <code>float</code> (native size)</li> 8687<li><b><code>d</code>: </b>a <code>double</code> (native size)</li> 8688<li><b><code>n</code>: </b>a <code>lua_Number</code></li> 8689<li><b><code>c<em>n</em></code>: </b>a fixed-sized string with <code>n</code> bytes</li> 8690<li><b><code>z</code>: </b>a zero-terminated string</li> 8691<li><b><code>s[<em>n</em>]</code>: </b>a string preceded by its length 8692coded as an unsigned integer with <code>n</code> bytes 8693(default is a <code>size_t</code>)</li> 8694<li><b><code>x</code>: </b>one byte of padding</li> 8695<li><b><code>X<em>op</em></code>: </b>an empty item that aligns 8696according to option <code>op</code> 8697(which is otherwise ignored)</li> 8698<li><b>'<code> </code>': </b>(empty space) ignored</li> 8699</ul><p> 8700(A "<code>[<em>n</em>]</code>" means an optional integral numeral.) 8701Except for padding, spaces, and configurations 8702(options "<code>xX <=>!</code>"), 8703each option corresponds to an argument (in <a href="#pdf-string.pack"><code>string.pack</code></a>) 8704or a result (in <a href="#pdf-string.unpack"><code>string.unpack</code></a>). 8705 8706 8707<p> 8708For options "<code>!<em>n</em></code>", "<code>s<em>n</em></code>", "<code>i<em>n</em></code>", and "<code>I<em>n</em></code>", 8709<code>n</code> can be any integer between 1 and 16. 8710All integral options check overflows; 8711<a href="#pdf-string.pack"><code>string.pack</code></a> checks whether the given value fits in the given size; 8712<a href="#pdf-string.unpack"><code>string.unpack</code></a> checks whether the read value fits in a Lua integer. 8713 8714 8715<p> 8716Any format string starts as if prefixed by "<code>!1=</code>", 8717that is, 8718with maximum alignment of 1 (no alignment) 8719and native endianness. 8720 8721 8722<p> 8723Alignment works as follows: 8724For each option, 8725the format gets extra padding until the data starts 8726at an offset that is a multiple of the minimum between the 8727option size and the maximum alignment; 8728this minimum must be a power of 2. 8729Options "<code>c</code>" and "<code>z</code>" are not aligned; 8730option "<code>s</code>" follows the alignment of its starting integer. 8731 8732 8733<p> 8734All padding is filled with zeros by <a href="#pdf-string.pack"><code>string.pack</code></a> 8735(and ignored by <a href="#pdf-string.unpack"><code>string.unpack</code></a>). 8736 8737 8738 8739 8740 8741 8742 8743<h2>6.5 – <a name="6.5">UTF-8 Support</a></h2> 8744 8745<p> 8746This library provides basic support for UTF-8 encoding. 8747It provides all its functions inside the table <a name="pdf-utf8"><code>utf8</code></a>. 8748This library does not provide any support for Unicode other 8749than the handling of the encoding. 8750Any operation that needs the meaning of a character, 8751such as character classification, is outside its scope. 8752 8753 8754<p> 8755Unless stated otherwise, 8756all functions that expect a byte position as a parameter 8757assume that the given position is either the start of a byte sequence 8758or one plus the length of the subject string. 8759As in the string library, 8760negative indices count from the end of the string. 8761 8762 8763<p> 8764<hr><h3><a name="pdf-utf8.char"><code>utf8.char (···)</code></a></h3> 8765Receives zero or more integers, 8766converts each one to its corresponding UTF-8 byte sequence 8767and returns a string with the concatenation of all these sequences. 8768 8769 8770 8771 8772<p> 8773<hr><h3><a name="pdf-utf8.charpattern"><code>utf8.charpattern</code></a></h3> 8774The pattern (a string, not a function) "<code>[\0-\x7F\xC2-\xF4][\x80-\xBF]*</code>" 8775(see <a href="#6.4.1">§6.4.1</a>), 8776which matches exactly one UTF-8 byte sequence, 8777assuming that the subject is a valid UTF-8 string. 8778 8779 8780 8781 8782<p> 8783<hr><h3><a name="pdf-utf8.codes"><code>utf8.codes (s)</code></a></h3> 8784 8785 8786<p> 8787Returns values so that the construction 8788 8789<pre> 8790 for p, c in utf8.codes(s) do <em>body</em> end 8791</pre><p> 8792will iterate over all characters in string <code>s</code>, 8793with <code>p</code> being the position (in bytes) and <code>c</code> the code point 8794of each character. 8795It raises an error if it meets any invalid byte sequence. 8796 8797 8798 8799 8800<p> 8801<hr><h3><a name="pdf-utf8.codepoint"><code>utf8.codepoint (s [, i [, j]])</code></a></h3> 8802Returns the codepoints (as integers) from all characters in <code>s</code> 8803that start between byte position <code>i</code> and <code>j</code> (both included). 8804The default for <code>i</code> is 1 and for <code>j</code> is <code>i</code>. 8805It raises an error if it meets any invalid byte sequence. 8806 8807 8808 8809 8810<p> 8811<hr><h3><a name="pdf-utf8.len"><code>utf8.len (s [, i [, j]])</code></a></h3> 8812Returns the number of UTF-8 characters in string <code>s</code> 8813that start between positions <code>i</code> and <code>j</code> (both inclusive). 8814The default for <code>i</code> is 1 and for <code>j</code> is -1. 8815If it finds any invalid byte sequence, 8816returns a false value plus the position of the first invalid byte. 8817 8818 8819 8820 8821<p> 8822<hr><h3><a name="pdf-utf8.offset"><code>utf8.offset (s, n [, i])</code></a></h3> 8823Returns the position (in bytes) where the encoding of the 8824<code>n</code>-th character of <code>s</code> 8825(counting from position <code>i</code>) starts. 8826A negative <code>n</code> gets characters before position <code>i</code>. 8827The default for <code>i</code> is 1 when <code>n</code> is non-negative 8828and <code>#s + 1</code> otherwise, 8829so that <code>utf8.offset(s, -n)</code> gets the offset of the 8830<code>n</code>-th character from the end of the string. 8831If the specified character is neither in the subject 8832nor right after its end, 8833the function returns <b>nil</b>. 8834 8835 8836<p> 8837As a special case, 8838when <code>n</code> is 0 the function returns the start of the encoding 8839of the character that contains the <code>i</code>-th byte of <code>s</code>. 8840 8841 8842<p> 8843This function assumes that <code>s</code> is a valid UTF-8 string. 8844 8845 8846 8847 8848 8849 8850 8851<h2>6.6 – <a name="6.6">Table Manipulation</a></h2> 8852 8853<p> 8854This library provides generic functions for table manipulation. 8855It provides all its functions inside the table <a name="pdf-table"><code>table</code></a>. 8856 8857 8858<p> 8859Remember that, whenever an operation needs the length of a table, 8860the table must be a proper sequence 8861or have a <code>__len</code> metamethod (see <a href="#3.4.7">§3.4.7</a>). 8862All functions ignore non-numeric keys 8863in the tables given as arguments. 8864 8865 8866<p> 8867<hr><h3><a name="pdf-table.concat"><code>table.concat (list [, sep [, i [, j]]])</code></a></h3> 8868 8869 8870<p> 8871Given a list where all elements are strings or numbers, 8872returns the string <code>list[i]..sep..list[i+1] ··· sep..list[j]</code>. 8873The default value for <code>sep</code> is the empty string, 8874the default for <code>i</code> is 1, 8875and the default for <code>j</code> is <code>#list</code>. 8876If <code>i</code> is greater than <code>j</code>, returns the empty string. 8877 8878 8879 8880 8881<p> 8882<hr><h3><a name="pdf-table.insert"><code>table.insert (list, [pos,] value)</code></a></h3> 8883 8884 8885<p> 8886Inserts element <code>value</code> at position <code>pos</code> in <code>list</code>, 8887shifting up the elements 8888<code>list[pos], list[pos+1], ···, list[#list]</code>. 8889The default value for <code>pos</code> is <code>#list+1</code>, 8890so that a call <code>table.insert(t,x)</code> inserts <code>x</code> at the end 8891of list <code>t</code>. 8892 8893 8894 8895 8896<p> 8897<hr><h3><a name="pdf-table.move"><code>table.move (a1, f, e, t [,a2])</code></a></h3> 8898 8899 8900<p> 8901Moves elements from table <code>a1</code> to table <code>a2</code>. 8902This function performs the equivalent to the following 8903multiple assignment: 8904<code>a2[t],··· = a1[f],···,a1[e]</code>. 8905The default for <code>a2</code> is <code>a1</code>. 8906The destination range can overlap with the source range. 8907Index <code>f</code> must be positive. 8908 8909 8910 8911 8912<p> 8913<hr><h3><a name="pdf-table.pack"><code>table.pack (···)</code></a></h3> 8914 8915 8916<p> 8917Returns a new table with all parameters stored into keys 1, 2, etc. 8918and with a field "<code>n</code>" with the total number of parameters. 8919Note that the resulting table may not be a sequence. 8920 8921 8922 8923 8924<p> 8925<hr><h3><a name="pdf-table.remove"><code>table.remove (list [, pos])</code></a></h3> 8926 8927 8928<p> 8929Removes from <code>list</code> the element at position <code>pos</code>, 8930returning the value of the removed element. 8931When <code>pos</code> is an integer between 1 and <code>#list</code>, 8932it shifts down the elements 8933<code>list[pos+1], list[pos+2], ···, list[#list]</code> 8934and erases element <code>list[#list]</code>; 8935The index <code>pos</code> can also be 0 when <code>#list</code> is 0, 8936or <code>#list + 1</code>; 8937in those cases, the function erases the element <code>list[pos]</code>. 8938 8939 8940<p> 8941The default value for <code>pos</code> is <code>#list</code>, 8942so that a call <code>table.remove(l)</code> removes the last element 8943of list <code>l</code>. 8944 8945 8946 8947 8948<p> 8949<hr><h3><a name="pdf-table.sort"><code>table.sort (list [, comp])</code></a></h3> 8950 8951 8952<p> 8953Sorts list elements in a given order, <em>in-place</em>, 8954from <code>list[1]</code> to <code>list[#list]</code>. 8955If <code>comp</code> is given, 8956then it must be a function that receives two list elements 8957and returns true when the first element must come 8958before the second in the final order 8959(so that <code>not comp(list[i+1],list[i])</code> will be true after the sort). 8960If <code>comp</code> is not given, 8961then the standard Lua operator <code><</code> is used instead. 8962 8963 8964<p> 8965The sort algorithm is not stable; 8966that is, elements considered equal by the given order 8967may have their relative positions changed by the sort. 8968 8969 8970 8971 8972<p> 8973<hr><h3><a name="pdf-table.unpack"><code>table.unpack (list [, i [, j]])</code></a></h3> 8974 8975 8976<p> 8977Returns the elements from the given list. 8978This function is equivalent to 8979 8980<pre> 8981 return list[i], list[i+1], ···, list[j] 8982</pre><p> 8983By default, <code>i</code> is 1 and <code>j</code> is <code>#list</code>. 8984 8985 8986 8987 8988 8989 8990 8991<h2>6.7 – <a name="6.7">Mathematical Functions</a></h2> 8992 8993<p> 8994This library provides basic mathematical functions. 8995It provides all its functions and constants inside the table <a name="pdf-math"><code>math</code></a>. 8996Functions with the annotation "<code>integer/float</code>" give 8997integer results for integer arguments 8998and float results for float (or mixed) arguments. 8999Rounding functions 9000(<a href="#pdf-math.ceil"><code>math.ceil</code></a>, <a href="#pdf-math.floor"><code>math.floor</code></a>, and <a href="#pdf-math.modf"><code>math.modf</code></a>) 9001return an integer when the result fits in the range of an integer, 9002or a float otherwise. 9003 9004 9005<p> 9006<hr><h3><a name="pdf-math.abs"><code>math.abs (x)</code></a></h3> 9007 9008 9009<p> 9010Returns the absolute value of <code>x</code>. (integer/float) 9011 9012 9013 9014 9015<p> 9016<hr><h3><a name="pdf-math.acos"><code>math.acos (x)</code></a></h3> 9017 9018 9019<p> 9020Returns the arc cosine of <code>x</code> (in radians). 9021 9022 9023 9024 9025<p> 9026<hr><h3><a name="pdf-math.asin"><code>math.asin (x)</code></a></h3> 9027 9028 9029<p> 9030Returns the arc sine of <code>x</code> (in radians). 9031 9032 9033 9034 9035<p> 9036<hr><h3><a name="pdf-math.atan"><code>math.atan (y [, x])</code></a></h3> 9037 9038 9039<p> 9040 9041Returns the arc tangent of <code>y/x</code> (in radians), 9042but uses the signs of both parameters to find the 9043quadrant of the result. 9044(It also handles correctly the case of <code>x</code> being zero.) 9045 9046 9047<p> 9048The default value for <code>x</code> is 1, 9049so that the call <code>math.atan(y)</code> 9050returns the arc tangent of <code>y</code>. 9051 9052 9053 9054 9055<p> 9056<hr><h3><a name="pdf-math.ceil"><code>math.ceil (x)</code></a></h3> 9057 9058 9059<p> 9060Returns the smallest integral value larger than or equal to <code>x</code>. 9061 9062 9063 9064 9065<p> 9066<hr><h3><a name="pdf-math.cos"><code>math.cos (x)</code></a></h3> 9067 9068 9069<p> 9070Returns the cosine of <code>x</code> (assumed to be in radians). 9071 9072 9073 9074 9075<p> 9076<hr><h3><a name="pdf-math.deg"><code>math.deg (x)</code></a></h3> 9077 9078 9079<p> 9080Converts the angle <code>x</code> from radians to degrees. 9081 9082 9083 9084 9085<p> 9086<hr><h3><a name="pdf-math.exp"><code>math.exp (x)</code></a></h3> 9087 9088 9089<p> 9090Returns the value <em>e<sup>x</sup></em> 9091(where <code>e</code> is the base of natural logarithms). 9092 9093 9094 9095 9096<p> 9097<hr><h3><a name="pdf-math.floor"><code>math.floor (x)</code></a></h3> 9098 9099 9100<p> 9101Returns the largest integral value smaller than or equal to <code>x</code>. 9102 9103 9104 9105 9106<p> 9107<hr><h3><a name="pdf-math.fmod"><code>math.fmod (x, y)</code></a></h3> 9108 9109 9110<p> 9111Returns the remainder of the division of <code>x</code> by <code>y</code> 9112that rounds the quotient towards zero. (integer/float) 9113 9114 9115 9116 9117<p> 9118<hr><h3><a name="pdf-math.huge"><code>math.huge</code></a></h3> 9119 9120 9121<p> 9122The float value <code>HUGE_VAL</code>, 9123a value larger than any other numerical value. 9124 9125 9126 9127 9128<p> 9129<hr><h3><a name="pdf-math.log"><code>math.log (x [, base])</code></a></h3> 9130 9131 9132<p> 9133Returns the logarithm of <code>x</code> in the given base. 9134The default for <code>base</code> is <em>e</em> 9135(so that the function returns the natural logarithm of <code>x</code>). 9136 9137 9138 9139 9140<p> 9141<hr><h3><a name="pdf-math.max"><code>math.max (x, ···)</code></a></h3> 9142 9143 9144<p> 9145Returns the argument with the maximum value, 9146according to the Lua operator <code><</code>. (integer/float) 9147 9148 9149 9150 9151<p> 9152<hr><h3><a name="pdf-math.maxinteger"><code>math.maxinteger</code></a></h3> 9153An integer with the maximum value for an integer. 9154 9155 9156 9157 9158<p> 9159<hr><h3><a name="pdf-math.min"><code>math.min (x, ···)</code></a></h3> 9160 9161 9162<p> 9163Returns the argument with the minimum value, 9164according to the Lua operator <code><</code>. (integer/float) 9165 9166 9167 9168 9169<p> 9170<hr><h3><a name="pdf-math.mininteger"><code>math.mininteger</code></a></h3> 9171An integer with the minimum value for an integer. 9172 9173 9174 9175 9176<p> 9177<hr><h3><a name="pdf-math.modf"><code>math.modf (x)</code></a></h3> 9178 9179 9180<p> 9181Returns the integral part of <code>x</code> and the fractional part of <code>x</code>. 9182Its second result is always a float. 9183 9184 9185 9186 9187<p> 9188<hr><h3><a name="pdf-math.pi"><code>math.pi</code></a></h3> 9189 9190 9191<p> 9192The value of <em>π</em>. 9193 9194 9195 9196 9197<p> 9198<hr><h3><a name="pdf-math.rad"><code>math.rad (x)</code></a></h3> 9199 9200 9201<p> 9202Converts the angle <code>x</code> from degrees to radians. 9203 9204 9205 9206 9207<p> 9208<hr><h3><a name="pdf-math.random"><code>math.random ([m [, n]])</code></a></h3> 9209 9210 9211<p> 9212When called without arguments, 9213returns a pseudo-random float with uniform distribution 9214in the range <em>[0,1)</em>. 9215When called with two integers <code>m</code> and <code>n</code>, 9216<code>math.random</code> returns a pseudo-random integer 9217with uniform distribution in the range <em>[m, n]</em>. 9218(The value <em>m-n</em> cannot be negative and must fit in a Lua integer.) 9219The call <code>math.random(n)</code> is equivalent to <code>math.random(1,n)</code>. 9220 9221 9222<p> 9223This function is an interface to the underling 9224pseudo-random generator function provided by C. 9225No guarantees can be given for its statistical properties. 9226 9227 9228 9229 9230<p> 9231<hr><h3><a name="pdf-math.randomseed"><code>math.randomseed (x)</code></a></h3> 9232 9233 9234<p> 9235Sets <code>x</code> as the "seed" 9236for the pseudo-random generator: 9237equal seeds produce equal sequences of numbers. 9238 9239 9240 9241 9242<p> 9243<hr><h3><a name="pdf-math.sin"><code>math.sin (x)</code></a></h3> 9244 9245 9246<p> 9247Returns the sine of <code>x</code> (assumed to be in radians). 9248 9249 9250 9251 9252<p> 9253<hr><h3><a name="pdf-math.sqrt"><code>math.sqrt (x)</code></a></h3> 9254 9255 9256<p> 9257Returns the square root of <code>x</code>. 9258(You can also use the expression <code>x^0.5</code> to compute this value.) 9259 9260 9261 9262 9263<p> 9264<hr><h3><a name="pdf-math.tan"><code>math.tan (x)</code></a></h3> 9265 9266 9267<p> 9268Returns the tangent of <code>x</code> (assumed to be in radians). 9269 9270 9271 9272 9273<p> 9274<hr><h3><a name="pdf-math.tointeger"><code>math.tointeger (x)</code></a></h3> 9275 9276 9277<p> 9278If the value <code>x</code> is convertible to an integer, 9279returns that integer. 9280Otherwise, returns <b>nil</b>. 9281 9282 9283 9284 9285<p> 9286<hr><h3><a name="pdf-math.type"><code>math.type (x)</code></a></h3> 9287 9288 9289<p> 9290Returns "<code>integer</code>" if <code>x</code> is an integer, 9291"<code>float</code>" if it is a float, 9292or <b>nil</b> if <code>x</code> is not a number. 9293 9294 9295 9296 9297<p> 9298<hr><h3><a name="pdf-math.ult"><code>math.ult (m, n)</code></a></h3> 9299 9300 9301<p> 9302Returns a boolean, 9303true if integer <code>m</code> is below integer <code>n</code> when 9304they are compared as unsigned integers. 9305 9306 9307 9308 9309 9310 9311 9312<h2>6.8 – <a name="6.8">Input and Output Facilities</a></h2> 9313 9314<p> 9315The I/O library provides two different styles for file manipulation. 9316The first one uses implicit file handles; 9317that is, there are operations to set a default input file and a 9318default output file, 9319and all input/output operations are over these default files. 9320The second style uses explicit file handles. 9321 9322 9323<p> 9324When using implicit file handles, 9325all operations are supplied by table <a name="pdf-io"><code>io</code></a>. 9326When using explicit file handles, 9327the operation <a href="#pdf-io.open"><code>io.open</code></a> returns a file handle 9328and then all operations are supplied as methods of the file handle. 9329 9330 9331<p> 9332The table <code>io</code> also provides 9333three predefined file handles with their usual meanings from C: 9334<a name="pdf-io.stdin"><code>io.stdin</code></a>, <a name="pdf-io.stdout"><code>io.stdout</code></a>, and <a name="pdf-io.stderr"><code>io.stderr</code></a>. 9335The I/O library never closes these files. 9336 9337 9338<p> 9339Unless otherwise stated, 9340all I/O functions return <b>nil</b> on failure 9341(plus an error message as a second result and 9342a system-dependent error code as a third result) 9343and some value different from <b>nil</b> on success. 9344On non-POSIX systems, 9345the computation of the error message and error code 9346in case of errors 9347may be not thread safe, 9348because they rely on the global C variable <code>errno</code>. 9349 9350 9351<p> 9352<hr><h3><a name="pdf-io.close"><code>io.close ([file])</code></a></h3> 9353 9354 9355<p> 9356Equivalent to <code>file:close()</code>. 9357Without a <code>file</code>, closes the default output file. 9358 9359 9360 9361 9362<p> 9363<hr><h3><a name="pdf-io.flush"><code>io.flush ()</code></a></h3> 9364 9365 9366<p> 9367Equivalent to <code>io.output():flush()</code>. 9368 9369 9370 9371 9372<p> 9373<hr><h3><a name="pdf-io.input"><code>io.input ([file])</code></a></h3> 9374 9375 9376<p> 9377When called with a file name, it opens the named file (in text mode), 9378and sets its handle as the default input file. 9379When called with a file handle, 9380it simply sets this file handle as the default input file. 9381When called without parameters, 9382it returns the current default input file. 9383 9384 9385<p> 9386In case of errors this function raises the error, 9387instead of returning an error code. 9388 9389 9390 9391 9392<p> 9393<hr><h3><a name="pdf-io.lines"><code>io.lines ([filename ···])</code></a></h3> 9394 9395 9396<p> 9397Opens the given file name in read mode 9398and returns an iterator function that 9399works like <code>file:lines(···)</code> over the opened file. 9400When the iterator function detects the end of file, 9401it returns no values (to finish the loop) and automatically closes the file. 9402 9403 9404<p> 9405The call <code>io.lines()</code> (with no file name) is equivalent 9406to <code>io.input():lines("*l")</code>; 9407that is, it iterates over the lines of the default input file. 9408In this case it does not close the file when the loop ends. 9409 9410 9411<p> 9412In case of errors this function raises the error, 9413instead of returning an error code. 9414 9415 9416 9417 9418<p> 9419<hr><h3><a name="pdf-io.open"><code>io.open (filename [, mode])</code></a></h3> 9420 9421 9422<p> 9423This function opens a file, 9424in the mode specified in the string <code>mode</code>. 9425It returns a new file handle, 9426or, in case of errors, <b>nil</b> plus an error message. 9427 9428 9429<p> 9430The <code>mode</code> string can be any of the following: 9431 9432<ul> 9433<li><b>"<code>r</code>": </b> read mode (the default);</li> 9434<li><b>"<code>w</code>": </b> write mode;</li> 9435<li><b>"<code>a</code>": </b> append mode;</li> 9436<li><b>"<code>r+</code>": </b> update mode, all previous data is preserved;</li> 9437<li><b>"<code>w+</code>": </b> update mode, all previous data is erased;</li> 9438<li><b>"<code>a+</code>": </b> append update mode, previous data is preserved, 9439 writing is only allowed at the end of file.</li> 9440</ul><p> 9441The <code>mode</code> string can also have a '<code>b</code>' at the end, 9442which is needed in some systems to open the file in binary mode. 9443 9444 9445 9446 9447<p> 9448<hr><h3><a name="pdf-io.output"><code>io.output ([file])</code></a></h3> 9449 9450 9451<p> 9452Similar to <a href="#pdf-io.input"><code>io.input</code></a>, but operates over the default output file. 9453 9454 9455 9456 9457<p> 9458<hr><h3><a name="pdf-io.popen"><code>io.popen (prog [, mode])</code></a></h3> 9459 9460 9461<p> 9462This function is system dependent and is not available 9463on all platforms. 9464 9465 9466<p> 9467Starts program <code>prog</code> in a separated process and returns 9468a file handle that you can use to read data from this program 9469(if <code>mode</code> is <code>"r"</code>, the default) 9470or to write data to this program 9471(if <code>mode</code> is <code>"w"</code>). 9472 9473 9474 9475 9476<p> 9477<hr><h3><a name="pdf-io.read"><code>io.read (···)</code></a></h3> 9478 9479 9480<p> 9481Equivalent to <code>io.input():read(···)</code>. 9482 9483 9484 9485 9486<p> 9487<hr><h3><a name="pdf-io.tmpfile"><code>io.tmpfile ()</code></a></h3> 9488 9489 9490<p> 9491Returns a handle for a temporary file. 9492This file is opened in update mode 9493and it is automatically removed when the program ends. 9494 9495 9496 9497 9498<p> 9499<hr><h3><a name="pdf-io.type"><code>io.type (obj)</code></a></h3> 9500 9501 9502<p> 9503Checks whether <code>obj</code> is a valid file handle. 9504Returns the string <code>"file"</code> if <code>obj</code> is an open file handle, 9505<code>"closed file"</code> if <code>obj</code> is a closed file handle, 9506or <b>nil</b> if <code>obj</code> is not a file handle. 9507 9508 9509 9510 9511<p> 9512<hr><h3><a name="pdf-io.write"><code>io.write (···)</code></a></h3> 9513 9514 9515<p> 9516Equivalent to <code>io.output():write(···)</code>. 9517 9518 9519 9520 9521<p> 9522<hr><h3><a name="pdf-file:close"><code>file:close ()</code></a></h3> 9523 9524 9525<p> 9526Closes <code>file</code>. 9527Note that files are automatically closed when 9528their handles are garbage collected, 9529but that takes an unpredictable amount of time to happen. 9530 9531 9532<p> 9533When closing a file handle created with <a href="#pdf-io.popen"><code>io.popen</code></a>, 9534<a href="#pdf-file:close"><code>file:close</code></a> returns the same values 9535returned by <a href="#pdf-os.execute"><code>os.execute</code></a>. 9536 9537 9538 9539 9540<p> 9541<hr><h3><a name="pdf-file:flush"><code>file:flush ()</code></a></h3> 9542 9543 9544<p> 9545Saves any written data to <code>file</code>. 9546 9547 9548 9549 9550<p> 9551<hr><h3><a name="pdf-file:lines"><code>file:lines (···)</code></a></h3> 9552 9553 9554<p> 9555Returns an iterator function that, 9556each time it is called, 9557reads the file according to the given formats. 9558When no format is given, 9559uses "<code>l</code>" as a default. 9560As an example, the construction 9561 9562<pre> 9563 for c in file:lines(1) do <em>body</em> end 9564</pre><p> 9565will iterate over all characters of the file, 9566starting at the current position. 9567Unlike <a href="#pdf-io.lines"><code>io.lines</code></a>, this function does not close the file 9568when the loop ends. 9569 9570 9571<p> 9572In case of errors this function raises the error, 9573instead of returning an error code. 9574 9575 9576 9577 9578<p> 9579<hr><h3><a name="pdf-file:read"><code>file:read (···)</code></a></h3> 9580 9581 9582<p> 9583Reads the file <code>file</code>, 9584according to the given formats, which specify what to read. 9585For each format, 9586the function returns a string or a number with the characters read, 9587or <b>nil</b> if it cannot read data with the specified format. 9588(In this latter case, 9589the function does not read subsequent formats.) 9590When called without formats, 9591it uses a default format that reads the next line 9592(see below). 9593 9594 9595<p> 9596The available formats are 9597 9598<ul> 9599 9600<li><b>"<code>n</code>": </b> 9601reads a numeral and returns it as a float or an integer, 9602following the lexical conventions of Lua. 9603(The numeral may have leading spaces and a sign.) 9604This format always reads the longest input sequence that 9605is a valid prefix for a number; 9606if that prefix does not form a valid number 9607(e.g., an empty string, "<code>0x</code>", or "<code>3.4e-</code>"), 9608it is discarded and the function returns <b>nil</b>. 9609</li> 9610 9611<li><b>"<code>i</code>": </b> 9612reads an integral number and returns it as an integer. 9613</li> 9614 9615<li><b>"<code>a</code>": </b> 9616reads the whole file, starting at the current position. 9617On end of file, it returns the empty string. 9618</li> 9619 9620<li><b>"<code>l</code>": </b> 9621reads the next line skipping the end of line, 9622returning <b>nil</b> on end of file. 9623This is the default format. 9624</li> 9625 9626<li><b>"<code>L</code>": </b> 9627reads the next line keeping the end-of-line character (if present), 9628returning <b>nil</b> on end of file. 9629</li> 9630 9631<li><b><em>number</em>: </b> 9632reads a string with up to this number of bytes, 9633returning <b>nil</b> on end of file. 9634If <code>number</code> is zero, 9635it reads nothing and returns an empty string, 9636or <b>nil</b> on end of file. 9637</li> 9638 9639</ul><p> 9640The formats "<code>l</code>" and "<code>L</code>" should be used only for text files. 9641 9642 9643 9644 9645<p> 9646<hr><h3><a name="pdf-file:seek"><code>file:seek ([whence [, offset]])</code></a></h3> 9647 9648 9649<p> 9650Sets and gets the file position, 9651measured from the beginning of the file, 9652to the position given by <code>offset</code> plus a base 9653specified by the string <code>whence</code>, as follows: 9654 9655<ul> 9656<li><b>"<code>set</code>": </b> base is position 0 (beginning of the file);</li> 9657<li><b>"<code>cur</code>": </b> base is current position;</li> 9658<li><b>"<code>end</code>": </b> base is end of file;</li> 9659</ul><p> 9660In case of success, <code>seek</code> returns the final file position, 9661measured in bytes from the beginning of the file. 9662If <code>seek</code> fails, it returns <b>nil</b>, 9663plus a string describing the error. 9664 9665 9666<p> 9667The default value for <code>whence</code> is <code>"cur"</code>, 9668and for <code>offset</code> is 0. 9669Therefore, the call <code>file:seek()</code> returns the current 9670file position, without changing it; 9671the call <code>file:seek("set")</code> sets the position to the 9672beginning of the file (and returns 0); 9673and the call <code>file:seek("end")</code> sets the position to the 9674end of the file, and returns its size. 9675 9676 9677 9678 9679<p> 9680<hr><h3><a name="pdf-file:setvbuf"><code>file:setvbuf (mode [, size])</code></a></h3> 9681 9682 9683<p> 9684Sets the buffering mode for an output file. 9685There are three available modes: 9686 9687<ul> 9688 9689<li><b>"<code>no</code>": </b> 9690no buffering; the result of any output operation appears immediately. 9691</li> 9692 9693<li><b>"<code>full</code>": </b> 9694full buffering; output operation is performed only 9695when the buffer is full or when 9696you explicitly <code>flush</code> the file (see <a href="#pdf-io.flush"><code>io.flush</code></a>). 9697</li> 9698 9699<li><b>"<code>line</code>": </b> 9700line buffering; output is buffered until a newline is output 9701or there is any input from some special files 9702(such as a terminal device). 9703</li> 9704 9705</ul><p> 9706For the last two cases, <code>size</code> 9707specifies the size of the buffer, in bytes. 9708The default is an appropriate size. 9709 9710 9711 9712 9713<p> 9714<hr><h3><a name="pdf-file:write"><code>file:write (···)</code></a></h3> 9715 9716 9717<p> 9718Writes the value of each of its arguments to <code>file</code>. 9719The arguments must be strings or numbers. 9720 9721 9722<p> 9723In case of success, this function returns <code>file</code>. 9724Otherwise it returns <b>nil</b> plus a string describing the error. 9725 9726 9727 9728 9729 9730 9731 9732<h2>6.9 – <a name="6.9">Operating System Facilities</a></h2> 9733 9734<p> 9735This library is implemented through table <a name="pdf-os"><code>os</code></a>. 9736 9737 9738<p> 9739<hr><h3><a name="pdf-os.clock"><code>os.clock ()</code></a></h3> 9740 9741 9742<p> 9743Returns an approximation of the amount in seconds of CPU time 9744used by the program. 9745 9746 9747 9748 9749<p> 9750<hr><h3><a name="pdf-os.date"><code>os.date ([format [, time]])</code></a></h3> 9751 9752 9753<p> 9754Returns a string or a table containing date and time, 9755formatted according to the given string <code>format</code>. 9756 9757 9758<p> 9759If the <code>time</code> argument is present, 9760this is the time to be formatted 9761(see the <a href="#pdf-os.time"><code>os.time</code></a> function for a description of this value). 9762Otherwise, <code>date</code> formats the current time. 9763 9764 9765<p> 9766If <code>format</code> starts with '<code>!</code>', 9767then the date is formatted in Coordinated Universal Time. 9768After this optional character, 9769if <code>format</code> is the string "<code>*t</code>", 9770then <code>date</code> returns a table with the following fields: 9771<code>year</code> (four digits), <code>month</code> (1–12), <code>day</code> (1–31), 9772<code>hour</code> (0–23), <code>min</code> (0–59), <code>sec</code> (0–61), 9773<code>wday</code> (weekday, Sunday is 1), 9774<code>yday</code> (day of the year), 9775and <code>isdst</code> (daylight saving flag, a boolean). 9776This last field may be absent 9777if the information is not available. 9778 9779 9780<p> 9781If <code>format</code> is not "<code>*t</code>", 9782then <code>date</code> returns the date as a string, 9783formatted according to the same rules as the ISO C function <code>strftime</code>. 9784 9785 9786<p> 9787When called without arguments, 9788<code>date</code> returns a reasonable date and time representation that depends on 9789the host system and on the current locale 9790(that is, <code>os.date()</code> is equivalent to <code>os.date("%c")</code>). 9791 9792 9793<p> 9794On non-POSIX systems, 9795this function may be not thread safe 9796because of its reliance on C function <code>gmtime</code> and C function <code>localtime</code>. 9797 9798 9799 9800 9801<p> 9802<hr><h3><a name="pdf-os.difftime"><code>os.difftime (t2, t1)</code></a></h3> 9803 9804 9805<p> 9806Returns the difference, in seconds, 9807from time <code>t1</code> to time <code>t2</code> 9808(where the times are values returned by <a href="#pdf-os.time"><code>os.time</code></a>). 9809In POSIX, Windows, and some other systems, 9810this value is exactly <code>t2</code><em>-</em><code>t1</code>. 9811 9812 9813 9814 9815<p> 9816<hr><h3><a name="pdf-os.execute"><code>os.execute ([command])</code></a></h3> 9817 9818 9819<p> 9820This function is equivalent to the ISO C function <code>system</code>. 9821It passes <code>command</code> to be executed by an operating system shell. 9822Its first result is <b>true</b> 9823if the command terminated successfully, 9824or <b>nil</b> otherwise. 9825After this first result 9826the function returns a string plus a number, 9827as follows: 9828 9829<ul> 9830 9831<li><b>"<code>exit</code>": </b> 9832the command terminated normally; 9833the following number is the exit status of the command. 9834</li> 9835 9836<li><b>"<code>signal</code>": </b> 9837the command was terminated by a signal; 9838the following number is the signal that terminated the command. 9839</li> 9840 9841</ul> 9842 9843<p> 9844When called without a <code>command</code>, 9845<code>os.execute</code> returns a boolean that is true if a shell is available. 9846 9847 9848 9849 9850<p> 9851<hr><h3><a name="pdf-os.exit"><code>os.exit ([code [, close]])</code></a></h3> 9852 9853 9854<p> 9855Calls the ISO C function <code>exit</code> to terminate the host program. 9856If <code>code</code> is <b>true</b>, 9857the returned status is <code>EXIT_SUCCESS</code>; 9858if <code>code</code> is <b>false</b>, 9859the returned status is <code>EXIT_FAILURE</code>; 9860if <code>code</code> is a number, 9861the returned status is this number. 9862The default value for <code>code</code> is <b>true</b>. 9863 9864 9865<p> 9866If the optional second argument <code>close</code> is true, 9867closes the Lua state before exiting. 9868 9869 9870 9871 9872<p> 9873<hr><h3><a name="pdf-os.getenv"><code>os.getenv (varname)</code></a></h3> 9874 9875 9876<p> 9877Returns the value of the process environment variable <code>varname</code>, 9878or <b>nil</b> if the variable is not defined. 9879 9880 9881 9882 9883<p> 9884<hr><h3><a name="pdf-os.remove"><code>os.remove (filename)</code></a></h3> 9885 9886 9887<p> 9888Deletes the file (or empty directory, on POSIX systems) 9889with the given name. 9890If this function fails, it returns <b>nil</b>, 9891plus a string describing the error and the error code. 9892 9893 9894 9895 9896<p> 9897<hr><h3><a name="pdf-os.rename"><code>os.rename (oldname, newname)</code></a></h3> 9898 9899 9900<p> 9901Renames file or directory named <code>oldname</code> to <code>newname</code>. 9902If this function fails, it returns <b>nil</b>, 9903plus a string describing the error and the error code. 9904 9905 9906 9907 9908<p> 9909<hr><h3><a name="pdf-os.setlocale"><code>os.setlocale (locale [, category])</code></a></h3> 9910 9911 9912<p> 9913Sets the current locale of the program. 9914<code>locale</code> is a system-dependent string specifying a locale; 9915<code>category</code> is an optional string describing which category to change: 9916<code>"all"</code>, <code>"collate"</code>, <code>"ctype"</code>, 9917<code>"monetary"</code>, <code>"numeric"</code>, or <code>"time"</code>; 9918the default category is <code>"all"</code>. 9919The function returns the name of the new locale, 9920or <b>nil</b> if the request cannot be honored. 9921 9922 9923<p> 9924If <code>locale</code> is the empty string, 9925the current locale is set to an implementation-defined native locale. 9926If <code>locale</code> is the string "<code>C</code>", 9927the current locale is set to the standard C locale. 9928 9929 9930<p> 9931When called with <b>nil</b> as the first argument, 9932this function only returns the name of the current locale 9933for the given category. 9934 9935 9936<p> 9937This function may be not thread safe 9938because of its reliance on C function <code>setlocale</code>. 9939 9940 9941 9942 9943<p> 9944<hr><h3><a name="pdf-os.time"><code>os.time ([table])</code></a></h3> 9945 9946 9947<p> 9948Returns the current time when called without arguments, 9949or a time representing the date and time specified by the given table. 9950This table must have fields <code>year</code>, <code>month</code>, and <code>day</code>, 9951and may have fields 9952<code>hour</code> (default is 12), 9953<code>min</code> (default is 0), 9954<code>sec</code> (default is 0), 9955and <code>isdst</code> (default is <b>nil</b>). 9956For a description of these fields, see the <a href="#pdf-os.date"><code>os.date</code></a> function. 9957 9958 9959<p> 9960The returned value is a number, whose meaning depends on your system. 9961In POSIX, Windows, and some other systems, 9962this number counts the number 9963of seconds since some given start time (the "epoch"). 9964In other systems, the meaning is not specified, 9965and the number returned by <code>time</code> can be used only as an argument to 9966<a href="#pdf-os.date"><code>os.date</code></a> and <a href="#pdf-os.difftime"><code>os.difftime</code></a>. 9967 9968 9969 9970 9971<p> 9972<hr><h3><a name="pdf-os.tmpname"><code>os.tmpname ()</code></a></h3> 9973 9974 9975<p> 9976Returns a string with a file name that can 9977be used for a temporary file. 9978The file must be explicitly opened before its use 9979and explicitly removed when no longer needed. 9980 9981 9982<p> 9983On POSIX systems, 9984this function also creates a file with that name, 9985to avoid security risks. 9986(Someone else might create the file with wrong permissions 9987in the time between getting the name and creating the file.) 9988You still have to open the file to use it 9989and to remove it (even if you do not use it). 9990 9991 9992<p> 9993When possible, 9994you may prefer to use <a href="#pdf-io.tmpfile"><code>io.tmpfile</code></a>, 9995which automatically removes the file when the program ends. 9996 9997 9998 9999 10000 10001 10002 10003<h2>6.10 – <a name="6.10">The Debug Library</a></h2> 10004 10005<p> 10006This library provides 10007the functionality of the debug interface (<a href="#4.9">§4.9</a>) to Lua programs. 10008You should exert care when using this library. 10009Several of its functions 10010violate basic assumptions about Lua code 10011(e.g., that variables local to a function 10012cannot be accessed from outside; 10013that userdata metatables cannot be changed by Lua code; 10014that Lua programs do not crash) 10015and therefore can compromise otherwise secure code. 10016Moreover, some functions in this library may be slow. 10017 10018 10019<p> 10020All functions in this library are provided 10021inside the <a name="pdf-debug"><code>debug</code></a> table. 10022All functions that operate over a thread 10023have an optional first argument which is the 10024thread to operate over. 10025The default is always the current thread. 10026 10027 10028<p> 10029<hr><h3><a name="pdf-debug.debug"><code>debug.debug ()</code></a></h3> 10030 10031 10032<p> 10033Enters an interactive mode with the user, 10034running each string that the user enters. 10035Using simple commands and other debug facilities, 10036the user can inspect global and local variables, 10037change their values, evaluate expressions, and so on. 10038A line containing only the word <code>cont</code> finishes this function, 10039so that the caller continues its execution. 10040 10041 10042<p> 10043Note that commands for <code>debug.debug</code> are not lexically nested 10044within any function and so have no direct access to local variables. 10045 10046 10047 10048 10049<p> 10050<hr><h3><a name="pdf-debug.gethook"><code>debug.gethook ([thread])</code></a></h3> 10051 10052 10053<p> 10054Returns the current hook settings of the thread, as three values: 10055the current hook function, the current hook mask, 10056and the current hook count 10057(as set by the <a href="#pdf-debug.sethook"><code>debug.sethook</code></a> function). 10058 10059 10060 10061 10062<p> 10063<hr><h3><a name="pdf-debug.getinfo"><code>debug.getinfo ([thread,] f [, what])</code></a></h3> 10064 10065 10066<p> 10067Returns a table with information about a function. 10068You can give the function directly 10069or you can give a number as the value of <code>f</code>, 10070which means the function running at level <code>f</code> of the call stack 10071of the given thread: 10072level 0 is the current function (<code>getinfo</code> itself); 10073level 1 is the function that called <code>getinfo</code> 10074(except for tail calls, which do not count on the stack); 10075and so on. 10076If <code>f</code> is a number larger than the number of active functions, 10077then <code>getinfo</code> returns <b>nil</b>. 10078 10079 10080<p> 10081The returned table can contain all the fields returned by <a href="#lua_getinfo"><code>lua_getinfo</code></a>, 10082with the string <code>what</code> describing which fields to fill in. 10083The default for <code>what</code> is to get all information available, 10084except the table of valid lines. 10085If present, 10086the option '<code>f</code>' 10087adds a field named <code>func</code> with the function itself. 10088If present, 10089the option '<code>L</code>' 10090adds a field named <code>activelines</code> with the table of 10091valid lines. 10092 10093 10094<p> 10095For instance, the expression <code>debug.getinfo(1,"n").name</code> returns 10096a table with a name for the current function, 10097if a reasonable name can be found, 10098and the expression <code>debug.getinfo(print)</code> 10099returns a table with all available information 10100about the <a href="#pdf-print"><code>print</code></a> function. 10101 10102 10103 10104 10105<p> 10106<hr><h3><a name="pdf-debug.getlocal"><code>debug.getlocal ([thread,] f, local)</code></a></h3> 10107 10108 10109<p> 10110This function returns the name and the value of the local variable 10111with index <code>local</code> of the function at level <code>f</code> of the stack. 10112This function accesses not only explicit local variables, 10113but also parameters, temporaries, etc. 10114 10115 10116<p> 10117The first parameter or local variable has index 1, and so on, 10118following the order that they are declared in the code, 10119counting only the variables that are active 10120in the current scope of the function. 10121Negative indices refer to vararg parameters; 10122-1 is the first vararg parameter. 10123The function returns <b>nil</b> if there is no variable with the given index, 10124and raises an error when called with a level out of range. 10125(You can call <a href="#pdf-debug.getinfo"><code>debug.getinfo</code></a> to check whether the level is valid.) 10126 10127 10128<p> 10129Variable names starting with '<code>(</code>' (open parenthesis) 10130represent variables with no known names 10131(internal variables such as loop control variables, 10132and variables from chunks saved without debug information). 10133 10134 10135<p> 10136The parameter <code>f</code> may also be a function. 10137In that case, <code>getlocal</code> returns only the name of function parameters. 10138 10139 10140 10141 10142<p> 10143<hr><h3><a name="pdf-debug.getmetatable"><code>debug.getmetatable (value)</code></a></h3> 10144 10145 10146<p> 10147Returns the metatable of the given <code>value</code> 10148or <b>nil</b> if it does not have a metatable. 10149 10150 10151 10152 10153<p> 10154<hr><h3><a name="pdf-debug.getregistry"><code>debug.getregistry ()</code></a></h3> 10155 10156 10157<p> 10158Returns the registry table (see <a href="#4.5">§4.5</a>). 10159 10160 10161 10162 10163<p> 10164<hr><h3><a name="pdf-debug.getupvalue"><code>debug.getupvalue (f, up)</code></a></h3> 10165 10166 10167<p> 10168This function returns the name and the value of the upvalue 10169with index <code>up</code> of the function <code>f</code>. 10170The function returns <b>nil</b> if there is no upvalue with the given index. 10171 10172 10173<p> 10174Variable names starting with '<code>(</code>' (open parenthesis) 10175represent variables with no known names 10176(variables from chunks saved without debug information). 10177 10178 10179 10180 10181<p> 10182<hr><h3><a name="pdf-debug.getuservalue"><code>debug.getuservalue (u)</code></a></h3> 10183 10184 10185<p> 10186Returns the Lua value associated to <code>u</code>. 10187If <code>u</code> is not a userdata, 10188returns <b>nil</b>. 10189 10190 10191 10192 10193<p> 10194<hr><h3><a name="pdf-debug.sethook"><code>debug.sethook ([thread,] hook, mask [, count])</code></a></h3> 10195 10196 10197<p> 10198Sets the given function as a hook. 10199The string <code>mask</code> and the number <code>count</code> describe 10200when the hook will be called. 10201The string mask may have any combination of the following characters, 10202with the given meaning: 10203 10204<ul> 10205<li><b>'<code>c</code>': </b> the hook is called every time Lua calls a function;</li> 10206<li><b>'<code>r</code>': </b> the hook is called every time Lua returns from a function;</li> 10207<li><b>'<code>l</code>': </b> the hook is called every time Lua enters a new line of code.</li> 10208</ul><p> 10209Moreover, 10210with a <code>count</code> different from zero, 10211the hook is called also after every <code>count</code> instructions. 10212 10213 10214<p> 10215When called without arguments, 10216<a href="#pdf-debug.sethook"><code>debug.sethook</code></a> turns off the hook. 10217 10218 10219<p> 10220When the hook is called, its first parameter is a string 10221describing the event that has triggered its call: 10222<code>"call"</code> (or <code>"tail call"</code>), 10223<code>"return"</code>, 10224<code>"line"</code>, and <code>"count"</code>. 10225For line events, 10226the hook also gets the new line number as its second parameter. 10227Inside a hook, 10228you can call <code>getinfo</code> with level 2 to get more information about 10229the running function 10230(level 0 is the <code>getinfo</code> function, 10231and level 1 is the hook function). 10232 10233 10234 10235 10236<p> 10237<hr><h3><a name="pdf-debug.setlocal"><code>debug.setlocal ([thread,] level, local, value)</code></a></h3> 10238 10239 10240<p> 10241This function assigns the value <code>value</code> to the local variable 10242with index <code>local</code> of the function at level <code>level</code> of the stack. 10243The function returns <b>nil</b> if there is no local 10244variable with the given index, 10245and raises an error when called with a <code>level</code> out of range. 10246(You can call <code>getinfo</code> to check whether the level is valid.) 10247Otherwise, it returns the name of the local variable. 10248 10249 10250<p> 10251See <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for more information about 10252variable indices and names. 10253 10254 10255 10256 10257<p> 10258<hr><h3><a name="pdf-debug.setmetatable"><code>debug.setmetatable (value, table)</code></a></h3> 10259 10260 10261<p> 10262Sets the metatable for the given <code>value</code> to the given <code>table</code> 10263(which can be <b>nil</b>). 10264Returns <code>value</code>. 10265 10266 10267 10268 10269<p> 10270<hr><h3><a name="pdf-debug.setupvalue"><code>debug.setupvalue (f, up, value)</code></a></h3> 10271 10272 10273<p> 10274This function assigns the value <code>value</code> to the upvalue 10275with index <code>up</code> of the function <code>f</code>. 10276The function returns <b>nil</b> if there is no upvalue 10277with the given index. 10278Otherwise, it returns the name of the upvalue. 10279 10280 10281 10282 10283<p> 10284<hr><h3><a name="pdf-debug.setuservalue"><code>debug.setuservalue (udata, value)</code></a></h3> 10285 10286 10287<p> 10288Sets the given <code>value</code> as 10289the Lua value associated to the given <code>udata</code>. 10290<code>udata</code> must be a full userdata. 10291 10292 10293<p> 10294Returns <code>udata</code>. 10295 10296 10297 10298 10299<p> 10300<hr><h3><a name="pdf-debug.traceback"><code>debug.traceback ([thread,] [message [, level]])</code></a></h3> 10301 10302 10303<p> 10304If <code>message</code> is present but is neither a string nor <b>nil</b>, 10305this function returns <code>message</code> without further processing. 10306Otherwise, 10307it returns a string with a traceback of the call stack. 10308The optional <code>message</code> string is appended 10309at the beginning of the traceback. 10310An optional <code>level</code> number tells at which level 10311to start the traceback 10312(default is 1, the function calling <code>traceback</code>). 10313 10314 10315 10316 10317<p> 10318<hr><h3><a name="pdf-debug.upvalueid"><code>debug.upvalueid (f, n)</code></a></h3> 10319 10320 10321<p> 10322Returns a unique identifier (as a light userdata) 10323for the upvalue numbered <code>n</code> 10324from the given function. 10325 10326 10327<p> 10328These unique identifiers allow a program to check whether different 10329closures share upvalues. 10330Lua closures that share an upvalue 10331(that is, that access a same external local variable) 10332will return identical ids for those upvalue indices. 10333 10334 10335 10336 10337<p> 10338<hr><h3><a name="pdf-debug.upvaluejoin"><code>debug.upvaluejoin (f1, n1, f2, n2)</code></a></h3> 10339 10340 10341<p> 10342Make the <code>n1</code>-th upvalue of the Lua closure <code>f1</code> 10343refer to the <code>n2</code>-th upvalue of the Lua closure <code>f2</code>. 10344 10345 10346 10347 10348 10349 10350 10351<h1>7 – <a name="7">Lua Standalone</a></h1> 10352 10353<p> 10354Although Lua has been designed as an extension language, 10355to be embedded in a host C program, 10356it is also frequently used as a standalone language. 10357An interpreter for Lua as a standalone language, 10358called simply <code>lua</code>, 10359is provided with the standard distribution. 10360The standalone interpreter includes 10361all standard libraries, including the debug library. 10362Its usage is: 10363 10364<pre> 10365 lua [options] [script [args]] 10366</pre><p> 10367The options are: 10368 10369<ul> 10370<li><b><code>-e <em>stat</em></code>: </b> executes string <em>stat</em>;</li> 10371<li><b><code>-l <em>mod</em></code>: </b> "requires" <em>mod</em>;</li> 10372<li><b><code>-i</code>: </b> enters interactive mode after running <em>script</em>;</li> 10373<li><b><code>-v</code>: </b> prints version information;</li> 10374<li><b><code>-E</code>: </b> ignores environment variables;</li> 10375<li><b><code>--</code>: </b> stops handling options;</li> 10376<li><b><code>-</code>: </b> executes <code>stdin</code> as a file and stops handling options.</li> 10377</ul><p> 10378After handling its options, <code>lua</code> runs the given <em>script</em>. 10379When called without arguments, 10380<code>lua</code> behaves as <code>lua -v -i</code> 10381when the standard input (<code>stdin</code>) is a terminal, 10382and as <code>lua -</code> otherwise. 10383 10384 10385<p> 10386When called without option <code>-E</code>, 10387the interpreter checks for an environment variable <a name="pdf-LUA_INIT_5_3"><code>LUA_INIT_5_3</code></a> 10388(or <a name="pdf-LUA_INIT"><code>LUA_INIT</code></a> if the versioned name is not defined) 10389before running any argument. 10390If the variable content has the format <code>@<em>filename</em></code>, 10391then <code>lua</code> executes the file. 10392Otherwise, <code>lua</code> executes the string itself. 10393 10394 10395<p> 10396When called with option <code>-E</code>, 10397besides ignoring <code>LUA_INIT</code>, 10398Lua also ignores 10399the values of <code>LUA_PATH</code> and <code>LUA_CPATH</code>, 10400setting the values of 10401<a href="#pdf-package.path"><code>package.path</code></a> and <a href="#pdf-package.cpath"><code>package.cpath</code></a> 10402with the default paths defined in <code>luaconf.h</code>. 10403 10404 10405<p> 10406All options are handled in order, except <code>-i</code> and <code>-E</code>. 10407For instance, an invocation like 10408 10409<pre> 10410 $ lua -e'a=1' -e 'print(a)' script.lua 10411</pre><p> 10412will first set <code>a</code> to 1, then print the value of <code>a</code>, 10413and finally run the file <code>script.lua</code> with no arguments. 10414(Here <code>$</code> is the shell prompt. Your prompt may be different.) 10415 10416 10417<p> 10418Before running any code, 10419<code>lua</code> collects all command-line arguments 10420in a global table called <code>arg</code>. 10421The script name goes to index 0, 10422the first argument after the script name goes to index 1, 10423and so on. 10424Any arguments before the script name 10425(that is, the interpreter name plus its options) 10426go to negative indices. 10427For instance, in the call 10428 10429<pre> 10430 $ lua -la b.lua t1 t2 10431</pre><p> 10432the table is like this: 10433 10434<pre> 10435 arg = { [-2] = "lua", [-1] = "-la", 10436 [0] = "b.lua", 10437 [1] = "t1", [2] = "t2" } 10438</pre><p> 10439If there is no script in the call, 10440the interpreter name goes to index 0, 10441followed by the other arguments. 10442For instance, the call 10443 10444<pre> 10445 $ lua -e "print(arg[1])" 10446</pre><p> 10447will print "<code>-e</code>". 10448If there is a script, 10449the script is called with parameters 10450<code>arg[1]</code>, ···, <code>arg[#arg]</code>. 10451(Like all chunks in Lua, 10452the script is compiled as a vararg function.) 10453 10454 10455<p> 10456In interactive mode, 10457Lua repeatedly prompts and waits for a line. 10458After reading a line, 10459Lua first try to interpret the line as an expression. 10460If it succeeds, it prints its value. 10461Otherwise, it interprets the line as a statement. 10462If you write an incomplete statement, 10463the interpreter waits for its completion 10464by issuing a different prompt. 10465 10466 10467<p> 10468In case of unprotected errors in the script, 10469the interpreter reports the error to the standard error stream. 10470If the error object is not a string but 10471has a metamethod <code>__tostring</code>, 10472the interpreter calls this metamethod to produce the final message. 10473Otherwise, the interpreter converts the error object to a string 10474and adds a stack traceback to it. 10475 10476 10477<p> 10478When finishing normally, 10479the interpreter closes its main Lua state 10480(see <a href="#lua_close"><code>lua_close</code></a>). 10481The script can avoid this step by 10482calling <a href="#pdf-os.exit"><code>os.exit</code></a> to terminate. 10483 10484 10485<p> 10486To allow the use of Lua as a 10487script interpreter in Unix systems, 10488the standalone interpreter skips 10489the first line of a chunk if it starts with <code>#</code>. 10490Therefore, Lua scripts can be made into executable programs 10491by using <code>chmod +x</code> and the <code>#!</code> form, 10492as in 10493 10494<pre> 10495 #!/usr/local/bin/lua 10496</pre><p> 10497(Of course, 10498the location of the Lua interpreter may be different in your machine. 10499If <code>lua</code> is in your <code>PATH</code>, 10500then 10501 10502<pre> 10503 #!/usr/bin/env lua 10504</pre><p> 10505is a more portable solution.) 10506 10507 10508 10509<h1>8 – <a name="8">Incompatibilities with the Previous Version</a></h1> 10510 10511<p> 10512Here we list the incompatibilities that you may find when moving a program 10513from Lua 5.2 to Lua 5.3. 10514You can avoid some incompatibilities by compiling Lua with 10515appropriate options (see file <code>luaconf.h</code>). 10516However, 10517all these compatibility options will be removed in the future. 10518 10519 10520<p> 10521Lua versions can always change the C API in ways that 10522do not imply source-code changes in a program, 10523such as the numeric values for constants 10524or the implementation of functions as macros. 10525Therefore, 10526you should not assume that binaries are compatible between 10527different Lua versions. 10528Always recompile clients of the Lua API when 10529using a new version. 10530 10531 10532<p> 10533Similarly, Lua versions can always change the internal representation 10534of precompiled chunks; 10535precompiled chunks are not compatible between different Lua versions. 10536 10537 10538<p> 10539The standard paths in the official distribution may 10540change between versions. 10541 10542 10543 10544<h2>8.1 – <a name="8.1">Changes in the Language</a></h2> 10545<ul> 10546 10547<li> 10548The main difference between Lua 5.2 and Lua 5.3 is the 10549introduction of an integer subtype for numbers. 10550Although this change should not affect "normal" computations, 10551some computations 10552(mainly those that involve some kind of overflow) 10553can give different results. 10554 10555 10556<p> 10557You can fix these differences by forcing a number to be a float 10558(in Lua 5.2 all numbers were float), 10559in particular writing constants with an ending <code>.0</code> 10560or using <code>x = x + 0.0</code> to convert a variable. 10561(This recommendation is only for a quick fix 10562for an occasional incompatibility; 10563it is not a general guideline for good programming. 10564For good programming, 10565use floats where you need floats 10566and integers where you need integers.) 10567</li> 10568 10569<li> 10570The conversion of a float to a string now adds a <code>.0</code> suffix 10571to the result if it looks like an integer. 10572(For instance, the float 2.0 will be printed as <code>2.0</code>, 10573not as <code>2</code>.) 10574You should always use an explicit format 10575when you need a specific format for numbers. 10576 10577 10578<p> 10579(Formally this is not an incompatibility, 10580because Lua does not specify how numbers are formatted as strings, 10581but some programs assumed a specific format.) 10582</li> 10583 10584<li> 10585The generational mode for the garbage collector was removed. 10586(It was an experimental feature in Lua 5.2.) 10587</li> 10588 10589</ul> 10590 10591 10592 10593 10594<h2>8.2 – <a name="8.2">Changes in the Libraries</a></h2> 10595<ul> 10596 10597<li> 10598The <code>bit32</code> library has been deprecated. 10599It is easy to require a compatible external library or, 10600better yet, to replace its functions with appropriate bitwise operations. 10601(Keep in mind that <code>bit32</code> operates on 32-bit integers, 10602while the bitwise operators in standard Lua operate on 64-bit integers.) 10603</li> 10604 10605<li> 10606The Table library now respects metamethods 10607for setting and getting elements. 10608</li> 10609 10610<li> 10611The <a href="#pdf-ipairs"><code>ipairs</code></a> iterator now respects metamethods and 10612its <code>__ipairs</code> metamethod has been deprecated. 10613</li> 10614 10615<li> 10616Option names in <a href="#pdf-io.read"><code>io.read</code></a> do not have a starting '<code>*</code>' anymore. 10617For compatibility, Lua will continue to ignore this character. 10618</li> 10619 10620<li> 10621The following functions were deprecated in the mathematical library: 10622<code>atan2</code>, <code>cosh</code>, <code>sinh</code>, <code>tanh</code>, <code>pow</code>, 10623<code>frexp</code>, and <code>ldexp</code>. 10624You can replace <code>math.pow(x,y)</code> with <code>x^y</code>; 10625you can replace <code>math.atan2</code> with <code>math.atan</code>, 10626which now accepts one or two parameters; 10627you can replace <code>math.ldexp(x,exp)</code> with <code>x * 2.0^exp</code>. 10628For the other operations, 10629you can either use an external library or 10630implement them in Lua. 10631</li> 10632 10633<li> 10634The searcher for C loaders used by <a href="#pdf-require"><code>require</code></a> 10635changed the way it handles versioned names. 10636Now, the version should come after the module name 10637(as is usual in most other tools). 10638For compatibility, that searcher still tries the old format 10639if it cannot find an open function according to the new style. 10640(Lua 5.2 already worked that way, 10641but it did not document the change.) 10642</li> 10643 10644</ul> 10645 10646 10647 10648 10649<h2>8.3 – <a name="8.3">Changes in the API</a></h2> 10650 10651 10652<ul> 10653 10654<li> 10655Continuation functions now receive as parameters what they needed 10656to get through <code>lua_getctx</code>, 10657so <code>lua_getctx</code> has been removed. 10658Adapt your code accordingly. 10659</li> 10660 10661<li> 10662Function <a href="#lua_dump"><code>lua_dump</code></a> has an extra parameter, <code>strip</code>. 10663Use 0 as the value of this parameter to get the old behavior. 10664</li> 10665 10666<li> 10667Functions to inject/project unsigned integers 10668(<code>lua_pushunsigned</code>, <code>lua_tounsigned</code>, <code>lua_tounsignedx</code>, 10669<code>luaL_checkunsigned</code>, <code>luaL_optunsigned</code>) 10670were deprecated. 10671Use their signed equivalents with a type cast. 10672</li> 10673 10674<li> 10675Macros to project non-default integer types 10676(<code>luaL_checkint</code>, <code>luaL_optint</code>, <code>luaL_checklong</code>, <code>luaL_optlong</code>) 10677were deprecated. 10678Use their equivalent over <a href="#lua_Integer"><code>lua_Integer</code></a> with a type cast 10679(or, when possible, use <a href="#lua_Integer"><code>lua_Integer</code></a> in your code). 10680</li> 10681 10682</ul> 10683 10684 10685 10686 10687<h1>9 – <a name="9">The Complete Syntax of Lua</a></h1> 10688 10689<p> 10690Here is the complete syntax of Lua in extended BNF. 10691As usual in extended BNF, 10692{A} means 0 or more As, 10693and [A] means an optional A. 10694(For operator precedences, see <a href="#3.4.8">§3.4.8</a>; 10695for a description of the terminals 10696Name, Numeral, 10697and LiteralString, see <a href="#3.1">§3.1</a>.) 10698 10699 10700 10701 10702<pre> 10703 10704 chunk ::= block 10705 10706 block ::= {stat} [retstat] 10707 10708 stat ::= ‘<b>;</b>’ | 10709 varlist ‘<b>=</b>’ explist | 10710 functioncall | 10711 label | 10712 <b>break</b> | 10713 <b>goto</b> Name | 10714 <b>do</b> block <b>end</b> | 10715 <b>while</b> exp <b>do</b> block <b>end</b> | 10716 <b>repeat</b> block <b>until</b> exp | 10717 <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> | 10718 <b>for</b> Name ‘<b>=</b>’ exp ‘<b>,</b>’ exp [‘<b>,</b>’ exp] <b>do</b> block <b>end</b> | 10719 <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b> | 10720 <b>function</b> funcname funcbody | 10721 <b>local</b> <b>function</b> Name funcbody | 10722 <b>local</b> namelist [‘<b>=</b>’ explist] 10723 10724 retstat ::= <b>return</b> [explist] [‘<b>;</b>’] 10725 10726 label ::= ‘<b>::</b>’ Name ‘<b>::</b>’ 10727 10728 funcname ::= Name {‘<b>.</b>’ Name} [‘<b>:</b>’ Name] 10729 10730 varlist ::= var {‘<b>,</b>’ var} 10731 10732 var ::= Name | prefixexp ‘<b>[</b>’ exp ‘<b>]</b>’ | prefixexp ‘<b>.</b>’ Name 10733 10734 namelist ::= Name {‘<b>,</b>’ Name} 10735 10736 explist ::= exp {‘<b>,</b>’ exp} 10737 10738 exp ::= <b>nil</b> | <b>false</b> | <b>true</b> | Numeral | LiteralString | ‘<b>...</b>’ | functiondef | 10739 prefixexp | tableconstructor | exp binop exp | unop exp 10740 10741 prefixexp ::= var | functioncall | ‘<b>(</b>’ exp ‘<b>)</b>’ 10742 10743 functioncall ::= prefixexp args | prefixexp ‘<b>:</b>’ Name args 10744 10745 args ::= ‘<b>(</b>’ [explist] ‘<b>)</b>’ | tableconstructor | LiteralString 10746 10747 functiondef ::= <b>function</b> funcbody 10748 10749 funcbody ::= ‘<b>(</b>’ [parlist] ‘<b>)</b>’ block <b>end</b> 10750 10751 parlist ::= namelist [‘<b>,</b>’ ‘<b>...</b>’] | ‘<b>...</b>’ 10752 10753 tableconstructor ::= ‘<b>{</b>’ [fieldlist] ‘<b>}</b>’ 10754 10755 fieldlist ::= field {fieldsep field} [fieldsep] 10756 10757 field ::= ‘<b>[</b>’ exp ‘<b>]</b>’ ‘<b>=</b>’ exp | Name ‘<b>=</b>’ exp | exp 10758 10759 fieldsep ::= ‘<b>,</b>’ | ‘<b>;</b>’ 10760 10761 binop ::= ‘<b>+</b>’ | ‘<b>-</b>’ | ‘<b>*</b>’ | ‘<b>/</b>’ | ‘<b>//</b>’ | ‘<b>^</b>’ | ‘<b>%</b>’ | 10762 ‘<b>&</b>’ | ‘<b>~</b>’ | ‘<b>|</b>’ | ‘<b>>></b>’ | ‘<b><<</b>’ | ‘<b>..</b>’ | 10763 ‘<b><</b>’ | ‘<b><=</b>’ | ‘<b>></b>’ | ‘<b>>=</b>’ | ‘<b>==</b>’ | ‘<b>~=</b>’ | 10764 <b>and</b> | <b>or</b> 10765 10766 unop ::= ‘<b>-</b>’ | <b>not</b> | ‘<b>#</b>’ | ‘<b>~</b>’ 10767 10768</pre> 10769 10770<p> 10771 10772 10773 10774 10775 10776 10777 10778 10779<HR> 10780<SMALL CLASS="footer"> 10781Last update: 10782Tue Jan 6 10:10:50 BRST 2015 10783</SMALL> 10784<!-- 10785Last change: revised for Lua 5.3.0 (final) 10786--> 10787 10788</body></html> 10789 10790