xref: /netbsd-src/external/mit/lua/dist/doc/manual.html (revision 730082507ec4608c50b4985b287926c6d66cd18d)
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html>
3
4<head>
5<title>Lua 5.3 Reference Manual</title>
6<link rel="stylesheet" type="text/css" href="lua.css">
7<link rel="stylesheet" type="text/css" href="manual.css">
8<META HTTP-EQUIV="content-type" CONTENT="text/html; charset=iso-8859-1">
9</head>
10
11<body>
12
13<hr>
14<h1>
15<a href="http://www.lua.org/"><img src="logo.gif" alt="" border="0"></a>
16Lua 5.3 Reference Manual
17</h1>
18
19by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes
20<p>
21<small>
22Copyright &copy; 2015 Lua.org, PUC-Rio.
23Freely available under the terms of the
24<a href="http://www.lua.org/license.html">Lua license</a>.
25</small>
26<hr>
27<p>
28
29<a href="contents.html#contents">contents</A>
30&middot;
31<a href="contents.html#index">index</A>
32
33<!-- ====================================================================== -->
34<p>
35
36<!-- Id: manual.of,v 1.146 2015/01/06 11:23:01 roberto Exp  -->
37
38
39
40
41<h1>1 &ndash; <a name="1">Introduction</a></h1>
42
43<p>
44Lua is an extension programming language designed to support
45general procedural programming with data description
46facilities.
47Lua also offers good support for object-oriented programming,
48functional programming, and data-driven programming.
49Lua is intended to be used as a powerful, lightweight,
50embeddable scripting language for any program that needs one.
51Lua is implemented as a library, written in <em>clean C</em>,
52the common subset of Standard&nbsp;C and C++.
53
54
55<p>
56As an extension language, Lua has no notion of a "main" program:
57it only works <em>embedded</em> in a host client,
58called the <em>embedding program</em> or simply the <em>host</em>.
59The host program can invoke functions to execute a piece of Lua code,
60can write and read Lua variables,
61and can register C&nbsp;functions to be called by Lua code.
62Through the use of C&nbsp;functions, Lua can be augmented to cope with
63a wide range of different domains,
64thus creating customized programming languages sharing a syntactical framework.
65The Lua distribution includes a sample host program called <code>lua</code>,
66which uses the Lua library to offer a complete, standalone Lua interpreter,
67for interactive or batch use.
68
69
70<p>
71Lua is free software,
72and is provided as usual with no guarantees,
73as stated in its license.
74The implementation described in this manual is available
75at Lua's official web site, <code>www.lua.org</code>.
76
77
78<p>
79Like any other reference manual,
80this document is dry in places.
81For a discussion of the decisions behind the design of Lua,
82see the technical papers available at Lua's web site.
83For a detailed introduction to programming in Lua,
84see Roberto's book, <em>Programming in Lua</em>.
85
86
87
88<h1>2 &ndash; <a name="2">Basic Concepts</a></h1>
89
90<p>
91This section describes the basic concepts of the language.
92
93
94
95<h2>2.1 &ndash; <a name="2.1">Values and Types</a></h2>
96
97<p>
98Lua is a <em>dynamically typed language</em>.
99This means that
100variables do not have types; only values do.
101There are no type definitions in the language.
102All values carry their own type.
103
104
105<p>
106All values in Lua are <em>first-class values</em>.
107This means that all values can be stored in variables,
108passed as arguments to other functions, and returned as results.
109
110
111<p>
112There are eight basic types in Lua:
113<em>nil</em>, <em>boolean</em>, <em>number</em>,
114<em>string</em>, <em>function</em>, <em>userdata</em>,
115<em>thread</em>, and <em>table</em>.
116<em>Nil</em> is the type of the value <b>nil</b>,
117whose main property is to be different from any other value;
118it usually represents the absence of a useful value.
119<em>Boolean</em> is the type of the values <b>false</b> and <b>true</b>.
120Both <b>nil</b> and <b>false</b> make a condition false;
121any other value makes it true.
122<em>Number</em> represents both
123integer numbers and real (floating-point) numbers.
124<em>String</em> represents immutable sequences of bytes.
125
126Lua is 8-bit clean:
127strings can contain any 8-bit value,
128including embedded zeros ('<code>\0</code>').
129Lua is also encoding-agnostic;
130it makes no assumptions about the contents of a string.
131
132
133<p>
134The type <em>number</em> uses two internal representations,
135one called <em>integer</em> and the other called <em>float</em>.
136Lua has explicit rules about when each representation is used,
137but it also converts between them automatically as needed (see <a href="#3.4.3">&sect;3.4.3</a>).
138Therefore,
139the programmer may choose to mostly ignore the difference
140between integers and floats
141or to assume complete control over the representation of each number.
142Standard Lua uses 64-bit integers and double-precision (64-bit) floats,
143but you can also compile Lua so that it
144uses 32-bit integers and/or single-precision (32-bit) floats.
145The option with 32 bits for both integers and floats
146is particularly attractive
147for small machines and embedded systems.
148(See macro <code>LUA_32BITS</code> in file <code>luaconf.h</code>.)
149
150
151<p>
152Lua can call (and manipulate) functions written in Lua and
153functions written in C (see <a href="#3.4.10">&sect;3.4.10</a>).
154Both are represented by the type <em>function</em>.
155
156
157<p>
158The type <em>userdata</em> is provided to allow arbitrary C&nbsp;data to
159be stored in Lua variables.
160A userdata value represents a block of raw memory.
161There are two kinds of userdata:
162<em>full userdata</em>,
163which is an object with a block of memory managed by Lua,
164and <em>light userdata</em>,
165which is simply a C&nbsp;pointer value.
166Userdata has no predefined operations in Lua,
167except assignment and identity test.
168By using <em>metatables</em>,
169the programmer can define operations for full userdata values
170(see <a href="#2.4">&sect;2.4</a>).
171Userdata values cannot be created or modified in Lua,
172only through the C&nbsp;API.
173This guarantees the integrity of data owned by the host program.
174
175
176<p>
177The type <em>thread</em> represents independent threads of execution
178and it is used to implement coroutines (see <a href="#2.6">&sect;2.6</a>).
179Lua threads are not related to operating-system threads.
180Lua supports coroutines on all systems,
181even those that do not support threads natively.
182
183
184<p>
185The type <em>table</em> implements associative arrays,
186that is, arrays that can be indexed not only with numbers,
187but with any Lua value except <b>nil</b> and NaN.
188(<em>Not a Number</em> is a special numeric value used to represent
189undefined or unrepresentable results, such as <code>0/0</code>.)
190Tables can be <em>heterogeneous</em>;
191that is, they can contain values of all types (except <b>nil</b>).
192Any key with value <b>nil</b> is not considered part of the table.
193Conversely, any key that is not part of a table has
194an associated value <b>nil</b>.
195
196
197<p>
198Tables are the sole data-structuring mechanism in Lua;
199they can be used to represent ordinary arrays, sequences,
200symbol tables, sets, records, graphs, trees, etc.
201To represent records, Lua uses the field name as an index.
202The language supports this representation by
203providing <code>a.name</code> as syntactic sugar for <code>a["name"]</code>.
204There are several convenient ways to create tables in Lua
205(see <a href="#3.4.9">&sect;3.4.9</a>).
206
207
208<p>
209We use the term <em>sequence</em> to denote a table where
210the set of all positive numeric keys is equal to {1..<em>n</em>}
211for some non-negative integer <em>n</em>,
212which is called the length of the sequence (see <a href="#3.4.7">&sect;3.4.7</a>).
213
214
215<p>
216Like indices,
217the values of table fields can be of any type.
218In particular,
219because functions are first-class values,
220table fields can contain functions.
221Thus tables can also carry <em>methods</em> (see <a href="#3.4.11">&sect;3.4.11</a>).
222
223
224<p>
225The indexing of tables follows
226the definition of raw equality in the language.
227The expressions <code>a[i]</code> and <code>a[j]</code>
228denote the same table element
229if and only if <code>i</code> and <code>j</code> are raw equal
230(that is, equal without metamethods).
231In particular, floats with integral values
232are equal to their respective integers
233(e.g., <code>1.0 == 1</code>).
234To avoid ambiguities,
235any float with integral value used as a key
236is converted to its respective integer.
237For instance, if you write <code>a[2.0] = true</code>,
238the actual key inserted into the table will be the
239integer <code>2</code>.
240(On the other hand,
2412 and "<code>2</code>" are different Lua values and therefore
242denote different table entries.)
243
244
245<p>
246Tables, functions, threads, and (full) userdata values are <em>objects</em>:
247variables do not actually <em>contain</em> these values,
248only <em>references</em> to them.
249Assignment, parameter passing, and function returns
250always manipulate references to such values;
251these operations do not imply any kind of copy.
252
253
254<p>
255The library function <a href="#pdf-type"><code>type</code></a> returns a string describing the type
256of a given value (see <a href="#6.1">&sect;6.1</a>).
257
258
259
260
261
262<h2>2.2 &ndash; <a name="2.2">Environments and the Global Environment</a></h2>
263
264<p>
265As will be discussed in <a href="#3.2">&sect;3.2</a> and <a href="#3.3.3">&sect;3.3.3</a>,
266any reference to a free name
267(that is, a name not bound to any declaration) <code>var</code>
268is syntactically translated to <code>_ENV.var</code>.
269Moreover, every chunk is compiled in the scope of
270an external local variable named <code>_ENV</code> (see <a href="#3.3.2">&sect;3.3.2</a>),
271so <code>_ENV</code> itself is never a free name in a chunk.
272
273
274<p>
275Despite the existence of this external <code>_ENV</code> variable and
276the translation of free names,
277<code>_ENV</code> is a completely regular name.
278In particular,
279you can define new variables and parameters with that name.
280Each reference to a free name uses the <code>_ENV</code> that is
281visible at that point in the program,
282following the usual visibility rules of Lua (see <a href="#3.5">&sect;3.5</a>).
283
284
285<p>
286Any table used as the value of <code>_ENV</code> is called an <em>environment</em>.
287
288
289<p>
290Lua keeps a distinguished environment called the <em>global environment</em>.
291This value is kept at a special index in the C registry (see <a href="#4.5">&sect;4.5</a>).
292In Lua, the global variable <a href="#pdf-_G"><code>_G</code></a> is initialized with this same value.
293(<a href="#pdf-_G"><code>_G</code></a> is never used internally.)
294
295
296<p>
297When Lua loads a chunk,
298the default value for its <code>_ENV</code> upvalue
299is the global environment (see <a href="#pdf-load"><code>load</code></a>).
300Therefore, by default,
301free names in Lua code refer to entries in the global environment
302(and, therefore, they are also called <em>global variables</em>).
303Moreover, all standard libraries are loaded in the global environment
304and some functions there operate on that environment.
305You can use <a href="#pdf-load"><code>load</code></a> (or <a href="#pdf-loadfile"><code>loadfile</code></a>)
306to load a chunk with a different environment.
307(In C, you have to load the chunk and then change the value
308of its first upvalue.)
309
310
311
312
313
314<h2>2.3 &ndash; <a name="2.3">Error Handling</a></h2>
315
316<p>
317Because Lua is an embedded extension language,
318all Lua actions start from C&nbsp;code in the host program
319calling a function from the Lua library.
320(When you use Lua standalone,
321the <code>lua</code> application is the host program.)
322Whenever an error occurs during
323the compilation or execution of a Lua chunk,
324control returns to the host,
325which can take appropriate measures
326(such as printing an error message).
327
328
329<p>
330Lua code can explicitly generate an error by calling the
331<a href="#pdf-error"><code>error</code></a> function.
332If you need to catch errors in Lua,
333you can use <a href="#pdf-pcall"><code>pcall</code></a> or <a href="#pdf-xpcall"><code>xpcall</code></a>
334to call a given function in <em>protected mode</em>.
335
336
337<p>
338Whenever there is an error,
339an <em>error object</em> (also called an <em>error message</em>)
340is propagated with information about the error.
341Lua itself only generates errors whose error object is a string,
342but programs may generate errors with
343any value as the error object.
344It is up to the Lua program or its host to handle such error objects.
345
346
347<p>
348When you use <a href="#pdf-xpcall"><code>xpcall</code></a> or <a href="#lua_pcall"><code>lua_pcall</code></a>,
349you may give a <em>message handler</em>
350to be called in case of errors.
351This function is called with the original error message
352and returns a new error message.
353It is called before the error unwinds the stack,
354so that it can gather more information about the error,
355for instance by inspecting the stack and creating a stack traceback.
356This message handler is still protected by the protected call;
357so, an error inside the message handler
358will call the message handler again.
359If this loop goes on for too long,
360Lua breaks it and returns an appropriate message.
361
362
363
364
365
366<h2>2.4 &ndash; <a name="2.4">Metatables and Metamethods</a></h2>
367
368<p>
369Every value in Lua can have a <em>metatable</em>.
370This <em>metatable</em> is an ordinary Lua table
371that defines the behavior of the original value
372under certain special operations.
373You can change several aspects of the behavior
374of operations over a value by setting specific fields in its metatable.
375For instance, when a non-numeric value is the operand of an addition,
376Lua checks for a function in the field "<code>__add</code>" of the value's metatable.
377If it finds one,
378Lua calls this function to perform the addition.
379
380
381<p>
382The keys in a metatable are derived from the <em>event</em> names;
383the corresponding values are called <em>metamethods</em>.
384In the previous example, the event is <code>"add"</code>
385and the metamethod is the function that performs the addition.
386
387
388<p>
389You can query the metatable of any value
390using the <a href="#pdf-getmetatable"><code>getmetatable</code></a> function.
391
392
393<p>
394You can replace the metatable of tables
395using the <a href="#pdf-setmetatable"><code>setmetatable</code></a> function.
396You cannot change the metatable of other types from Lua
397(except by using the debug library (<a href="#6.10">&sect;6.10</a>));
398you must use the C&nbsp;API for that.
399
400
401<p>
402Tables and full userdata have individual metatables
403(although multiple tables and userdata can share their metatables).
404Values of all other types share one single metatable per type;
405that is, there is one single metatable for all numbers,
406one for all strings, etc.
407By default, a value has no metatable,
408but the string library sets a metatable for the string type (see <a href="#6.4">&sect;6.4</a>).
409
410
411<p>
412A metatable controls how an object behaves in
413arithmetic operations, bitwise operations,
414order comparisons, concatenation, length operation, calls, and indexing.
415A metatable also can define a function to be called
416when a userdata or a table is garbage collected (<a href="#2.5">&sect;2.5</a>).
417
418
419<p>
420A detailed list of events controlled by metatables is given next.
421Each operation is identified by its corresponding event name.
422The key for each event is a string with its name prefixed by
423two underscores, '<code>__</code>';
424for instance, the key for operation "add" is the
425string "<code>__add</code>".
426Note that queries for metamethods are always raw;
427the access to a metamethod does not invoke other metamethods.
428You can emulate how Lua queries a metamethod for an object <code>obj</code>
429with the following code:
430
431<pre>
432     rawget(getmetatable(obj) or {}, "__" .. event_name)
433</pre>
434
435<p>
436For the unary operators (negation, length, and bitwise not),
437the metamethod is computed and called with a dummy second operand,
438equal to the first one.
439This extra operand is only to simplify Lua's internals
440(by making these operators behave like a binary operation)
441and may be removed in future versions.
442(For most uses this extra operand is irrelevant.)
443
444
445
446<ul>
447
448<li><b>"add": </b>
449the <code>+</code> operation.
450
451If any operand for an addition is not a number
452(nor a string coercible to a number),
453Lua will try to call a metamethod.
454First, Lua will check the first operand (even if it is valid).
455If that operand does not define a metamethod for the "<code>__add</code>" event,
456then Lua will check the second operand.
457If Lua can find a metamethod,
458it calls the metamethod with the two operands as arguments,
459and the result of the call
460(adjusted to one value)
461is the result of the operation.
462Otherwise,
463it raises an error.
464</li>
465
466<li><b>"sub": </b>
467the <code>-</code> operation.
468
469Behavior similar to the "add" operation.
470</li>
471
472<li><b>"mul": </b>
473the <code>*</code> operation.
474
475Behavior similar to the "add" operation.
476</li>
477
478<li><b>"div": </b>
479the <code>/</code> operation.
480
481Behavior similar to the "add" operation.
482</li>
483
484<li><b>"mod": </b>
485the <code>%</code> operation.
486
487Behavior similar to the "add" operation.
488</li>
489
490<li><b>"pow": </b>
491the <code>^</code> (exponentiation) operation.
492
493Behavior similar to the "add" operation.
494</li>
495
496<li><b>"unm": </b>
497the <code>-</code> (unary minus) operation.
498
499Behavior similar to the "add" operation.
500</li>
501
502<li><b>"idiv": </b>
503the <code>//</code> (floor division) operation.
504
505Behavior similar to the "add" operation.
506</li>
507
508<li><b>"band": </b>
509the <code>&amp;</code> (bitwise and) operation.
510
511Behavior similar to the "add" operation,
512except that Lua will try a metamethod
513if any operator is neither an integer
514nor a value coercible to an integer (see <a href="#3.4.3">&sect;3.4.3</a>).
515</li>
516
517<li><b>"bor": </b>
518the <code>|</code> (bitwise or) operation.
519
520Behavior similar to the "band" operation.
521</li>
522
523<li><b>"bxor": </b>
524the <code>~</code> (bitwise exclusive or) operation.
525
526Behavior similar to the "band" operation.
527</li>
528
529<li><b>"bnot": </b>
530the <code>~</code> (bitwise unary not) operation.
531
532Behavior similar to the "band" operation.
533</li>
534
535<li><b>"shl": </b>
536the <code>&lt;&lt;</code> (bitwise left shift) operation.
537
538Behavior similar to the "band" operation.
539</li>
540
541<li><b>"shr": </b>
542the <code>&gt;&gt;</code> (bitwise right shift) operation.
543
544Behavior similar to the "band" operation.
545</li>
546
547<li><b>"concat": </b>
548the <code>..</code> (concatenation) operation.
549
550Behavior similar to the "add" operation,
551except that Lua will try a metamethod
552if any operator is neither a string nor a number
553(which is always coercible to a string).
554</li>
555
556<li><b>"len": </b>
557the <code>#</code> (length) operation.
558
559If the object is not a string,
560Lua will try its metamethod.
561If there is a metamethod,
562Lua calls it with the object as argument,
563and the result of the call
564(always adjusted to one value)
565is the result of the operation.
566If there is no metamethod but the object is a table,
567then Lua uses the table length operation (see <a href="#3.4.7">&sect;3.4.7</a>).
568Otherwise, Lua raises an error.
569</li>
570
571<li><b>"eq": </b>
572the <code>==</code> (equal) operation.
573
574Behavior similar to the "add" operation,
575except that Lua will try a metamethod only when the values
576being compared are either both tables or both full userdata
577and they are not primitively equal.
578The result of the call is always converted to a boolean.
579</li>
580
581<li><b>"lt": </b>
582the <code>&lt;</code> (less than) operation.
583
584Behavior similar to the "add" operation,
585except that Lua will try a metamethod only when the values
586being compared are neither both numbers nor both strings.
587The result of the call is always converted to a boolean.
588</li>
589
590<li><b>"le": </b>
591the <code>&lt;=</code> (less equal) operation.
592
593Unlike other operations,
594The less-equal operation can use two different events.
595First, Lua looks for the "<code>__le</code>" metamethod in both operands,
596like in the "lt" operation.
597If it cannot find such a metamethod,
598then it will try the "<code>__lt</code>" event,
599assuming that <code>a &lt;= b</code> is equivalent to <code>not (b &lt; a)</code>.
600As with the other comparison operators,
601the result is always a boolean.
602</li>
603
604<li><b>"index": </b>
605The indexing access <code>table[key]</code>.
606
607This event happens when <code>table</code> is not a table or
608when <code>key</code> is not present in <code>table</code>.
609The metamethod is looked up in <code>table</code>.
610
611
612<p>
613Despite the name,
614the metamethod for this event can be either a function or a table.
615If it is a function,
616it is called with <code>table</code> and <code>key</code> as arguments.
617If it is a table,
618the final result is the result of indexing this table with <code>key</code>.
619(This indexing is regular, not raw,
620and therefore can trigger another metamethod.)
621</li>
622
623<li><b>"newindex": </b>
624The indexing assignment <code>table[key] = value</code>.
625
626Like the index event,
627this event happens when <code>table</code> is not a table or
628when <code>key</code> is not present in <code>table</code>.
629The metamethod is looked up in <code>table</code>.
630
631
632<p>
633Like with indexing,
634the metamethod for this event can be either a function or a table.
635If it is a function,
636it is called with <code>table</code>, <code>key</code>, and <code>value</code> as arguments.
637If it is a table,
638Lua does an indexing assignment to this table with the same key and value.
639(This assignment is regular, not raw,
640and therefore can trigger another metamethod.)
641
642
643<p>
644Whenever there is a "newindex" metamethod,
645Lua does not perform the primitive assignment.
646(If necessary,
647the metamethod itself can call <a href="#pdf-rawset"><code>rawset</code></a>
648to do the assignment.)
649</li>
650
651<li><b>"call": </b>
652The call operation <code>func(args)</code>.
653
654This event happens when Lua tries to call a non-function value
655(that is, <code>func</code> is not a function).
656The metamethod is looked up in <code>func</code>.
657If present,
658the metamethod is called with <code>func</code> as its first argument,
659followed by the arguments of the original call (<code>args</code>).
660</li>
661
662</ul>
663
664
665
666
667<h2>2.5 &ndash; <a name="2.5">Garbage Collection</a></h2>
668
669<p>
670Lua performs automatic memory management.
671This means that
672you do not have to worry about allocating memory for new objects
673or freeing it when the objects are no longer needed.
674Lua manages memory automatically by running
675a <em>garbage collector</em> to collect all <em>dead objects</em>
676(that is, objects that are no longer accessible from Lua).
677All memory used by Lua is subject to automatic management:
678strings, tables, userdata, functions, threads, internal structures, etc.
679
680
681<p>
682Lua implements an incremental mark-and-sweep collector.
683It uses two numbers to control its garbage-collection cycles:
684the <em>garbage-collector pause</em> and
685the <em>garbage-collector step multiplier</em>.
686Both use percentage points as units
687(e.g., a value of 100 means an internal value of 1).
688
689
690<p>
691The garbage-collector pause
692controls how long the collector waits before starting a new cycle.
693Larger values make the collector less aggressive.
694Values smaller than 100 mean the collector will not wait to
695start a new cycle.
696A value of 200 means that the collector waits for the total memory in use
697to double before starting a new cycle.
698
699
700<p>
701The garbage-collector step multiplier
702controls the relative speed of the collector relative to
703memory allocation.
704Larger values make the collector more aggressive but also increase
705the size of each incremental step.
706You should not use values smaller than 100,
707because they make the collector too slow and
708can result in the collector never finishing a cycle.
709The default is 200,
710which means that the collector runs at "twice"
711the speed of memory allocation.
712
713
714<p>
715If you set the step multiplier to a very large number
716(larger than 10% of the maximum number of
717bytes that the program may use),
718the collector behaves like a stop-the-world collector.
719If you then set the pause to 200,
720the collector behaves as in old Lua versions,
721doing a complete collection every time Lua doubles its
722memory usage.
723
724
725<p>
726You can change these numbers by calling <a href="#lua_gc"><code>lua_gc</code></a> in C
727or <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> in Lua.
728You can also use these functions to control
729the collector directly (e.g., stop and restart it).
730
731
732
733<h3>2.5.1 &ndash; <a name="2.5.1">Garbage-Collection Metamethods</a></h3>
734
735<p>
736You can set garbage-collector metamethods for tables
737and, using the C&nbsp;API,
738for full userdata (see <a href="#2.4">&sect;2.4</a>).
739These metamethods are also called <em>finalizers</em>.
740Finalizers allow you to coordinate Lua's garbage collection
741with external resource management
742(such as closing files, network or database connections,
743or freeing your own memory).
744
745
746<p>
747For an object (table or userdata) to be finalized when collected,
748you must <em>mark</em> it for finalization.
749
750You mark an object for finalization when you set its metatable
751and the metatable has a field indexed by the string "<code>__gc</code>".
752Note that if you set a metatable without a <code>__gc</code> field
753and later create that field in the metatable,
754the object will not be marked for finalization.
755However, after an object has been marked,
756you can freely change the <code>__gc</code> field of its metatable.
757
758
759<p>
760When a marked object becomes garbage,
761it is not collected immediately by the garbage collector.
762Instead, Lua puts it in a list.
763After the collection,
764Lua goes through that list.
765For each object in the list,
766it checks the object's <code>__gc</code> metamethod:
767If it is a function,
768Lua calls it with the object as its single argument;
769if the metamethod is not a function,
770Lua simply ignores it.
771
772
773<p>
774At the end of each garbage-collection cycle,
775the finalizers for objects are called in
776the reverse order that the objects were marked for finalization,
777among those collected in that cycle;
778that is, the first finalizer to be called is the one associated
779with the object marked last in the program.
780The execution of each finalizer may occur at any point during
781the execution of the regular code.
782
783
784<p>
785Because the object being collected must still be used by the finalizer,
786that object (and other objects accessible only through it)
787must be <em>resurrected</em> by Lua.
788Usually, this resurrection is transient,
789and the object memory is freed in the next garbage-collection cycle.
790However, if the finalizer stores the object in some global place
791(e.g., a global variable),
792then the resurrection is permanent.
793Moreover, if the finalizer marks a finalizing object for finalization again,
794its finalizer will be called again in the next cycle where the
795object is unreachable.
796In any case,
797the object memory is freed only in the GC cycle where
798the object is unreachable and not marked for finalization.
799
800
801<p>
802When you close a state (see <a href="#lua_close"><code>lua_close</code></a>),
803Lua calls the finalizers of all objects marked for finalization,
804following the reverse order that they were marked.
805If any finalizer marks objects for collection during that phase,
806these marks have no effect.
807
808
809
810
811
812<h3>2.5.2 &ndash; <a name="2.5.2">Weak Tables</a></h3>
813
814<p>
815A <em>weak table</em> is a table whose elements are
816<em>weak references</em>.
817A weak reference is ignored by the garbage collector.
818In other words,
819if the only references to an object are weak references,
820then the garbage collector will collect that object.
821
822
823<p>
824A weak table can have weak keys, weak values, or both.
825A table with weak keys allows the collection of its keys,
826but prevents the collection of its values.
827A table with both weak keys and weak values allows the collection of
828both keys and values.
829In any case, if either the key or the value is collected,
830the whole pair is removed from the table.
831The weakness of a table is controlled by the
832<code>__mode</code> field of its metatable.
833If the <code>__mode</code> field is a string containing the character&nbsp;'<code>k</code>',
834the keys in the table are weak.
835If <code>__mode</code> contains '<code>v</code>',
836the values in the table are weak.
837
838
839<p>
840A table with weak keys and strong values
841is also called an <em>ephemeron table</em>.
842In an ephemeron table,
843a value is considered reachable only if its key is reachable.
844In particular,
845if the only reference to a key comes through its value,
846the pair is removed.
847
848
849<p>
850Any change in the weakness of a table may take effect only
851at the next collect cycle.
852In particular, if you change the weakness to a stronger mode,
853Lua may still collect some items from that table
854before the change takes effect.
855
856
857<p>
858Only objects that have an explicit construction
859are removed from weak tables.
860Values, such as numbers and light C functions,
861are not subject to garbage collection,
862and therefore are not removed from weak tables
863(unless their associated values are collected).
864Although strings are subject to garbage collection,
865they do not have an explicit construction,
866and therefore are not removed from weak tables.
867
868
869<p>
870Resurrected objects
871(that is, objects being finalized
872and objects accessible only through objects being finalized)
873have a special behavior in weak tables.
874They are removed from weak values before running their finalizers,
875but are removed from weak keys only in the next collection
876after running their finalizers, when such objects are actually freed.
877This behavior allows the finalizer to access properties
878associated with the object through weak tables.
879
880
881<p>
882If a weak table is among the resurrected objects in a collection cycle,
883it may not be properly cleared until the next cycle.
884
885
886
887
888
889
890
891<h2>2.6 &ndash; <a name="2.6">Coroutines</a></h2>
892
893<p>
894Lua supports coroutines,
895also called <em>collaborative multithreading</em>.
896A coroutine in Lua represents an independent thread of execution.
897Unlike threads in multithread systems, however,
898a coroutine only suspends its execution by explicitly calling
899a yield function.
900
901
902<p>
903You create a coroutine by calling <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>.
904Its sole argument is a function
905that is the main function of the coroutine.
906The <code>create</code> function only creates a new coroutine and
907returns a handle to it (an object of type <em>thread</em>);
908it does not start the coroutine.
909
910
911<p>
912You execute a coroutine by calling <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
913When you first call <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
914passing as its first argument
915a thread returned by <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
916the coroutine starts its execution,
917at the first line of its main function.
918Extra arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> are passed
919as arguments to the coroutine's main function.
920After the coroutine starts running,
921it runs until it terminates or <em>yields</em>.
922
923
924<p>
925A coroutine can terminate its execution in two ways:
926normally, when its main function returns
927(explicitly or implicitly, after the last instruction);
928and abnormally, if there is an unprotected error.
929In case of normal termination,
930<a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>true</b>,
931plus any values returned by the coroutine main function.
932In case of errors, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>false</b>
933plus an error message.
934
935
936<p>
937A coroutine yields by calling <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
938When a coroutine yields,
939the corresponding <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns immediately,
940even if the yield happens inside nested function calls
941(that is, not in the main function,
942but in a function directly or indirectly called by the main function).
943In the case of a yield, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> also returns <b>true</b>,
944plus any values passed to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
945The next time you resume the same coroutine,
946it continues its execution from the point where it yielded,
947with the call to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a> returning any extra
948arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
949
950
951<p>
952Like <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
953the <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> function also creates a coroutine,
954but instead of returning the coroutine itself,
955it returns a function that, when called, resumes the coroutine.
956Any arguments passed to this function
957go as extra arguments to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
958<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> returns all the values returned by <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
959except the first one (the boolean error code).
960Unlike <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
961<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> does not catch errors;
962any error is propagated to the caller.
963
964
965<p>
966As an example of how coroutines work,
967consider the following code:
968
969<pre>
970     function foo (a)
971       print("foo", a)
972       return coroutine.yield(2*a)
973     end
974
975     co = coroutine.create(function (a,b)
976           print("co-body", a, b)
977           local r = foo(a+1)
978           print("co-body", r)
979           local r, s = coroutine.yield(a+b, a-b)
980           print("co-body", r, s)
981           return b, "end"
982     end)
983
984     print("main", coroutine.resume(co, 1, 10))
985     print("main", coroutine.resume(co, "r"))
986     print("main", coroutine.resume(co, "x", "y"))
987     print("main", coroutine.resume(co, "x", "y"))
988</pre><p>
989When you run it, it produces the following output:
990
991<pre>
992     co-body 1       10
993     foo     2
994     main    true    4
995     co-body r
996     main    true    11      -9
997     co-body x       y
998     main    true    10      end
999     main    false   cannot resume dead coroutine
1000</pre>
1001
1002<p>
1003You can also create and manipulate coroutines through the C API:
1004see functions <a href="#lua_newthread"><code>lua_newthread</code></a>, <a href="#lua_resume"><code>lua_resume</code></a>,
1005and <a href="#lua_yield"><code>lua_yield</code></a>.
1006
1007
1008
1009
1010
1011<h1>3 &ndash; <a name="3">The Language</a></h1>
1012
1013<p>
1014This section describes the lexis, the syntax, and the semantics of Lua.
1015In other words,
1016this section describes
1017which tokens are valid,
1018how they can be combined,
1019and what their combinations mean.
1020
1021
1022<p>
1023Language constructs will be explained using the usual extended BNF notation,
1024in which
1025{<em>a</em>}&nbsp;means&nbsp;0 or more <em>a</em>'s, and
1026[<em>a</em>]&nbsp;means an optional <em>a</em>.
1027Non-terminals are shown like non-terminal,
1028keywords are shown like <b>kword</b>,
1029and other terminal symbols are shown like &lsquo;<b>=</b>&rsquo;.
1030The complete syntax of Lua can be found in <a href="#9">&sect;9</a>
1031at the end of this manual.
1032
1033
1034
1035<h2>3.1 &ndash; <a name="3.1">Lexical Conventions</a></h2>
1036
1037<p>
1038Lua is a free-form language.
1039It ignores spaces (including new lines) and comments
1040between lexical elements (tokens),
1041except as delimiters between names and keywords.
1042
1043
1044<p>
1045<em>Names</em>
1046(also called <em>identifiers</em>)
1047in Lua can be any string of letters,
1048digits, and underscores,
1049not beginning with a digit.
1050Identifiers are used to name variables, table fields, and labels.
1051
1052
1053<p>
1054The following <em>keywords</em> are reserved
1055and cannot be used as names:
1056
1057
1058<pre>
1059     and       break     do        else      elseif    end
1060     false     for       function  goto      if        in
1061     local     nil       not       or        repeat    return
1062     then      true      until     while
1063</pre>
1064
1065<p>
1066Lua is a case-sensitive language:
1067<code>and</code> is a reserved word, but <code>And</code> and <code>AND</code>
1068are two different, valid names.
1069As a convention,
1070programs should avoid creating
1071names that start with an underscore followed by
1072one or more uppercase letters (such as <a href="#pdf-_VERSION"><code>_VERSION</code></a>).
1073
1074
1075<p>
1076The following strings denote other tokens:
1077
1078<pre>
1079     +     -     *     /     %     ^     #
1080     &amp;     ~     |     &lt;&lt;    &gt;&gt;    //
1081     ==    ~=    &lt;=    &gt;=    &lt;     &gt;     =
1082     (     )     {     }     [     ]     ::
1083     ;     :     ,     .     ..    ...
1084</pre>
1085
1086<p>
1087<em>Literal strings</em>
1088can be delimited by matching single or double quotes,
1089and can contain the following C-like escape sequences:
1090'<code>\a</code>' (bell),
1091'<code>\b</code>' (backspace),
1092'<code>\f</code>' (form feed),
1093'<code>\n</code>' (newline),
1094'<code>\r</code>' (carriage return),
1095'<code>\t</code>' (horizontal tab),
1096'<code>\v</code>' (vertical tab),
1097'<code>\\</code>' (backslash),
1098'<code>\"</code>' (quotation mark [double quote]),
1099and '<code>\'</code>' (apostrophe [single quote]).
1100A backslash followed by a real newline
1101results in a newline in the string.
1102The escape sequence '<code>\z</code>' skips the following span
1103of white-space characters,
1104including line breaks;
1105it is particularly useful to break and indent a long literal string
1106into multiple lines without adding the newlines and spaces
1107into the string contents.
1108
1109
1110<p>
1111Strings in Lua can contain any 8-bit value, including embedded zeros,
1112which can be specified as '<code>\0</code>'.
1113More generally,
1114we can specify any byte in a literal string by its numerical value.
1115This can be done
1116with the escape sequence <code>\x<em>XX</em></code>,
1117where <em>XX</em> is a sequence of exactly two hexadecimal digits,
1118or with the escape sequence <code>\<em>ddd</em></code>,
1119where <em>ddd</em> is a sequence of up to three decimal digits.
1120(Note that if a decimal escape sequence is to be followed by a digit,
1121it must be expressed using exactly three digits.)
1122
1123
1124<p>
1125The UTF-8 encoding of a Unicode character
1126can be inserted in a literal string with
1127the escape sequence <code>\u{<em>XXX</em>}</code>
1128(note the mandatory enclosing brackets),
1129where <em>XXX</em> is a sequence of one or more hexadecimal digits
1130representing the character code point.
1131
1132
1133<p>
1134Literal strings can also be defined using a long format
1135enclosed by <em>long brackets</em>.
1136We define an <em>opening long bracket of level <em>n</em></em> as an opening
1137square bracket followed by <em>n</em> equal signs followed by another
1138opening square bracket.
1139So, an opening long bracket of level&nbsp;0 is written as <code>[[</code>,
1140an opening long bracket of level&nbsp;1 is written as <code>[=[</code>,
1141and so on.
1142A <em>closing long bracket</em> is defined similarly;
1143for instance,
1144a closing long bracket of level&nbsp;4 is written as  <code>]====]</code>.
1145A <em>long literal</em> starts with an opening long bracket of any level and
1146ends at the first closing long bracket of the same level.
1147It can contain any text except a closing bracket of the same level.
1148Literals in this bracketed form can run for several lines,
1149do not interpret any escape sequences,
1150and ignore long brackets of any other level.
1151Any kind of end-of-line sequence
1152(carriage return, newline, carriage return followed by newline,
1153or newline followed by carriage return)
1154is converted to a simple newline.
1155
1156
1157<p>
1158Any byte in a literal string not
1159explicitly affected by the previous rules represents itself.
1160However, Lua opens files for parsing in text mode,
1161and the system file functions may have problems with
1162some control characters.
1163So, it is safer to represent
1164non-text data as a quoted literal with
1165explicit escape sequences for non-text characters.
1166
1167
1168<p>
1169For convenience,
1170when the opening long bracket is immediately followed by a newline,
1171the newline is not included in the string.
1172As an example, in a system using ASCII
1173(in which '<code>a</code>' is coded as&nbsp;97,
1174newline is coded as&nbsp;10, and '<code>1</code>' is coded as&nbsp;49),
1175the five literal strings below denote the same string:
1176
1177<pre>
1178     a = 'alo\n123"'
1179     a = "alo\n123\""
1180     a = '\97lo\10\04923"'
1181     a = [[alo
1182     123"]]
1183     a = [==[
1184     alo
1185     123"]==]
1186</pre>
1187
1188<p>
1189A <em>numerical constant</em> (or <em>numeral</em>)
1190can be written with an optional fractional part
1191and an optional decimal exponent,
1192marked by a letter '<code>e</code>' or '<code>E</code>'.
1193Lua also accepts hexadecimal constants,
1194which start with <code>0x</code> or <code>0X</code>.
1195Hexadecimal constants also accept an optional fractional part
1196plus an optional binary exponent,
1197marked by a letter '<code>p</code>' or '<code>P</code>'.
1198A numeric constant with a fractional dot or an exponent
1199denotes a float;
1200otherwise it denotes an integer.
1201Examples of valid integer constants are
1202
1203<pre>
1204     3   345   0xff   0xBEBADA
1205</pre><p>
1206Examples of valid float constants are
1207
1208<pre>
1209     3.0     3.1416     314.16e-2     0.31416E1     34e1
1210     0x0.1E  0xA23p-4   0X1.921FB54442D18P+1
1211</pre>
1212
1213<p>
1214A <em>comment</em> starts with a double hyphen (<code>--</code>)
1215anywhere outside a string.
1216If the text immediately after <code>--</code> is not an opening long bracket,
1217the comment is a <em>short comment</em>,
1218which runs until the end of the line.
1219Otherwise, it is a <em>long comment</em>,
1220which runs until the corresponding closing long bracket.
1221Long comments are frequently used to disable code temporarily.
1222
1223
1224
1225
1226
1227<h2>3.2 &ndash; <a name="3.2">Variables</a></h2>
1228
1229<p>
1230Variables are places that store values.
1231There are three kinds of variables in Lua:
1232global variables, local variables, and table fields.
1233
1234
1235<p>
1236A single name can denote a global variable or a local variable
1237(or a function's formal parameter,
1238which is a particular kind of local variable):
1239
1240<pre>
1241	var ::= Name
1242</pre><p>
1243Name denotes identifiers, as defined in <a href="#3.1">&sect;3.1</a>.
1244
1245
1246<p>
1247Any variable name is assumed to be global unless explicitly declared
1248as a local (see <a href="#3.3.7">&sect;3.3.7</a>).
1249Local variables are <em>lexically scoped</em>:
1250local variables can be freely accessed by functions
1251defined inside their scope (see <a href="#3.5">&sect;3.5</a>).
1252
1253
1254<p>
1255Before the first assignment to a variable, its value is <b>nil</b>.
1256
1257
1258<p>
1259Square brackets are used to index a table:
1260
1261<pre>
1262	var ::= prefixexp &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo;
1263</pre><p>
1264The meaning of accesses to table fields can be changed via metatables.
1265An access to an indexed variable <code>t[i]</code> is equivalent to
1266a call <code>gettable_event(t,i)</code>.
1267(See <a href="#2.4">&sect;2.4</a> for a complete description of the
1268<code>gettable_event</code> function.
1269This function is not defined or callable in Lua.
1270We use it here only for explanatory purposes.)
1271
1272
1273<p>
1274The syntax <code>var.Name</code> is just syntactic sugar for
1275<code>var["Name"]</code>:
1276
1277<pre>
1278	var ::= prefixexp &lsquo;<b>.</b>&rsquo; Name
1279</pre>
1280
1281<p>
1282An access to a global variable <code>x</code>
1283is equivalent to <code>_ENV.x</code>.
1284Due to the way that chunks are compiled,
1285<code>_ENV</code> is never a global name (see <a href="#2.2">&sect;2.2</a>).
1286
1287
1288
1289
1290
1291<h2>3.3 &ndash; <a name="3.3">Statements</a></h2>
1292
1293<p>
1294Lua supports an almost conventional set of statements,
1295similar to those in Pascal or C.
1296This set includes
1297assignments, control structures, function calls,
1298and variable declarations.
1299
1300
1301
1302<h3>3.3.1 &ndash; <a name="3.3.1">Blocks</a></h3>
1303
1304<p>
1305A block is a list of statements,
1306which are executed sequentially:
1307
1308<pre>
1309	block ::= {stat}
1310</pre><p>
1311Lua has <em>empty statements</em>
1312that allow you to separate statements with semicolons,
1313start a block with a semicolon
1314or write two semicolons in sequence:
1315
1316<pre>
1317	stat ::= &lsquo;<b>;</b>&rsquo;
1318</pre>
1319
1320<p>
1321Function calls and assignments
1322can start with an open parenthesis.
1323This possibility leads to an ambiguity in Lua's grammar.
1324Consider the following fragment:
1325
1326<pre>
1327     a = b + c
1328     (print or io.write)('done')
1329</pre><p>
1330The grammar could see it in two ways:
1331
1332<pre>
1333     a = b + c(print or io.write)('done')
1334
1335     a = b + c; (print or io.write)('done')
1336</pre><p>
1337The current parser always sees such constructions
1338in the first way,
1339interpreting the open parenthesis
1340as the start of the arguments to a call.
1341To avoid this ambiguity,
1342it is a good practice to always precede with a semicolon
1343statements that start with a parenthesis:
1344
1345<pre>
1346     ;(print or io.write)('done')
1347</pre>
1348
1349<p>
1350A block can be explicitly delimited to produce a single statement:
1351
1352<pre>
1353	stat ::= <b>do</b> block <b>end</b>
1354</pre><p>
1355Explicit blocks are useful
1356to control the scope of variable declarations.
1357Explicit blocks are also sometimes used to
1358add a <b>return</b> statement in the middle
1359of another block (see <a href="#3.3.4">&sect;3.3.4</a>).
1360
1361
1362
1363
1364
1365<h3>3.3.2 &ndash; <a name="3.3.2">Chunks</a></h3>
1366
1367<p>
1368The unit of compilation of Lua is called a <em>chunk</em>.
1369Syntactically,
1370a chunk is simply a block:
1371
1372<pre>
1373	chunk ::= block
1374</pre>
1375
1376<p>
1377Lua handles a chunk as the body of an anonymous function
1378with a variable number of arguments
1379(see <a href="#3.4.11">&sect;3.4.11</a>).
1380As such, chunks can define local variables,
1381receive arguments, and return values.
1382Moreover, such anonymous function is compiled as in the
1383scope of an external local variable called <code>_ENV</code> (see <a href="#2.2">&sect;2.2</a>).
1384The resulting function always has <code>_ENV</code> as its only upvalue,
1385even if it does not use that variable.
1386
1387
1388<p>
1389A chunk can be stored in a file or in a string inside the host program.
1390To execute a chunk,
1391Lua first <em>loads</em> it,
1392precompiling the chunk's code into instructions for a virtual machine,
1393and then Lua executes the compiled code
1394with an interpreter for the virtual machine.
1395
1396
1397<p>
1398Chunks can also be precompiled into binary form;
1399see program <code>luac</code> and function <a href="#pdf-string.dump"><code>string.dump</code></a> for details.
1400Programs in source and compiled forms are interchangeable;
1401Lua automatically detects the file type and acts accordingly (see <a href="#pdf-load"><code>load</code></a>).
1402
1403
1404
1405
1406
1407<h3>3.3.3 &ndash; <a name="3.3.3">Assignment</a></h3>
1408
1409<p>
1410Lua allows multiple assignments.
1411Therefore, the syntax for assignment
1412defines a list of variables on the left side
1413and a list of expressions on the right side.
1414The elements in both lists are separated by commas:
1415
1416<pre>
1417	stat ::= varlist &lsquo;<b>=</b>&rsquo; explist
1418	varlist ::= var {&lsquo;<b>,</b>&rsquo; var}
1419	explist ::= exp {&lsquo;<b>,</b>&rsquo; exp}
1420</pre><p>
1421Expressions are discussed in <a href="#3.4">&sect;3.4</a>.
1422
1423
1424<p>
1425Before the assignment,
1426the list of values is <em>adjusted</em> to the length of
1427the list of variables.
1428If there are more values than needed,
1429the excess values are thrown away.
1430If there are fewer values than needed,
1431the list is extended with as many  <b>nil</b>'s as needed.
1432If the list of expressions ends with a function call,
1433then all values returned by that call enter the list of values,
1434before the adjustment
1435(except when the call is enclosed in parentheses; see <a href="#3.4">&sect;3.4</a>).
1436
1437
1438<p>
1439The assignment statement first evaluates all its expressions
1440and only then the assignments are performed.
1441Thus the code
1442
1443<pre>
1444     i = 3
1445     i, a[i] = i+1, 20
1446</pre><p>
1447sets <code>a[3]</code> to 20, without affecting <code>a[4]</code>
1448because the <code>i</code> in <code>a[i]</code> is evaluated (to 3)
1449before it is assigned&nbsp;4.
1450Similarly, the line
1451
1452<pre>
1453     x, y = y, x
1454</pre><p>
1455exchanges the values of <code>x</code> and <code>y</code>,
1456and
1457
1458<pre>
1459     x, y, z = y, z, x
1460</pre><p>
1461cyclically permutes the values of <code>x</code>, <code>y</code>, and <code>z</code>.
1462
1463
1464<p>
1465The meaning of assignments to global variables
1466and table fields can be changed via metatables.
1467An assignment to an indexed variable <code>t[i] = val</code> is equivalent to
1468<code>settable_event(t,i,val)</code>.
1469(See <a href="#2.4">&sect;2.4</a> for a complete description of the
1470<code>settable_event</code> function.
1471This function is not defined or callable in Lua.
1472We use it here only for explanatory purposes.)
1473
1474
1475<p>
1476An assignment to a global name <code>x = val</code>
1477is equivalent to the assignment
1478<code>_ENV.x = val</code> (see <a href="#2.2">&sect;2.2</a>).
1479
1480
1481
1482
1483
1484<h3>3.3.4 &ndash; <a name="3.3.4">Control Structures</a></h3><p>
1485The control structures
1486<b>if</b>, <b>while</b>, and <b>repeat</b> have the usual meaning and
1487familiar syntax:
1488
1489
1490
1491
1492<pre>
1493	stat ::= <b>while</b> exp <b>do</b> block <b>end</b>
1494	stat ::= <b>repeat</b> block <b>until</b> exp
1495	stat ::= <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b>
1496</pre><p>
1497Lua also has a <b>for</b> statement, in two flavors (see <a href="#3.3.5">&sect;3.3.5</a>).
1498
1499
1500<p>
1501The condition expression of a
1502control structure can return any value.
1503Both <b>false</b> and <b>nil</b> are considered false.
1504All values different from <b>nil</b> and <b>false</b> are considered true
1505(in particular, the number 0 and the empty string are also true).
1506
1507
1508<p>
1509In the <b>repeat</b>&ndash;<b>until</b> loop,
1510the inner block does not end at the <b>until</b> keyword,
1511but only after the condition.
1512So, the condition can refer to local variables
1513declared inside the loop block.
1514
1515
1516<p>
1517The <b>goto</b> statement transfers the program control to a label.
1518For syntactical reasons,
1519labels in Lua are considered statements too:
1520
1521
1522
1523<pre>
1524	stat ::= <b>goto</b> Name
1525	stat ::= label
1526	label ::= &lsquo;<b>::</b>&rsquo; Name &lsquo;<b>::</b>&rsquo;
1527</pre>
1528
1529<p>
1530A label is visible in the entire block where it is defined,
1531except
1532inside nested blocks where a label with the same name is defined and
1533inside nested functions.
1534A goto may jump to any visible label as long as it does not
1535enter into the scope of a local variable.
1536
1537
1538<p>
1539Labels and empty statements are called <em>void statements</em>,
1540as they perform no actions.
1541
1542
1543<p>
1544The <b>break</b> statement terminates the execution of a
1545<b>while</b>, <b>repeat</b>, or <b>for</b> loop,
1546skipping to the next statement after the loop:
1547
1548
1549<pre>
1550	stat ::= <b>break</b>
1551</pre><p>
1552A <b>break</b> ends the innermost enclosing loop.
1553
1554
1555<p>
1556The <b>return</b> statement is used to return values
1557from a function or a chunk
1558(which is an anonymous function).
1559
1560Functions can return more than one value,
1561so the syntax for the <b>return</b> statement is
1562
1563<pre>
1564	stat ::= <b>return</b> [explist] [&lsquo;<b>;</b>&rsquo;]
1565</pre>
1566
1567<p>
1568The <b>return</b> statement can only be written
1569as the last statement of a block.
1570If it is really necessary to <b>return</b> in the middle of a block,
1571then an explicit inner block can be used,
1572as in the idiom <code>do return end</code>,
1573because now <b>return</b> is the last statement in its (inner) block.
1574
1575
1576
1577
1578
1579<h3>3.3.5 &ndash; <a name="3.3.5">For Statement</a></h3>
1580
1581<p>
1582
1583The <b>for</b> statement has two forms:
1584one numeric and one generic.
1585
1586
1587<p>
1588The numeric <b>for</b> loop repeats a block of code while a
1589control variable runs through an arithmetic progression.
1590It has the following syntax:
1591
1592<pre>
1593	stat ::= <b>for</b> Name &lsquo;<b>=</b>&rsquo; exp &lsquo;<b>,</b>&rsquo; exp [&lsquo;<b>,</b>&rsquo; exp] <b>do</b> block <b>end</b>
1594</pre><p>
1595The <em>block</em> is repeated for <em>name</em> starting at the value of
1596the first <em>exp</em>, until it passes the second <em>exp</em> by steps of the
1597third <em>exp</em>.
1598More precisely, a <b>for</b> statement like
1599
1600<pre>
1601     for v = <em>e1</em>, <em>e2</em>, <em>e3</em> do <em>block</em> end
1602</pre><p>
1603is equivalent to the code:
1604
1605<pre>
1606     do
1607       local <em>var</em>, <em>limit</em>, <em>step</em> = tonumber(<em>e1</em>), tonumber(<em>e2</em>), tonumber(<em>e3</em>)
1608       if not (<em>var</em> and <em>limit</em> and <em>step</em>) then error() end
1609       <em>var</em> = <em>var</em> - <em>step</em>
1610       while true do
1611         <em>var</em> = <em>var</em> + <em>step</em>
1612         if (<em>step</em> &gt;= 0 and <em>var</em> &gt; <em>limit</em>) or (<em>step</em> &lt; 0 and <em>var</em> &lt; <em>limit</em>) then
1613           break
1614         end
1615         local v = <em>var</em>
1616         <em>block</em>
1617       end
1618     end
1619</pre>
1620
1621<p>
1622Note the following:
1623
1624<ul>
1625
1626<li>
1627All three control expressions are evaluated only once,
1628before the loop starts.
1629They must all result in numbers.
1630</li>
1631
1632<li>
1633<code><em>var</em></code>, <code><em>limit</em></code>, and <code><em>step</em></code> are invisible variables.
1634The names shown here are for explanatory purposes only.
1635</li>
1636
1637<li>
1638If the third expression (the step) is absent,
1639then a step of&nbsp;1 is used.
1640</li>
1641
1642<li>
1643You can use <b>break</b> and <b>goto</b> to exit a <b>for</b> loop.
1644</li>
1645
1646<li>
1647The loop variable <code>v</code> is local to the loop body.
1648If you need its value after the loop,
1649assign it to another variable before exiting the loop.
1650</li>
1651
1652</ul>
1653
1654<p>
1655The generic <b>for</b> statement works over functions,
1656called <em>iterators</em>.
1657On each iteration, the iterator function is called to produce a new value,
1658stopping when this new value is <b>nil</b>.
1659The generic <b>for</b> loop has the following syntax:
1660
1661<pre>
1662	stat ::= <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b>
1663	namelist ::= Name {&lsquo;<b>,</b>&rsquo; Name}
1664</pre><p>
1665A <b>for</b> statement like
1666
1667<pre>
1668     for <em>var_1</em>, &middot;&middot;&middot;, <em>var_n</em> in <em>explist</em> do <em>block</em> end
1669</pre><p>
1670is equivalent to the code:
1671
1672<pre>
1673     do
1674       local <em>f</em>, <em>s</em>, <em>var</em> = <em>explist</em>
1675       while true do
1676         local <em>var_1</em>, &middot;&middot;&middot;, <em>var_n</em> = <em>f</em>(<em>s</em>, <em>var</em>)
1677         if <em>var_1</em> == nil then break end
1678         <em>var</em> = <em>var_1</em>
1679         <em>block</em>
1680       end
1681     end
1682</pre><p>
1683Note the following:
1684
1685<ul>
1686
1687<li>
1688<code><em>explist</em></code> is evaluated only once.
1689Its results are an <em>iterator</em> function,
1690a <em>state</em>,
1691and an initial value for the first <em>iterator variable</em>.
1692</li>
1693
1694<li>
1695<code><em>f</em></code>, <code><em>s</em></code>, and <code><em>var</em></code> are invisible variables.
1696The names are here for explanatory purposes only.
1697</li>
1698
1699<li>
1700You can use <b>break</b> to exit a <b>for</b> loop.
1701</li>
1702
1703<li>
1704The loop variables <code><em>var_i</em></code> are local to the loop;
1705you cannot use their values after the <b>for</b> ends.
1706If you need these values,
1707then assign them to other variables before breaking or exiting the loop.
1708</li>
1709
1710</ul>
1711
1712
1713
1714
1715<h3>3.3.6 &ndash; <a name="3.3.6">Function Calls as Statements</a></h3><p>
1716To allow possible side-effects,
1717function calls can be executed as statements:
1718
1719<pre>
1720	stat ::= functioncall
1721</pre><p>
1722In this case, all returned values are thrown away.
1723Function calls are explained in <a href="#3.4.10">&sect;3.4.10</a>.
1724
1725
1726
1727
1728
1729<h3>3.3.7 &ndash; <a name="3.3.7">Local Declarations</a></h3><p>
1730Local variables can be declared anywhere inside a block.
1731The declaration can include an initial assignment:
1732
1733<pre>
1734	stat ::= <b>local</b> namelist [&lsquo;<b>=</b>&rsquo; explist]
1735</pre><p>
1736If present, an initial assignment has the same semantics
1737of a multiple assignment (see <a href="#3.3.3">&sect;3.3.3</a>).
1738Otherwise, all variables are initialized with <b>nil</b>.
1739
1740
1741<p>
1742A chunk is also a block (see <a href="#3.3.2">&sect;3.3.2</a>),
1743and so local variables can be declared in a chunk outside any explicit block.
1744
1745
1746<p>
1747The visibility rules for local variables are explained in <a href="#3.5">&sect;3.5</a>.
1748
1749
1750
1751
1752
1753
1754
1755<h2>3.4 &ndash; <a name="3.4">Expressions</a></h2>
1756
1757<p>
1758The basic expressions in Lua are the following:
1759
1760<pre>
1761	exp ::= prefixexp
1762	exp ::= <b>nil</b> | <b>false</b> | <b>true</b>
1763	exp ::= Numeral
1764	exp ::= LiteralString
1765	exp ::= functiondef
1766	exp ::= tableconstructor
1767	exp ::= &lsquo;<b>...</b>&rsquo;
1768	exp ::= exp binop exp
1769	exp ::= unop exp
1770	prefixexp ::= var | functioncall | &lsquo;<b>(</b>&rsquo; exp &lsquo;<b>)</b>&rsquo;
1771</pre>
1772
1773<p>
1774Numerals and literal strings are explained in <a href="#3.1">&sect;3.1</a>;
1775variables are explained in <a href="#3.2">&sect;3.2</a>;
1776function definitions are explained in <a href="#3.4.11">&sect;3.4.11</a>;
1777function calls are explained in <a href="#3.4.10">&sect;3.4.10</a>;
1778table constructors are explained in <a href="#3.4.9">&sect;3.4.9</a>.
1779Vararg expressions,
1780denoted by three dots ('<code>...</code>'), can only be used when
1781directly inside a vararg function;
1782they are explained in <a href="#3.4.11">&sect;3.4.11</a>.
1783
1784
1785<p>
1786Binary operators comprise arithmetic operators (see <a href="#3.4.1">&sect;3.4.1</a>),
1787bitwise operators (see <a href="#3.4.2">&sect;3.4.2</a>),
1788relational operators (see <a href="#3.4.4">&sect;3.4.4</a>), logical operators (see <a href="#3.4.5">&sect;3.4.5</a>),
1789and the concatenation operator (see <a href="#3.4.6">&sect;3.4.6</a>).
1790Unary operators comprise the unary minus (see <a href="#3.4.1">&sect;3.4.1</a>),
1791the unary bitwise not (see <a href="#3.4.2">&sect;3.4.2</a>),
1792the unary logical <b>not</b> (see <a href="#3.4.5">&sect;3.4.5</a>),
1793and the unary <em>length operator</em> (see <a href="#3.4.7">&sect;3.4.7</a>).
1794
1795
1796<p>
1797Both function calls and vararg expressions can result in multiple values.
1798If a function call is used as a statement (see <a href="#3.3.6">&sect;3.3.6</a>),
1799then its return list is adjusted to zero elements,
1800thus discarding all returned values.
1801If an expression is used as the last (or the only) element
1802of a list of expressions,
1803then no adjustment is made
1804(unless the expression is enclosed in parentheses).
1805In all other contexts,
1806Lua adjusts the result list to one element,
1807either discarding all values except the first one
1808or adding a single <b>nil</b> if there are no values.
1809
1810
1811<p>
1812Here are some examples:
1813
1814<pre>
1815     f()                -- adjusted to 0 results
1816     g(f(), x)          -- f() is adjusted to 1 result
1817     g(x, f())          -- g gets x plus all results from f()
1818     a,b,c = f(), x     -- f() is adjusted to 1 result (c gets nil)
1819     a,b = ...          -- a gets the first vararg parameter, b gets
1820                        -- the second (both a and b can get nil if there
1821                        -- is no corresponding vararg parameter)
1822
1823     a,b,c = x, f()     -- f() is adjusted to 2 results
1824     a,b,c = f()        -- f() is adjusted to 3 results
1825     return f()         -- returns all results from f()
1826     return ...         -- returns all received vararg parameters
1827     return x,y,f()     -- returns x, y, and all results from f()
1828     {f()}              -- creates a list with all results from f()
1829     {...}              -- creates a list with all vararg parameters
1830     {f(), nil}         -- f() is adjusted to 1 result
1831</pre>
1832
1833<p>
1834Any expression enclosed in parentheses always results in only one value.
1835Thus,
1836<code>(f(x,y,z))</code> is always a single value,
1837even if <code>f</code> returns several values.
1838(The value of <code>(f(x,y,z))</code> is the first value returned by <code>f</code>
1839or <b>nil</b> if <code>f</code> does not return any values.)
1840
1841
1842
1843<h3>3.4.1 &ndash; <a name="3.4.1">Arithmetic Operators</a></h3><p>
1844Lua supports the following arithmetic operators:
1845
1846<ul>
1847<li><b><code>+</code>: </b>addition</li>
1848<li><b><code>-</code>: </b>subtraction</li>
1849<li><b><code>*</code>: </b>multiplication</li>
1850<li><b><code>/</code>: </b>float division</li>
1851<li><b><code>//</code>: </b>floor division</li>
1852<li><b><code>%</code>: </b>modulo</li>
1853<li><b><code>^</code>: </b>exponentiation</li>
1854<li><b><code>-</code>: </b>unary minus</li>
1855</ul>
1856
1857<p>
1858With the exception of exponentiation and float division,
1859the arithmetic operators work as follows:
1860If both operands are integers,
1861the operation is performed over integers and the result is an integer.
1862Otherwise, if both operands are numbers
1863or strings that can be converted to
1864numbers (see <a href="#3.4.3">&sect;3.4.3</a>),
1865then they are converted to floats,
1866the operation is performed following the usual rules
1867for floating-point arithmetic
1868(usually the IEEE 754 standard),
1869and the result is a float.
1870
1871
1872<p>
1873Exponentiation and float division (<code>/</code>)
1874always convert their operands to floats
1875and the result is always a float.
1876Exponentiation uses the ISO&nbsp;C function <code>pow</code>,
1877so that it works for non-integer exponents too.
1878
1879
1880<p>
1881Floor division (<code>//</code>) is a division
1882that rounds the quotient towards minus infinite,
1883that is, the floor of the division of its operands.
1884
1885
1886<p>
1887Modulo is defined as the remainder of a division
1888that rounds the quotient towards minus infinite (floor division).
1889
1890
1891<p>
1892In case of overflows in integer arithmetic,
1893all operations <em>wrap around</em>,
1894according to the usual rules of two-complement arithmetic.
1895(In other words,
1896they return the unique representable integer
1897that is equal modulo <em>2<sup>64</sup></em> to the mathematical result.)
1898
1899
1900
1901<h3>3.4.2 &ndash; <a name="3.4.2">Bitwise Operators</a></h3><p>
1902Lua supports the following bitwise operators:
1903
1904<ul>
1905<li><b><code>&amp;</code>: </b>bitwise and</li>
1906<li><b><code>&#124;</code>: </b>bitwise or</li>
1907<li><b><code>~</code>: </b>bitwise exclusive or</li>
1908<li><b><code>&gt;&gt;</code>: </b>right shift</li>
1909<li><b><code>&lt;&lt;</code>: </b>left shift</li>
1910<li><b><code>~</code>: </b>unary bitwise not</li>
1911</ul>
1912
1913<p>
1914All bitwise operations convert its operands to integers
1915(see <a href="#3.4.3">&sect;3.4.3</a>),
1916operate on all bits of those integers,
1917and result in an integer.
1918
1919
1920<p>
1921Both right and left shifts fill the vacant bits with zeros.
1922Negative displacements shift to the other direction;
1923displacements with absolute values equal to or higher than
1924the number of bits in an integer
1925result in zero (as all bits are shifted out).
1926
1927
1928
1929
1930
1931<h3>3.4.3 &ndash; <a name="3.4.3">Coercions and Conversions</a></h3><p>
1932Lua provides some automatic conversions between some
1933types and representations at run time.
1934Bitwise operators always convert float operands to integers.
1935Exponentiation and float division
1936always convert integer operands to floats.
1937All other arithmetic operations applied to mixed numbers
1938(integers and floats) convert the integer operand to a float;
1939this is called the <em>usual rule</em>.
1940The C API also converts both integers to floats and
1941floats to integers, as needed.
1942Moreover, string concatenation accepts numbers as arguments,
1943besides strings.
1944
1945
1946<p>
1947Lua also converts strings to numbers,
1948whenever a number is expected.
1949
1950
1951<p>
1952In a conversion from integer to float,
1953if the integer value has an exact representation as a float,
1954that is the result.
1955Otherwise,
1956the conversion gets the nearest higher or
1957the nearest lower representable value.
1958This kind of conversion never fails.
1959
1960
1961<p>
1962The conversion from float to integer
1963checks whether the float has an exact representation as an integer
1964(that is, the float has an integral value and
1965it is in the range of integer representation).
1966If it does, that representation is the result.
1967Otherwise, the conversion fails.
1968
1969
1970<p>
1971The conversion from strings to numbers goes as follows:
1972First, the string is converted to an integer or a float,
1973following its syntax and the rules of the Lua lexer.
1974(The string may have also leading and trailing spaces and a sign.)
1975Then, the resulting number is converted to the required type
1976(float or integer) according to the previous rules.
1977
1978
1979<p>
1980The conversion from numbers to strings uses a
1981non-specified human-readable format.
1982For complete control over how numbers are converted to strings,
1983use the <code>format</code> function from the string library
1984(see <a href="#pdf-string.format"><code>string.format</code></a>).
1985
1986
1987
1988
1989
1990<h3>3.4.4 &ndash; <a name="3.4.4">Relational Operators</a></h3><p>
1991Lua supports the following relational operators:
1992
1993<ul>
1994<li><b><code>==</code>: </b>equality</li>
1995<li><b><code>~=</code>: </b>inequality</li>
1996<li><b><code>&lt;</code>: </b>less than</li>
1997<li><b><code>&gt;</code>: </b>greater than</li>
1998<li><b><code>&lt;=</code>: </b>less or equal</li>
1999<li><b><code>&gt;=</code>: </b>greater or equal</li>
2000</ul><p>
2001These operators always result in <b>false</b> or <b>true</b>.
2002
2003
2004<p>
2005Equality (<code>==</code>) first compares the type of its operands.
2006If the types are different, then the result is <b>false</b>.
2007Otherwise, the values of the operands are compared.
2008Strings are compared in the obvious way.
2009Numbers follow the usual rule for binary operations:
2010if both operands are integers,
2011they are compared as integers;
2012otherwise, they are converted to floats
2013and compared as such.
2014
2015
2016<p>
2017Tables, userdata, and threads
2018are compared by reference:
2019two objects are considered equal only if they are the same object.
2020Every time you create a new object
2021(a table, userdata, or thread),
2022this new object is different from any previously existing object.
2023Closures with the same reference are always equal.
2024Closures with any detectable difference
2025(different behavior, different definition) are always different.
2026
2027
2028<p>
2029You can change the way that Lua compares tables and userdata
2030by using the "eq" metamethod (see <a href="#2.4">&sect;2.4</a>).
2031
2032
2033<p>
2034Equality comparisons do not convert strings to numbers
2035or vice versa.
2036Thus, <code>"0"==0</code> evaluates to <b>false</b>,
2037and <code>t[0]</code> and <code>t["0"]</code> denote different
2038entries in a table.
2039
2040
2041<p>
2042The operator <code>~=</code> is exactly the negation of equality (<code>==</code>).
2043
2044
2045<p>
2046The order operators work as follows.
2047If both arguments are numbers,
2048then they are compared following
2049the usual rule for binary operations.
2050Otherwise, if both arguments are strings,
2051then their values are compared according to the current locale.
2052Otherwise, Lua tries to call the "lt" or the "le"
2053metamethod (see <a href="#2.4">&sect;2.4</a>).
2054A comparison <code>a &gt; b</code> is translated to <code>b &lt; a</code>
2055and <code>a &gt;= b</code> is translated to <code>b &lt;= a</code>.
2056
2057
2058
2059
2060
2061<h3>3.4.5 &ndash; <a name="3.4.5">Logical Operators</a></h3><p>
2062The logical operators in Lua are
2063<b>and</b>, <b>or</b>, and <b>not</b>.
2064Like the control structures (see <a href="#3.3.4">&sect;3.3.4</a>),
2065all logical operators consider both <b>false</b> and <b>nil</b> as false
2066and anything else as true.
2067
2068
2069<p>
2070The negation operator <b>not</b> always returns <b>false</b> or <b>true</b>.
2071The conjunction operator <b>and</b> returns its first argument
2072if this value is <b>false</b> or <b>nil</b>;
2073otherwise, <b>and</b> returns its second argument.
2074The disjunction operator <b>or</b> returns its first argument
2075if this value is different from <b>nil</b> and <b>false</b>;
2076otherwise, <b>or</b> returns its second argument.
2077Both <b>and</b> and <b>or</b> use short-circuit evaluation;
2078that is,
2079the second operand is evaluated only if necessary.
2080Here are some examples:
2081
2082<pre>
2083     10 or 20            --&gt; 10
2084     10 or error()       --&gt; 10
2085     nil or "a"          --&gt; "a"
2086     nil and 10          --&gt; nil
2087     false and error()   --&gt; false
2088     false and nil       --&gt; false
2089     false or nil        --&gt; nil
2090     10 and 20           --&gt; 20
2091</pre><p>
2092(In this manual,
2093<code>--&gt;</code> indicates the result of the preceding expression.)
2094
2095
2096
2097
2098
2099<h3>3.4.6 &ndash; <a name="3.4.6">Concatenation</a></h3><p>
2100The string concatenation operator in Lua is
2101denoted by two dots ('<code>..</code>').
2102If both operands are strings or numbers, then they are converted to
2103strings according to the rules described in <a href="#3.4.3">&sect;3.4.3</a>.
2104Otherwise, the <code>__concat</code> metamethod is called (see <a href="#2.4">&sect;2.4</a>).
2105
2106
2107
2108
2109
2110<h3>3.4.7 &ndash; <a name="3.4.7">The Length Operator</a></h3>
2111
2112<p>
2113The length operator is denoted by the unary prefix operator <code>#</code>.
2114The length of a string is its number of bytes
2115(that is, the usual meaning of string length when each
2116character is one byte).
2117
2118
2119<p>
2120A program can modify the behavior of the length operator for
2121any value but strings through the <code>__len</code> metamethod (see <a href="#2.4">&sect;2.4</a>).
2122
2123
2124<p>
2125Unless a <code>__len</code> metamethod is given,
2126the length of a table <code>t</code> is only defined if the
2127table is a <em>sequence</em>,
2128that is,
2129the set of its positive numeric keys is equal to <em>{1..n}</em>
2130for some non-negative integer <em>n</em>.
2131In that case, <em>n</em> is its length.
2132Note that a table like
2133
2134<pre>
2135     {10, 20, nil, 40}
2136</pre><p>
2137is not a sequence, because it has the key <code>4</code>
2138but does not have the key <code>3</code>.
2139(So, there is no <em>n</em> such that the set <em>{1..n}</em> is equal
2140to the set of positive numeric keys of that table.)
2141Note, however, that non-numeric keys do not interfere
2142with whether a table is a sequence.
2143
2144
2145
2146
2147
2148<h3>3.4.8 &ndash; <a name="3.4.8">Precedence</a></h3><p>
2149Operator precedence in Lua follows the table below,
2150from lower to higher priority:
2151
2152<pre>
2153     or
2154     and
2155     &lt;     &gt;     &lt;=    &gt;=    ~=    ==
2156     |
2157     ~
2158     &amp;
2159     &lt;&lt;    &gt;&gt;
2160     ..
2161     +     -
2162     *     /     //    %
2163     unary operators (not   #     -     ~)
2164     ^
2165</pre><p>
2166As usual,
2167you can use parentheses to change the precedences of an expression.
2168The concatenation ('<code>..</code>') and exponentiation ('<code>^</code>')
2169operators are right associative.
2170All other binary operators are left associative.
2171
2172
2173
2174
2175
2176<h3>3.4.9 &ndash; <a name="3.4.9">Table Constructors</a></h3><p>
2177Table constructors are expressions that create tables.
2178Every time a constructor is evaluated, a new table is created.
2179A constructor can be used to create an empty table
2180or to create a table and initialize some of its fields.
2181The general syntax for constructors is
2182
2183<pre>
2184	tableconstructor ::= &lsquo;<b>{</b>&rsquo; [fieldlist] &lsquo;<b>}</b>&rsquo;
2185	fieldlist ::= field {fieldsep field} [fieldsep]
2186	field ::= &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; &lsquo;<b>=</b>&rsquo; exp | Name &lsquo;<b>=</b>&rsquo; exp | exp
2187	fieldsep ::= &lsquo;<b>,</b>&rsquo; | &lsquo;<b>;</b>&rsquo;
2188</pre>
2189
2190<p>
2191Each field of the form <code>[exp1] = exp2</code> adds to the new table an entry
2192with key <code>exp1</code> and value <code>exp2</code>.
2193A field of the form <code>name = exp</code> is equivalent to
2194<code>["name"] = exp</code>.
2195Finally, fields of the form <code>exp</code> are equivalent to
2196<code>[i] = exp</code>, where <code>i</code> are consecutive integers
2197starting with 1.
2198Fields in the other formats do not affect this counting.
2199For example,
2200
2201<pre>
2202     a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }
2203</pre><p>
2204is equivalent to
2205
2206<pre>
2207     do
2208       local t = {}
2209       t[f(1)] = g
2210       t[1] = "x"         -- 1st exp
2211       t[2] = "y"         -- 2nd exp
2212       t.x = 1            -- t["x"] = 1
2213       t[3] = f(x)        -- 3rd exp
2214       t[30] = 23
2215       t[4] = 45          -- 4th exp
2216       a = t
2217     end
2218</pre>
2219
2220<p>
2221The order of the assignments in a constructor is undefined.
2222(This order would be relevant only when there are repeated keys.)
2223
2224
2225<p>
2226If the last field in the list has the form <code>exp</code>
2227and the expression is a function call or a vararg expression,
2228then all values returned by this expression enter the list consecutively
2229(see <a href="#3.4.10">&sect;3.4.10</a>).
2230
2231
2232<p>
2233The field list can have an optional trailing separator,
2234as a convenience for machine-generated code.
2235
2236
2237
2238
2239
2240<h3>3.4.10 &ndash; <a name="3.4.10">Function Calls</a></h3><p>
2241A function call in Lua has the following syntax:
2242
2243<pre>
2244	functioncall ::= prefixexp args
2245</pre><p>
2246In a function call,
2247first prefixexp and args are evaluated.
2248If the value of prefixexp has type <em>function</em>,
2249then this function is called
2250with the given arguments.
2251Otherwise, the prefixexp "call" metamethod is called,
2252having as first parameter the value of prefixexp,
2253followed by the original call arguments
2254(see <a href="#2.4">&sect;2.4</a>).
2255
2256
2257<p>
2258The form
2259
2260<pre>
2261	functioncall ::= prefixexp &lsquo;<b>:</b>&rsquo; Name args
2262</pre><p>
2263can be used to call "methods".
2264A call <code>v:name(<em>args</em>)</code>
2265is syntactic sugar for <code>v.name(v,<em>args</em>)</code>,
2266except that <code>v</code> is evaluated only once.
2267
2268
2269<p>
2270Arguments have the following syntax:
2271
2272<pre>
2273	args ::= &lsquo;<b>(</b>&rsquo; [explist] &lsquo;<b>)</b>&rsquo;
2274	args ::= tableconstructor
2275	args ::= LiteralString
2276</pre><p>
2277All argument expressions are evaluated before the call.
2278A call of the form <code>f{<em>fields</em>}</code> is
2279syntactic sugar for <code>f({<em>fields</em>})</code>;
2280that is, the argument list is a single new table.
2281A call of the form <code>f'<em>string</em>'</code>
2282(or <code>f"<em>string</em>"</code> or <code>f[[<em>string</em>]]</code>)
2283is syntactic sugar for <code>f('<em>string</em>')</code>;
2284that is, the argument list is a single literal string.
2285
2286
2287<p>
2288A call of the form <code>return <em>functioncall</em></code> is called
2289a <em>tail call</em>.
2290Lua implements <em>proper tail calls</em>
2291(or <em>proper tail recursion</em>):
2292in a tail call,
2293the called function reuses the stack entry of the calling function.
2294Therefore, there is no limit on the number of nested tail calls that
2295a program can execute.
2296However, a tail call erases any debug information about the
2297calling function.
2298Note that a tail call only happens with a particular syntax,
2299where the <b>return</b> has one single function call as argument;
2300this syntax makes the calling function return exactly
2301the returns of the called function.
2302So, none of the following examples are tail calls:
2303
2304<pre>
2305     return (f(x))        -- results adjusted to 1
2306     return 2 * f(x)
2307     return x, f(x)       -- additional results
2308     f(x); return         -- results discarded
2309     return x or f(x)     -- results adjusted to 1
2310</pre>
2311
2312
2313
2314
2315<h3>3.4.11 &ndash; <a name="3.4.11">Function Definitions</a></h3>
2316
2317<p>
2318The syntax for function definition is
2319
2320<pre>
2321	functiondef ::= <b>function</b> funcbody
2322	funcbody ::= &lsquo;<b>(</b>&rsquo; [parlist] &lsquo;<b>)</b>&rsquo; block <b>end</b>
2323</pre>
2324
2325<p>
2326The following syntactic sugar simplifies function definitions:
2327
2328<pre>
2329	stat ::= <b>function</b> funcname funcbody
2330	stat ::= <b>local</b> <b>function</b> Name funcbody
2331	funcname ::= Name {&lsquo;<b>.</b>&rsquo; Name} [&lsquo;<b>:</b>&rsquo; Name]
2332</pre><p>
2333The statement
2334
2335<pre>
2336     function f () <em>body</em> end
2337</pre><p>
2338translates to
2339
2340<pre>
2341     f = function () <em>body</em> end
2342</pre><p>
2343The statement
2344
2345<pre>
2346     function t.a.b.c.f () <em>body</em> end
2347</pre><p>
2348translates to
2349
2350<pre>
2351     t.a.b.c.f = function () <em>body</em> end
2352</pre><p>
2353The statement
2354
2355<pre>
2356     local function f () <em>body</em> end
2357</pre><p>
2358translates to
2359
2360<pre>
2361     local f; f = function () <em>body</em> end
2362</pre><p>
2363not to
2364
2365<pre>
2366     local f = function () <em>body</em> end
2367</pre><p>
2368(This only makes a difference when the body of the function
2369contains references to <code>f</code>.)
2370
2371
2372<p>
2373A function definition is an executable expression,
2374whose value has type <em>function</em>.
2375When Lua precompiles a chunk,
2376all its function bodies are precompiled too.
2377Then, whenever Lua executes the function definition,
2378the function is <em>instantiated</em> (or <em>closed</em>).
2379This function instance (or <em>closure</em>)
2380is the final value of the expression.
2381
2382
2383<p>
2384Parameters act as local variables that are
2385initialized with the argument values:
2386
2387<pre>
2388	parlist ::= namelist [&lsquo;<b>,</b>&rsquo; &lsquo;<b>...</b>&rsquo;] | &lsquo;<b>...</b>&rsquo;
2389</pre><p>
2390When a function is called,
2391the list of arguments is adjusted to
2392the length of the list of parameters,
2393unless the function is a <em>vararg function</em>,
2394which is indicated by three dots ('<code>...</code>')
2395at the end of its parameter list.
2396A vararg function does not adjust its argument list;
2397instead, it collects all extra arguments and supplies them
2398to the function through a <em>vararg expression</em>,
2399which is also written as three dots.
2400The value of this expression is a list of all actual extra arguments,
2401similar to a function with multiple results.
2402If a vararg expression is used inside another expression
2403or in the middle of a list of expressions,
2404then its return list is adjusted to one element.
2405If the expression is used as the last element of a list of expressions,
2406then no adjustment is made
2407(unless that last expression is enclosed in parentheses).
2408
2409
2410<p>
2411As an example, consider the following definitions:
2412
2413<pre>
2414     function f(a, b) end
2415     function g(a, b, ...) end
2416     function r() return 1,2,3 end
2417</pre><p>
2418Then, we have the following mapping from arguments to parameters and
2419to the vararg expression:
2420
2421<pre>
2422     CALL            PARAMETERS
2423
2424     f(3)             a=3, b=nil
2425     f(3, 4)          a=3, b=4
2426     f(3, 4, 5)       a=3, b=4
2427     f(r(), 10)       a=1, b=10
2428     f(r())           a=1, b=2
2429
2430     g(3)             a=3, b=nil, ... --&gt;  (nothing)
2431     g(3, 4)          a=3, b=4,   ... --&gt;  (nothing)
2432     g(3, 4, 5, 8)    a=3, b=4,   ... --&gt;  5  8
2433     g(5, r())        a=5, b=1,   ... --&gt;  2  3
2434</pre>
2435
2436<p>
2437Results are returned using the <b>return</b> statement (see <a href="#3.3.4">&sect;3.3.4</a>).
2438If control reaches the end of a function
2439without encountering a <b>return</b> statement,
2440then the function returns with no results.
2441
2442
2443<p>
2444
2445There is a system-dependent limit on the number of values
2446that a function may return.
2447This limit is guaranteed to be larger than 1000.
2448
2449
2450<p>
2451The <em>colon</em> syntax
2452is used for defining <em>methods</em>,
2453that is, functions that have an implicit extra parameter <code>self</code>.
2454Thus, the statement
2455
2456<pre>
2457     function t.a.b.c:f (<em>params</em>) <em>body</em> end
2458</pre><p>
2459is syntactic sugar for
2460
2461<pre>
2462     t.a.b.c.f = function (self, <em>params</em>) <em>body</em> end
2463</pre>
2464
2465
2466
2467
2468
2469
2470<h2>3.5 &ndash; <a name="3.5">Visibility Rules</a></h2>
2471
2472<p>
2473
2474Lua is a lexically scoped language.
2475The scope of a local variable begins at the first statement after
2476its declaration and lasts until the last non-void statement
2477of the innermost block that includes the declaration.
2478Consider the following example:
2479
2480<pre>
2481     x = 10                -- global variable
2482     do                    -- new block
2483       local x = x         -- new 'x', with value 10
2484       print(x)            --&gt; 10
2485       x = x+1
2486       do                  -- another block
2487         local x = x+1     -- another 'x'
2488         print(x)          --&gt; 12
2489       end
2490       print(x)            --&gt; 11
2491     end
2492     print(x)              --&gt; 10  (the global one)
2493</pre>
2494
2495<p>
2496Notice that, in a declaration like <code>local x = x</code>,
2497the new <code>x</code> being declared is not in scope yet,
2498and so the second <code>x</code> refers to the outside variable.
2499
2500
2501<p>
2502Because of the lexical scoping rules,
2503local variables can be freely accessed by functions
2504defined inside their scope.
2505A local variable used by an inner function is called
2506an <em>upvalue</em>, or <em>external local variable</em>,
2507inside the inner function.
2508
2509
2510<p>
2511Notice that each execution of a <b>local</b> statement
2512defines new local variables.
2513Consider the following example:
2514
2515<pre>
2516     a = {}
2517     local x = 20
2518     for i=1,10 do
2519       local y = 0
2520       a[i] = function () y=y+1; return x+y end
2521     end
2522</pre><p>
2523The loop creates ten closures
2524(that is, ten instances of the anonymous function).
2525Each of these closures uses a different <code>y</code> variable,
2526while all of them share the same <code>x</code>.
2527
2528
2529
2530
2531
2532<h1>4 &ndash; <a name="4">The Application Program Interface</a></h1>
2533
2534<p>
2535
2536This section describes the C&nbsp;API for Lua, that is,
2537the set of C&nbsp;functions available to the host program to communicate
2538with Lua.
2539All API functions and related types and constants
2540are declared in the header file <a name="pdf-lua.h"><code>lua.h</code></a>.
2541
2542
2543<p>
2544Even when we use the term "function",
2545any facility in the API may be provided as a macro instead.
2546Except where stated otherwise,
2547all such macros use each of their arguments exactly once
2548(except for the first argument, which is always a Lua state),
2549and so do not generate any hidden side-effects.
2550
2551
2552<p>
2553As in most C&nbsp;libraries,
2554the Lua API functions do not check their arguments for validity or consistency.
2555However, you can change this behavior by compiling Lua
2556with the macro <a name="pdf-LUA_USE_APICHECK"><code>LUA_USE_APICHECK</code></a> defined.
2557
2558
2559
2560<h2>4.1 &ndash; <a name="4.1">The Stack</a></h2>
2561
2562<p>
2563Lua uses a <em>virtual stack</em> to pass values to and from C.
2564Each element in this stack represents a Lua value
2565(<b>nil</b>, number, string, etc.).
2566
2567
2568<p>
2569Whenever Lua calls C, the called function gets a new stack,
2570which is independent of previous stacks and of stacks of
2571C&nbsp;functions that are still active.
2572This stack initially contains any arguments to the C&nbsp;function
2573and it is where the C&nbsp;function pushes its results
2574to be returned to the caller (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
2575
2576
2577<p>
2578For convenience,
2579most query operations in the API do not follow a strict stack discipline.
2580Instead, they can refer to any element in the stack
2581by using an <em>index</em>:
2582A positive index represents an absolute stack position
2583(starting at&nbsp;1);
2584a negative index represents an offset relative to the top of the stack.
2585More specifically, if the stack has <em>n</em> elements,
2586then index&nbsp;1 represents the first element
2587(that is, the element that was pushed onto the stack first)
2588and
2589index&nbsp;<em>n</em> represents the last element;
2590index&nbsp;-1 also represents the last element
2591(that is, the element at the&nbsp;top)
2592and index <em>-n</em> represents the first element.
2593
2594
2595
2596
2597
2598<h2>4.2 &ndash; <a name="4.2">Stack Size</a></h2>
2599
2600<p>
2601When you interact with the Lua API,
2602you are responsible for ensuring consistency.
2603In particular,
2604<em>you are responsible for controlling stack overflow</em>.
2605You can use the function <a href="#lua_checkstack"><code>lua_checkstack</code></a>
2606to ensure that the stack has enough space for pushing new elements.
2607
2608
2609<p>
2610Whenever Lua calls C,
2611it ensures that the stack has space for
2612at least <a name="pdf-LUA_MINSTACK"><code>LUA_MINSTACK</code></a> extra slots.
2613<code>LUA_MINSTACK</code> is defined as 20,
2614so that usually you do not have to worry about stack space
2615unless your code has loops pushing elements onto the stack.
2616
2617
2618<p>
2619When you call a Lua function
2620without a fixed number of results (see <a href="#lua_call"><code>lua_call</code></a>),
2621Lua ensures that the stack has enough space for all results,
2622but it does not ensure any extra space.
2623So, before pushing anything in the stack after such a call
2624you should use <a href="#lua_checkstack"><code>lua_checkstack</code></a>.
2625
2626
2627
2628
2629
2630<h2>4.3 &ndash; <a name="4.3">Valid and Acceptable Indices</a></h2>
2631
2632<p>
2633Any function in the API that receives stack indices
2634works only with <em>valid indices</em> or <em>acceptable indices</em>.
2635
2636
2637<p>
2638A <em>valid index</em> is an index that refers to a
2639real position within the stack, that is,
2640its position lies between&nbsp;1 and the stack top
2641(<code>1 &le; abs(index) &le; top</code>).
2642
2643Usually, functions that can modify the value at an index
2644require valid indices.
2645
2646
2647<p>
2648Unless otherwise noted,
2649any function that accepts valid indices also accepts <em>pseudo-indices</em>,
2650which represent some Lua values that are accessible to C&nbsp;code
2651but which are not in the stack.
2652Pseudo-indices are used to access the registry
2653and the upvalues of a C&nbsp;function (see <a href="#4.4">&sect;4.4</a>).
2654
2655
2656<p>
2657Functions that do not need a specific stack position,
2658but only a value in the stack (e.g., query functions),
2659can be called with acceptable indices.
2660An <em>acceptable index</em> can be any valid index,
2661including the pseudo-indices,
2662but it also can be any positive index after the stack top
2663within the space allocated for the stack,
2664that is, indices up to the stack size.
2665(Note that 0 is never an acceptable index.)
2666Except when noted otherwise,
2667functions in the API work with acceptable indices.
2668
2669
2670<p>
2671Acceptable indices serve to avoid extra tests
2672against the stack top when querying the stack.
2673For instance, a C&nbsp;function can query its third argument
2674without the need to first check whether there is a third argument,
2675that is, without the need to check whether 3 is a valid index.
2676
2677
2678<p>
2679For functions that can be called with acceptable indices,
2680any non-valid index is treated as if it
2681contains a value of a virtual type <a name="pdf-LUA_TNONE"><code>LUA_TNONE</code></a>,
2682which behaves like a nil value.
2683
2684
2685
2686
2687
2688<h2>4.4 &ndash; <a name="4.4">C Closures</a></h2>
2689
2690<p>
2691When a C&nbsp;function is created,
2692it is possible to associate some values with it,
2693thus creating a <em>C&nbsp;closure</em>
2694(see <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>);
2695these values are called <em>upvalues</em> and are
2696accessible to the function whenever it is called.
2697
2698
2699<p>
2700Whenever a C&nbsp;function is called,
2701its upvalues are located at specific pseudo-indices.
2702These pseudo-indices are produced by the macro
2703<a href="#lua_upvalueindex"><code>lua_upvalueindex</code></a>.
2704The first value associated with a function is at position
2705<code>lua_upvalueindex(1)</code>, and so on.
2706Any access to <code>lua_upvalueindex(<em>n</em>)</code>,
2707where <em>n</em> is greater than the number of upvalues of the
2708current function (but not greater than 256),
2709produces an acceptable but invalid index.
2710
2711
2712
2713
2714
2715<h2>4.5 &ndash; <a name="4.5">Registry</a></h2>
2716
2717<p>
2718Lua provides a <em>registry</em>,
2719a predefined table that can be used by any C&nbsp;code to
2720store whatever Lua values it needs to store.
2721The registry table is always located at pseudo-index
2722<a name="pdf-LUA_REGISTRYINDEX"><code>LUA_REGISTRYINDEX</code></a>,
2723which is a valid index.
2724Any C&nbsp;library can store data into this table,
2725but it must take care to choose keys
2726that are different from those used
2727by other libraries, to avoid collisions.
2728Typically, you should use as key a string containing your library name,
2729or a light userdata with the address of a C&nbsp;object in your code,
2730or any Lua object created by your code.
2731As with variable names,
2732string keys starting with an underscore followed by
2733uppercase letters are reserved for Lua.
2734
2735
2736<p>
2737The integer keys in the registry are used
2738by the reference mechanism (see <a href="#luaL_ref"><code>luaL_ref</code></a>)
2739and by some predefined values.
2740Therefore, integer keys must not be used for other purposes.
2741
2742
2743<p>
2744When you create a new Lua state,
2745its registry comes with some predefined values.
2746These predefined values are indexed with integer keys
2747defined as constants in <code>lua.h</code>.
2748The following constants are defined:
2749
2750<ul>
2751<li><b><a name="pdf-LUA_RIDX_MAINTHREAD"><code>LUA_RIDX_MAINTHREAD</code></a>: </b> At this index the registry has
2752the main thread of the state.
2753(The main thread is the one created together with the state.)
2754</li>
2755
2756<li><b><a name="pdf-LUA_RIDX_GLOBALS"><code>LUA_RIDX_GLOBALS</code></a>: </b> At this index the registry has
2757the global environment.
2758</li>
2759</ul>
2760
2761
2762
2763
2764<h2>4.6 &ndash; <a name="4.6">Error Handling in C</a></h2>
2765
2766<p>
2767Internally, Lua uses the C <code>longjmp</code> facility to handle errors.
2768(Lua will use exceptions if you compile it as C++;
2769search for <code>LUAI_THROW</code> in the source code for details.)
2770When Lua faces any error
2771(such as a memory allocation error, type errors, syntax errors,
2772and runtime errors)
2773it <em>raises</em> an error;
2774that is, it does a long jump.
2775A <em>protected environment</em> uses <code>setjmp</code>
2776to set a recovery point;
2777any error jumps to the most recent active recovery point.
2778
2779
2780<p>
2781If an error happens outside any protected environment,
2782Lua calls a <em>panic function</em> (see <a href="#lua_atpanic"><code>lua_atpanic</code></a>)
2783and then calls <code>abort</code>,
2784thus exiting the host application.
2785Your panic function can avoid this exit by
2786never returning
2787(e.g., doing a long jump to your own recovery point outside Lua).
2788
2789
2790<p>
2791The panic function runs as if it were a message handler (see <a href="#2.3">&sect;2.3</a>);
2792in particular, the error message is at the top of the stack.
2793However, there is no guarantee about stack space.
2794To push anything on the stack,
2795the panic function must first check the available space (see <a href="#4.2">&sect;4.2</a>).
2796
2797
2798<p>
2799Most functions in the API can raise an error,
2800for instance due to a memory allocation error.
2801The documentation for each function indicates whether
2802it can raise errors.
2803
2804
2805<p>
2806Inside a C&nbsp;function you can raise an error by calling <a href="#lua_error"><code>lua_error</code></a>.
2807
2808
2809
2810
2811
2812<h2>4.7 &ndash; <a name="4.7">Handling Yields in C</a></h2>
2813
2814<p>
2815Internally, Lua uses the C <code>longjmp</code> facility to yield a coroutine.
2816Therefore, if a C function <code>foo</code> calls an API function
2817and this API function yields
2818(directly or indirectly by calling another function that yields),
2819Lua cannot return to <code>foo</code> any more,
2820because the <code>longjmp</code> removes its frame from the C stack.
2821
2822
2823<p>
2824To avoid this kind of problem,
2825Lua raises an error whenever it tries to yield across an API call,
2826except for three functions:
2827<a href="#lua_yieldk"><code>lua_yieldk</code></a>, <a href="#lua_callk"><code>lua_callk</code></a>, and <a href="#lua_pcallk"><code>lua_pcallk</code></a>.
2828All those functions receive a <em>continuation function</em>
2829(as a parameter named <code>k</code>) to continue execution after a yield.
2830
2831
2832<p>
2833We need to set some terminology to explain continuations.
2834We have a C function called from Lua which we will call
2835the <em>original function</em>.
2836This original function then calls one of those three functions in the C API,
2837which we will call the <em>callee function</em>,
2838that then yields the current thread.
2839(This can happen when the callee function is <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
2840or when the callee function is either <a href="#lua_callk"><code>lua_callk</code></a> or <a href="#lua_pcallk"><code>lua_pcallk</code></a>
2841and the function called by them yields.)
2842
2843
2844<p>
2845Suppose the running thread yields while executing the callee function.
2846After the thread resumes,
2847it eventually will finish running the callee function.
2848However,
2849the callee function cannot return to the original function,
2850because its frame in the C stack was destroyed by the yield.
2851Instead, Lua calls a <em>continuation function</em>,
2852which was given as an argument to the callee function.
2853As the name implies,
2854the continuation function should continue the task
2855of the original function.
2856
2857
2858<p>
2859As an illustration, consider the following function:
2860
2861<pre>
2862     int original_function (lua_State *L) {
2863       ...     /* code 1 */
2864       status = lua_pcall(L, n, m, h);  /* calls Lua */
2865       ...     /* code 2 */
2866     }
2867</pre><p>
2868Now we want to allow
2869the Lua code being run by <a href="#lua_pcall"><code>lua_pcall</code></a> to yield.
2870First, we can rewrite our function like here:
2871
2872<pre>
2873     int k (lua_State *L, int status, lua_KContext ctx) {
2874       ...  /* code 2 */
2875     }
2876
2877     int original_function (lua_State *L) {
2878       ...     /* code 1 */
2879       return k(L, lua_pcall(L, n, m, h), ctx);
2880     }
2881</pre><p>
2882In the above code,
2883the new function <code>k</code> is a
2884<em>continuation function</em> (with type <a href="#lua_KFunction"><code>lua_KFunction</code></a>),
2885which should do all the work that the original function
2886was doing after calling <a href="#lua_pcall"><code>lua_pcall</code></a>.
2887Now, we must inform Lua that it must call <code>k</code> if the Lua code
2888being executed by <a href="#lua_pcall"><code>lua_pcall</code></a> gets interrupted in some way
2889(errors or yielding),
2890so we rewrite the code as here,
2891replacing <a href="#lua_pcall"><code>lua_pcall</code></a> by <a href="#lua_pcallk"><code>lua_pcallk</code></a>:
2892
2893<pre>
2894     int original_function (lua_State *L) {
2895       ...     /* code 1 */
2896       return k(L, lua_pcallk(L, n, m, h, ctx2, k), ctx1);
2897     }
2898</pre><p>
2899Note the external, explicit call to the continuation:
2900Lua will call the continuation only if needed, that is,
2901in case of errors or resuming after a yield.
2902If the called function returns normally without ever yielding,
2903<a href="#lua_pcallk"><code>lua_pcallk</code></a> (and <a href="#lua_callk"><code>lua_callk</code></a>) will also return normally.
2904(Of course, instead of calling the continuation in that case,
2905you can do the equivalent work directly inside the original function.)
2906
2907
2908<p>
2909Besides the Lua state,
2910the continuation function has two other parameters:
2911the final status of the call plus the context value (<code>ctx</code>) that
2912was passed originally to <a href="#lua_pcallk"><code>lua_pcallk</code></a>.
2913(Lua does not use this context value;
2914it only passes this value from the original function to the
2915continuation function.)
2916For <a href="#lua_pcallk"><code>lua_pcallk</code></a>,
2917the status is the same value that would be returned by <a href="#lua_pcallk"><code>lua_pcallk</code></a>,
2918except that it is <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> when being executed after a yield
2919(instead of <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>).
2920For <a href="#lua_yieldk"><code>lua_yieldk</code></a> and <a href="#lua_callk"><code>lua_callk</code></a>,
2921the status is always <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> when Lua calls the continuation.
2922(For these two functions,
2923Lua will not call the continuation in case of errors,
2924because they do not handle errors.)
2925Similarly, when using <a href="#lua_callk"><code>lua_callk</code></a>,
2926you should call the continuation function
2927with <a href="#pdf-LUA_OK"><code>LUA_OK</code></a> as the status.
2928(For <a href="#lua_yieldk"><code>lua_yieldk</code></a>, there is not much point in calling
2929directly the continuation function,
2930because <a href="#lua_yieldk"><code>lua_yieldk</code></a> usually does not return.)
2931
2932
2933<p>
2934Lua treats the continuation function as if it were the original function.
2935The continuation function receives the same Lua stack
2936from the original function,
2937in the same state it would be if the callee function had returned.
2938(For instance,
2939after a <a href="#lua_callk"><code>lua_callk</code></a> the function and its arguments are
2940removed from the stack and replaced by the results from the call.)
2941It also has the same upvalues.
2942Whatever it returns is handled by Lua as if it were the return
2943of the original function.
2944
2945
2946
2947
2948
2949<h2>4.8 &ndash; <a name="4.8">Functions and Types</a></h2>
2950
2951<p>
2952Here we list all functions and types from the C&nbsp;API in
2953alphabetical order.
2954Each function has an indicator like this:
2955<span class="apii">[-o, +p, <em>x</em>]</span>
2956
2957
2958<p>
2959The first field, <code>o</code>,
2960is how many elements the function pops from the stack.
2961The second field, <code>p</code>,
2962is how many elements the function pushes onto the stack.
2963(Any function always pushes its results after popping its arguments.)
2964A field in the form <code>x|y</code> means the function can push (or pop)
2965<code>x</code> or <code>y</code> elements,
2966depending on the situation;
2967an interrogation mark '<code>?</code>' means that
2968we cannot know how many elements the function pops/pushes
2969by looking only at its arguments
2970(e.g., they may depend on what is on the stack).
2971The third field, <code>x</code>,
2972tells whether the function may raise errors:
2973'<code>-</code>' means the function never raises any error;
2974'<code>e</code>' means the function may raise errors;
2975'<code>v</code>' means the function may raise an error on purpose.
2976
2977
2978
2979<hr><h3><a name="lua_absindex"><code>lua_absindex</code></a></h3><p>
2980<span class="apii">[-0, +0, &ndash;]</span>
2981<pre>int lua_absindex (lua_State *L, int idx);</pre>
2982
2983<p>
2984Converts the acceptable index <code>idx</code> into an absolute index
2985(that is, one that does not depend on the stack top).
2986
2987
2988
2989
2990
2991<hr><h3><a name="lua_Alloc"><code>lua_Alloc</code></a></h3>
2992<pre>typedef void * (*lua_Alloc) (void *ud,
2993                             void *ptr,
2994                             size_t osize,
2995                             size_t nsize);</pre>
2996
2997<p>
2998The type of the memory-allocation function used by Lua states.
2999The allocator function must provide a
3000functionality similar to <code>realloc</code>,
3001but not exactly the same.
3002Its arguments are
3003<code>ud</code>, an opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>;
3004<code>ptr</code>, a pointer to the block being allocated/reallocated/freed;
3005<code>osize</code>, the original size of the block or some code about what
3006is being allocated;
3007and <code>nsize</code>, the new size of the block.
3008
3009
3010<p>
3011When <code>ptr</code> is not <code>NULL</code>,
3012<code>osize</code> is the size of the block pointed by <code>ptr</code>,
3013that is, the size given when it was allocated or reallocated.
3014
3015
3016<p>
3017When <code>ptr</code> is <code>NULL</code>,
3018<code>osize</code> encodes the kind of object that Lua is allocating.
3019<code>osize</code> is any of
3020<a href="#pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>, <a href="#pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>, <a href="#pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>,
3021<a href="#pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>, or <a href="#pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a> when (and only when)
3022Lua is creating a new object of that type.
3023When <code>osize</code> is some other value,
3024Lua is allocating memory for something else.
3025
3026
3027<p>
3028Lua assumes the following behavior from the allocator function:
3029
3030
3031<p>
3032When <code>nsize</code> is zero,
3033the allocator must behave like <code>free</code>
3034and return <code>NULL</code>.
3035
3036
3037<p>
3038When <code>nsize</code> is not zero,
3039the allocator must behave like <code>realloc</code>.
3040The allocator returns <code>NULL</code>
3041if and only if it cannot fulfill the request.
3042Lua assumes that the allocator never fails when
3043<code>osize &gt;= nsize</code>.
3044
3045
3046<p>
3047Here is a simple implementation for the allocator function.
3048It is used in the auxiliary library by <a href="#luaL_newstate"><code>luaL_newstate</code></a>.
3049
3050<pre>
3051     static void *l_alloc (void *ud, void *ptr, size_t osize,
3052                                                size_t nsize) {
3053       (void)ud;  (void)osize;  /* not used */
3054       if (nsize == 0) {
3055         free(ptr);
3056         return NULL;
3057       }
3058       else
3059         return realloc(ptr, nsize);
3060     }
3061</pre><p>
3062Note that Standard&nbsp;C ensures
3063that <code>free(NULL)</code> has no effect and that
3064<code>realloc(NULL,size)</code> is equivalent to <code>malloc(size)</code>.
3065This code assumes that <code>realloc</code> does not fail when shrinking a block.
3066(Although Standard&nbsp;C does not ensure this behavior,
3067it seems to be a safe assumption.)
3068
3069
3070
3071
3072
3073<hr><h3><a name="lua_arith"><code>lua_arith</code></a></h3><p>
3074<span class="apii">[-(2|1), +1, <em>e</em>]</span>
3075<pre>void lua_arith (lua_State *L, int op);</pre>
3076
3077<p>
3078Performs an arithmetic or bitwise operation over the two values
3079(or one, in the case of negations)
3080at the top of the stack,
3081with the value at the top being the second operand,
3082pops these values, and pushes the result of the operation.
3083The function follows the semantics of the corresponding Lua operator
3084(that is, it may call metamethods).
3085
3086
3087<p>
3088The value of <code>op</code> must be one of the following constants:
3089
3090<ul>
3091
3092<li><b><a name="pdf-LUA_OPADD"><code>LUA_OPADD</code></a>: </b> performs addition (<code>+</code>)</li>
3093<li><b><a name="pdf-LUA_OPSUB"><code>LUA_OPSUB</code></a>: </b> performs subtraction (<code>-</code>)</li>
3094<li><b><a name="pdf-LUA_OPMUL"><code>LUA_OPMUL</code></a>: </b> performs multiplication (<code>*</code>)</li>
3095<li><b><a name="pdf-LUA_OPDIV"><code>LUA_OPDIV</code></a>: </b> performs float division (<code>/</code>)</li>
3096<li><b><a name="pdf-LUA_OPIDIV"><code>LUA_OPIDIV</code></a>: </b> performs floor division (<code>//</code>)</li>
3097<li><b><a name="pdf-LUA_OPMOD"><code>LUA_OPMOD</code></a>: </b> performs modulo (<code>%</code>)</li>
3098<li><b><a name="pdf-LUA_OPPOW"><code>LUA_OPPOW</code></a>: </b> performs exponentiation (<code>^</code>)</li>
3099<li><b><a name="pdf-LUA_OPUNM"><code>LUA_OPUNM</code></a>: </b> performs mathematical negation (unary <code>-</code>)</li>
3100<li><b><a name="pdf-LUA_OPBNOT"><code>LUA_OPBNOT</code></a>: </b> performs bitwise negation (<code>~</code>)</li>
3101<li><b><a name="pdf-LUA_OPBAND"><code>LUA_OPBAND</code></a>: </b> performs bitwise and (<code>&amp;</code>)</li>
3102<li><b><a name="pdf-LUA_OPBOR"><code>LUA_OPBOR</code></a>: </b> performs bitwise or (<code>|</code>)</li>
3103<li><b><a name="pdf-LUA_OPBXOR"><code>LUA_OPBXOR</code></a>: </b> performs bitwise exclusive or (<code>~</code>)</li>
3104<li><b><a name="pdf-LUA_OPSHL"><code>LUA_OPSHL</code></a>: </b> performs left shift (<code>&lt;&lt;</code>)</li>
3105<li><b><a name="pdf-LUA_OPSHR"><code>LUA_OPSHR</code></a>: </b> performs right shift (<code>&gt;&gt;</code>)</li>
3106
3107</ul>
3108
3109
3110
3111
3112<hr><h3><a name="lua_atpanic"><code>lua_atpanic</code></a></h3><p>
3113<span class="apii">[-0, +0, &ndash;]</span>
3114<pre>lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);</pre>
3115
3116<p>
3117Sets a new panic function and returns the old one (see <a href="#4.6">&sect;4.6</a>).
3118
3119
3120
3121
3122
3123<hr><h3><a name="lua_call"><code>lua_call</code></a></h3><p>
3124<span class="apii">[-(nargs+1), +nresults, <em>e</em>]</span>
3125<pre>void lua_call (lua_State *L, int nargs, int nresults);</pre>
3126
3127<p>
3128Calls a function.
3129
3130
3131<p>
3132To call a function you must use the following protocol:
3133first, the function to be called is pushed onto the stack;
3134then, the arguments to the function are pushed
3135in direct order;
3136that is, the first argument is pushed first.
3137Finally you call <a href="#lua_call"><code>lua_call</code></a>;
3138<code>nargs</code> is the number of arguments that you pushed onto the stack.
3139All arguments and the function value are popped from the stack
3140when the function is called.
3141The function results are pushed onto the stack when the function returns.
3142The number of results is adjusted to <code>nresults</code>,
3143unless <code>nresults</code> is <a name="pdf-LUA_MULTRET"><code>LUA_MULTRET</code></a>.
3144In this case, all results from the function are pushed.
3145Lua takes care that the returned values fit into the stack space.
3146The function results are pushed onto the stack in direct order
3147(the first result is pushed first),
3148so that after the call the last result is on the top of the stack.
3149
3150
3151<p>
3152Any error inside the called function is propagated upwards
3153(with a <code>longjmp</code>).
3154
3155
3156<p>
3157The following example shows how the host program can do the
3158equivalent to this Lua code:
3159
3160<pre>
3161     a = f("how", t.x, 14)
3162</pre><p>
3163Here it is in&nbsp;C:
3164
3165<pre>
3166     lua_getglobal(L, "f");                  /* function to be called */
3167     lua_pushliteral(L, "how");                       /* 1st argument */
3168     lua_getglobal(L, "t");                    /* table to be indexed */
3169     lua_getfield(L, -1, "x");        /* push result of t.x (2nd arg) */
3170     lua_remove(L, -2);                  /* remove 't' from the stack */
3171     lua_pushinteger(L, 14);                          /* 3rd argument */
3172     lua_call(L, 3, 1);     /* call 'f' with 3 arguments and 1 result */
3173     lua_setglobal(L, "a");                         /* set global 'a' */
3174</pre><p>
3175Note that the code above is <em>balanced</em>:
3176at its end, the stack is back to its original configuration.
3177This is considered good programming practice.
3178
3179
3180
3181
3182
3183<hr><h3><a name="lua_callk"><code>lua_callk</code></a></h3><p>
3184<span class="apii">[-(nargs + 1), +nresults, <em>e</em>]</span>
3185<pre>void lua_callk (lua_State *L,
3186                int nargs,
3187                int nresults,
3188                lua_KContext ctx,
3189                lua_KFunction k);</pre>
3190
3191<p>
3192This function behaves exactly like <a href="#lua_call"><code>lua_call</code></a>,
3193but allows the called function to yield (see <a href="#4.7">&sect;4.7</a>).
3194
3195
3196
3197
3198
3199<hr><h3><a name="lua_CFunction"><code>lua_CFunction</code></a></h3>
3200<pre>typedef int (*lua_CFunction) (lua_State *L);</pre>
3201
3202<p>
3203Type for C&nbsp;functions.
3204
3205
3206<p>
3207In order to communicate properly with Lua,
3208a C&nbsp;function must use the following protocol,
3209which defines the way parameters and results are passed:
3210a C&nbsp;function receives its arguments from Lua in its stack
3211in direct order (the first argument is pushed first).
3212So, when the function starts,
3213<code>lua_gettop(L)</code> returns the number of arguments received by the function.
3214The first argument (if any) is at index 1
3215and its last argument is at index <code>lua_gettop(L)</code>.
3216To return values to Lua, a C&nbsp;function just pushes them onto the stack,
3217in direct order (the first result is pushed first),
3218and returns the number of results.
3219Any other value in the stack below the results will be properly
3220discarded by Lua.
3221Like a Lua function, a C&nbsp;function called by Lua can also return
3222many results.
3223
3224
3225<p>
3226As an example, the following function receives a variable number
3227of numerical arguments and returns their average and their sum:
3228
3229<pre>
3230     static int foo (lua_State *L) {
3231       int n = lua_gettop(L);    /* number of arguments */
3232       lua_Number sum = 0.0;
3233       int i;
3234       for (i = 1; i &lt;= n; i++) {
3235         if (!lua_isnumber(L, i)) {
3236           lua_pushliteral(L, "incorrect argument");
3237           lua_error(L);
3238         }
3239         sum += lua_tonumber(L, i);
3240       }
3241       lua_pushnumber(L, sum/n);        /* first result */
3242       lua_pushnumber(L, sum);         /* second result */
3243       return 2;                   /* number of results */
3244     }
3245</pre>
3246
3247
3248
3249
3250<hr><h3><a name="lua_checkstack"><code>lua_checkstack</code></a></h3><p>
3251<span class="apii">[-0, +0, &ndash;]</span>
3252<pre>int lua_checkstack (lua_State *L, int n);</pre>
3253
3254<p>
3255Ensures that the stack has space for at least <code>n</code> extra slots.
3256It returns false if it cannot fulfill the request,
3257either because it would cause the stack
3258to be larger than a fixed maximum size
3259(typically at least several thousand elements) or
3260because it cannot allocate memory for the extra space.
3261This function never shrinks the stack;
3262if the stack is already larger than the new size,
3263it is left unchanged.
3264
3265
3266
3267
3268
3269<hr><h3><a name="lua_close"><code>lua_close</code></a></h3><p>
3270<span class="apii">[-0, +0, &ndash;]</span>
3271<pre>void lua_close (lua_State *L);</pre>
3272
3273<p>
3274Destroys all objects in the given Lua state
3275(calling the corresponding garbage-collection metamethods, if any)
3276and frees all dynamic memory used by this state.
3277On several platforms, you may not need to call this function,
3278because all resources are naturally released when the host program ends.
3279On the other hand, long-running programs that create multiple states,
3280such as daemons or web servers,
3281will probably need to close states as soon as they are not needed.
3282
3283
3284
3285
3286
3287<hr><h3><a name="lua_compare"><code>lua_compare</code></a></h3><p>
3288<span class="apii">[-0, +0, <em>e</em>]</span>
3289<pre>int lua_compare (lua_State *L, int index1, int index2, int op);</pre>
3290
3291<p>
3292Compares two Lua values.
3293Returns 1 if the value at index <code>index1</code> satisfies <code>op</code>
3294when compared with the value at index <code>index2</code>,
3295following the semantics of the corresponding Lua operator
3296(that is, it may call metamethods).
3297Otherwise returns&nbsp;0.
3298Also returns&nbsp;0 if any of the indices is not valid.
3299
3300
3301<p>
3302The value of <code>op</code> must be one of the following constants:
3303
3304<ul>
3305
3306<li><b><a name="pdf-LUA_OPEQ"><code>LUA_OPEQ</code></a>: </b> compares for equality (<code>==</code>)</li>
3307<li><b><a name="pdf-LUA_OPLT"><code>LUA_OPLT</code></a>: </b> compares for less than (<code>&lt;</code>)</li>
3308<li><b><a name="pdf-LUA_OPLE"><code>LUA_OPLE</code></a>: </b> compares for less or equal (<code>&lt;=</code>)</li>
3309
3310</ul>
3311
3312
3313
3314
3315<hr><h3><a name="lua_concat"><code>lua_concat</code></a></h3><p>
3316<span class="apii">[-n, +1, <em>e</em>]</span>
3317<pre>void lua_concat (lua_State *L, int n);</pre>
3318
3319<p>
3320Concatenates the <code>n</code> values at the top of the stack,
3321pops them, and leaves the result at the top.
3322If <code>n</code>&nbsp;is&nbsp;1, the result is the single value on the stack
3323(that is, the function does nothing);
3324if <code>n</code> is 0, the result is the empty string.
3325Concatenation is performed following the usual semantics of Lua
3326(see <a href="#3.4.6">&sect;3.4.6</a>).
3327
3328
3329
3330
3331
3332<hr><h3><a name="lua_copy"><code>lua_copy</code></a></h3><p>
3333<span class="apii">[-0, +0, &ndash;]</span>
3334<pre>void lua_copy (lua_State *L, int fromidx, int toidx);</pre>
3335
3336<p>
3337Copies the element at index <code>fromidx</code>
3338into the valid index <code>toidx</code>,
3339replacing the value at that position.
3340Values at other positions are not affected.
3341
3342
3343
3344
3345
3346<hr><h3><a name="lua_createtable"><code>lua_createtable</code></a></h3><p>
3347<span class="apii">[-0, +1, <em>e</em>]</span>
3348<pre>void lua_createtable (lua_State *L, int narr, int nrec);</pre>
3349
3350<p>
3351Creates a new empty table and pushes it onto the stack.
3352Parameter <code>narr</code> is a hint for how many elements the table
3353will have as a sequence;
3354parameter <code>nrec</code> is a hint for how many other elements
3355the table will have.
3356Lua may use these hints to preallocate memory for the new table.
3357This pre-allocation is useful for performance when you know in advance
3358how many elements the table will have.
3359Otherwise you can use the function <a href="#lua_newtable"><code>lua_newtable</code></a>.
3360
3361
3362
3363
3364
3365<hr><h3><a name="lua_dump"><code>lua_dump</code></a></h3><p>
3366<span class="apii">[-0, +0, <em>e</em>]</span>
3367<pre>int lua_dump (lua_State *L,
3368                        lua_Writer writer,
3369                        void *data,
3370                        int strip);</pre>
3371
3372<p>
3373Dumps a function as a binary chunk.
3374Receives a Lua function on the top of the stack
3375and produces a binary chunk that,
3376if loaded again,
3377results in a function equivalent to the one dumped.
3378As it produces parts of the chunk,
3379<a href="#lua_dump"><code>lua_dump</code></a> calls function <code>writer</code> (see <a href="#lua_Writer"><code>lua_Writer</code></a>)
3380with the given <code>data</code>
3381to write them.
3382
3383
3384<p>
3385If <code>strip</code> is true,
3386the binary representation is created without debug information
3387about the function.
3388
3389
3390<p>
3391The value returned is the error code returned by the last
3392call to the writer;
33930&nbsp;means no errors.
3394
3395
3396<p>
3397This function does not pop the Lua function from the stack.
3398
3399
3400
3401
3402
3403<hr><h3><a name="lua_error"><code>lua_error</code></a></h3><p>
3404<span class="apii">[-1, +0, <em>v</em>]</span>
3405<pre>int lua_error (lua_State *L);</pre>
3406
3407<p>
3408Generates a Lua error,
3409using the value at the top of the stack as the error object.
3410This function does a long jump,
3411and therefore never returns
3412(see <a href="#luaL_error"><code>luaL_error</code></a>).
3413
3414
3415
3416
3417
3418<hr><h3><a name="lua_gc"><code>lua_gc</code></a></h3><p>
3419<span class="apii">[-0, +0, <em>e</em>]</span>
3420<pre>int lua_gc (lua_State *L, int what, int data);</pre>
3421
3422<p>
3423Controls the garbage collector.
3424
3425
3426<p>
3427This function performs several tasks,
3428according to the value of the parameter <code>what</code>:
3429
3430<ul>
3431
3432<li><b><code>LUA_GCSTOP</code>: </b>
3433stops the garbage collector.
3434</li>
3435
3436<li><b><code>LUA_GCRESTART</code>: </b>
3437restarts the garbage collector.
3438</li>
3439
3440<li><b><code>LUA_GCCOLLECT</code>: </b>
3441performs a full garbage-collection cycle.
3442</li>
3443
3444<li><b><code>LUA_GCCOUNT</code>: </b>
3445returns the current amount of memory (in Kbytes) in use by Lua.
3446</li>
3447
3448<li><b><code>LUA_GCCOUNTB</code>: </b>
3449returns the remainder of dividing the current amount of bytes of
3450memory in use by Lua by 1024.
3451</li>
3452
3453<li><b><code>LUA_GCSTEP</code>: </b>
3454performs an incremental step of garbage collection.
3455</li>
3456
3457<li><b><code>LUA_GCSETPAUSE</code>: </b>
3458sets <code>data</code> as the new value
3459for the <em>pause</em> of the collector (see <a href="#2.5">&sect;2.5</a>)
3460and returns the previous value of the pause.
3461</li>
3462
3463<li><b><code>LUA_GCSETSTEPMUL</code>: </b>
3464sets <code>data</code> as the new value for the <em>step multiplier</em> of
3465the collector (see <a href="#2.5">&sect;2.5</a>)
3466and returns the previous value of the step multiplier.
3467</li>
3468
3469<li><b><code>LUA_GCISRUNNING</code>: </b>
3470returns a boolean that tells whether the collector is running
3471(i.e., not stopped).
3472</li>
3473
3474</ul>
3475
3476<p>
3477For more details about these options,
3478see <a href="#pdf-collectgarbage"><code>collectgarbage</code></a>.
3479
3480
3481
3482
3483
3484<hr><h3><a name="lua_getallocf"><code>lua_getallocf</code></a></h3><p>
3485<span class="apii">[-0, +0, &ndash;]</span>
3486<pre>lua_Alloc lua_getallocf (lua_State *L, void **ud);</pre>
3487
3488<p>
3489Returns the memory-allocation function of a given state.
3490If <code>ud</code> is not <code>NULL</code>, Lua stores in <code>*ud</code> the
3491opaque pointer given when the memory-allocator function was set.
3492
3493
3494
3495
3496
3497<hr><h3><a name="lua_getfield"><code>lua_getfield</code></a></h3><p>
3498<span class="apii">[-0, +1, <em>e</em>]</span>
3499<pre>int lua_getfield (lua_State *L, int index, const char *k);</pre>
3500
3501<p>
3502Pushes onto the stack the value <code>t[k]</code>,
3503where <code>t</code> is the value at the given index.
3504As in Lua, this function may trigger a metamethod
3505for the "index" event (see <a href="#2.4">&sect;2.4</a>).
3506
3507
3508<p>
3509Returns the type of the pushed value.
3510
3511
3512
3513
3514
3515<hr><h3><a name="lua_getextraspace"><code>lua_getextraspace</code></a></h3><p>
3516<span class="apii">[-0, +0, &ndash;]</span>
3517<pre>void *lua_getextraspace (lua_State *L);</pre>
3518
3519<p>
3520Returns a pointer to a raw memory area associated with the
3521given Lua state.
3522The application can use this area for any purpose;
3523Lua does not use it for anything.
3524
3525
3526<p>
3527Each new thread has this area initialized with a copy
3528of the area of the main thread.
3529
3530
3531<p>
3532By default, this area has the size of a pointer to void,
3533but you can recompile Lua with a different size for this area.
3534(See <code>LUA_EXTRASPACE</code> in <code>luaconf.h</code>.)
3535
3536
3537
3538
3539
3540<hr><h3><a name="lua_getglobal"><code>lua_getglobal</code></a></h3><p>
3541<span class="apii">[-0, +1, <em>e</em>]</span>
3542<pre>int lua_getglobal (lua_State *L, const char *name);</pre>
3543
3544<p>
3545Pushes onto the stack the value of the global <code>name</code>.
3546Returns the type of that value.
3547
3548
3549
3550
3551
3552<hr><h3><a name="lua_geti"><code>lua_geti</code></a></h3><p>
3553<span class="apii">[-0, +1, <em>e</em>]</span>
3554<pre>int lua_geti (lua_State *L, int index, lua_Integer i);</pre>
3555
3556<p>
3557Pushes onto the stack the value <code>t[i]</code>,
3558where <code>t</code> is the value at the given index.
3559As in Lua, this function may trigger a metamethod
3560for the "index" event (see <a href="#2.4">&sect;2.4</a>).
3561
3562
3563<p>
3564Returns the type of the pushed value.
3565
3566
3567
3568
3569
3570<hr><h3><a name="lua_getmetatable"><code>lua_getmetatable</code></a></h3><p>
3571<span class="apii">[-0, +(0|1), &ndash;]</span>
3572<pre>int lua_getmetatable (lua_State *L, int index);</pre>
3573
3574<p>
3575If the value at the given index has a metatable,
3576the function pushes that metatable onto the stack and returns&nbsp;1.
3577Otherwise,
3578the function returns&nbsp;0 and pushes nothing on the stack.
3579
3580
3581
3582
3583
3584<hr><h3><a name="lua_gettable"><code>lua_gettable</code></a></h3><p>
3585<span class="apii">[-1, +1, <em>e</em>]</span>
3586<pre>int lua_gettable (lua_State *L, int index);</pre>
3587
3588<p>
3589Pushes onto the stack the value <code>t[k]</code>,
3590where <code>t</code> is the value at the given index
3591and <code>k</code> is the value at the top of the stack.
3592
3593
3594<p>
3595This function pops the key from the stack,
3596pushing the resulting value in its place.
3597As in Lua, this function may trigger a metamethod
3598for the "index" event (see <a href="#2.4">&sect;2.4</a>).
3599
3600
3601<p>
3602Returns the type of the pushed value.
3603
3604
3605
3606
3607
3608<hr><h3><a name="lua_gettop"><code>lua_gettop</code></a></h3><p>
3609<span class="apii">[-0, +0, &ndash;]</span>
3610<pre>int lua_gettop (lua_State *L);</pre>
3611
3612<p>
3613Returns the index of the top element in the stack.
3614Because indices start at&nbsp;1,
3615this result is equal to the number of elements in the stack;
3616in particular, 0&nbsp;means an empty stack.
3617
3618
3619
3620
3621
3622<hr><h3><a name="lua_getuservalue"><code>lua_getuservalue</code></a></h3><p>
3623<span class="apii">[-0, +1, &ndash;]</span>
3624<pre>int lua_getuservalue (lua_State *L, int index);</pre>
3625
3626<p>
3627Pushes onto the stack the Lua value associated with the userdata
3628at the given index.
3629
3630
3631<p>
3632Returns the type of the pushed value.
3633
3634
3635
3636
3637
3638<hr><h3><a name="lua_insert"><code>lua_insert</code></a></h3><p>
3639<span class="apii">[-1, +1, &ndash;]</span>
3640<pre>void lua_insert (lua_State *L, int index);</pre>
3641
3642<p>
3643Moves the top element into the given valid index,
3644shifting up the elements above this index to open space.
3645This function cannot be called with a pseudo-index,
3646because a pseudo-index is not an actual stack position.
3647
3648
3649
3650
3651
3652<hr><h3><a name="lua_Integer"><code>lua_Integer</code></a></h3>
3653<pre>typedef ... lua_Integer;</pre>
3654
3655<p>
3656The type of integers in Lua.
3657
3658
3659<p>
3660By default this type is <code>long long</code>,
3661(usually a 64-bit two-complement integer),
3662but that can be changed to <code>long</code> or <code>int</code>
3663(usually a 32-bit two-complement integer).
3664(See <code>LUA_INT</code> in <code>luaconf.h</code>.)
3665
3666
3667<p>
3668Lua also defines the constants
3669<a name="pdf-LUA_MININTEGER"><code>LUA_MININTEGER</code></a> and <a name="pdf-LUA_MAXINTEGER"><code>LUA_MAXINTEGER</code></a>,
3670with the minimum and the maximum values that fit in this type.
3671
3672
3673
3674
3675
3676<hr><h3><a name="lua_isboolean"><code>lua_isboolean</code></a></h3><p>
3677<span class="apii">[-0, +0, &ndash;]</span>
3678<pre>int lua_isboolean (lua_State *L, int index);</pre>
3679
3680<p>
3681Returns 1 if the value at the given index is a boolean,
3682and 0&nbsp;otherwise.
3683
3684
3685
3686
3687
3688<hr><h3><a name="lua_iscfunction"><code>lua_iscfunction</code></a></h3><p>
3689<span class="apii">[-0, +0, &ndash;]</span>
3690<pre>int lua_iscfunction (lua_State *L, int index);</pre>
3691
3692<p>
3693Returns 1 if the value at the given index is a C&nbsp;function,
3694and 0&nbsp;otherwise.
3695
3696
3697
3698
3699
3700<hr><h3><a name="lua_isfunction"><code>lua_isfunction</code></a></h3><p>
3701<span class="apii">[-0, +0, &ndash;]</span>
3702<pre>int lua_isfunction (lua_State *L, int index);</pre>
3703
3704<p>
3705Returns 1 if the value at the given index is a function
3706(either C or Lua), and 0&nbsp;otherwise.
3707
3708
3709
3710
3711
3712<hr><h3><a name="lua_isinteger"><code>lua_isinteger</code></a></h3><p>
3713<span class="apii">[-0, +0, &ndash;]</span>
3714<pre>int lua_isinteger (lua_State *L, int index);</pre>
3715
3716<p>
3717Returns 1 if the value at the given index is an integer
3718(that is, the value is a number and is represented as an integer),
3719and 0&nbsp;otherwise.
3720
3721
3722
3723
3724
3725<hr><h3><a name="lua_islightuserdata"><code>lua_islightuserdata</code></a></h3><p>
3726<span class="apii">[-0, +0, &ndash;]</span>
3727<pre>int lua_islightuserdata (lua_State *L, int index);</pre>
3728
3729<p>
3730Returns 1 if the value at the given index is a light userdata,
3731and 0&nbsp;otherwise.
3732
3733
3734
3735
3736
3737<hr><h3><a name="lua_isnil"><code>lua_isnil</code></a></h3><p>
3738<span class="apii">[-0, +0, &ndash;]</span>
3739<pre>int lua_isnil (lua_State *L, int index);</pre>
3740
3741<p>
3742Returns 1 if the value at the given index is <b>nil</b>,
3743and 0&nbsp;otherwise.
3744
3745
3746
3747
3748
3749<hr><h3><a name="lua_isnone"><code>lua_isnone</code></a></h3><p>
3750<span class="apii">[-0, +0, &ndash;]</span>
3751<pre>int lua_isnone (lua_State *L, int index);</pre>
3752
3753<p>
3754Returns 1 if the given index is not valid,
3755and 0&nbsp;otherwise.
3756
3757
3758
3759
3760
3761<hr><h3><a name="lua_isnoneornil"><code>lua_isnoneornil</code></a></h3><p>
3762<span class="apii">[-0, +0, &ndash;]</span>
3763<pre>int lua_isnoneornil (lua_State *L, int index);</pre>
3764
3765<p>
3766Returns 1 if the given index is not valid
3767or if the value at this index is <b>nil</b>,
3768and 0&nbsp;otherwise.
3769
3770
3771
3772
3773
3774<hr><h3><a name="lua_isnumber"><code>lua_isnumber</code></a></h3><p>
3775<span class="apii">[-0, +0, &ndash;]</span>
3776<pre>int lua_isnumber (lua_State *L, int index);</pre>
3777
3778<p>
3779Returns 1 if the value at the given index is a number
3780or a string convertible to a number,
3781and 0&nbsp;otherwise.
3782
3783
3784
3785
3786
3787<hr><h3><a name="lua_isstring"><code>lua_isstring</code></a></h3><p>
3788<span class="apii">[-0, +0, &ndash;]</span>
3789<pre>int lua_isstring (lua_State *L, int index);</pre>
3790
3791<p>
3792Returns 1 if the value at the given index is a string
3793or a number (which is always convertible to a string),
3794and 0&nbsp;otherwise.
3795
3796
3797
3798
3799
3800<hr><h3><a name="lua_istable"><code>lua_istable</code></a></h3><p>
3801<span class="apii">[-0, +0, &ndash;]</span>
3802<pre>int lua_istable (lua_State *L, int index);</pre>
3803
3804<p>
3805Returns 1 if the value at the given index is a table,
3806and 0&nbsp;otherwise.
3807
3808
3809
3810
3811
3812<hr><h3><a name="lua_isthread"><code>lua_isthread</code></a></h3><p>
3813<span class="apii">[-0, +0, &ndash;]</span>
3814<pre>int lua_isthread (lua_State *L, int index);</pre>
3815
3816<p>
3817Returns 1 if the value at the given index is a thread,
3818and 0&nbsp;otherwise.
3819
3820
3821
3822
3823
3824<hr><h3><a name="lua_isuserdata"><code>lua_isuserdata</code></a></h3><p>
3825<span class="apii">[-0, +0, &ndash;]</span>
3826<pre>int lua_isuserdata (lua_State *L, int index);</pre>
3827
3828<p>
3829Returns 1 if the value at the given index is a userdata
3830(either full or light), and 0&nbsp;otherwise.
3831
3832
3833
3834
3835
3836<hr><h3><a name="lua_isyieldable"><code>lua_isyieldable</code></a></h3><p>
3837<span class="apii">[-0, +0, &ndash;]</span>
3838<pre>int lua_isyieldable (lua_State *L);</pre>
3839
3840<p>
3841Returns 1 if the given coroutine can yield,
3842and 0&nbsp;otherwise.
3843
3844
3845
3846
3847
3848<hr><h3><a name="lua_KContext"><code>lua_KContext</code></a></h3>
3849<pre>typedef ... lua_KContext;</pre>
3850
3851<p>
3852The type for continuation-function contexts.
3853It must be a numerical type.
3854This type is defined as <code>intptr_t</code>
3855when <code>intptr_t</code> is available,
3856so that it can store pointers too.
3857Otherwise, it is defined as <code>ptrdiff_t</code>.
3858
3859
3860
3861
3862
3863<hr><h3><a name="lua_KFunction"><code>lua_KFunction</code></a></h3>
3864<pre>typedef int (*lua_KFunction) (lua_State *L, int status, lua_KContext ctx);</pre>
3865
3866<p>
3867Type for continuation functions (see <a href="#4.7">&sect;4.7</a>).
3868
3869
3870
3871
3872
3873<hr><h3><a name="lua_len"><code>lua_len</code></a></h3><p>
3874<span class="apii">[-0, +1, <em>e</em>]</span>
3875<pre>void lua_len (lua_State *L, int index);</pre>
3876
3877<p>
3878Returns the length of the value at the given index.
3879It is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.7">&sect;3.4.7</a>) and
3880may trigger a metamethod for the "length" event (see <a href="#2.4">&sect;2.4</a>).
3881The result is pushed on the stack.
3882
3883
3884
3885
3886
3887<hr><h3><a name="lua_load"><code>lua_load</code></a></h3><p>
3888<span class="apii">[-0, +1, &ndash;]</span>
3889<pre>int lua_load (lua_State *L,
3890              lua_Reader reader,
3891              void *data,
3892              const char *chunkname,
3893              const char *mode);</pre>
3894
3895<p>
3896Loads a Lua chunk without running it.
3897If there are no errors,
3898<code>lua_load</code> pushes the compiled chunk as a Lua
3899function on top of the stack.
3900Otherwise, it pushes an error message.
3901
3902
3903<p>
3904The return values of <code>lua_load</code> are:
3905
3906<ul>
3907
3908<li><b><a href="#pdf-LUA_OK"><code>LUA_OK</code></a>: </b> no errors;</li>
3909
3910<li><b><a name="pdf-LUA_ERRSYNTAX"><code>LUA_ERRSYNTAX</code></a>: </b>
3911syntax error during precompilation;</li>
3912
3913<li><b><a href="#pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b>
3914memory allocation error;</li>
3915
3916<li><b><a href="#pdf-LUA_ERRGCMM"><code>LUA_ERRGCMM</code></a>: </b>
3917error while running a <code>__gc</code> metamethod.
3918(This error has no relation with the chunk being loaded.
3919It is generated by the garbage collector.)
3920</li>
3921
3922</ul>
3923
3924<p>
3925The <code>lua_load</code> function uses a user-supplied <code>reader</code> function
3926to read the chunk (see <a href="#lua_Reader"><code>lua_Reader</code></a>).
3927The <code>data</code> argument is an opaque value passed to the reader function.
3928
3929
3930<p>
3931The <code>chunkname</code> argument gives a name to the chunk,
3932which is used for error messages and in debug information (see <a href="#4.9">&sect;4.9</a>).
3933
3934
3935<p>
3936<code>lua_load</code> automatically detects whether the chunk is text or binary
3937and loads it accordingly (see program <code>luac</code>).
3938The string <code>mode</code> works as in function <a href="#pdf-load"><code>load</code></a>,
3939with the addition that
3940a <code>NULL</code> value is equivalent to the string "<code>bt</code>".
3941
3942
3943<p>
3944<code>lua_load</code> uses the stack internally,
3945so the reader function must always leave the stack
3946unmodified when returning.
3947
3948
3949<p>
3950If the resulting function has upvalues,
3951its first upvalue is set to the value of the global environment
3952stored at index <code>LUA_RIDX_GLOBALS</code> in the registry (see <a href="#4.5">&sect;4.5</a>).
3953When loading main chunks,
3954this upvalue will be the <code>_ENV</code> variable (see <a href="#2.2">&sect;2.2</a>).
3955Other upvalues are initialized with <b>nil</b>.
3956
3957
3958
3959
3960
3961<hr><h3><a name="lua_newstate"><code>lua_newstate</code></a></h3><p>
3962<span class="apii">[-0, +0, &ndash;]</span>
3963<pre>lua_State *lua_newstate (lua_Alloc f, void *ud);</pre>
3964
3965<p>
3966Creates a new thread running in a new, independent state.
3967Returns <code>NULL</code> if it cannot create the thread or the state
3968(due to lack of memory).
3969The argument <code>f</code> is the allocator function;
3970Lua does all memory allocation for this state through this function.
3971The second argument, <code>ud</code>, is an opaque pointer that Lua
3972passes to the allocator in every call.
3973
3974
3975
3976
3977
3978<hr><h3><a name="lua_newtable"><code>lua_newtable</code></a></h3><p>
3979<span class="apii">[-0, +1, <em>e</em>]</span>
3980<pre>void lua_newtable (lua_State *L);</pre>
3981
3982<p>
3983Creates a new empty table and pushes it onto the stack.
3984It is equivalent to <code>lua_createtable(L, 0, 0)</code>.
3985
3986
3987
3988
3989
3990<hr><h3><a name="lua_newthread"><code>lua_newthread</code></a></h3><p>
3991<span class="apii">[-0, +1, <em>e</em>]</span>
3992<pre>lua_State *lua_newthread (lua_State *L);</pre>
3993
3994<p>
3995Creates a new thread, pushes it on the stack,
3996and returns a pointer to a <a href="#lua_State"><code>lua_State</code></a> that represents this new thread.
3997The new thread returned by this function shares with the original thread
3998its global environment,
3999but has an independent execution stack.
4000
4001
4002<p>
4003There is no explicit function to close or to destroy a thread.
4004Threads are subject to garbage collection,
4005like any Lua object.
4006
4007
4008
4009
4010
4011<hr><h3><a name="lua_newuserdata"><code>lua_newuserdata</code></a></h3><p>
4012<span class="apii">[-0, +1, <em>e</em>]</span>
4013<pre>void *lua_newuserdata (lua_State *L, size_t size);</pre>
4014
4015<p>
4016This function allocates a new block of memory with the given size,
4017pushes onto the stack a new full userdata with the block address,
4018and returns this address.
4019The host program can freely use this memory.
4020
4021
4022
4023
4024
4025<hr><h3><a name="lua_next"><code>lua_next</code></a></h3><p>
4026<span class="apii">[-1, +(2|0), <em>e</em>]</span>
4027<pre>int lua_next (lua_State *L, int index);</pre>
4028
4029<p>
4030Pops a key from the stack,
4031and pushes a key&ndash;value pair from the table at the given index
4032(the "next" pair after the given key).
4033If there are no more elements in the table,
4034then <a href="#lua_next"><code>lua_next</code></a> returns 0 (and pushes nothing).
4035
4036
4037<p>
4038A typical traversal looks like this:
4039
4040<pre>
4041     /* table is in the stack at index 't' */
4042     lua_pushnil(L);  /* first key */
4043     while (lua_next(L, t) != 0) {
4044       /* uses 'key' (at index -2) and 'value' (at index -1) */
4045       printf("%s - %s\n",
4046              lua_typename(L, lua_type(L, -2)),
4047              lua_typename(L, lua_type(L, -1)));
4048       /* removes 'value'; keeps 'key' for next iteration */
4049       lua_pop(L, 1);
4050     }
4051</pre>
4052
4053<p>
4054While traversing a table,
4055do not call <a href="#lua_tolstring"><code>lua_tolstring</code></a> directly on a key,
4056unless you know that the key is actually a string.
4057Recall that <a href="#lua_tolstring"><code>lua_tolstring</code></a> may change
4058the value at the given index;
4059this confuses the next call to <a href="#lua_next"><code>lua_next</code></a>.
4060
4061
4062<p>
4063See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying
4064the table during its traversal.
4065
4066
4067
4068
4069
4070<hr><h3><a name="lua_Number"><code>lua_Number</code></a></h3>
4071<pre>typedef double lua_Number;</pre>
4072
4073<p>
4074The type of floats in Lua.
4075
4076
4077<p>
4078By default this type is double,
4079but that can be changed to a single float.
4080(See <code>LUA_REAL</code> in <code>luaconf.h</code>.)
4081
4082
4083
4084
4085
4086<hr><h3><a name="lua_numbertointeger"><code>lua_numbertointeger</code></a></h3>
4087<pre>int lua_numbertointeger (lua_Number n, lua_Integer *p);</pre>
4088
4089<p>
4090Converts a Lua float to a Lua integer.
4091This macro assumes that <code>n</code> has an integral value.
4092If that value is within the range of Lua integers,
4093it is converted to an integer and assigned to <code>*p</code>.
4094The macro results in a boolean indicating whether the
4095conversion was successful.
4096(Note that this range test can be tricky to do
4097correctly without this macro,
4098due to roundings.)
4099
4100
4101<p>
4102This macro may evaluate its arguments more than once.
4103
4104
4105
4106
4107
4108<hr><h3><a name="lua_pcall"><code>lua_pcall</code></a></h3><p>
4109<span class="apii">[-(nargs + 1), +(nresults|1), &ndash;]</span>
4110<pre>int lua_pcall (lua_State *L, int nargs, int nresults, int msgh);</pre>
4111
4112<p>
4113Calls a function in protected mode.
4114
4115
4116<p>
4117Both <code>nargs</code> and <code>nresults</code> have the same meaning as
4118in <a href="#lua_call"><code>lua_call</code></a>.
4119If there are no errors during the call,
4120<a href="#lua_pcall"><code>lua_pcall</code></a> behaves exactly like <a href="#lua_call"><code>lua_call</code></a>.
4121However, if there is any error,
4122<a href="#lua_pcall"><code>lua_pcall</code></a> catches it,
4123pushes a single value on the stack (the error message),
4124and returns an error code.
4125Like <a href="#lua_call"><code>lua_call</code></a>,
4126<a href="#lua_pcall"><code>lua_pcall</code></a> always removes the function
4127and its arguments from the stack.
4128
4129
4130<p>
4131If <code>msgh</code> is 0,
4132then the error message returned on the stack
4133is exactly the original error message.
4134Otherwise, <code>msgh</code> is the stack index of a
4135<em>message handler</em>.
4136(In the current implementation, this index cannot be a pseudo-index.)
4137In case of runtime errors,
4138this function will be called with the error message
4139and its return value will be the message
4140returned on the stack by <a href="#lua_pcall"><code>lua_pcall</code></a>.
4141
4142
4143<p>
4144Typically, the message handler is used to add more debug
4145information to the error message, such as a stack traceback.
4146Such information cannot be gathered after the return of <a href="#lua_pcall"><code>lua_pcall</code></a>,
4147since by then the stack has unwound.
4148
4149
4150<p>
4151The <a href="#lua_pcall"><code>lua_pcall</code></a> function returns one of the following constants
4152(defined in <code>lua.h</code>):
4153
4154<ul>
4155
4156<li><b><a name="pdf-LUA_OK"><code>LUA_OK</code></a> (0): </b>
4157success.</li>
4158
4159<li><b><a name="pdf-LUA_ERRRUN"><code>LUA_ERRRUN</code></a>: </b>
4160a runtime error.
4161</li>
4162
4163<li><b><a name="pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b>
4164memory allocation error.
4165For such errors, Lua does not call the message handler.
4166</li>
4167
4168<li><b><a name="pdf-LUA_ERRERR"><code>LUA_ERRERR</code></a>: </b>
4169error while running the message handler.
4170</li>
4171
4172<li><b><a name="pdf-LUA_ERRGCMM"><code>LUA_ERRGCMM</code></a>: </b>
4173error while running a <code>__gc</code> metamethod.
4174(This error typically has no relation with the function being called.)
4175</li>
4176
4177</ul>
4178
4179
4180
4181
4182<hr><h3><a name="lua_pcallk"><code>lua_pcallk</code></a></h3><p>
4183<span class="apii">[-(nargs + 1), +(nresults|1), &ndash;]</span>
4184<pre>int lua_pcallk (lua_State *L,
4185                int nargs,
4186                int nresults,
4187                int msgh,
4188                lua_KContext ctx,
4189                lua_KFunction k);</pre>
4190
4191<p>
4192This function behaves exactly like <a href="#lua_pcall"><code>lua_pcall</code></a>,
4193but allows the called function to yield (see <a href="#4.7">&sect;4.7</a>).
4194
4195
4196
4197
4198
4199<hr><h3><a name="lua_pop"><code>lua_pop</code></a></h3><p>
4200<span class="apii">[-n, +0, &ndash;]</span>
4201<pre>void lua_pop (lua_State *L, int n);</pre>
4202
4203<p>
4204Pops <code>n</code> elements from the stack.
4205
4206
4207
4208
4209
4210<hr><h3><a name="lua_pushboolean"><code>lua_pushboolean</code></a></h3><p>
4211<span class="apii">[-0, +1, &ndash;]</span>
4212<pre>void lua_pushboolean (lua_State *L, int b);</pre>
4213
4214<p>
4215Pushes a boolean value with value <code>b</code> onto the stack.
4216
4217
4218
4219
4220
4221<hr><h3><a name="lua_pushcclosure"><code>lua_pushcclosure</code></a></h3><p>
4222<span class="apii">[-n, +1, <em>e</em>]</span>
4223<pre>void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);</pre>
4224
4225<p>
4226Pushes a new C&nbsp;closure onto the stack.
4227
4228
4229<p>
4230When a C&nbsp;function is created,
4231it is possible to associate some values with it,
4232thus creating a C&nbsp;closure (see <a href="#4.4">&sect;4.4</a>);
4233these values are then accessible to the function whenever it is called.
4234To associate values with a C&nbsp;function,
4235first these values must be pushed onto the stack
4236(when there are multiple values, the first value is pushed first).
4237Then <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>
4238is called to create and push the C&nbsp;function onto the stack,
4239with the argument <code>n</code> telling how many values will be
4240associated with the function.
4241<a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> also pops these values from the stack.
4242
4243
4244<p>
4245The maximum value for <code>n</code> is 255.
4246
4247
4248<p>
4249When <code>n</code> is zero,
4250this function creates a <em>light C function</em>,
4251which is just a pointer to the C&nbsp;function.
4252In that case, it never raises a memory error.
4253
4254
4255
4256
4257
4258<hr><h3><a name="lua_pushcfunction"><code>lua_pushcfunction</code></a></h3><p>
4259<span class="apii">[-0, +1, &ndash;]</span>
4260<pre>void lua_pushcfunction (lua_State *L, lua_CFunction f);</pre>
4261
4262<p>
4263Pushes a C&nbsp;function onto the stack.
4264This function receives a pointer to a C function
4265and pushes onto the stack a Lua value of type <code>function</code> that,
4266when called, invokes the corresponding C&nbsp;function.
4267
4268
4269<p>
4270Any function to be registered in Lua must
4271follow the correct protocol to receive its parameters
4272and return its results (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
4273
4274
4275<p>
4276<code>lua_pushcfunction</code> is defined as a macro:
4277
4278<pre>
4279     #define lua_pushcfunction(L,f)  lua_pushcclosure(L,f,0)
4280</pre><p>
4281Note that <code>f</code> is used twice.
4282
4283
4284
4285
4286
4287<hr><h3><a name="lua_pushfstring"><code>lua_pushfstring</code></a></h3><p>
4288<span class="apii">[-0, +1, <em>e</em>]</span>
4289<pre>const char *lua_pushfstring (lua_State *L, const char *fmt, ...);</pre>
4290
4291<p>
4292Pushes onto the stack a formatted string
4293and returns a pointer to this string.
4294It is similar to the ISO&nbsp;C function <code>sprintf</code>,
4295but has some important differences:
4296
4297<ul>
4298
4299<li>
4300You do not have to allocate space for the result:
4301the result is a Lua string and Lua takes care of memory allocation
4302(and deallocation, through garbage collection).
4303</li>
4304
4305<li>
4306The conversion specifiers are quite restricted.
4307There are no flags, widths, or precisions.
4308The conversion specifiers can only be
4309'<code>%%</code>' (inserts the character '<code>%</code>'),
4310'<code>%s</code>' (inserts a zero-terminated string, with no size restrictions),
4311'<code>%f</code>' (inserts a <a href="#lua_Number"><code>lua_Number</code></a>),
4312'<code>%L</code>' (inserts a <a href="#lua_Integer"><code>lua_Integer</code></a>),
4313'<code>%p</code>' (inserts a pointer as a hexadecimal numeral),
4314'<code>%d</code>' (inserts an <code>int</code>),
4315'<code>%c</code>' (inserts an <code>int</code> as a one-byte character), and
4316'<code>%U</code>' (inserts a <code>long int</code> as a UTF-8 byte sequence).
4317</li>
4318
4319</ul>
4320
4321
4322
4323
4324<hr><h3><a name="lua_pushglobaltable"><code>lua_pushglobaltable</code></a></h3><p>
4325<span class="apii">[-0, +1, &ndash;]</span>
4326<pre>void lua_pushglobaltable (lua_State *L);</pre>
4327
4328<p>
4329Pushes the global environment onto the stack.
4330
4331
4332
4333
4334
4335<hr><h3><a name="lua_pushinteger"><code>lua_pushinteger</code></a></h3><p>
4336<span class="apii">[-0, +1, &ndash;]</span>
4337<pre>void lua_pushinteger (lua_State *L, lua_Integer n);</pre>
4338
4339<p>
4340Pushes an integer with value <code>n</code> onto the stack.
4341
4342
4343
4344
4345
4346<hr><h3><a name="lua_pushlightuserdata"><code>lua_pushlightuserdata</code></a></h3><p>
4347<span class="apii">[-0, +1, &ndash;]</span>
4348<pre>void lua_pushlightuserdata (lua_State *L, void *p);</pre>
4349
4350<p>
4351Pushes a light userdata onto the stack.
4352
4353
4354<p>
4355Userdata represent C&nbsp;values in Lua.
4356A <em>light userdata</em> represents a pointer, a <code>void*</code>.
4357It is a value (like a number):
4358you do not create it, it has no individual metatable,
4359and it is not collected (as it was never created).
4360A light userdata is equal to "any"
4361light userdata with the same C&nbsp;address.
4362
4363
4364
4365
4366
4367<hr><h3><a name="lua_pushliteral"><code>lua_pushliteral</code></a></h3><p>
4368<span class="apii">[-0, +1, <em>e</em>]</span>
4369<pre>const char *lua_pushliteral (lua_State *L, const char *s);</pre>
4370
4371<p>
4372This macro is equivalent to <a href="#lua_pushlstring"><code>lua_pushlstring</code></a>,
4373but can be used only when <code>s</code> is a literal string.
4374It automatically provides the string length.
4375
4376
4377
4378
4379
4380<hr><h3><a name="lua_pushlstring"><code>lua_pushlstring</code></a></h3><p>
4381<span class="apii">[-0, +1, <em>e</em>]</span>
4382<pre>const char *lua_pushlstring (lua_State *L, const char *s, size_t len);</pre>
4383
4384<p>
4385Pushes the string pointed to by <code>s</code> with size <code>len</code>
4386onto the stack.
4387Lua makes (or reuses) an internal copy of the given string,
4388so the memory at <code>s</code> can be freed or reused immediately after
4389the function returns.
4390The string can contain any binary data,
4391including embedded zeros.
4392
4393
4394<p>
4395Returns a pointer to the internal copy of the string.
4396
4397
4398
4399
4400
4401<hr><h3><a name="lua_pushnil"><code>lua_pushnil</code></a></h3><p>
4402<span class="apii">[-0, +1, &ndash;]</span>
4403<pre>void lua_pushnil (lua_State *L);</pre>
4404
4405<p>
4406Pushes a nil value onto the stack.
4407
4408
4409
4410
4411
4412<hr><h3><a name="lua_pushnumber"><code>lua_pushnumber</code></a></h3><p>
4413<span class="apii">[-0, +1, &ndash;]</span>
4414<pre>void lua_pushnumber (lua_State *L, lua_Number n);</pre>
4415
4416<p>
4417Pushes a float with value <code>n</code> onto the stack.
4418
4419
4420
4421
4422
4423<hr><h3><a name="lua_pushstring"><code>lua_pushstring</code></a></h3><p>
4424<span class="apii">[-0, +1, <em>e</em>]</span>
4425<pre>const char *lua_pushstring (lua_State *L, const char *s);</pre>
4426
4427<p>
4428Pushes the zero-terminated string pointed to by <code>s</code>
4429onto the stack.
4430Lua makes (or reuses) an internal copy of the given string,
4431so the memory at <code>s</code> can be freed or reused immediately after
4432the function returns.
4433
4434
4435<p>
4436Returns a pointer to the internal copy of the string.
4437
4438
4439<p>
4440If <code>s</code> is <code>NULL</code>, pushes <b>nil</b> and returns <code>NULL</code>.
4441
4442
4443
4444
4445
4446<hr><h3><a name="lua_pushthread"><code>lua_pushthread</code></a></h3><p>
4447<span class="apii">[-0, +1, &ndash;]</span>
4448<pre>int lua_pushthread (lua_State *L);</pre>
4449
4450<p>
4451Pushes the thread represented by <code>L</code> onto the stack.
4452Returns 1 if this thread is the main thread of its state.
4453
4454
4455
4456
4457
4458<hr><h3><a name="lua_pushvalue"><code>lua_pushvalue</code></a></h3><p>
4459<span class="apii">[-0, +1, &ndash;]</span>
4460<pre>void lua_pushvalue (lua_State *L, int index);</pre>
4461
4462<p>
4463Pushes a copy of the element at the given index
4464onto the stack.
4465
4466
4467
4468
4469
4470<hr><h3><a name="lua_pushvfstring"><code>lua_pushvfstring</code></a></h3><p>
4471<span class="apii">[-0, +1, <em>e</em>]</span>
4472<pre>const char *lua_pushvfstring (lua_State *L,
4473                              const char *fmt,
4474                              va_list argp);</pre>
4475
4476<p>
4477Equivalent to <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>, except that it receives a <code>va_list</code>
4478instead of a variable number of arguments.
4479
4480
4481
4482
4483
4484<hr><h3><a name="lua_rawequal"><code>lua_rawequal</code></a></h3><p>
4485<span class="apii">[-0, +0, &ndash;]</span>
4486<pre>int lua_rawequal (lua_State *L, int index1, int index2);</pre>
4487
4488<p>
4489Returns 1 if the two values in indices <code>index1</code> and
4490<code>index2</code> are primitively equal
4491(that is, without calling metamethods).
4492Otherwise returns&nbsp;0.
4493Also returns&nbsp;0 if any of the indices are not valid.
4494
4495
4496
4497
4498
4499<hr><h3><a name="lua_rawget"><code>lua_rawget</code></a></h3><p>
4500<span class="apii">[-1, +1, &ndash;]</span>
4501<pre>int lua_rawget (lua_State *L, int index);</pre>
4502
4503<p>
4504Similar to <a href="#lua_gettable"><code>lua_gettable</code></a>, but does a raw access
4505(i.e., without metamethods).
4506
4507
4508
4509
4510
4511<hr><h3><a name="lua_rawgeti"><code>lua_rawgeti</code></a></h3><p>
4512<span class="apii">[-0, +1, &ndash;]</span>
4513<pre>int lua_rawgeti (lua_State *L, int index, lua_Integer n);</pre>
4514
4515<p>
4516Pushes onto the stack the value <code>t[n]</code>,
4517where <code>t</code> is the table at the given index.
4518The access is raw;
4519that is, it does not invoke metamethods.
4520
4521
4522<p>
4523Returns the type of the pushed value.
4524
4525
4526
4527
4528
4529<hr><h3><a name="lua_rawgetp"><code>lua_rawgetp</code></a></h3><p>
4530<span class="apii">[-0, +1, &ndash;]</span>
4531<pre>int lua_rawgetp (lua_State *L, int index, const void *p);</pre>
4532
4533<p>
4534Pushes onto the stack the value <code>t[k]</code>,
4535where <code>t</code> is the table at the given index and
4536<code>k</code> is the pointer <code>p</code> represented as a light userdata.
4537The access is raw;
4538that is, it does not invoke metamethods.
4539
4540
4541<p>
4542Returns the type of the pushed value.
4543
4544
4545
4546
4547
4548<hr><h3><a name="lua_rawlen"><code>lua_rawlen</code></a></h3><p>
4549<span class="apii">[-0, +0, &ndash;]</span>
4550<pre>size_t lua_rawlen (lua_State *L, int index);</pre>
4551
4552<p>
4553Returns the raw "length" of the value at the given index:
4554for strings, this is the string length;
4555for tables, this is the result of the length operator ('<code>#</code>')
4556with no metamethods;
4557for userdata, this is the size of the block of memory allocated
4558for the userdata;
4559for other values, it is&nbsp;0.
4560
4561
4562
4563
4564
4565<hr><h3><a name="lua_rawset"><code>lua_rawset</code></a></h3><p>
4566<span class="apii">[-2, +0, <em>e</em>]</span>
4567<pre>void lua_rawset (lua_State *L, int index);</pre>
4568
4569<p>
4570Similar to <a href="#lua_settable"><code>lua_settable</code></a>, but does a raw assignment
4571(i.e., without metamethods).
4572
4573
4574
4575
4576
4577<hr><h3><a name="lua_rawseti"><code>lua_rawseti</code></a></h3><p>
4578<span class="apii">[-1, +0, <em>e</em>]</span>
4579<pre>void lua_rawseti (lua_State *L, int index, lua_Integer i);</pre>
4580
4581<p>
4582Does the equivalent of <code>t[i] = v</code>,
4583where <code>t</code> is the table at the given index
4584and <code>v</code> is the value at the top of the stack.
4585
4586
4587<p>
4588This function pops the value from the stack.
4589The assignment is raw;
4590that is, it does not invoke metamethods.
4591
4592
4593
4594
4595
4596<hr><h3><a name="lua_rawsetp"><code>lua_rawsetp</code></a></h3><p>
4597<span class="apii">[-1, +0, <em>e</em>]</span>
4598<pre>void lua_rawsetp (lua_State *L, int index, const void *p);</pre>
4599
4600<p>
4601Does the equivalent of <code>t[k] = v</code>,
4602where <code>t</code> is the table at the given index,
4603<code>k</code> is the pointer <code>p</code> represented as a light userdata,
4604and <code>v</code> is the value at the top of the stack.
4605
4606
4607<p>
4608This function pops the value from the stack.
4609The assignment is raw;
4610that is, it does not invoke metamethods.
4611
4612
4613
4614
4615
4616<hr><h3><a name="lua_Reader"><code>lua_Reader</code></a></h3>
4617<pre>typedef const char * (*lua_Reader) (lua_State *L,
4618                                    void *data,
4619                                    size_t *size);</pre>
4620
4621<p>
4622The reader function used by <a href="#lua_load"><code>lua_load</code></a>.
4623Every time it needs another piece of the chunk,
4624<a href="#lua_load"><code>lua_load</code></a> calls the reader,
4625passing along its <code>data</code> parameter.
4626The reader must return a pointer to a block of memory
4627with a new piece of the chunk
4628and set <code>size</code> to the block size.
4629The block must exist until the reader function is called again.
4630To signal the end of the chunk,
4631the reader must return <code>NULL</code> or set <code>size</code> to zero.
4632The reader function may return pieces of any size greater than zero.
4633
4634
4635
4636
4637
4638<hr><h3><a name="lua_register"><code>lua_register</code></a></h3><p>
4639<span class="apii">[-0, +0, <em>e</em>]</span>
4640<pre>void lua_register (lua_State *L, const char *name, lua_CFunction f);</pre>
4641
4642<p>
4643Sets the C function <code>f</code> as the new value of global <code>name</code>.
4644It is defined as a macro:
4645
4646<pre>
4647     #define lua_register(L,n,f) \
4648            (lua_pushcfunction(L, f), lua_setglobal(L, n))
4649</pre>
4650
4651
4652
4653
4654<hr><h3><a name="lua_remove"><code>lua_remove</code></a></h3><p>
4655<span class="apii">[-1, +0, &ndash;]</span>
4656<pre>void lua_remove (lua_State *L, int index);</pre>
4657
4658<p>
4659Removes the element at the given valid index,
4660shifting down the elements above this index to fill the gap.
4661This function cannot be called with a pseudo-index,
4662because a pseudo-index is not an actual stack position.
4663
4664
4665
4666
4667
4668<hr><h3><a name="lua_replace"><code>lua_replace</code></a></h3><p>
4669<span class="apii">[-1, +0, &ndash;]</span>
4670<pre>void lua_replace (lua_State *L, int index);</pre>
4671
4672<p>
4673Moves the top element into the given valid index
4674without shifting any element
4675(therefore replacing the value at the given index),
4676and then pops the top element.
4677
4678
4679
4680
4681
4682<hr><h3><a name="lua_resume"><code>lua_resume</code></a></h3><p>
4683<span class="apii">[-?, +?, &ndash;]</span>
4684<pre>int lua_resume (lua_State *L, lua_State *from, int nargs);</pre>
4685
4686<p>
4687Starts and resumes a coroutine in a given thread.
4688
4689
4690<p>
4691To start a coroutine,
4692you push onto the thread stack the main function plus any arguments;
4693then you call <a href="#lua_resume"><code>lua_resume</code></a>,
4694with <code>nargs</code> being the number of arguments.
4695This call returns when the coroutine suspends or finishes its execution.
4696When it returns, the stack contains all values passed to <a href="#lua_yield"><code>lua_yield</code></a>,
4697or all values returned by the body function.
4698<a href="#lua_resume"><code>lua_resume</code></a> returns
4699<a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the coroutine yields,
4700<a href="#pdf-LUA_OK"><code>LUA_OK</code></a> if the coroutine finishes its execution
4701without errors,
4702or an error code in case of errors (see <a href="#lua_pcall"><code>lua_pcall</code></a>).
4703
4704
4705<p>
4706In case of errors,
4707the stack is not unwound,
4708so you can use the debug API over it.
4709The error message is on the top of the stack.
4710
4711
4712<p>
4713To resume a coroutine,
4714you remove any results from the last <a href="#lua_yield"><code>lua_yield</code></a>,
4715put on its stack only the values to
4716be passed as results from <code>yield</code>,
4717and then call <a href="#lua_resume"><code>lua_resume</code></a>.
4718
4719
4720<p>
4721The parameter <code>from</code> represents the coroutine that is resuming <code>L</code>.
4722If there is no such coroutine,
4723this parameter can be <code>NULL</code>.
4724
4725
4726
4727
4728
4729<hr><h3><a name="lua_rotate"><code>lua_rotate</code></a></h3><p>
4730<span class="apii">[-0, +0, &ndash;]</span>
4731<pre>void lua_rotate (lua_State *L, int idx, int n);</pre>
4732
4733<p>
4734Rotates the stack elements from <code>idx</code> to the top <code>n</code> positions
4735in the direction of the top, for a positive <code>n</code>,
4736or <code>-n</code> positions in the direction of the bottom,
4737for a negative <code>n</code>.
4738The absolute value of <code>n</code> must not be greater than the size
4739of the slice being rotated.
4740
4741
4742
4743
4744
4745<hr><h3><a name="lua_setallocf"><code>lua_setallocf</code></a></h3><p>
4746<span class="apii">[-0, +0, &ndash;]</span>
4747<pre>void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);</pre>
4748
4749<p>
4750Changes the allocator function of a given state to <code>f</code>
4751with user data <code>ud</code>.
4752
4753
4754
4755
4756
4757<hr><h3><a name="lua_setfield"><code>lua_setfield</code></a></h3><p>
4758<span class="apii">[-1, +0, <em>e</em>]</span>
4759<pre>void lua_setfield (lua_State *L, int index, const char *k);</pre>
4760
4761<p>
4762Does the equivalent to <code>t[k] = v</code>,
4763where <code>t</code> is the value at the given index
4764and <code>v</code> is the value at the top of the stack.
4765
4766
4767<p>
4768This function pops the value from the stack.
4769As in Lua, this function may trigger a metamethod
4770for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).
4771
4772
4773
4774
4775
4776<hr><h3><a name="lua_setglobal"><code>lua_setglobal</code></a></h3><p>
4777<span class="apii">[-1, +0, <em>e</em>]</span>
4778<pre>void lua_setglobal (lua_State *L, const char *name);</pre>
4779
4780<p>
4781Pops a value from the stack and
4782sets it as the new value of global <code>name</code>.
4783
4784
4785
4786
4787
4788<hr><h3><a name="lua_seti"><code>lua_seti</code></a></h3><p>
4789<span class="apii">[-1, +0, <em>e</em>]</span>
4790<pre>void lua_seti (lua_State *L, int index, lua_Integer n);</pre>
4791
4792<p>
4793Does the equivalent to <code>t[n] = v</code>,
4794where <code>t</code> is the value at the given index
4795and <code>v</code> is the value at the top of the stack.
4796
4797
4798<p>
4799This function pops the value from the stack.
4800As in Lua, this function may trigger a metamethod
4801for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).
4802
4803
4804
4805
4806
4807<hr><h3><a name="lua_setmetatable"><code>lua_setmetatable</code></a></h3><p>
4808<span class="apii">[-1, +0, &ndash;]</span>
4809<pre>void lua_setmetatable (lua_State *L, int index);</pre>
4810
4811<p>
4812Pops a table from the stack and
4813sets it as the new metatable for the value at the given index.
4814
4815
4816
4817
4818
4819<hr><h3><a name="lua_settable"><code>lua_settable</code></a></h3><p>
4820<span class="apii">[-2, +0, <em>e</em>]</span>
4821<pre>void lua_settable (lua_State *L, int index);</pre>
4822
4823<p>
4824Does the equivalent to <code>t[k] = v</code>,
4825where <code>t</code> is the value at the given index,
4826<code>v</code> is the value at the top of the stack,
4827and <code>k</code> is the value just below the top.
4828
4829
4830<p>
4831This function pops both the key and the value from the stack.
4832As in Lua, this function may trigger a metamethod
4833for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).
4834
4835
4836
4837
4838
4839<hr><h3><a name="lua_settop"><code>lua_settop</code></a></h3><p>
4840<span class="apii">[-?, +?, &ndash;]</span>
4841<pre>void lua_settop (lua_State *L, int index);</pre>
4842
4843<p>
4844Accepts any index, or&nbsp;0,
4845and sets the stack top to this index.
4846If the new top is larger than the old one,
4847then the new elements are filled with <b>nil</b>.
4848If <code>index</code> is&nbsp;0, then all stack elements are removed.
4849
4850
4851
4852
4853
4854<hr><h3><a name="lua_setuservalue"><code>lua_setuservalue</code></a></h3><p>
4855<span class="apii">[-1, +0, &ndash;]</span>
4856<pre>void lua_setuservalue (lua_State *L, int index);</pre>
4857
4858<p>
4859Pops a value from the stack and sets it as
4860the new value associated to the userdata at the given index.
4861
4862
4863
4864
4865
4866<hr><h3><a name="lua_State"><code>lua_State</code></a></h3>
4867<pre>typedef struct lua_State lua_State;</pre>
4868
4869<p>
4870An opaque structure that points to a thread and indirectly
4871(through the thread) to the whole state of a Lua interpreter.
4872The Lua library is fully reentrant:
4873it has no global variables.
4874All information about a state is accessible through this structure.
4875
4876
4877<p>
4878A pointer to this structure must be passed as the first argument to
4879every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>,
4880which creates a Lua state from scratch.
4881
4882
4883
4884
4885
4886<hr><h3><a name="lua_status"><code>lua_status</code></a></h3><p>
4887<span class="apii">[-0, +0, &ndash;]</span>
4888<pre>int lua_status (lua_State *L);</pre>
4889
4890<p>
4891Returns the status of the thread <code>L</code>.
4892
4893
4894<p>
4895The status can be 0 (<a href="#pdf-LUA_OK"><code>LUA_OK</code></a>) for a normal thread,
4896an error code if the thread finished the execution
4897of a <a href="#lua_resume"><code>lua_resume</code></a> with an error,
4898or <a name="pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the thread is suspended.
4899
4900
4901<p>
4902You can only call functions in threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>.
4903You can resume threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>
4904(to start a new coroutine) or <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a>
4905(to resume a coroutine).
4906
4907
4908
4909
4910
4911<hr><h3><a name="lua_stringtonumber"><code>lua_stringtonumber</code></a></h3><p>
4912<span class="apii">[-0, +1, &ndash;]</span>
4913<pre>size_t lua_stringtonumber (lua_State *L, const char *s);</pre>
4914
4915<p>
4916Converts the zero-terminated string <code>s</code> to a number,
4917pushes that number into the stack,
4918and returns the total size of the string,
4919that is, its length plus one.
4920The conversion can result in an integer or a float,
4921according to the lexical conventions of Lua (see <a href="#3.1">&sect;3.1</a>).
4922The string may have leading and trailing spaces and a sign.
4923If the string is not a valid numeral,
4924returns 0 and pushes nothing.
4925(Note that the result can be used as a boolean,
4926true if the conversion succeeds.)
4927
4928
4929
4930
4931
4932<hr><h3><a name="lua_toboolean"><code>lua_toboolean</code></a></h3><p>
4933<span class="apii">[-0, +0, &ndash;]</span>
4934<pre>int lua_toboolean (lua_State *L, int index);</pre>
4935
4936<p>
4937Converts the Lua value at the given index to a C&nbsp;boolean
4938value (0&nbsp;or&nbsp;1).
4939Like all tests in Lua,
4940<a href="#lua_toboolean"><code>lua_toboolean</code></a> returns true for any Lua value
4941different from <b>false</b> and <b>nil</b>;
4942otherwise it returns false.
4943(If you want to accept only actual boolean values,
4944use <a href="#lua_isboolean"><code>lua_isboolean</code></a> to test the value's type.)
4945
4946
4947
4948
4949
4950<hr><h3><a name="lua_tocfunction"><code>lua_tocfunction</code></a></h3><p>
4951<span class="apii">[-0, +0, &ndash;]</span>
4952<pre>lua_CFunction lua_tocfunction (lua_State *L, int index);</pre>
4953
4954<p>
4955Converts a value at the given index to a C&nbsp;function.
4956That value must be a C&nbsp;function;
4957otherwise, returns <code>NULL</code>.
4958
4959
4960
4961
4962
4963<hr><h3><a name="lua_tointeger"><code>lua_tointeger</code></a></h3><p>
4964<span class="apii">[-0, +0, &ndash;]</span>
4965<pre>lua_Integer lua_tointeger (lua_State *L, int index);</pre>
4966
4967<p>
4968Equivalent to <a href="#lua_tointegerx"><code>lua_tointegerx</code></a> with <code>isnum</code> equal to <code>NULL</code>.
4969
4970
4971
4972
4973
4974<hr><h3><a name="lua_tointegerx"><code>lua_tointegerx</code></a></h3><p>
4975<span class="apii">[-0, +0, &ndash;]</span>
4976<pre>lua_Integer lua_tointegerx (lua_State *L, int index, int *isnum);</pre>
4977
4978<p>
4979Converts the Lua value at the given index
4980to the signed integral type <a href="#lua_Integer"><code>lua_Integer</code></a>.
4981The Lua value must be an integer,
4982or a number or string convertible to an integer (see <a href="#3.4.3">&sect;3.4.3</a>);
4983otherwise, <code>lua_tointegerx</code> returns&nbsp;0.
4984
4985
4986<p>
4987If <code>isnum</code> is not <code>NULL</code>,
4988its referent is assigned a boolean value that
4989indicates whether the operation succeeded.
4990
4991
4992
4993
4994
4995<hr><h3><a name="lua_tolstring"><code>lua_tolstring</code></a></h3><p>
4996<span class="apii">[-0, +0, <em>e</em>]</span>
4997<pre>const char *lua_tolstring (lua_State *L, int index, size_t *len);</pre>
4998
4999<p>
5000Converts the Lua value at the given index to a C&nbsp;string.
5001If <code>len</code> is not <code>NULL</code>,
5002it also sets <code>*len</code> with the string length.
5003The Lua value must be a string or a number;
5004otherwise, the function returns <code>NULL</code>.
5005If the value is a number,
5006then <code>lua_tolstring</code> also
5007<em>changes the actual value in the stack to a string</em>.
5008(This change confuses <a href="#lua_next"><code>lua_next</code></a>
5009when <code>lua_tolstring</code> is applied to keys during a table traversal.)
5010
5011
5012<p>
5013<code>lua_tolstring</code> returns a fully aligned pointer
5014to a string inside the Lua state.
5015This string always has a zero ('<code>\0</code>')
5016after its last character (as in&nbsp;C),
5017but can contain other zeros in its body.
5018
5019
5020<p>
5021Because Lua has garbage collection,
5022there is no guarantee that the pointer returned by <code>lua_tolstring</code>
5023will be valid after the corresponding Lua value is removed from the stack.
5024
5025
5026
5027
5028
5029<hr><h3><a name="lua_tonumber"><code>lua_tonumber</code></a></h3><p>
5030<span class="apii">[-0, +0, &ndash;]</span>
5031<pre>lua_Number lua_tonumber (lua_State *L, int index);</pre>
5032
5033<p>
5034Equivalent to <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> with <code>isnum</code> equal to <code>NULL</code>.
5035
5036
5037
5038
5039
5040<hr><h3><a name="lua_tonumberx"><code>lua_tonumberx</code></a></h3><p>
5041<span class="apii">[-0, +0, &ndash;]</span>
5042<pre>lua_Number lua_tonumberx (lua_State *L, int index, int *isnum);</pre>
5043
5044<p>
5045Converts the Lua value at the given index
5046to the C&nbsp;type <a href="#lua_Number"><code>lua_Number</code></a> (see <a href="#lua_Number"><code>lua_Number</code></a>).
5047The Lua value must be a number or a string convertible to a number
5048(see <a href="#3.4.3">&sect;3.4.3</a>);
5049otherwise, <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> returns&nbsp;0.
5050
5051
5052<p>
5053If <code>isnum</code> is not <code>NULL</code>,
5054its referent is assigned a boolean value that
5055indicates whether the operation succeeded.
5056
5057
5058
5059
5060
5061<hr><h3><a name="lua_topointer"><code>lua_topointer</code></a></h3><p>
5062<span class="apii">[-0, +0, &ndash;]</span>
5063<pre>const void *lua_topointer (lua_State *L, int index);</pre>
5064
5065<p>
5066Converts the value at the given index to a generic
5067C&nbsp;pointer (<code>void*</code>).
5068The value can be a userdata, a table, a thread, or a function;
5069otherwise, <code>lua_topointer</code> returns <code>NULL</code>.
5070Different objects will give different pointers.
5071There is no way to convert the pointer back to its original value.
5072
5073
5074<p>
5075Typically this function is used only for debug information.
5076
5077
5078
5079
5080
5081<hr><h3><a name="lua_tostring"><code>lua_tostring</code></a></h3><p>
5082<span class="apii">[-0, +0, <em>e</em>]</span>
5083<pre>const char *lua_tostring (lua_State *L, int index);</pre>
5084
5085<p>
5086Equivalent to <a href="#lua_tolstring"><code>lua_tolstring</code></a> with <code>len</code> equal to <code>NULL</code>.
5087
5088
5089
5090
5091
5092<hr><h3><a name="lua_tothread"><code>lua_tothread</code></a></h3><p>
5093<span class="apii">[-0, +0, &ndash;]</span>
5094<pre>lua_State *lua_tothread (lua_State *L, int index);</pre>
5095
5096<p>
5097Converts the value at the given index to a Lua thread
5098(represented as <code>lua_State*</code>).
5099This value must be a thread;
5100otherwise, the function returns <code>NULL</code>.
5101
5102
5103
5104
5105
5106<hr><h3><a name="lua_touserdata"><code>lua_touserdata</code></a></h3><p>
5107<span class="apii">[-0, +0, &ndash;]</span>
5108<pre>void *lua_touserdata (lua_State *L, int index);</pre>
5109
5110<p>
5111If the value at the given index is a full userdata,
5112returns its block address.
5113If the value is a light userdata,
5114returns its pointer.
5115Otherwise, returns <code>NULL</code>.
5116
5117
5118
5119
5120
5121<hr><h3><a name="lua_type"><code>lua_type</code></a></h3><p>
5122<span class="apii">[-0, +0, &ndash;]</span>
5123<pre>int lua_type (lua_State *L, int index);</pre>
5124
5125<p>
5126Returns the type of the value in the given valid index,
5127or <code>LUA_TNONE</code> for a non-valid (but acceptable) index.
5128The types returned by <a href="#lua_type"><code>lua_type</code></a> are coded by the following constants
5129defined in <code>lua.h</code>:
5130<a name="pdf-LUA_TNIL"><code>LUA_TNIL</code></a>,
5131<a name="pdf-LUA_TNUMBER"><code>LUA_TNUMBER</code></a>,
5132<a name="pdf-LUA_TBOOLEAN"><code>LUA_TBOOLEAN</code></a>,
5133<a name="pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>,
5134<a name="pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>,
5135<a name="pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>,
5136<a name="pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>,
5137<a name="pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a>,
5138and
5139<a name="pdf-LUA_TLIGHTUSERDATA"><code>LUA_TLIGHTUSERDATA</code></a>.
5140
5141
5142
5143
5144
5145<hr><h3><a name="lua_typename"><code>lua_typename</code></a></h3><p>
5146<span class="apii">[-0, +0, &ndash;]</span>
5147<pre>const char *lua_typename (lua_State *L, int tp);</pre>
5148
5149<p>
5150Returns the name of the type encoded by the value <code>tp</code>,
5151which must be one the values returned by <a href="#lua_type"><code>lua_type</code></a>.
5152
5153
5154
5155
5156
5157<hr><h3><a name="lua_Unsigned"><code>lua_Unsigned</code></a></h3>
5158<pre>typedef ... lua_Unsigned;</pre>
5159
5160<p>
5161The unsigned version of <a href="#lua_Integer"><code>lua_Integer</code></a>.
5162
5163
5164
5165
5166
5167<hr><h3><a name="lua_upvalueindex"><code>lua_upvalueindex</code></a></h3><p>
5168<span class="apii">[-0, +0, &ndash;]</span>
5169<pre>int lua_upvalueindex (int i);</pre>
5170
5171<p>
5172Returns the pseudo-index that represents the <code>i</code>-th upvalue of
5173the running function (see <a href="#4.4">&sect;4.4</a>).
5174
5175
5176
5177
5178
5179<hr><h3><a name="lua_version"><code>lua_version</code></a></h3><p>
5180<span class="apii">[-0, +0, <em>v</em>]</span>
5181<pre>const lua_Number *lua_version (lua_State *L);</pre>
5182
5183<p>
5184Returns the address of the version number stored in the Lua core.
5185When called with a valid <a href="#lua_State"><code>lua_State</code></a>,
5186returns the address of the version used to create that state.
5187When called with <code>NULL</code>,
5188returns the address of the version running the call.
5189
5190
5191
5192
5193
5194<hr><h3><a name="lua_Writer"><code>lua_Writer</code></a></h3>
5195<pre>typedef int (*lua_Writer) (lua_State *L,
5196                           const void* p,
5197                           size_t sz,
5198                           void* ud);</pre>
5199
5200<p>
5201The type of the writer function used by <a href="#lua_dump"><code>lua_dump</code></a>.
5202Every time it produces another piece of chunk,
5203<a href="#lua_dump"><code>lua_dump</code></a> calls the writer,
5204passing along the buffer to be written (<code>p</code>),
5205its size (<code>sz</code>),
5206and the <code>data</code> parameter supplied to <a href="#lua_dump"><code>lua_dump</code></a>.
5207
5208
5209<p>
5210The writer returns an error code:
52110&nbsp;means no errors;
5212any other value means an error and stops <a href="#lua_dump"><code>lua_dump</code></a> from
5213calling the writer again.
5214
5215
5216
5217
5218
5219<hr><h3><a name="lua_xmove"><code>lua_xmove</code></a></h3><p>
5220<span class="apii">[-?, +?, &ndash;]</span>
5221<pre>void lua_xmove (lua_State *from, lua_State *to, int n);</pre>
5222
5223<p>
5224Exchange values between different threads of the same state.
5225
5226
5227<p>
5228This function pops <code>n</code> values from the stack <code>from</code>,
5229and pushes them onto the stack <code>to</code>.
5230
5231
5232
5233
5234
5235<hr><h3><a name="lua_yield"><code>lua_yield</code></a></h3><p>
5236<span class="apii">[-?, +?, <em>e</em>]</span>
5237<pre>int lua_yield (lua_State *L, int nresults);</pre>
5238
5239<p>
5240This function is equivalent to <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
5241but it has no continuation (see <a href="#4.7">&sect;4.7</a>).
5242Therefore, when the thread resumes,
5243it continues the function that called
5244the function calling <code>lua_yield</code>.
5245
5246
5247
5248
5249
5250<hr><h3><a name="lua_yieldk"><code>lua_yieldk</code></a></h3><p>
5251<span class="apii">[-?, +?, <em>e</em>]</span>
5252<pre>int lua_yieldk (lua_State *L,
5253                int nresults,
5254                lua_KContext ctx,
5255                lua_KFunction k);</pre>
5256
5257<p>
5258Yields a coroutine (thread).
5259
5260
5261<p>
5262When a C&nbsp;function calls <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
5263the running coroutine suspends its execution,
5264and the call to <a href="#lua_resume"><code>lua_resume</code></a> that started this coroutine returns.
5265The parameter <code>nresults</code> is the number of values from the stack
5266that will be passed as results to <a href="#lua_resume"><code>lua_resume</code></a>.
5267
5268
5269<p>
5270When the coroutine is resumed again,
5271Lua calls the given continuation function <code>k</code> to continue
5272the execution of the C function that yielded (see <a href="#4.7">&sect;4.7</a>).
5273This continuation function receives the same stack
5274from the previous function,
5275with the <code>n</code> results removed and
5276replaced by the arguments passed to <a href="#lua_resume"><code>lua_resume</code></a>.
5277Moreover,
5278the continuation function receives the value <code>ctx</code>
5279that was passed to <a href="#lua_yieldk"><code>lua_yieldk</code></a>.
5280
5281
5282<p>
5283Usually, this function does not return;
5284when the coroutine eventually resumes,
5285it continues executing the continuation function.
5286However, there is one special case,
5287which is when this function is called
5288from inside a line hook (see <a href="#4.9">&sect;4.9</a>).
5289In that case, <code>lua_yieldk</code> should be called with no continuation
5290(probably in the form of <a href="#lua_yield"><code>lua_yield</code></a>),
5291and the hook should return immediately after the call.
5292Lua will yield and,
5293when the coroutine resumes again,
5294it will continue the normal execution
5295of the (Lua) function that triggered the hook.
5296
5297
5298<p>
5299This function can raise an error if it is called from a thread
5300with a pending C call with no continuation function,
5301or it is called from a thread that is not running inside a resume
5302(e.g., the main thread).
5303
5304
5305
5306
5307
5308
5309
5310<h2>4.9 &ndash; <a name="4.9">The Debug Interface</a></h2>
5311
5312<p>
5313Lua has no built-in debugging facilities.
5314Instead, it offers a special interface
5315by means of functions and <em>hooks</em>.
5316This interface allows the construction of different
5317kinds of debuggers, profilers, and other tools
5318that need "inside information" from the interpreter.
5319
5320
5321
5322<hr><h3><a name="lua_Debug"><code>lua_Debug</code></a></h3>
5323<pre>typedef struct lua_Debug {
5324  int event;
5325  const char *name;           /* (n) */
5326  const char *namewhat;       /* (n) */
5327  const char *what;           /* (S) */
5328  const char *source;         /* (S) */
5329  int currentline;            /* (l) */
5330  int linedefined;            /* (S) */
5331  int lastlinedefined;        /* (S) */
5332  unsigned char nups;         /* (u) number of upvalues */
5333  unsigned char nparams;      /* (u) number of parameters */
5334  char isvararg;              /* (u) */
5335  char istailcall;            /* (t) */
5336  char short_src[LUA_IDSIZE]; /* (S) */
5337  /* private part */
5338  <em>other fields</em>
5339} lua_Debug;</pre>
5340
5341<p>
5342A structure used to carry different pieces of
5343information about a function or an activation record.
5344<a href="#lua_getstack"><code>lua_getstack</code></a> fills only the private part
5345of this structure, for later use.
5346To fill the other fields of <a href="#lua_Debug"><code>lua_Debug</code></a> with useful information,
5347call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
5348
5349
5350<p>
5351The fields of <a href="#lua_Debug"><code>lua_Debug</code></a> have the following meaning:
5352
5353<ul>
5354
5355<li><b><code>source</code>: </b>
5356the name of the chunk that created the function.
5357If <code>source</code> starts with a '<code>@</code>',
5358it means that the function was defined in a file where
5359the file name follows the '<code>@</code>'.
5360If <code>source</code> starts with a '<code>=</code>',
5361the remainder of its contents describe the source in a user-dependent manner.
5362Otherwise,
5363the function was defined in a string where
5364<code>source</code> is that string.
5365</li>
5366
5367<li><b><code>short_src</code>: </b>
5368a "printable" version of <code>source</code>, to be used in error messages.
5369</li>
5370
5371<li><b><code>linedefined</code>: </b>
5372the line number where the definition of the function starts.
5373</li>
5374
5375<li><b><code>lastlinedefined</code>: </b>
5376the line number where the definition of the function ends.
5377</li>
5378
5379<li><b><code>what</code>: </b>
5380the string <code>"Lua"</code> if the function is a Lua function,
5381<code>"C"</code> if it is a C&nbsp;function,
5382<code>"main"</code> if it is the main part of a chunk.
5383</li>
5384
5385<li><b><code>currentline</code>: </b>
5386the current line where the given function is executing.
5387When no line information is available,
5388<code>currentline</code> is set to -1.
5389</li>
5390
5391<li><b><code>name</code>: </b>
5392a reasonable name for the given function.
5393Because functions in Lua are first-class values,
5394they do not have a fixed name:
5395some functions can be the value of multiple global variables,
5396while others can be stored only in a table field.
5397The <code>lua_getinfo</code> function checks how the function was
5398called to find a suitable name.
5399If it cannot find a name,
5400then <code>name</code> is set to <code>NULL</code>.
5401</li>
5402
5403<li><b><code>namewhat</code>: </b>
5404explains the <code>name</code> field.
5405The value of <code>namewhat</code> can be
5406<code>"global"</code>, <code>"local"</code>, <code>"method"</code>,
5407<code>"field"</code>, <code>"upvalue"</code>, or <code>""</code> (the empty string),
5408according to how the function was called.
5409(Lua uses the empty string when no other option seems to apply.)
5410</li>
5411
5412<li><b><code>istailcall</code>: </b>
5413true if this function invocation was called by a tail call.
5414In this case, the caller of this level is not in the stack.
5415</li>
5416
5417<li><b><code>nups</code>: </b>
5418the number of upvalues of the function.
5419</li>
5420
5421<li><b><code>nparams</code>: </b>
5422the number of fixed parameters of the function
5423(always 0&nbsp;for C&nbsp;functions).
5424</li>
5425
5426<li><b><code>isvararg</code>: </b>
5427true if the function is a vararg function
5428(always true for C&nbsp;functions).
5429</li>
5430
5431</ul>
5432
5433
5434
5435
5436<hr><h3><a name="lua_gethook"><code>lua_gethook</code></a></h3><p>
5437<span class="apii">[-0, +0, &ndash;]</span>
5438<pre>lua_Hook lua_gethook (lua_State *L);</pre>
5439
5440<p>
5441Returns the current hook function.
5442
5443
5444
5445
5446
5447<hr><h3><a name="lua_gethookcount"><code>lua_gethookcount</code></a></h3><p>
5448<span class="apii">[-0, +0, &ndash;]</span>
5449<pre>int lua_gethookcount (lua_State *L);</pre>
5450
5451<p>
5452Returns the current hook count.
5453
5454
5455
5456
5457
5458<hr><h3><a name="lua_gethookmask"><code>lua_gethookmask</code></a></h3><p>
5459<span class="apii">[-0, +0, &ndash;]</span>
5460<pre>int lua_gethookmask (lua_State *L);</pre>
5461
5462<p>
5463Returns the current hook mask.
5464
5465
5466
5467
5468
5469<hr><h3><a name="lua_getinfo"><code>lua_getinfo</code></a></h3><p>
5470<span class="apii">[-(0|1), +(0|1|2), <em>e</em>]</span>
5471<pre>int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);</pre>
5472
5473<p>
5474Gets information about a specific function or function invocation.
5475
5476
5477<p>
5478To get information about a function invocation,
5479the parameter <code>ar</code> must be a valid activation record that was
5480filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
5481given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).
5482
5483
5484<p>
5485To get information about a function you push it onto the stack
5486and start the <code>what</code> string with the character '<code>&gt;</code>'.
5487(In that case,
5488<code>lua_getinfo</code> pops the function from the top of the stack.)
5489For instance, to know in which line a function <code>f</code> was defined,
5490you can write the following code:
5491
5492<pre>
5493     lua_Debug ar;
5494     lua_getglobal(L, "f");  /* get global 'f' */
5495     lua_getinfo(L, "&gt;S", &amp;ar);
5496     printf("%d\n", ar.linedefined);
5497</pre>
5498
5499<p>
5500Each character in the string <code>what</code>
5501selects some fields of the structure <code>ar</code> to be filled or
5502a value to be pushed on the stack:
5503
5504<ul>
5505
5506<li><b>'<code>n</code>': </b> fills in the field <code>name</code> and <code>namewhat</code>;
5507</li>
5508
5509<li><b>'<code>S</code>': </b>
5510fills in the fields <code>source</code>, <code>short_src</code>,
5511<code>linedefined</code>, <code>lastlinedefined</code>, and <code>what</code>;
5512</li>
5513
5514<li><b>'<code>l</code>': </b> fills in the field <code>currentline</code>;
5515</li>
5516
5517<li><b>'<code>t</code>': </b> fills in the field <code>istailcall</code>;
5518</li>
5519
5520<li><b>'<code>u</code>': </b> fills in the fields
5521<code>nups</code>, <code>nparams</code>, and <code>isvararg</code>;
5522</li>
5523
5524<li><b>'<code>f</code>': </b>
5525pushes onto the stack the function that is
5526running at the given level;
5527</li>
5528
5529<li><b>'<code>L</code>': </b>
5530pushes onto the stack a table whose indices are the
5531numbers of the lines that are valid on the function.
5532(A <em>valid line</em> is a line with some associated code,
5533that is, a line where you can put a break point.
5534Non-valid lines include empty lines and comments.)
5535
5536
5537<p>
5538If this option is given together with option '<code>f</code>',
5539its table is pushed after the function.
5540</li>
5541
5542</ul>
5543
5544<p>
5545This function returns 0 on error
5546(for instance, an invalid option in <code>what</code>).
5547
5548
5549
5550
5551
5552<hr><h3><a name="lua_getlocal"><code>lua_getlocal</code></a></h3><p>
5553<span class="apii">[-0, +(0|1), &ndash;]</span>
5554<pre>const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);</pre>
5555
5556<p>
5557Gets information about a local variable of
5558a given activation record or a given function.
5559
5560
5561<p>
5562In the first case,
5563the parameter <code>ar</code> must be a valid activation record that was
5564filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
5565given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).
5566The index <code>n</code> selects which local variable to inspect;
5567see <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for details about variable indices
5568and names.
5569
5570
5571<p>
5572<a href="#lua_getlocal"><code>lua_getlocal</code></a> pushes the variable's value onto the stack
5573and returns its name.
5574
5575
5576<p>
5577In the second case, <code>ar</code> must be <code>NULL</code> and the function
5578to be inspected must be at the top of the stack.
5579In this case, only parameters of Lua functions are visible
5580(as there is no information about what variables are active)
5581and no values are pushed onto the stack.
5582
5583
5584<p>
5585Returns <code>NULL</code> (and pushes nothing)
5586when the index is greater than
5587the number of active local variables.
5588
5589
5590
5591
5592
5593<hr><h3><a name="lua_getstack"><code>lua_getstack</code></a></h3><p>
5594<span class="apii">[-0, +0, &ndash;]</span>
5595<pre>int lua_getstack (lua_State *L, int level, lua_Debug *ar);</pre>
5596
5597<p>
5598Gets information about the interpreter runtime stack.
5599
5600
5601<p>
5602This function fills parts of a <a href="#lua_Debug"><code>lua_Debug</code></a> structure with
5603an identification of the <em>activation record</em>
5604of the function executing at a given level.
5605Level&nbsp;0 is the current running function,
5606whereas level <em>n+1</em> is the function that has called level <em>n</em>
5607(except for tail calls, which do not count on the stack).
5608When there are no errors, <a href="#lua_getstack"><code>lua_getstack</code></a> returns 1;
5609when called with a level greater than the stack depth,
5610it returns 0.
5611
5612
5613
5614
5615
5616<hr><h3><a name="lua_getupvalue"><code>lua_getupvalue</code></a></h3><p>
5617<span class="apii">[-0, +(0|1), &ndash;]</span>
5618<pre>const char *lua_getupvalue (lua_State *L, int funcindex, int n);</pre>
5619
5620<p>
5621Gets information about a closure's upvalue.
5622(For Lua functions,
5623upvalues are the external local variables that the function uses,
5624and that are consequently included in its closure.)
5625<a href="#lua_getupvalue"><code>lua_getupvalue</code></a> gets the index <code>n</code> of an upvalue,
5626pushes the upvalue's value onto the stack,
5627and returns its name.
5628<code>funcindex</code> points to the closure in the stack.
5629(Upvalues have no particular order,
5630as they are active through the whole function.
5631So, they are numbered in an arbitrary order.)
5632
5633
5634<p>
5635Returns <code>NULL</code> (and pushes nothing)
5636when the index is greater than the number of upvalues.
5637For C&nbsp;functions, this function uses the empty string <code>""</code>
5638as a name for all upvalues.
5639
5640
5641
5642
5643
5644<hr><h3><a name="lua_Hook"><code>lua_Hook</code></a></h3>
5645<pre>typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);</pre>
5646
5647<p>
5648Type for debugging hook functions.
5649
5650
5651<p>
5652Whenever a hook is called, its <code>ar</code> argument has its field
5653<code>event</code> set to the specific event that triggered the hook.
5654Lua identifies these events with the following constants:
5655<a name="pdf-LUA_HOOKCALL"><code>LUA_HOOKCALL</code></a>, <a name="pdf-LUA_HOOKRET"><code>LUA_HOOKRET</code></a>,
5656<a name="pdf-LUA_HOOKTAILCALL"><code>LUA_HOOKTAILCALL</code></a>, <a name="pdf-LUA_HOOKLINE"><code>LUA_HOOKLINE</code></a>,
5657and <a name="pdf-LUA_HOOKCOUNT"><code>LUA_HOOKCOUNT</code></a>.
5658Moreover, for line events, the field <code>currentline</code> is also set.
5659To get the value of any other field in <code>ar</code>,
5660the hook must call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
5661
5662
5663<p>
5664For call events, <code>event</code> can be <code>LUA_HOOKCALL</code>,
5665the normal value, or <code>LUA_HOOKTAILCALL</code>, for a tail call;
5666in this case, there will be no corresponding return event.
5667
5668
5669<p>
5670While Lua is running a hook, it disables other calls to hooks.
5671Therefore, if a hook calls back Lua to execute a function or a chunk,
5672this execution occurs without any calls to hooks.
5673
5674
5675<p>
5676Hook functions cannot have continuations,
5677that is, they cannot call <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
5678<a href="#lua_pcallk"><code>lua_pcallk</code></a>, or <a href="#lua_callk"><code>lua_callk</code></a> with a non-null <code>k</code>.
5679
5680
5681<p>
5682Hook functions can yield under the following conditions:
5683Only count and line events can yield
5684and they cannot yield any value;
5685to yield a hook function must finish its execution
5686calling <a href="#lua_yield"><code>lua_yield</code></a> with <code>nresults</code> equal to zero.
5687
5688
5689
5690
5691
5692<hr><h3><a name="lua_sethook"><code>lua_sethook</code></a></h3><p>
5693<span class="apii">[-0, +0, &ndash;]</span>
5694<pre>void lua_sethook (lua_State *L, lua_Hook f, int mask, int count);</pre>
5695
5696<p>
5697Sets the debugging hook function.
5698
5699
5700<p>
5701Argument <code>f</code> is the hook function.
5702<code>mask</code> specifies on which events the hook will be called:
5703it is formed by a bitwise or of the constants
5704<a name="pdf-LUA_MASKCALL"><code>LUA_MASKCALL</code></a>,
5705<a name="pdf-LUA_MASKRET"><code>LUA_MASKRET</code></a>,
5706<a name="pdf-LUA_MASKLINE"><code>LUA_MASKLINE</code></a>,
5707and <a name="pdf-LUA_MASKCOUNT"><code>LUA_MASKCOUNT</code></a>.
5708The <code>count</code> argument is only meaningful when the mask
5709includes <code>LUA_MASKCOUNT</code>.
5710For each event, the hook is called as explained below:
5711
5712<ul>
5713
5714<li><b>The call hook: </b> is called when the interpreter calls a function.
5715The hook is called just after Lua enters the new function,
5716before the function gets its arguments.
5717</li>
5718
5719<li><b>The return hook: </b> is called when the interpreter returns from a function.
5720The hook is called just before Lua leaves the function.
5721There is no standard way to access the values
5722to be returned by the function.
5723</li>
5724
5725<li><b>The line hook: </b> is called when the interpreter is about to
5726start the execution of a new line of code,
5727or when it jumps back in the code (even to the same line).
5728(This event only happens while Lua is executing a Lua function.)
5729</li>
5730
5731<li><b>The count hook: </b> is called after the interpreter executes every
5732<code>count</code> instructions.
5733(This event only happens while Lua is executing a Lua function.)
5734</li>
5735
5736</ul>
5737
5738<p>
5739A hook is disabled by setting <code>mask</code> to zero.
5740
5741
5742
5743
5744
5745<hr><h3><a name="lua_setlocal"><code>lua_setlocal</code></a></h3><p>
5746<span class="apii">[-(0|1), +0, &ndash;]</span>
5747<pre>const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);</pre>
5748
5749<p>
5750Sets the value of a local variable of a given activation record.
5751Parameters <code>ar</code> and <code>n</code> are as in <a href="#lua_getlocal"><code>lua_getlocal</code></a>
5752(see <a href="#lua_getlocal"><code>lua_getlocal</code></a>).
5753<a href="#lua_setlocal"><code>lua_setlocal</code></a> assigns the value at the top of the stack
5754to the variable and returns its name.
5755It also pops the value from the stack.
5756
5757
5758<p>
5759Returns <code>NULL</code> (and pops nothing)
5760when the index is greater than
5761the number of active local variables.
5762
5763
5764
5765
5766
5767<hr><h3><a name="lua_setupvalue"><code>lua_setupvalue</code></a></h3><p>
5768<span class="apii">[-(0|1), +0, &ndash;]</span>
5769<pre>const char *lua_setupvalue (lua_State *L, int funcindex, int n);</pre>
5770
5771<p>
5772Sets the value of a closure's upvalue.
5773It assigns the value at the top of the stack
5774to the upvalue and returns its name.
5775It also pops the value from the stack.
5776Parameters <code>funcindex</code> and <code>n</code> are as in the <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>
5777(see <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>).
5778
5779
5780<p>
5781Returns <code>NULL</code> (and pops nothing)
5782when the index is greater than the number of upvalues.
5783
5784
5785
5786
5787
5788<hr><h3><a name="lua_upvalueid"><code>lua_upvalueid</code></a></h3><p>
5789<span class="apii">[-0, +0, &ndash;]</span>
5790<pre>void *lua_upvalueid (lua_State *L, int funcindex, int n);</pre>
5791
5792<p>
5793Returns a unique identifier for the upvalue numbered <code>n</code>
5794from the closure at index <code>funcindex</code>.
5795Parameters <code>funcindex</code> and <code>n</code> are as in the <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>
5796(see <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>)
5797(but <code>n</code> cannot be greater than the number of upvalues).
5798
5799
5800<p>
5801These unique identifiers allow a program to check whether different
5802closures share upvalues.
5803Lua closures that share an upvalue
5804(that is, that access a same external local variable)
5805will return identical ids for those upvalue indices.
5806
5807
5808
5809
5810
5811<hr><h3><a name="lua_upvaluejoin"><code>lua_upvaluejoin</code></a></h3><p>
5812<span class="apii">[-0, +0, &ndash;]</span>
5813<pre>void lua_upvaluejoin (lua_State *L, int funcindex1, int n1,
5814                                    int funcindex2, int n2);</pre>
5815
5816<p>
5817Make the <code>n1</code>-th upvalue of the Lua closure at index <code>funcindex1</code>
5818refer to the <code>n2</code>-th upvalue of the Lua closure at index <code>funcindex2</code>.
5819
5820
5821
5822
5823
5824
5825
5826<h1>5 &ndash; <a name="5">The Auxiliary Library</a></h1>
5827
5828<p>
5829
5830The <em>auxiliary library</em> provides several convenient functions
5831to interface C with Lua.
5832While the basic API provides the primitive functions for all
5833interactions between C and Lua,
5834the auxiliary library provides higher-level functions for some
5835common tasks.
5836
5837
5838<p>
5839All functions and types from the auxiliary library
5840are defined in header file <code>lauxlib.h</code> and
5841have a prefix <code>luaL_</code>.
5842
5843
5844<p>
5845All functions in the auxiliary library are built on
5846top of the basic API,
5847and so they provide nothing that cannot be done with that API.
5848Nevertheless, the use of the auxiliary library ensures
5849more consistency to your code.
5850
5851
5852<p>
5853Several functions in the auxiliary library use internally some
5854extra stack slots.
5855When a function in the auxiliary library uses less than five slots,
5856it does not check the stack size;
5857it simply assumes that there are enough slots.
5858
5859
5860<p>
5861Several functions in the auxiliary library are used to
5862check C&nbsp;function arguments.
5863Because the error message is formatted for arguments
5864(e.g., "<code>bad argument #1</code>"),
5865you should not use these functions for other stack values.
5866
5867
5868<p>
5869Functions called <code>luaL_check*</code>
5870always raise an error if the check is not satisfied.
5871
5872
5873
5874<h2>5.1 &ndash; <a name="5.1">Functions and Types</a></h2>
5875
5876<p>
5877Here we list all functions and types from the auxiliary library
5878in alphabetical order.
5879
5880
5881
5882<hr><h3><a name="luaL_addchar"><code>luaL_addchar</code></a></h3><p>
5883<span class="apii">[-?, +?, <em>e</em>]</span>
5884<pre>void luaL_addchar (luaL_Buffer *B, char c);</pre>
5885
5886<p>
5887Adds the byte <code>c</code> to the buffer <code>B</code>
5888(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
5889
5890
5891
5892
5893
5894<hr><h3><a name="luaL_addlstring"><code>luaL_addlstring</code></a></h3><p>
5895<span class="apii">[-?, +?, <em>e</em>]</span>
5896<pre>void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);</pre>
5897
5898<p>
5899Adds the string pointed to by <code>s</code> with length <code>l</code> to
5900the buffer <code>B</code>
5901(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
5902The string can contain embedded zeros.
5903
5904
5905
5906
5907
5908<hr><h3><a name="luaL_addsize"><code>luaL_addsize</code></a></h3><p>
5909<span class="apii">[-?, +?, <em>e</em>]</span>
5910<pre>void luaL_addsize (luaL_Buffer *B, size_t n);</pre>
5911
5912<p>
5913Adds to the buffer <code>B</code> (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>)
5914a string of length <code>n</code> previously copied to the
5915buffer area (see <a href="#luaL_prepbuffer"><code>luaL_prepbuffer</code></a>).
5916
5917
5918
5919
5920
5921<hr><h3><a name="luaL_addstring"><code>luaL_addstring</code></a></h3><p>
5922<span class="apii">[-?, +?, <em>e</em>]</span>
5923<pre>void luaL_addstring (luaL_Buffer *B, const char *s);</pre>
5924
5925<p>
5926Adds the zero-terminated string pointed to by <code>s</code>
5927to the buffer <code>B</code>
5928(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
5929
5930
5931
5932
5933
5934<hr><h3><a name="luaL_addvalue"><code>luaL_addvalue</code></a></h3><p>
5935<span class="apii">[-1, +?, <em>e</em>]</span>
5936<pre>void luaL_addvalue (luaL_Buffer *B);</pre>
5937
5938<p>
5939Adds the value at the top of the stack
5940to the buffer <code>B</code>
5941(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
5942Pops the value.
5943
5944
5945<p>
5946This is the only function on string buffers that can (and must)
5947be called with an extra element on the stack,
5948which is the value to be added to the buffer.
5949
5950
5951
5952
5953
5954<hr><h3><a name="luaL_argcheck"><code>luaL_argcheck</code></a></h3><p>
5955<span class="apii">[-0, +0, <em>v</em>]</span>
5956<pre>void luaL_argcheck (lua_State *L,
5957                    int cond,
5958                    int arg,
5959                    const char *extramsg);</pre>
5960
5961<p>
5962Checks whether <code>cond</code> is true.
5963If it is not, raises an error with a standard message (see <a href="#luaL_argerror"><code>luaL_argerror</code></a>).
5964
5965
5966
5967
5968
5969<hr><h3><a name="luaL_argerror"><code>luaL_argerror</code></a></h3><p>
5970<span class="apii">[-0, +0, <em>v</em>]</span>
5971<pre>int luaL_argerror (lua_State *L, int arg, const char *extramsg);</pre>
5972
5973<p>
5974Raises an error reporting a problem with argument <code>arg</code>
5975of the C function that called it,
5976using a standard message
5977that includes <code>extramsg</code> as a comment:
5978
5979<pre>
5980     bad argument #<em>arg</em> to '<em>funcname</em>' (<em>extramsg</em>)
5981</pre><p>
5982This function never returns.
5983
5984
5985
5986
5987
5988<hr><h3><a name="luaL_Buffer"><code>luaL_Buffer</code></a></h3>
5989<pre>typedef struct luaL_Buffer luaL_Buffer;</pre>
5990
5991<p>
5992Type for a <em>string buffer</em>.
5993
5994
5995<p>
5996A string buffer allows C&nbsp;code to build Lua strings piecemeal.
5997Its pattern of use is as follows:
5998
5999<ul>
6000
6001<li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li>
6002
6003<li>Then initialize it with a call <code>luaL_buffinit(L, &amp;b)</code>.</li>
6004
6005<li>
6006Then add string pieces to the buffer calling any of
6007the <code>luaL_add*</code> functions.
6008</li>
6009
6010<li>
6011Finish by calling <code>luaL_pushresult(&amp;b)</code>.
6012This call leaves the final string on the top of the stack.
6013</li>
6014
6015</ul>
6016
6017<p>
6018If you know beforehand the total size of the resulting string,
6019you can use the buffer like this:
6020
6021<ul>
6022
6023<li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li>
6024
6025<li>Then initialize it and preallocate a space of
6026size <code>sz</code> with a call <code>luaL_buffinitsize(L, &amp;b, sz)</code>.</li>
6027
6028<li>Then copy the string into that space.</li>
6029
6030<li>
6031Finish by calling <code>luaL_pushresultsize(&amp;b, sz)</code>,
6032where <code>sz</code> is the total size of the resulting string
6033copied into that space.
6034</li>
6035
6036</ul>
6037
6038<p>
6039During its normal operation,
6040a string buffer uses a variable number of stack slots.
6041So, while using a buffer, you cannot assume that you know where
6042the top of the stack is.
6043You can use the stack between successive calls to buffer operations
6044as long as that use is balanced;
6045that is,
6046when you call a buffer operation,
6047the stack is at the same level
6048it was immediately after the previous buffer operation.
6049(The only exception to this rule is <a href="#luaL_addvalue"><code>luaL_addvalue</code></a>.)
6050After calling <a href="#luaL_pushresult"><code>luaL_pushresult</code></a> the stack is back to its
6051level when the buffer was initialized,
6052plus the final string on its top.
6053
6054
6055
6056
6057
6058<hr><h3><a name="luaL_buffinit"><code>luaL_buffinit</code></a></h3><p>
6059<span class="apii">[-0, +0, &ndash;]</span>
6060<pre>void luaL_buffinit (lua_State *L, luaL_Buffer *B);</pre>
6061
6062<p>
6063Initializes a buffer <code>B</code>.
6064This function does not allocate any space;
6065the buffer must be declared as a variable
6066(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
6067
6068
6069
6070
6071
6072<hr><h3><a name="luaL_buffinitsize"><code>luaL_buffinitsize</code></a></h3><p>
6073<span class="apii">[-?, +?, <em>e</em>]</span>
6074<pre>char *luaL_buffinitsize (lua_State *L, luaL_Buffer *B, size_t sz);</pre>
6075
6076<p>
6077Equivalent to the sequence
6078<a href="#luaL_buffinit"><code>luaL_buffinit</code></a>, <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a>.
6079
6080
6081
6082
6083
6084<hr><h3><a name="luaL_callmeta"><code>luaL_callmeta</code></a></h3><p>
6085<span class="apii">[-0, +(0|1), <em>e</em>]</span>
6086<pre>int luaL_callmeta (lua_State *L, int obj, const char *e);</pre>
6087
6088<p>
6089Calls a metamethod.
6090
6091
6092<p>
6093If the object at index <code>obj</code> has a metatable and this
6094metatable has a field <code>e</code>,
6095this function calls this field passing the object as its only argument.
6096In this case this function returns true and pushes onto the
6097stack the value returned by the call.
6098If there is no metatable or no metamethod,
6099this function returns false (without pushing any value on the stack).
6100
6101
6102
6103
6104
6105<hr><h3><a name="luaL_checkany"><code>luaL_checkany</code></a></h3><p>
6106<span class="apii">[-0, +0, <em>v</em>]</span>
6107<pre>void luaL_checkany (lua_State *L, int arg);</pre>
6108
6109<p>
6110Checks whether the function has an argument
6111of any type (including <b>nil</b>) at position <code>arg</code>.
6112
6113
6114
6115
6116
6117<hr><h3><a name="luaL_checkinteger"><code>luaL_checkinteger</code></a></h3><p>
6118<span class="apii">[-0, +0, <em>v</em>]</span>
6119<pre>lua_Integer luaL_checkinteger (lua_State *L, int arg);</pre>
6120
6121<p>
6122Checks whether the function argument <code>arg</code> is an integer
6123(or can be converted to an integer)
6124and returns this integer cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>.
6125
6126
6127
6128
6129
6130<hr><h3><a name="luaL_checklstring"><code>luaL_checklstring</code></a></h3><p>
6131<span class="apii">[-0, +0, <em>v</em>]</span>
6132<pre>const char *luaL_checklstring (lua_State *L, int arg, size_t *l);</pre>
6133
6134<p>
6135Checks whether the function argument <code>arg</code> is a string
6136and returns this string;
6137if <code>l</code> is not <code>NULL</code> fills <code>*l</code>
6138with the string's length.
6139
6140
6141<p>
6142This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
6143so all conversions and caveats of that function apply here.
6144
6145
6146
6147
6148
6149<hr><h3><a name="luaL_checknumber"><code>luaL_checknumber</code></a></h3><p>
6150<span class="apii">[-0, +0, <em>v</em>]</span>
6151<pre>lua_Number luaL_checknumber (lua_State *L, int arg);</pre>
6152
6153<p>
6154Checks whether the function argument <code>arg</code> is a number
6155and returns this number.
6156
6157
6158
6159
6160
6161<hr><h3><a name="luaL_checkoption"><code>luaL_checkoption</code></a></h3><p>
6162<span class="apii">[-0, +0, <em>v</em>]</span>
6163<pre>int luaL_checkoption (lua_State *L,
6164                      int arg,
6165                      const char *def,
6166                      const char *const lst[]);</pre>
6167
6168<p>
6169Checks whether the function argument <code>arg</code> is a string and
6170searches for this string in the array <code>lst</code>
6171(which must be NULL-terminated).
6172Returns the index in the array where the string was found.
6173Raises an error if the argument is not a string or
6174if the string cannot be found.
6175
6176
6177<p>
6178If <code>def</code> is not <code>NULL</code>,
6179the function uses <code>def</code> as a default value when
6180there is no argument <code>arg</code> or when this argument is <b>nil</b>.
6181
6182
6183<p>
6184This is a useful function for mapping strings to C&nbsp;enums.
6185(The usual convention in Lua libraries is
6186to use strings instead of numbers to select options.)
6187
6188
6189
6190
6191
6192<hr><h3><a name="luaL_checkstack"><code>luaL_checkstack</code></a></h3><p>
6193<span class="apii">[-0, +0, <em>v</em>]</span>
6194<pre>void luaL_checkstack (lua_State *L, int sz, const char *msg);</pre>
6195
6196<p>
6197Grows the stack size to <code>top + sz</code> elements,
6198raising an error if the stack cannot grow to that size.
6199<code>msg</code> is an additional text to go into the error message
6200(or <code>NULL</code> for no additional text).
6201
6202
6203
6204
6205
6206<hr><h3><a name="luaL_checkstring"><code>luaL_checkstring</code></a></h3><p>
6207<span class="apii">[-0, +0, <em>v</em>]</span>
6208<pre>const char *luaL_checkstring (lua_State *L, int arg);</pre>
6209
6210<p>
6211Checks whether the function argument <code>arg</code> is a string
6212and returns this string.
6213
6214
6215<p>
6216This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
6217so all conversions and caveats of that function apply here.
6218
6219
6220
6221
6222
6223<hr><h3><a name="luaL_checktype"><code>luaL_checktype</code></a></h3><p>
6224<span class="apii">[-0, +0, <em>v</em>]</span>
6225<pre>void luaL_checktype (lua_State *L, int arg, int t);</pre>
6226
6227<p>
6228Checks whether the function argument <code>arg</code> has type <code>t</code>.
6229See <a href="#lua_type"><code>lua_type</code></a> for the encoding of types for <code>t</code>.
6230
6231
6232
6233
6234
6235<hr><h3><a name="luaL_checkudata"><code>luaL_checkudata</code></a></h3><p>
6236<span class="apii">[-0, +0, <em>v</em>]</span>
6237<pre>void *luaL_checkudata (lua_State *L, int arg, const char *tname);</pre>
6238
6239<p>
6240Checks whether the function argument <code>arg</code> is a userdata
6241of the type <code>tname</code> (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>) and
6242returns the userdata address (see <a href="#lua_touserdata"><code>lua_touserdata</code></a>).
6243
6244
6245
6246
6247
6248<hr><h3><a name="luaL_checkversion"><code>luaL_checkversion</code></a></h3><p>
6249<span class="apii">[-0, +0, &ndash;]</span>
6250<pre>void luaL_checkversion (lua_State *L);</pre>
6251
6252<p>
6253Checks whether the core running the call,
6254the core that created the Lua state,
6255and the code making the call are all using the same version of Lua.
6256Also checks whether the core running the call
6257and the core that created the Lua state
6258are using the same address space.
6259
6260
6261
6262
6263
6264<hr><h3><a name="luaL_dofile"><code>luaL_dofile</code></a></h3><p>
6265<span class="apii">[-0, +?, <em>e</em>]</span>
6266<pre>int luaL_dofile (lua_State *L, const char *filename);</pre>
6267
6268<p>
6269Loads and runs the given file.
6270It is defined as the following macro:
6271
6272<pre>
6273     (luaL_loadfile(L, filename) || lua_pcall(L, 0, LUA_MULTRET, 0))
6274</pre><p>
6275It returns false if there are no errors
6276or true in case of errors.
6277
6278
6279
6280
6281
6282<hr><h3><a name="luaL_dostring"><code>luaL_dostring</code></a></h3><p>
6283<span class="apii">[-0, +?, &ndash;]</span>
6284<pre>int luaL_dostring (lua_State *L, const char *str);</pre>
6285
6286<p>
6287Loads and runs the given string.
6288It is defined as the following macro:
6289
6290<pre>
6291     (luaL_loadstring(L, str) || lua_pcall(L, 0, LUA_MULTRET, 0))
6292</pre><p>
6293It returns false if there are no errors
6294or true in case of errors.
6295
6296
6297
6298
6299
6300<hr><h3><a name="luaL_error"><code>luaL_error</code></a></h3><p>
6301<span class="apii">[-0, +0, <em>v</em>]</span>
6302<pre>int luaL_error (lua_State *L, const char *fmt, ...);</pre>
6303
6304<p>
6305Raises an error.
6306The error message format is given by <code>fmt</code>
6307plus any extra arguments,
6308following the same rules of <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>.
6309It also adds at the beginning of the message the file name and
6310the line number where the error occurred,
6311if this information is available.
6312
6313
6314<p>
6315This function never returns,
6316but it is an idiom to use it in C&nbsp;functions
6317as <code>return luaL_error(<em>args</em>)</code>.
6318
6319
6320
6321
6322
6323<hr><h3><a name="luaL_execresult"><code>luaL_execresult</code></a></h3><p>
6324<span class="apii">[-0, +3, <em>e</em>]</span>
6325<pre>int luaL_execresult (lua_State *L, int stat);</pre>
6326
6327<p>
6328This function produces the return values for
6329process-related functions in the standard library
6330(<a href="#pdf-os.execute"><code>os.execute</code></a> and <a href="#pdf-io.close"><code>io.close</code></a>).
6331
6332
6333
6334
6335
6336<hr><h3><a name="luaL_fileresult"><code>luaL_fileresult</code></a></h3><p>
6337<span class="apii">[-0, +(1|3), <em>e</em>]</span>
6338<pre>int luaL_fileresult (lua_State *L, int stat, const char *fname);</pre>
6339
6340<p>
6341This function produces the return values for
6342file-related functions in the standard library
6343(<a href="#pdf-io.open"><code>io.open</code></a>, <a href="#pdf-os.rename"><code>os.rename</code></a>, <a href="#pdf-file:seek"><code>file:seek</code></a>, etc.).
6344
6345
6346
6347
6348
6349<hr><h3><a name="luaL_getmetafield"><code>luaL_getmetafield</code></a></h3><p>
6350<span class="apii">[-0, +(0|1), <em>e</em>]</span>
6351<pre>int luaL_getmetafield (lua_State *L, int obj, const char *e);</pre>
6352
6353<p>
6354Pushes onto the stack the field <code>e</code> from the metatable
6355of the object at index <code>obj</code> and returns the type of pushed value.
6356If the object does not have a metatable,
6357or if the metatable does not have this field,
6358pushes nothing and returns <code>LUA_TNIL</code>.
6359
6360
6361
6362
6363
6364<hr><h3><a name="luaL_getmetatable"><code>luaL_getmetatable</code></a></h3><p>
6365<span class="apii">[-0, +1, &ndash;]</span>
6366<pre>int luaL_getmetatable (lua_State *L, const char *tname);</pre>
6367
6368<p>
6369Pushes onto the stack the metatable associated with name <code>tname</code>
6370in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).
6371If there is no metatable associated with <code>tname</code>,
6372returns false and pushes <b>nil</b>.
6373
6374
6375
6376
6377
6378<hr><h3><a name="luaL_getsubtable"><code>luaL_getsubtable</code></a></h3><p>
6379<span class="apii">[-0, +1, <em>e</em>]</span>
6380<pre>int luaL_getsubtable (lua_State *L, int idx, const char *fname);</pre>
6381
6382<p>
6383Ensures that the value <code>t[fname]</code>,
6384where <code>t</code> is the value at index <code>idx</code>,
6385is a table,
6386and pushes that table onto the stack.
6387Returns true if it finds a previous table there
6388and false if it creates a new table.
6389
6390
6391
6392
6393
6394<hr><h3><a name="luaL_gsub"><code>luaL_gsub</code></a></h3><p>
6395<span class="apii">[-0, +1, <em>e</em>]</span>
6396<pre>const char *luaL_gsub (lua_State *L,
6397                       const char *s,
6398                       const char *p,
6399                       const char *r);</pre>
6400
6401<p>
6402Creates a copy of string <code>s</code> by replacing
6403any occurrence of the string <code>p</code>
6404with the string <code>r</code>.
6405Pushes the resulting string on the stack and returns it.
6406
6407
6408
6409
6410
6411<hr><h3><a name="luaL_len"><code>luaL_len</code></a></h3><p>
6412<span class="apii">[-0, +0, <em>e</em>]</span>
6413<pre>lua_Integer luaL_len (lua_State *L, int index);</pre>
6414
6415<p>
6416Returns the "length" of the value at the given index
6417as a number;
6418it is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.7">&sect;3.4.7</a>).
6419Raises an error if the result of the operation is not an integer.
6420(This case only can happen through metamethods.)
6421
6422
6423
6424
6425
6426<hr><h3><a name="luaL_loadbuffer"><code>luaL_loadbuffer</code></a></h3><p>
6427<span class="apii">[-0, +1, &ndash;]</span>
6428<pre>int luaL_loadbuffer (lua_State *L,
6429                     const char *buff,
6430                     size_t sz,
6431                     const char *name);</pre>
6432
6433<p>
6434Equivalent to <a href="#luaL_loadbufferx"><code>luaL_loadbufferx</code></a> with <code>mode</code> equal to <code>NULL</code>.
6435
6436
6437
6438
6439
6440<hr><h3><a name="luaL_loadbufferx"><code>luaL_loadbufferx</code></a></h3><p>
6441<span class="apii">[-0, +1, &ndash;]</span>
6442<pre>int luaL_loadbufferx (lua_State *L,
6443                      const char *buff,
6444                      size_t sz,
6445                      const char *name,
6446                      const char *mode);</pre>
6447
6448<p>
6449Loads a buffer as a Lua chunk.
6450This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the
6451buffer pointed to by <code>buff</code> with size <code>sz</code>.
6452
6453
6454<p>
6455This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.
6456<code>name</code> is the chunk name,
6457used for debug information and error messages.
6458The string <code>mode</code> works as in function <a href="#lua_load"><code>lua_load</code></a>.
6459
6460
6461
6462
6463
6464<hr><h3><a name="luaL_loadfile"><code>luaL_loadfile</code></a></h3><p>
6465<span class="apii">[-0, +1, <em>e</em>]</span>
6466<pre>int luaL_loadfile (lua_State *L, const char *filename);</pre>
6467
6468<p>
6469Equivalent to <a href="#luaL_loadfilex"><code>luaL_loadfilex</code></a> with <code>mode</code> equal to <code>NULL</code>.
6470
6471
6472
6473
6474
6475<hr><h3><a name="luaL_loadfilex"><code>luaL_loadfilex</code></a></h3><p>
6476<span class="apii">[-0, +1, <em>e</em>]</span>
6477<pre>int luaL_loadfilex (lua_State *L, const char *filename,
6478                                            const char *mode);</pre>
6479
6480<p>
6481Loads a file as a Lua chunk.
6482This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the file
6483named <code>filename</code>.
6484If <code>filename</code> is <code>NULL</code>,
6485then it loads from the standard input.
6486The first line in the file is ignored if it starts with a <code>#</code>.
6487
6488
6489<p>
6490The string <code>mode</code> works as in function <a href="#lua_load"><code>lua_load</code></a>.
6491
6492
6493<p>
6494This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>,
6495but it has an extra error code <a name="pdf-LUA_ERRFILE"><code>LUA_ERRFILE</code></a>
6496if it cannot open/read the file or the file has a wrong mode.
6497
6498
6499<p>
6500As <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk;
6501it does not run it.
6502
6503
6504
6505
6506
6507<hr><h3><a name="luaL_loadstring"><code>luaL_loadstring</code></a></h3><p>
6508<span class="apii">[-0, +1, &ndash;]</span>
6509<pre>int luaL_loadstring (lua_State *L, const char *s);</pre>
6510
6511<p>
6512Loads a string as a Lua chunk.
6513This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in
6514the zero-terminated string <code>s</code>.
6515
6516
6517<p>
6518This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.
6519
6520
6521<p>
6522Also as <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk;
6523it does not run it.
6524
6525
6526
6527
6528
6529<hr><h3><a name="luaL_newlib"><code>luaL_newlib</code></a></h3><p>
6530<span class="apii">[-0, +1, <em>e</em>]</span>
6531<pre>void luaL_newlib (lua_State *L, const luaL_Reg l[]);</pre>
6532
6533<p>
6534Creates a new table and registers there
6535the functions in list <code>l</code>.
6536
6537
6538<p>
6539It is implemented as the following macro:
6540
6541<pre>
6542     (luaL_newlibtable(L,l), luaL_setfuncs(L,l,0))
6543</pre><p>
6544The array <code>l</code> must be the actual array,
6545not a pointer to it.
6546
6547
6548
6549
6550
6551<hr><h3><a name="luaL_newlibtable"><code>luaL_newlibtable</code></a></h3><p>
6552<span class="apii">[-0, +1, <em>e</em>]</span>
6553<pre>void luaL_newlibtable (lua_State *L, const luaL_Reg l[]);</pre>
6554
6555<p>
6556Creates a new table with a size optimized
6557to store all entries in the array <code>l</code>
6558(but does not actually store them).
6559It is intended to be used in conjunction with <a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a>
6560(see <a href="#luaL_newlib"><code>luaL_newlib</code></a>).
6561
6562
6563<p>
6564It is implemented as a macro.
6565The array <code>l</code> must be the actual array,
6566not a pointer to it.
6567
6568
6569
6570
6571
6572<hr><h3><a name="luaL_newmetatable"><code>luaL_newmetatable</code></a></h3><p>
6573<span class="apii">[-0, +1, <em>e</em>]</span>
6574<pre>int luaL_newmetatable (lua_State *L, const char *tname);</pre>
6575
6576<p>
6577If the registry already has the key <code>tname</code>,
6578returns 0.
6579Otherwise,
6580creates a new table to be used as a metatable for userdata,
6581adds to this new table the pair <code>__name = tname</code>,
6582adds to the registry the pair <code>[tname] = new table</code>,
6583and returns 1.
6584(The entry <code>__name</code> is used by some error-reporting functions.)
6585
6586
6587<p>
6588In both cases pushes onto the stack the final value associated
6589with <code>tname</code> in the registry.
6590
6591
6592
6593
6594
6595<hr><h3><a name="luaL_newstate"><code>luaL_newstate</code></a></h3><p>
6596<span class="apii">[-0, +0, &ndash;]</span>
6597<pre>lua_State *luaL_newstate (void);</pre>
6598
6599<p>
6600Creates a new Lua state.
6601It calls <a href="#lua_newstate"><code>lua_newstate</code></a> with an
6602allocator based on the standard&nbsp;C <code>realloc</code> function
6603and then sets a panic function (see <a href="#4.6">&sect;4.6</a>) that prints
6604an error message to the standard error output in case of fatal
6605errors.
6606
6607
6608<p>
6609Returns the new state,
6610or <code>NULL</code> if there is a memory allocation error.
6611
6612
6613
6614
6615
6616<hr><h3><a name="luaL_openlibs"><code>luaL_openlibs</code></a></h3><p>
6617<span class="apii">[-0, +0, <em>e</em>]</span>
6618<pre>void luaL_openlibs (lua_State *L);</pre>
6619
6620<p>
6621Opens all standard Lua libraries into the given state.
6622
6623
6624
6625
6626
6627<hr><h3><a name="luaL_optinteger"><code>luaL_optinteger</code></a></h3><p>
6628<span class="apii">[-0, +0, <em>v</em>]</span>
6629<pre>lua_Integer luaL_optinteger (lua_State *L,
6630                             int arg,
6631                             lua_Integer d);</pre>
6632
6633<p>
6634If the function argument <code>arg</code> is an integer
6635(or convertible to an integer),
6636returns this integer.
6637If this argument is absent or is <b>nil</b>,
6638returns <code>d</code>.
6639Otherwise, raises an error.
6640
6641
6642
6643
6644
6645<hr><h3><a name="luaL_optlstring"><code>luaL_optlstring</code></a></h3><p>
6646<span class="apii">[-0, +0, <em>v</em>]</span>
6647<pre>const char *luaL_optlstring (lua_State *L,
6648                             int arg,
6649                             const char *d,
6650                             size_t *l);</pre>
6651
6652<p>
6653If the function argument <code>arg</code> is a string,
6654returns this string.
6655If this argument is absent or is <b>nil</b>,
6656returns <code>d</code>.
6657Otherwise, raises an error.
6658
6659
6660<p>
6661If <code>l</code> is not <code>NULL</code>,
6662fills the position <code>*l</code> with the result's length.
6663
6664
6665
6666
6667
6668<hr><h3><a name="luaL_optnumber"><code>luaL_optnumber</code></a></h3><p>
6669<span class="apii">[-0, +0, <em>v</em>]</span>
6670<pre>lua_Number luaL_optnumber (lua_State *L, int arg, lua_Number d);</pre>
6671
6672<p>
6673If the function argument <code>arg</code> is a number,
6674returns this number.
6675If this argument is absent or is <b>nil</b>,
6676returns <code>d</code>.
6677Otherwise, raises an error.
6678
6679
6680
6681
6682
6683<hr><h3><a name="luaL_optstring"><code>luaL_optstring</code></a></h3><p>
6684<span class="apii">[-0, +0, <em>v</em>]</span>
6685<pre>const char *luaL_optstring (lua_State *L,
6686                            int arg,
6687                            const char *d);</pre>
6688
6689<p>
6690If the function argument <code>arg</code> is a string,
6691returns this string.
6692If this argument is absent or is <b>nil</b>,
6693returns <code>d</code>.
6694Otherwise, raises an error.
6695
6696
6697
6698
6699
6700<hr><h3><a name="luaL_prepbuffer"><code>luaL_prepbuffer</code></a></h3><p>
6701<span class="apii">[-?, +?, <em>e</em>]</span>
6702<pre>char *luaL_prepbuffer (luaL_Buffer *B);</pre>
6703
6704<p>
6705Equivalent to <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a>
6706with the predefined size <a name="pdf-LUAL_BUFFERSIZE"><code>LUAL_BUFFERSIZE</code></a>.
6707
6708
6709
6710
6711
6712<hr><h3><a name="luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a></h3><p>
6713<span class="apii">[-?, +?, <em>e</em>]</span>
6714<pre>char *luaL_prepbuffsize (luaL_Buffer *B, size_t sz);</pre>
6715
6716<p>
6717Returns an address to a space of size <code>sz</code>
6718where you can copy a string to be added to buffer <code>B</code>
6719(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
6720After copying the string into this space you must call
6721<a href="#luaL_addsize"><code>luaL_addsize</code></a> with the size of the string to actually add
6722it to the buffer.
6723
6724
6725
6726
6727
6728<hr><h3><a name="luaL_pushresult"><code>luaL_pushresult</code></a></h3><p>
6729<span class="apii">[-?, +1, <em>e</em>]</span>
6730<pre>void luaL_pushresult (luaL_Buffer *B);</pre>
6731
6732<p>
6733Finishes the use of buffer <code>B</code> leaving the final string on
6734the top of the stack.
6735
6736
6737
6738
6739
6740<hr><h3><a name="luaL_pushresultsize"><code>luaL_pushresultsize</code></a></h3><p>
6741<span class="apii">[-?, +1, <em>e</em>]</span>
6742<pre>void luaL_pushresultsize (luaL_Buffer *B, size_t sz);</pre>
6743
6744<p>
6745Equivalent to the sequence <a href="#luaL_addsize"><code>luaL_addsize</code></a>, <a href="#luaL_pushresult"><code>luaL_pushresult</code></a>.
6746
6747
6748
6749
6750
6751<hr><h3><a name="luaL_ref"><code>luaL_ref</code></a></h3><p>
6752<span class="apii">[-1, +0, <em>e</em>]</span>
6753<pre>int luaL_ref (lua_State *L, int t);</pre>
6754
6755<p>
6756Creates and returns a <em>reference</em>,
6757in the table at index <code>t</code>,
6758for the object at the top of the stack (and pops the object).
6759
6760
6761<p>
6762A reference is a unique integer key.
6763As long as you do not manually add integer keys into table <code>t</code>,
6764<a href="#luaL_ref"><code>luaL_ref</code></a> ensures the uniqueness of the key it returns.
6765You can retrieve an object referred by reference <code>r</code>
6766by calling <code>lua_rawgeti(L, t, r)</code>.
6767Function <a href="#luaL_unref"><code>luaL_unref</code></a> frees a reference and its associated object.
6768
6769
6770<p>
6771If the object at the top of the stack is <b>nil</b>,
6772<a href="#luaL_ref"><code>luaL_ref</code></a> returns the constant <a name="pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>.
6773The constant <a name="pdf-LUA_NOREF"><code>LUA_NOREF</code></a> is guaranteed to be different
6774from any reference returned by <a href="#luaL_ref"><code>luaL_ref</code></a>.
6775
6776
6777
6778
6779
6780<hr><h3><a name="luaL_Reg"><code>luaL_Reg</code></a></h3>
6781<pre>typedef struct luaL_Reg {
6782  const char *name;
6783  lua_CFunction func;
6784} luaL_Reg;</pre>
6785
6786<p>
6787Type for arrays of functions to be registered by
6788<a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a>.
6789<code>name</code> is the function name and <code>func</code> is a pointer to
6790the function.
6791Any array of <a href="#luaL_Reg"><code>luaL_Reg</code></a> must end with a sentinel entry
6792in which both <code>name</code> and <code>func</code> are <code>NULL</code>.
6793
6794
6795
6796
6797
6798<hr><h3><a name="luaL_requiref"><code>luaL_requiref</code></a></h3><p>
6799<span class="apii">[-0, +1, <em>e</em>]</span>
6800<pre>void luaL_requiref (lua_State *L, const char *modname,
6801                    lua_CFunction openf, int glb);</pre>
6802
6803<p>
6804If <code>modname</code> is not already present in <a href="#pdf-package.loaded"><code>package.loaded</code></a>,
6805calls function <code>openf</code> with string <code>modname</code> as an argument
6806and sets the call result in <code>package.loaded[modname]</code>,
6807as if that function has been called through <a href="#pdf-require"><code>require</code></a>.
6808
6809
6810<p>
6811If <code>glb</code> is true,
6812also stores the module into global <code>modname</code>.
6813
6814
6815<p>
6816Leaves a copy of the module on the stack.
6817
6818
6819
6820
6821
6822<hr><h3><a name="luaL_setfuncs"><code>luaL_setfuncs</code></a></h3><p>
6823<span class="apii">[-nup, +0, <em>e</em>]</span>
6824<pre>void luaL_setfuncs (lua_State *L, const luaL_Reg *l, int nup);</pre>
6825
6826<p>
6827Registers all functions in the array <code>l</code>
6828(see <a href="#luaL_Reg"><code>luaL_Reg</code></a>) into the table on the top of the stack
6829(below optional upvalues, see next).
6830
6831
6832<p>
6833When <code>nup</code> is not zero,
6834all functions are created sharing <code>nup</code> upvalues,
6835which must be previously pushed on the stack
6836on top of the library table.
6837These values are popped from the stack after the registration.
6838
6839
6840
6841
6842
6843<hr><h3><a name="luaL_setmetatable"><code>luaL_setmetatable</code></a></h3><p>
6844<span class="apii">[-0, +0, &ndash;]</span>
6845<pre>void luaL_setmetatable (lua_State *L, const char *tname);</pre>
6846
6847<p>
6848Sets the metatable of the object at the top of the stack
6849as the metatable associated with name <code>tname</code>
6850in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).
6851
6852
6853
6854
6855
6856<hr><h3><a name="luaL_Stream"><code>luaL_Stream</code></a></h3>
6857<pre>typedef struct luaL_Stream {
6858  FILE *f;
6859  lua_CFunction closef;
6860} luaL_Stream;</pre>
6861
6862<p>
6863The standard representation for file handles,
6864which is used by the standard I/O library.
6865
6866
6867<p>
6868A file handle is implemented as a full userdata,
6869with a metatable called <code>LUA_FILEHANDLE</code>
6870(where <code>LUA_FILEHANDLE</code> is a macro with the actual metatable's name).
6871The metatable is created by the I/O library
6872(see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).
6873
6874
6875<p>
6876This userdata must start with the structure <code>luaL_Stream</code>;
6877it can contain other data after this initial structure.
6878Field <code>f</code> points to the corresponding C stream
6879(or it can be <code>NULL</code> to indicate an incompletely created handle).
6880Field <code>closef</code> points to a Lua function
6881that will be called to close the stream
6882when the handle is closed or collected;
6883this function receives the file handle as its sole argument and
6884must return either <b>true</b> (in case of success)
6885or <b>nil</b> plus an error message (in case of error).
6886Once Lua calls this field,
6887the field value is changed to <code>NULL</code>
6888to signal that the handle is closed.
6889
6890
6891
6892
6893
6894<hr><h3><a name="luaL_testudata"><code>luaL_testudata</code></a></h3><p>
6895<span class="apii">[-0, +0, <em>e</em>]</span>
6896<pre>void *luaL_testudata (lua_State *L, int arg, const char *tname);</pre>
6897
6898<p>
6899This function works like <a href="#luaL_checkudata"><code>luaL_checkudata</code></a>,
6900except that, when the test fails,
6901it returns <code>NULL</code> instead of raising an error.
6902
6903
6904
6905
6906
6907<hr><h3><a name="luaL_tolstring"><code>luaL_tolstring</code></a></h3><p>
6908<span class="apii">[-0, +1, <em>e</em>]</span>
6909<pre>const char *luaL_tolstring (lua_State *L, int idx, size_t *len);</pre>
6910
6911<p>
6912Converts any Lua value at the given index to a C&nbsp;string
6913in a reasonable format.
6914The resulting string is pushed onto the stack and also
6915returned by the function.
6916If <code>len</code> is not <code>NULL</code>,
6917the function also sets <code>*len</code> with the string length.
6918
6919
6920<p>
6921If the value has a metatable with a <code>"__tostring"</code> field,
6922then <code>luaL_tolstring</code> calls the corresponding metamethod
6923with the value as argument,
6924and uses the result of the call as its result.
6925
6926
6927
6928
6929
6930<hr><h3><a name="luaL_traceback"><code>luaL_traceback</code></a></h3><p>
6931<span class="apii">[-0, +1, <em>e</em>]</span>
6932<pre>void luaL_traceback (lua_State *L, lua_State *L1, const char *msg,
6933                     int level);</pre>
6934
6935<p>
6936Creates and pushes a traceback of the stack <code>L1</code>.
6937If <code>msg</code> is not <code>NULL</code> it is appended
6938at the beginning of the traceback.
6939The <code>level</code> parameter tells at which level
6940to start the traceback.
6941
6942
6943
6944
6945
6946<hr><h3><a name="luaL_typename"><code>luaL_typename</code></a></h3><p>
6947<span class="apii">[-0, +0, &ndash;]</span>
6948<pre>const char *luaL_typename (lua_State *L, int index);</pre>
6949
6950<p>
6951Returns the name of the type of the value at the given index.
6952
6953
6954
6955
6956
6957<hr><h3><a name="luaL_unref"><code>luaL_unref</code></a></h3><p>
6958<span class="apii">[-0, +0, &ndash;]</span>
6959<pre>void luaL_unref (lua_State *L, int t, int ref);</pre>
6960
6961<p>
6962Releases reference <code>ref</code> from the table at index <code>t</code>
6963(see <a href="#luaL_ref"><code>luaL_ref</code></a>).
6964The entry is removed from the table,
6965so that the referred object can be collected.
6966The reference <code>ref</code> is also freed to be used again.
6967
6968
6969<p>
6970If <code>ref</code> is <a href="#pdf-LUA_NOREF"><code>LUA_NOREF</code></a> or <a href="#pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>,
6971<a href="#luaL_unref"><code>luaL_unref</code></a> does nothing.
6972
6973
6974
6975
6976
6977<hr><h3><a name="luaL_where"><code>luaL_where</code></a></h3><p>
6978<span class="apii">[-0, +1, <em>e</em>]</span>
6979<pre>void luaL_where (lua_State *L, int lvl);</pre>
6980
6981<p>
6982Pushes onto the stack a string identifying the current position
6983of the control at level <code>lvl</code> in the call stack.
6984Typically this string has the following format:
6985
6986<pre>
6987     <em>chunkname</em>:<em>currentline</em>:
6988</pre><p>
6989Level&nbsp;0 is the running function,
6990level&nbsp;1 is the function that called the running function,
6991etc.
6992
6993
6994<p>
6995This function is used to build a prefix for error messages.
6996
6997
6998
6999
7000
7001
7002
7003<h1>6 &ndash; <a name="6">Standard Libraries</a></h1>
7004
7005<p>
7006The standard Lua libraries provide useful functions
7007that are implemented directly through the C&nbsp;API.
7008Some of these functions provide essential services to the language
7009(e.g., <a href="#pdf-type"><code>type</code></a> and <a href="#pdf-getmetatable"><code>getmetatable</code></a>);
7010others provide access to "outside" services (e.g., I/O);
7011and others could be implemented in Lua itself,
7012but are quite useful or have critical performance requirements that
7013deserve an implementation in C (e.g., <a href="#pdf-table.sort"><code>table.sort</code></a>).
7014
7015
7016<p>
7017All libraries are implemented through the official C&nbsp;API
7018and are provided as separate C&nbsp;modules.
7019Currently, Lua has the following standard libraries:
7020
7021<ul>
7022
7023<li>basic library (<a href="#6.1">&sect;6.1</a>);</li>
7024
7025<li>coroutine library (<a href="#6.2">&sect;6.2</a>);</li>
7026
7027<li>package library (<a href="#6.3">&sect;6.3</a>);</li>
7028
7029<li>string manipulation (<a href="#6.4">&sect;6.4</a>);</li>
7030
7031<li>basic UTF-8 support (<a href="#6.5">&sect;6.5</a>);</li>
7032
7033<li>table manipulation (<a href="#6.6">&sect;6.6</a>);</li>
7034
7035<li>mathematical functions (<a href="#6.7">&sect;6.7</a>) (sin, log, etc.);</li>
7036
7037<li>input and output (<a href="#6.8">&sect;6.8</a>);</li>
7038
7039<li>operating system facilities (<a href="#6.9">&sect;6.9</a>);</li>
7040
7041<li>debug facilities (<a href="#6.10">&sect;6.10</a>).</li>
7042
7043</ul><p>
7044Except for the basic and the package libraries,
7045each library provides all its functions as fields of a global table
7046or as methods of its objects.
7047
7048
7049<p>
7050To have access to these libraries,
7051the C&nbsp;host program should call the <a href="#luaL_openlibs"><code>luaL_openlibs</code></a> function,
7052which opens all standard libraries.
7053Alternatively,
7054the host program can open them individually by using
7055<a href="#luaL_requiref"><code>luaL_requiref</code></a> to call
7056<a name="pdf-luaopen_base"><code>luaopen_base</code></a> (for the basic library),
7057<a name="pdf-luaopen_package"><code>luaopen_package</code></a> (for the package library),
7058<a name="pdf-luaopen_coroutine"><code>luaopen_coroutine</code></a> (for the coroutine library),
7059<a name="pdf-luaopen_string"><code>luaopen_string</code></a> (for the string library),
7060<a name="pdf-luaopen_utf8"><code>luaopen_utf8</code></a> (for the UTF8 library),
7061<a name="pdf-luaopen_table"><code>luaopen_table</code></a> (for the table library),
7062<a name="pdf-luaopen_math"><code>luaopen_math</code></a> (for the mathematical library),
7063<a name="pdf-luaopen_io"><code>luaopen_io</code></a> (for the I/O library),
7064<a name="pdf-luaopen_os"><code>luaopen_os</code></a> (for the operating system library),
7065and <a name="pdf-luaopen_debug"><code>luaopen_debug</code></a> (for the debug library).
7066These functions are declared in <a name="pdf-lualib.h"><code>lualib.h</code></a>.
7067
7068
7069
7070<h2>6.1 &ndash; <a name="6.1">Basic Functions</a></h2>
7071
7072<p>
7073The basic library provides core functions to Lua.
7074If you do not include this library in your application,
7075you should check carefully whether you need to provide
7076implementations for some of its facilities.
7077
7078
7079<p>
7080<hr><h3><a name="pdf-assert"><code>assert (v [, message])</code></a></h3>
7081
7082
7083<p>
7084Calls <a href="#pdf-error"><code>error</code></a> if
7085the value of its argument <code>v</code> is false (i.e., <b>nil</b> or <b>false</b>);
7086otherwise, returns all its arguments.
7087In case of error,
7088<code>message</code> is the error object;
7089when absent, it defaults to "<code>assertion failed!</code>"
7090
7091
7092
7093
7094<p>
7095<hr><h3><a name="pdf-collectgarbage"><code>collectgarbage ([opt [, arg]])</code></a></h3>
7096
7097
7098<p>
7099This function is a generic interface to the garbage collector.
7100It performs different functions according to its first argument, <code>opt</code>:
7101
7102<ul>
7103
7104<li><b>"<code>collect</code>": </b>
7105performs a full garbage-collection cycle.
7106This is the default option.
7107</li>
7108
7109<li><b>"<code>stop</code>": </b>
7110stops automatic execution of the garbage collector.
7111The collector will run only when explicitly invoked,
7112until a call to restart it.
7113</li>
7114
7115<li><b>"<code>restart</code>": </b>
7116restarts automatic execution of the garbage collector.
7117</li>
7118
7119<li><b>"<code>count</code>": </b>
7120returns the total memory in use by Lua in Kbytes.
7121The value has a fractional part,
7122so that it multiplied by 1024
7123gives the exact number of bytes in use by Lua
7124(except for overflows).
7125</li>
7126
7127<li><b>"<code>step</code>": </b>
7128performs a garbage-collection step.
7129The step "size" is controlled by <code>arg</code>.
7130With a zero value,
7131the collector will perform one basic (indivisible) step.
7132For non-zero values,
7133the collector will perform as if that amount of memory
7134(in KBytes) had been allocated by Lua.
7135Returns <b>true</b> if the step finished a collection cycle.
7136</li>
7137
7138<li><b>"<code>setpause</code>": </b>
7139sets <code>arg</code> as the new value for the <em>pause</em> of
7140the collector (see <a href="#2.5">&sect;2.5</a>).
7141Returns the previous value for <em>pause</em>.
7142</li>
7143
7144<li><b>"<code>setstepmul</code>": </b>
7145sets <code>arg</code> as the new value for the <em>step multiplier</em> of
7146the collector (see <a href="#2.5">&sect;2.5</a>).
7147Returns the previous value for <em>step</em>.
7148</li>
7149
7150<li><b>"<code>isrunning</code>": </b>
7151returns a boolean that tells whether the collector is running
7152(i.e., not stopped).
7153</li>
7154
7155</ul>
7156
7157
7158
7159<p>
7160<hr><h3><a name="pdf-dofile"><code>dofile ([filename])</code></a></h3>
7161Opens the named file and executes its contents as a Lua chunk.
7162When called without arguments,
7163<code>dofile</code> executes the contents of the standard input (<code>stdin</code>).
7164Returns all values returned by the chunk.
7165In case of errors, <code>dofile</code> propagates the error
7166to its caller (that is, <code>dofile</code> does not run in protected mode).
7167
7168
7169
7170
7171<p>
7172<hr><h3><a name="pdf-error"><code>error (message [, level])</code></a></h3>
7173Terminates the last protected function called
7174and returns <code>message</code> as the error object.
7175Function <code>error</code> never returns.
7176
7177
7178<p>
7179Usually, <code>error</code> adds some information about the error position
7180at the beginning of the message, if the message is a string.
7181The <code>level</code> argument specifies how to get the error position.
7182With level&nbsp;1 (the default), the error position is where the
7183<code>error</code> function was called.
7184Level&nbsp;2 points the error to where the function
7185that called <code>error</code> was called; and so on.
7186Passing a level&nbsp;0 avoids the addition of error position information
7187to the message.
7188
7189
7190
7191
7192<p>
7193<hr><h3><a name="pdf-_G"><code>_G</code></a></h3>
7194A global variable (not a function) that
7195holds the global environment (see <a href="#2.2">&sect;2.2</a>).
7196Lua itself does not use this variable;
7197changing its value does not affect any environment,
7198nor vice versa.
7199
7200
7201
7202
7203<p>
7204<hr><h3><a name="pdf-getmetatable"><code>getmetatable (object)</code></a></h3>
7205
7206
7207<p>
7208If <code>object</code> does not have a metatable, returns <b>nil</b>.
7209Otherwise,
7210if the object's metatable has a <code>"__metatable"</code> field,
7211returns the associated value.
7212Otherwise, returns the metatable of the given object.
7213
7214
7215
7216
7217<p>
7218<hr><h3><a name="pdf-ipairs"><code>ipairs (t)</code></a></h3>
7219
7220
7221<p>
7222Returns three values (an iterator function, the table <code>t</code>, and 0)
7223so that the construction
7224
7225<pre>
7226     for i,v in ipairs(t) do <em>body</em> end
7227</pre><p>
7228will iterate over the key&ndash;value pairs
7229(<code>1,t[1]</code>), (<code>2,t[2]</code>), ...,
7230up to the first nil value.
7231
7232
7233
7234
7235<p>
7236<hr><h3><a name="pdf-load"><code>load (chunk [, chunkname [, mode [, env]]])</code></a></h3>
7237
7238
7239<p>
7240Loads a chunk.
7241
7242
7243<p>
7244If <code>chunk</code> is a string, the chunk is this string.
7245If <code>chunk</code> is a function,
7246<code>load</code> calls it repeatedly to get the chunk pieces.
7247Each call to <code>chunk</code> must return a string that concatenates
7248with previous results.
7249A return of an empty string, <b>nil</b>, or no value signals the end of the chunk.
7250
7251
7252<p>
7253If there are no syntactic errors,
7254returns the compiled chunk as a function;
7255otherwise, returns <b>nil</b> plus the error message.
7256
7257
7258<p>
7259If the resulting function has upvalues,
7260the first upvalue is set to the value of <code>env</code>,
7261if that parameter is given,
7262or to the value of the global environment.
7263Other upvalues are initialized with <b>nil</b>.
7264(When you load a main chunk,
7265the resulting function will always have exactly one upvalue,
7266the <code>_ENV</code> variable (see <a href="#2.2">&sect;2.2</a>).
7267However,
7268when you load a binary chunk created from a function (see <a href="#pdf-string.dump"><code>string.dump</code></a>),
7269the resulting function can have an arbitrary number of upvalues.)
7270All upvalues are fresh, that is,
7271they are not shared with any other function.
7272
7273
7274<p>
7275<code>chunkname</code> is used as the name of the chunk for error messages
7276and debug information (see <a href="#4.9">&sect;4.9</a>).
7277When absent,
7278it defaults to <code>chunk</code>, if <code>chunk</code> is a string,
7279or to "<code>=(load)</code>" otherwise.
7280
7281
7282<p>
7283The string <code>mode</code> controls whether the chunk can be text or binary
7284(that is, a precompiled chunk).
7285It may be the string "<code>b</code>" (only binary chunks),
7286"<code>t</code>" (only text chunks),
7287or "<code>bt</code>" (both binary and text).
7288The default is "<code>bt</code>".
7289
7290
7291<p>
7292Lua does not check the consistency of binary chunks.
7293Maliciously crafted binary chunks can crash
7294the interpreter.
7295
7296
7297
7298
7299<p>
7300<hr><h3><a name="pdf-loadfile"><code>loadfile ([filename [, mode [, env]]])</code></a></h3>
7301
7302
7303<p>
7304Similar to <a href="#pdf-load"><code>load</code></a>,
7305but gets the chunk from file <code>filename</code>
7306or from the standard input,
7307if no file name is given.
7308
7309
7310
7311
7312<p>
7313<hr><h3><a name="pdf-next"><code>next (table [, index])</code></a></h3>
7314
7315
7316<p>
7317Allows a program to traverse all fields of a table.
7318Its first argument is a table and its second argument
7319is an index in this table.
7320<code>next</code> returns the next index of the table
7321and its associated value.
7322When called with <b>nil</b> as its second argument,
7323<code>next</code> returns an initial index
7324and its associated value.
7325When called with the last index,
7326or with <b>nil</b> in an empty table,
7327<code>next</code> returns <b>nil</b>.
7328If the second argument is absent, then it is interpreted as <b>nil</b>.
7329In particular,
7330you can use <code>next(t)</code> to check whether a table is empty.
7331
7332
7333<p>
7334The order in which the indices are enumerated is not specified,
7335<em>even for numeric indices</em>.
7336(To traverse a table in numeric order,
7337use a numerical <b>for</b>.)
7338
7339
7340<p>
7341The behavior of <code>next</code> is undefined if,
7342during the traversal,
7343you assign any value to a non-existent field in the table.
7344You may however modify existing fields.
7345In particular, you may clear existing fields.
7346
7347
7348
7349
7350<p>
7351<hr><h3><a name="pdf-pairs"><code>pairs (t)</code></a></h3>
7352
7353
7354<p>
7355If <code>t</code> has a metamethod <code>__pairs</code>,
7356calls it with <code>t</code> as argument and returns the first three
7357results from the call.
7358
7359
7360<p>
7361Otherwise,
7362returns three values: the <a href="#pdf-next"><code>next</code></a> function, the table <code>t</code>, and <b>nil</b>,
7363so that the construction
7364
7365<pre>
7366     for k,v in pairs(t) do <em>body</em> end
7367</pre><p>
7368will iterate over all key&ndash;value pairs of table <code>t</code>.
7369
7370
7371<p>
7372See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying
7373the table during its traversal.
7374
7375
7376
7377
7378<p>
7379<hr><h3><a name="pdf-pcall"><code>pcall (f [, arg1, &middot;&middot;&middot;])</code></a></h3>
7380
7381
7382<p>
7383Calls function <code>f</code> with
7384the given arguments in <em>protected mode</em>.
7385This means that any error inside&nbsp;<code>f</code> is not propagated;
7386instead, <code>pcall</code> catches the error
7387and returns a status code.
7388Its first result is the status code (a boolean),
7389which is true if the call succeeds without errors.
7390In such case, <code>pcall</code> also returns all results from the call,
7391after this first result.
7392In case of any error, <code>pcall</code> returns <b>false</b> plus the error message.
7393
7394
7395
7396
7397<p>
7398<hr><h3><a name="pdf-print"><code>print (&middot;&middot;&middot;)</code></a></h3>
7399Receives any number of arguments
7400and prints their values to <code>stdout</code>,
7401using the <a href="#pdf-tostring"><code>tostring</code></a> function to convert each argument to a string.
7402<code>print</code> is not intended for formatted output,
7403but only as a quick way to show a value,
7404for instance for debugging.
7405For complete control over the output,
7406use <a href="#pdf-string.format"><code>string.format</code></a> and <a href="#pdf-io.write"><code>io.write</code></a>.
7407
7408
7409
7410
7411<p>
7412<hr><h3><a name="pdf-rawequal"><code>rawequal (v1, v2)</code></a></h3>
7413Checks whether <code>v1</code> is equal to <code>v2</code>,
7414without invoking any metamethod.
7415Returns a boolean.
7416
7417
7418
7419
7420<p>
7421<hr><h3><a name="pdf-rawget"><code>rawget (table, index)</code></a></h3>
7422Gets the real value of <code>table[index]</code>,
7423without invoking any metamethod.
7424<code>table</code> must be a table;
7425<code>index</code> may be any value.
7426
7427
7428
7429
7430<p>
7431<hr><h3><a name="pdf-rawlen"><code>rawlen (v)</code></a></h3>
7432Returns the length of the object <code>v</code>,
7433which must be a table or a string,
7434without invoking any metamethod.
7435Returns an integer.
7436
7437
7438
7439
7440<p>
7441<hr><h3><a name="pdf-rawset"><code>rawset (table, index, value)</code></a></h3>
7442Sets the real value of <code>table[index]</code> to <code>value</code>,
7443without invoking any metamethod.
7444<code>table</code> must be a table,
7445<code>index</code> any value different from <b>nil</b> and NaN,
7446and <code>value</code> any Lua value.
7447
7448
7449<p>
7450This function returns <code>table</code>.
7451
7452
7453
7454
7455<p>
7456<hr><h3><a name="pdf-select"><code>select (index, &middot;&middot;&middot;)</code></a></h3>
7457
7458
7459<p>
7460If <code>index</code> is a number,
7461returns all arguments after argument number <code>index</code>;
7462a negative number indexes from the end (-1 is the last argument).
7463Otherwise, <code>index</code> must be the string <code>"#"</code>,
7464and <code>select</code> returns the total number of extra arguments it received.
7465
7466
7467
7468
7469<p>
7470<hr><h3><a name="pdf-setmetatable"><code>setmetatable (table, metatable)</code></a></h3>
7471
7472
7473<p>
7474Sets the metatable for the given table.
7475(You cannot change the metatable of other types from Lua, only from&nbsp;C.)
7476If <code>metatable</code> is <b>nil</b>,
7477removes the metatable of the given table.
7478If the original metatable has a <code>"__metatable"</code> field,
7479raises an error.
7480
7481
7482<p>
7483This function returns <code>table</code>.
7484
7485
7486
7487
7488<p>
7489<hr><h3><a name="pdf-tonumber"><code>tonumber (e [, base])</code></a></h3>
7490
7491
7492<p>
7493When called with no <code>base</code>,
7494<code>tonumber</code> tries to convert its argument to a number.
7495If the argument is already a number or
7496a string convertible to a number,
7497then <code>tonumber</code> returns this number;
7498otherwise, it returns <b>nil</b>.
7499
7500
7501<p>
7502The conversion of strings can result in integers or floats,
7503according to the lexical conventions of Lua (see <a href="#3.1">&sect;3.1</a>).
7504(The string may have leading and trailing spaces and a sign.)
7505
7506
7507<p>
7508When called with <code>base</code>,
7509then <code>e</code> must be a string to be interpreted as
7510an integer numeral in that base.
7511The base may be any integer between 2 and 36, inclusive.
7512In bases above&nbsp;10, the letter '<code>A</code>' (in either upper or lower case)
7513represents&nbsp;10, '<code>B</code>' represents&nbsp;11, and so forth,
7514with '<code>Z</code>' representing 35.
7515If the string <code>e</code> is not a valid numeral in the given base,
7516the function returns <b>nil</b>.
7517
7518
7519
7520
7521<p>
7522<hr><h3><a name="pdf-tostring"><code>tostring (v)</code></a></h3>
7523Receives a value of any type and
7524converts it to a string in a human-readable format.
7525Floats always produce strings with some
7526floating-point indication (either a decimal dot or an exponent).
7527(For complete control of how numbers are converted,
7528use <a href="#pdf-string.format"><code>string.format</code></a>.)
7529
7530
7531<p>
7532If the metatable of <code>v</code> has a <code>"__tostring"</code> field,
7533then <code>tostring</code> calls the corresponding value
7534with <code>v</code> as argument,
7535and uses the result of the call as its result.
7536
7537
7538
7539
7540<p>
7541<hr><h3><a name="pdf-type"><code>type (v)</code></a></h3>
7542Returns the type of its only argument, coded as a string.
7543The possible results of this function are
7544"<code>nil</code>" (a string, not the value <b>nil</b>),
7545"<code>number</code>",
7546"<code>string</code>",
7547"<code>boolean</code>",
7548"<code>table</code>",
7549"<code>function</code>",
7550"<code>thread</code>",
7551and "<code>userdata</code>".
7552
7553
7554
7555
7556<p>
7557<hr><h3><a name="pdf-_VERSION"><code>_VERSION</code></a></h3>
7558A global variable (not a function) that
7559holds a string containing the current interpreter version.
7560The current value of this variable is "<code>Lua 5.3</code>".
7561
7562
7563
7564
7565<p>
7566<hr><h3><a name="pdf-xpcall"><code>xpcall (f, msgh [, arg1, &middot;&middot;&middot;])</code></a></h3>
7567
7568
7569<p>
7570This function is similar to <a href="#pdf-pcall"><code>pcall</code></a>,
7571except that it sets a new message handler <code>msgh</code>.
7572
7573
7574
7575
7576
7577
7578
7579<h2>6.2 &ndash; <a name="6.2">Coroutine Manipulation</a></h2>
7580
7581<p>
7582The operations related to coroutines comprise a sub-library of
7583the basic library and come inside the table <a name="pdf-coroutine"><code>coroutine</code></a>.
7584See <a href="#2.6">&sect;2.6</a> for a general description of coroutines.
7585
7586
7587<p>
7588<hr><h3><a name="pdf-coroutine.create"><code>coroutine.create (f)</code></a></h3>
7589
7590
7591<p>
7592Creates a new coroutine, with body <code>f</code>.
7593<code>f</code> must be a Lua function.
7594Returns this new coroutine,
7595an object with type <code>"thread"</code>.
7596
7597
7598
7599
7600<p>
7601<hr><h3><a name="pdf-coroutine.isyieldable"><code>coroutine.isyieldable ()</code></a></h3>
7602
7603
7604<p>
7605Returns true when the running coroutine can yield.
7606
7607
7608<p>
7609A running coroutine is yieldable if it is not the main thread and
7610it is not inside a non-yieldable C function.
7611
7612
7613
7614
7615<p>
7616<hr><h3><a name="pdf-coroutine.resume"><code>coroutine.resume (co [, val1, &middot;&middot;&middot;])</code></a></h3>
7617
7618
7619<p>
7620Starts or continues the execution of coroutine <code>co</code>.
7621The first time you resume a coroutine,
7622it starts running its body.
7623The values <code>val1</code>, ... are passed
7624as the arguments to the body function.
7625If the coroutine has yielded,
7626<code>resume</code> restarts it;
7627the values <code>val1</code>, ... are passed
7628as the results from the yield.
7629
7630
7631<p>
7632If the coroutine runs without any errors,
7633<code>resume</code> returns <b>true</b> plus any values passed to <code>yield</code>
7634(when the coroutine yields) or any values returned by the body function
7635(when the coroutine terminates).
7636If there is any error,
7637<code>resume</code> returns <b>false</b> plus the error message.
7638
7639
7640
7641
7642<p>
7643<hr><h3><a name="pdf-coroutine.running"><code>coroutine.running ()</code></a></h3>
7644
7645
7646<p>
7647Returns the running coroutine plus a boolean,
7648true when the running coroutine is the main one.
7649
7650
7651
7652
7653<p>
7654<hr><h3><a name="pdf-coroutine.status"><code>coroutine.status (co)</code></a></h3>
7655
7656
7657<p>
7658Returns the status of coroutine <code>co</code>, as a string:
7659<code>"running"</code>,
7660if the coroutine is running (that is, it called <code>status</code>);
7661<code>"suspended"</code>, if the coroutine is suspended in a call to <code>yield</code>,
7662or if it has not started running yet;
7663<code>"normal"</code> if the coroutine is active but not running
7664(that is, it has resumed another coroutine);
7665and <code>"dead"</code> if the coroutine has finished its body function,
7666or if it has stopped with an error.
7667
7668
7669
7670
7671<p>
7672<hr><h3><a name="pdf-coroutine.wrap"><code>coroutine.wrap (f)</code></a></h3>
7673
7674
7675<p>
7676Creates a new coroutine, with body <code>f</code>.
7677<code>f</code> must be a Lua function.
7678Returns a function that resumes the coroutine each time it is called.
7679Any arguments passed to the function behave as the
7680extra arguments to <code>resume</code>.
7681Returns the same values returned by <code>resume</code>,
7682except the first boolean.
7683In case of error, propagates the error.
7684
7685
7686
7687
7688<p>
7689<hr><h3><a name="pdf-coroutine.yield"><code>coroutine.yield (&middot;&middot;&middot;)</code></a></h3>
7690
7691
7692<p>
7693Suspends the execution of the calling coroutine.
7694Any arguments to <code>yield</code> are passed as extra results to <code>resume</code>.
7695
7696
7697
7698
7699
7700
7701
7702<h2>6.3 &ndash; <a name="6.3">Modules</a></h2>
7703
7704<p>
7705The package library provides basic
7706facilities for loading modules in Lua.
7707It exports one function directly in the global environment:
7708<a href="#pdf-require"><code>require</code></a>.
7709Everything else is exported in a table <a name="pdf-package"><code>package</code></a>.
7710
7711
7712<p>
7713<hr><h3><a name="pdf-require"><code>require (modname)</code></a></h3>
7714
7715
7716<p>
7717Loads the given module.
7718The function starts by looking into the <a href="#pdf-package.loaded"><code>package.loaded</code></a> table
7719to determine whether <code>modname</code> is already loaded.
7720If it is, then <code>require</code> returns the value stored
7721at <code>package.loaded[modname]</code>.
7722Otherwise, it tries to find a <em>loader</em> for the module.
7723
7724
7725<p>
7726To find a loader,
7727<code>require</code> is guided by the <a href="#pdf-package.searchers"><code>package.searchers</code></a> sequence.
7728By changing this sequence,
7729we can change how <code>require</code> looks for a module.
7730The following explanation is based on the default configuration
7731for <a href="#pdf-package.searchers"><code>package.searchers</code></a>.
7732
7733
7734<p>
7735First <code>require</code> queries <code>package.preload[modname]</code>.
7736If it has a value,
7737this value (which must be a function) is the loader.
7738Otherwise <code>require</code> searches for a Lua loader using the
7739path stored in <a href="#pdf-package.path"><code>package.path</code></a>.
7740If that also fails, it searches for a C&nbsp;loader using the
7741path stored in <a href="#pdf-package.cpath"><code>package.cpath</code></a>.
7742If that also fails,
7743it tries an <em>all-in-one</em> loader (see <a href="#pdf-package.searchers"><code>package.searchers</code></a>).
7744
7745
7746<p>
7747Once a loader is found,
7748<code>require</code> calls the loader with two arguments:
7749<code>modname</code> and an extra value dependent on how it got the loader.
7750(If the loader came from a file,
7751this extra value is the file name.)
7752If the loader returns any non-nil value,
7753<code>require</code> assigns the returned value to <code>package.loaded[modname]</code>.
7754If the loader does not return a non-nil value and
7755has not assigned any value to <code>package.loaded[modname]</code>,
7756then <code>require</code> assigns <b>true</b> to this entry.
7757In any case, <code>require</code> returns the
7758final value of <code>package.loaded[modname]</code>.
7759
7760
7761<p>
7762If there is any error loading or running the module,
7763or if it cannot find any loader for the module,
7764then <code>require</code> raises an error.
7765
7766
7767
7768
7769<p>
7770<hr><h3><a name="pdf-package.config"><code>package.config</code></a></h3>
7771
7772
7773<p>
7774A string describing some compile-time configurations for packages.
7775This string is a sequence of lines:
7776
7777<ul>
7778
7779<li>The first line is the directory separator string.
7780Default is '<code>\</code>' for Windows and '<code>/</code>' for all other systems.</li>
7781
7782<li>The second line is the character that separates templates in a path.
7783Default is '<code>;</code>'.</li>
7784
7785<li>The third line is the string that marks the
7786substitution points in a template.
7787Default is '<code>?</code>'.</li>
7788
7789<li>The fourth line is a string that, in a path in Windows,
7790is replaced by the executable's directory.
7791Default is '<code>!</code>'.</li>
7792
7793<li>The fifth line is a mark to ignore all text after it
7794when building the <code>luaopen_</code> function name.
7795Default is '<code>-</code>'.</li>
7796
7797</ul>
7798
7799
7800
7801<p>
7802<hr><h3><a name="pdf-package.cpath"><code>package.cpath</code></a></h3>
7803
7804
7805<p>
7806The path used by <a href="#pdf-require"><code>require</code></a> to search for a C&nbsp;loader.
7807
7808
7809<p>
7810Lua initializes the C&nbsp;path <a href="#pdf-package.cpath"><code>package.cpath</code></a> in the same way
7811it initializes the Lua path <a href="#pdf-package.path"><code>package.path</code></a>,
7812using the environment variable <a name="pdf-LUA_CPATH_5_3"><code>LUA_CPATH_5_3</code></a>
7813or the environment variable <a name="pdf-LUA_CPATH"><code>LUA_CPATH</code></a>
7814or a default path defined in <code>luaconf.h</code>.
7815
7816
7817
7818
7819<p>
7820<hr><h3><a name="pdf-package.loaded"><code>package.loaded</code></a></h3>
7821
7822
7823<p>
7824A table used by <a href="#pdf-require"><code>require</code></a> to control which
7825modules are already loaded.
7826When you require a module <code>modname</code> and
7827<code>package.loaded[modname]</code> is not false,
7828<a href="#pdf-require"><code>require</code></a> simply returns the value stored there.
7829
7830
7831<p>
7832This variable is only a reference to the real table;
7833assignments to this variable do not change the
7834table used by <a href="#pdf-require"><code>require</code></a>.
7835
7836
7837
7838
7839<p>
7840<hr><h3><a name="pdf-package.loadlib"><code>package.loadlib (libname, funcname)</code></a></h3>
7841
7842
7843<p>
7844Dynamically links the host program with the C&nbsp;library <code>libname</code>.
7845
7846
7847<p>
7848If <code>funcname</code> is "<code>*</code>",
7849then it only links with the library,
7850making the symbols exported by the library
7851available to other dynamically linked libraries.
7852Otherwise,
7853it looks for a function <code>funcname</code> inside the library
7854and returns this function as a C&nbsp;function.
7855So, <code>funcname</code> must follow the <a href="#lua_CFunction"><code>lua_CFunction</code></a> prototype
7856(see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
7857
7858
7859<p>
7860This is a low-level function.
7861It completely bypasses the package and module system.
7862Unlike <a href="#pdf-require"><code>require</code></a>,
7863it does not perform any path searching and
7864does not automatically adds extensions.
7865<code>libname</code> must be the complete file name of the C&nbsp;library,
7866including if necessary a path and an extension.
7867<code>funcname</code> must be the exact name exported by the C&nbsp;library
7868(which may depend on the C&nbsp;compiler and linker used).
7869
7870
7871<p>
7872This function is not supported by Standard&nbsp;C.
7873As such, it is only available on some platforms
7874(Windows, Linux, Mac OS X, Solaris, BSD,
7875plus other Unix systems that support the <code>dlfcn</code> standard).
7876
7877
7878
7879
7880<p>
7881<hr><h3><a name="pdf-package.path"><code>package.path</code></a></h3>
7882
7883
7884<p>
7885The path used by <a href="#pdf-require"><code>require</code></a> to search for a Lua loader.
7886
7887
7888<p>
7889At start-up, Lua initializes this variable with
7890the value of the environment variable <a name="pdf-LUA_PATH_5_3"><code>LUA_PATH_5_3</code></a> or
7891the environment variable <a name="pdf-LUA_PATH"><code>LUA_PATH</code></a> or
7892with a default path defined in <code>luaconf.h</code>,
7893if those environment variables are not defined.
7894Any "<code>;;</code>" in the value of the environment variable
7895is replaced by the default path.
7896
7897
7898
7899
7900<p>
7901<hr><h3><a name="pdf-package.preload"><code>package.preload</code></a></h3>
7902
7903
7904<p>
7905A table to store loaders for specific modules
7906(see <a href="#pdf-require"><code>require</code></a>).
7907
7908
7909<p>
7910This variable is only a reference to the real table;
7911assignments to this variable do not change the
7912table used by <a href="#pdf-require"><code>require</code></a>.
7913
7914
7915
7916
7917<p>
7918<hr><h3><a name="pdf-package.searchers"><code>package.searchers</code></a></h3>
7919
7920
7921<p>
7922A table used by <a href="#pdf-require"><code>require</code></a> to control how to load modules.
7923
7924
7925<p>
7926Each entry in this table is a <em>searcher function</em>.
7927When looking for a module,
7928<a href="#pdf-require"><code>require</code></a> calls each of these searchers in ascending order,
7929with the module name (the argument given to <a href="#pdf-require"><code>require</code></a>) as its
7930sole parameter.
7931The function can return another function (the module <em>loader</em>)
7932plus an extra value that will be passed to that loader,
7933or a string explaining why it did not find that module
7934(or <b>nil</b> if it has nothing to say).
7935
7936
7937<p>
7938Lua initializes this table with four searcher functions.
7939
7940
7941<p>
7942The first searcher simply looks for a loader in the
7943<a href="#pdf-package.preload"><code>package.preload</code></a> table.
7944
7945
7946<p>
7947The second searcher looks for a loader as a Lua library,
7948using the path stored at <a href="#pdf-package.path"><code>package.path</code></a>.
7949The search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
7950
7951
7952<p>
7953The third searcher looks for a loader as a C&nbsp;library,
7954using the path given by the variable <a href="#pdf-package.cpath"><code>package.cpath</code></a>.
7955Again,
7956the search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
7957For instance,
7958if the C&nbsp;path is the string
7959
7960<pre>
7961     "./?.so;./?.dll;/usr/local/?/init.so"
7962</pre><p>
7963the searcher for module <code>foo</code>
7964will try to open the files <code>./foo.so</code>, <code>./foo.dll</code>,
7965and <code>/usr/local/foo/init.so</code>, in that order.
7966Once it finds a C&nbsp;library,
7967this searcher first uses a dynamic link facility to link the
7968application with the library.
7969Then it tries to find a C&nbsp;function inside the library to
7970be used as the loader.
7971The name of this C&nbsp;function is the string "<code>luaopen_</code>"
7972concatenated with a copy of the module name where each dot
7973is replaced by an underscore.
7974Moreover, if the module name has a hyphen,
7975its suffix after (and including) the first hyphen is removed.
7976For instance, if the module name is <code>a.b.c-v2.1</code>,
7977the function name will be <code>luaopen_a_b_c</code>.
7978
7979
7980<p>
7981The fourth searcher tries an <em>all-in-one loader</em>.
7982It searches the C&nbsp;path for a library for
7983the root name of the given module.
7984For instance, when requiring <code>a.b.c</code>,
7985it will search for a C&nbsp;library for <code>a</code>.
7986If found, it looks into it for an open function for
7987the submodule;
7988in our example, that would be <code>luaopen_a_b_c</code>.
7989With this facility, a package can pack several C&nbsp;submodules
7990into one single library,
7991with each submodule keeping its original open function.
7992
7993
7994<p>
7995All searchers except the first one (preload) return as the extra value
7996the file name where the module was found,
7997as returned by <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
7998The first searcher returns no extra value.
7999
8000
8001
8002
8003<p>
8004<hr><h3><a name="pdf-package.searchpath"><code>package.searchpath (name, path [, sep [, rep]])</code></a></h3>
8005
8006
8007<p>
8008Searches for the given <code>name</code> in the given <code>path</code>.
8009
8010
8011<p>
8012A path is a string containing a sequence of
8013<em>templates</em> separated by semicolons.
8014For each template,
8015the function replaces each interrogation mark (if any)
8016in the template with a copy of <code>name</code>
8017wherein all occurrences of <code>sep</code>
8018(a dot, by default)
8019were replaced by <code>rep</code>
8020(the system's directory separator, by default),
8021and then tries to open the resulting file name.
8022
8023
8024<p>
8025For instance, if the path is the string
8026
8027<pre>
8028     "./?.lua;./?.lc;/usr/local/?/init.lua"
8029</pre><p>
8030the search for the name <code>foo.a</code>
8031will try to open the files
8032<code>./foo/a.lua</code>, <code>./foo/a.lc</code>, and
8033<code>/usr/local/foo/a/init.lua</code>, in that order.
8034
8035
8036<p>
8037Returns the resulting name of the first file that it can
8038open in read mode (after closing the file),
8039or <b>nil</b> plus an error message if none succeeds.
8040(This error message lists all file names it tried to open.)
8041
8042
8043
8044
8045
8046
8047
8048<h2>6.4 &ndash; <a name="6.4">String Manipulation</a></h2>
8049
8050<p>
8051This library provides generic functions for string manipulation,
8052such as finding and extracting substrings, and pattern matching.
8053When indexing a string in Lua, the first character is at position&nbsp;1
8054(not at&nbsp;0, as in C).
8055Indices are allowed to be negative and are interpreted as indexing backwards,
8056from the end of the string.
8057Thus, the last character is at position -1, and so on.
8058
8059
8060<p>
8061The string library provides all its functions inside the table
8062<a name="pdf-string"><code>string</code></a>.
8063It also sets a metatable for strings
8064where the <code>__index</code> field points to the <code>string</code> table.
8065Therefore, you can use the string functions in object-oriented style.
8066For instance, <code>string.byte(s,i)</code>
8067can be written as <code>s:byte(i)</code>.
8068
8069
8070<p>
8071The string library assumes one-byte character encodings.
8072
8073
8074<p>
8075<hr><h3><a name="pdf-string.byte"><code>string.byte (s [, i [, j]])</code></a></h3>
8076Returns the internal numerical codes of the characters <code>s[i]</code>,
8077<code>s[i+1]</code>, ..., <code>s[j]</code>.
8078The default value for <code>i</code> is&nbsp;1;
8079the default value for <code>j</code> is&nbsp;<code>i</code>.
8080These indices are corrected
8081following the same rules of function <a href="#pdf-string.sub"><code>string.sub</code></a>.
8082
8083
8084<p>
8085Numerical codes are not necessarily portable across platforms.
8086
8087
8088
8089
8090<p>
8091<hr><h3><a name="pdf-string.char"><code>string.char (&middot;&middot;&middot;)</code></a></h3>
8092Receives zero or more integers.
8093Returns a string with length equal to the number of arguments,
8094in which each character has the internal numerical code equal
8095to its corresponding argument.
8096
8097
8098<p>
8099Numerical codes are not necessarily portable across platforms.
8100
8101
8102
8103
8104<p>
8105<hr><h3><a name="pdf-string.dump"><code>string.dump (function [, strip])</code></a></h3>
8106
8107
8108<p>
8109Returns a string containing a binary representation
8110(a <em>binary chunk</em>)
8111of the given function,
8112so that a later <a href="#pdf-load"><code>load</code></a> on this string returns
8113a copy of the function (but with new upvalues).
8114If <code>strip</code> is a true value,
8115the binary representation is created without debug information
8116about the function
8117(local variable names, lines, etc.).
8118
8119
8120<p>
8121Functions with upvalues have only their number of upvalues saved.
8122When (re)loaded,
8123those upvalues receive fresh instances containing <b>nil</b>.
8124(You can use the debug library to serialize
8125and reload the upvalues of a function
8126in a way adequate to your needs.)
8127
8128
8129
8130
8131<p>
8132<hr><h3><a name="pdf-string.find"><code>string.find (s, pattern [, init [, plain]])</code></a></h3>
8133
8134
8135<p>
8136Looks for the first match of
8137<code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) in the string <code>s</code>.
8138If it finds a match, then <code>find</code> returns the indices of&nbsp;<code>s</code>
8139where this occurrence starts and ends;
8140otherwise, it returns <b>nil</b>.
8141A third, optional numerical argument <code>init</code> specifies
8142where to start the search;
8143its default value is&nbsp;1 and can be negative.
8144A value of <b>true</b> as a fourth, optional argument <code>plain</code>
8145turns off the pattern matching facilities,
8146so the function does a plain "find substring" operation,
8147with no characters in <code>pattern</code> being considered magic.
8148Note that if <code>plain</code> is given, then <code>init</code> must be given as well.
8149
8150
8151<p>
8152If the pattern has captures,
8153then in a successful match
8154the captured values are also returned,
8155after the two indices.
8156
8157
8158
8159
8160<p>
8161<hr><h3><a name="pdf-string.format"><code>string.format (formatstring, &middot;&middot;&middot;)</code></a></h3>
8162
8163
8164<p>
8165Returns a formatted version of its variable number of arguments
8166following the description given in its first argument (which must be a string).
8167The format string follows the same rules as the ISO&nbsp;C function <code>sprintf</code>.
8168The only differences are that the options/modifiers
8169<code>*</code>, <code>h</code>, <code>L</code>, <code>l</code>, <code>n</code>,
8170and <code>p</code> are not supported
8171and that there is an extra option, <code>q</code>.
8172The <code>q</code> option formats a string between double quotes,
8173using escape sequences when necessary to ensure that
8174it can safely be read back by the Lua interpreter.
8175For instance, the call
8176
8177<pre>
8178     string.format('%q', 'a string with "quotes" and \n new line')
8179</pre><p>
8180may produce the string:
8181
8182<pre>
8183     "a string with \"quotes\" and \
8184      new line"
8185</pre>
8186
8187<p>
8188Options
8189<code>A</code> and <code>a</code> (when available),
8190<code>E</code>, <code>e</code>, <code>f</code>,
8191<code>G</code>, and <code>g</code> all expect a number as argument.
8192Options <code>c</code>, <code>d</code>,
8193<code>i</code>, <code>o</code>, <code>u</code>, <code>X</code>, and <code>x</code>
8194expect an integer.
8195Option <code>q</code> expects a string;
8196option <code>s</code> expects a string without embedded zeros.
8197If the argument to option <code>s</code> is not a string,
8198it is converted to one following the same rules of <a href="#pdf-tostring"><code>tostring</code></a>.
8199
8200
8201
8202
8203<p>
8204<hr><h3><a name="pdf-string.gmatch"><code>string.gmatch (s, pattern)</code></a></h3>
8205Returns an iterator function that,
8206each time it is called,
8207returns the next captures from <code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>)
8208over the string <code>s</code>.
8209If <code>pattern</code> specifies no captures,
8210then the whole match is produced in each call.
8211
8212
8213<p>
8214As an example, the following loop
8215will iterate over all the words from string <code>s</code>,
8216printing one per line:
8217
8218<pre>
8219     s = "hello world from Lua"
8220     for w in string.gmatch(s, "%a+") do
8221       print(w)
8222     end
8223</pre><p>
8224The next example collects all pairs <code>key=value</code> from the
8225given string into a table:
8226
8227<pre>
8228     t = {}
8229     s = "from=world, to=Lua"
8230     for k, v in string.gmatch(s, "(%w+)=(%w+)") do
8231       t[k] = v
8232     end
8233</pre>
8234
8235<p>
8236For this function, a caret '<code>^</code>' at the start of a pattern does not
8237work as an anchor, as this would prevent the iteration.
8238
8239
8240
8241
8242<p>
8243<hr><h3><a name="pdf-string.gsub"><code>string.gsub (s, pattern, repl [, n])</code></a></h3>
8244Returns a copy of <code>s</code>
8245in which all (or the first <code>n</code>, if given)
8246occurrences of the <code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) have been
8247replaced by a replacement string specified by <code>repl</code>,
8248which can be a string, a table, or a function.
8249<code>gsub</code> also returns, as its second value,
8250the total number of matches that occurred.
8251The name <code>gsub</code> comes from <em>Global SUBstitution</em>.
8252
8253
8254<p>
8255If <code>repl</code> is a string, then its value is used for replacement.
8256The character&nbsp;<code>%</code> works as an escape character:
8257any sequence in <code>repl</code> of the form <code>%<em>d</em></code>,
8258with <em>d</em> between 1 and 9,
8259stands for the value of the <em>d</em>-th captured substring.
8260The sequence <code>%0</code> stands for the whole match.
8261The sequence <code>%%</code> stands for a single&nbsp;<code>%</code>.
8262
8263
8264<p>
8265If <code>repl</code> is a table, then the table is queried for every match,
8266using the first capture as the key.
8267
8268
8269<p>
8270If <code>repl</code> is a function, then this function is called every time a
8271match occurs, with all captured substrings passed as arguments,
8272in order.
8273
8274
8275<p>
8276In any case,
8277if the pattern specifies no captures,
8278then it behaves as if the whole pattern was inside a capture.
8279
8280
8281<p>
8282If the value returned by the table query or by the function call
8283is a string or a number,
8284then it is used as the replacement string;
8285otherwise, if it is <b>false</b> or <b>nil</b>,
8286then there is no replacement
8287(that is, the original match is kept in the string).
8288
8289
8290<p>
8291Here are some examples:
8292
8293<pre>
8294     x = string.gsub("hello world", "(%w+)", "%1 %1")
8295     --&gt; x="hello hello world world"
8296
8297     x = string.gsub("hello world", "%w+", "%0 %0", 1)
8298     --&gt; x="hello hello world"
8299
8300     x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")
8301     --&gt; x="world hello Lua from"
8302
8303     x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)
8304     --&gt; x="home = /home/roberto, user = roberto"
8305
8306     x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)
8307           return load(s)()
8308         end)
8309     --&gt; x="4+5 = 9"
8310
8311     local t = {name="lua", version="5.3"}
8312     x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t)
8313     --&gt; x="lua-5.3.tar.gz"
8314</pre>
8315
8316
8317
8318<p>
8319<hr><h3><a name="pdf-string.len"><code>string.len (s)</code></a></h3>
8320Receives a string and returns its length.
8321The empty string <code>""</code> has length 0.
8322Embedded zeros are counted,
8323so <code>"a\000bc\000"</code> has length 5.
8324
8325
8326
8327
8328<p>
8329<hr><h3><a name="pdf-string.lower"><code>string.lower (s)</code></a></h3>
8330Receives a string and returns a copy of this string with all
8331uppercase letters changed to lowercase.
8332All other characters are left unchanged.
8333The definition of what an uppercase letter is depends on the current locale.
8334
8335
8336
8337
8338<p>
8339<hr><h3><a name="pdf-string.match"><code>string.match (s, pattern [, init])</code></a></h3>
8340Looks for the first <em>match</em> of
8341<code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) in the string <code>s</code>.
8342If it finds one, then <code>match</code> returns
8343the captures from the pattern;
8344otherwise it returns <b>nil</b>.
8345If <code>pattern</code> specifies no captures,
8346then the whole match is returned.
8347A third, optional numerical argument <code>init</code> specifies
8348where to start the search;
8349its default value is&nbsp;1 and can be negative.
8350
8351
8352
8353
8354<p>
8355<hr><h3><a name="pdf-string.pack"><code>string.pack (fmt, v1, v2, &middot;&middot;&middot;)</code></a></h3>
8356
8357
8358<p>
8359Returns a binary string containing the values <code>v1</code>, <code>v2</code>, etc.
8360packed (that is, serialized in binary form)
8361according to the format string <code>fmt</code> (see <a href="#6.4.2">&sect;6.4.2</a>).
8362
8363
8364
8365
8366<p>
8367<hr><h3><a name="pdf-string.packsize"><code>string.packsize (fmt)</code></a></h3>
8368
8369
8370<p>
8371Returns the size of a string resulting from <a href="#pdf-string.pack"><code>string.pack</code></a>
8372with the given format.
8373The format string cannot have the variable-length options
8374'<code>s</code>' or '<code>z</code>' (see <a href="#6.4.2">&sect;6.4.2</a>).
8375
8376
8377
8378
8379<p>
8380<hr><h3><a name="pdf-string.rep"><code>string.rep (s, n [, sep])</code></a></h3>
8381Returns a string that is the concatenation of <code>n</code> copies of
8382the string <code>s</code> separated by the string <code>sep</code>.
8383The default value for <code>sep</code> is the empty string
8384(that is, no separator).
8385Returns the empty string if <code>n</code> is not positive.
8386
8387
8388
8389
8390<p>
8391<hr><h3><a name="pdf-string.reverse"><code>string.reverse (s)</code></a></h3>
8392Returns a string that is the string <code>s</code> reversed.
8393
8394
8395
8396
8397<p>
8398<hr><h3><a name="pdf-string.sub"><code>string.sub (s, i [, j])</code></a></h3>
8399Returns the substring of <code>s</code> that
8400starts at <code>i</code>  and continues until <code>j</code>;
8401<code>i</code> and <code>j</code> can be negative.
8402If <code>j</code> is absent, then it is assumed to be equal to -1
8403(which is the same as the string length).
8404In particular,
8405the call <code>string.sub(s,1,j)</code> returns a prefix of <code>s</code>
8406with length <code>j</code>,
8407and <code>string.sub(s, -i)</code> returns a suffix of <code>s</code>
8408with length <code>i</code>.
8409
8410
8411<p>
8412If, after the translation of negative indices,
8413<code>i</code> is less than 1,
8414it is corrected to 1.
8415If <code>j</code> is greater than the string length,
8416it is corrected to that length.
8417If, after these corrections,
8418<code>i</code> is greater than <code>j</code>,
8419the function returns the empty string.
8420
8421
8422
8423
8424<p>
8425<hr><h3><a name="pdf-string.unpack"><code>string.unpack (fmt, s [, pos])</code></a></h3>
8426
8427
8428<p>
8429Returns the values packed in string <code>s</code> (see <a href="#pdf-string.pack"><code>string.pack</code></a>)
8430according to the format string <code>fmt</code> (see <a href="#6.4.2">&sect;6.4.2</a>).
8431An optional <code>pos</code> marks where
8432to start reading in <code>s</code> (default is 1).
8433After the read values,
8434this function also returns the index of the first unread byte in <code>s</code>.
8435
8436
8437
8438
8439<p>
8440<hr><h3><a name="pdf-string.upper"><code>string.upper (s)</code></a></h3>
8441Receives a string and returns a copy of this string with all
8442lowercase letters changed to uppercase.
8443All other characters are left unchanged.
8444The definition of what a lowercase letter is depends on the current locale.
8445
8446
8447
8448
8449
8450<h3>6.4.1 &ndash; <a name="6.4.1">Patterns</a></h3>
8451
8452<p>
8453Patterns in Lua are described by regular strings,
8454which are interpreted as patterns by the pattern-matching functions
8455<a href="#pdf-string.find"><code>string.find</code></a>,
8456<a href="#pdf-string.gmatch"><code>string.gmatch</code></a>,
8457<a href="#pdf-string.gsub"><code>string.gsub</code></a>,
8458and <a href="#pdf-string.match"><code>string.match</code></a>.
8459This section describes the syntax and the meaning
8460(that is, what they match) of these strings.
8461
8462
8463
8464<h4>Character Class:</h4><p>
8465A <em>character class</em> is used to represent a set of characters.
8466The following combinations are allowed in describing a character class:
8467
8468<ul>
8469
8470<li><b><em>x</em>: </b>
8471(where <em>x</em> is not one of the <em>magic characters</em>
8472<code>^$()%.[]*+-?</code>)
8473represents the character <em>x</em> itself.
8474</li>
8475
8476<li><b><code>.</code>: </b> (a dot) represents all characters.</li>
8477
8478<li><b><code>%a</code>: </b> represents all letters.</li>
8479
8480<li><b><code>%c</code>: </b> represents all control characters.</li>
8481
8482<li><b><code>%d</code>: </b> represents all digits.</li>
8483
8484<li><b><code>%g</code>: </b> represents all printable characters except space.</li>
8485
8486<li><b><code>%l</code>: </b> represents all lowercase letters.</li>
8487
8488<li><b><code>%p</code>: </b> represents all punctuation characters.</li>
8489
8490<li><b><code>%s</code>: </b> represents all space characters.</li>
8491
8492<li><b><code>%u</code>: </b> represents all uppercase letters.</li>
8493
8494<li><b><code>%w</code>: </b> represents all alphanumeric characters.</li>
8495
8496<li><b><code>%x</code>: </b> represents all hexadecimal digits.</li>
8497
8498<li><b><code>%<em>x</em></code>: </b> (where <em>x</em> is any non-alphanumeric character)
8499represents the character <em>x</em>.
8500This is the standard way to escape the magic characters.
8501Any non-alphanumeric character
8502(including all punctuations, even the non-magical)
8503can be preceded by a '<code>%</code>'
8504when used to represent itself in a pattern.
8505</li>
8506
8507<li><b><code>[<em>set</em>]</code>: </b>
8508represents the class which is the union of all
8509characters in <em>set</em>.
8510A range of characters can be specified by
8511separating the end characters of the range,
8512in ascending order, with a '<code>-</code>'.
8513All classes <code>%</code><em>x</em> described above can also be used as
8514components in <em>set</em>.
8515All other characters in <em>set</em> represent themselves.
8516For example, <code>[%w_]</code> (or <code>[_%w]</code>)
8517represents all alphanumeric characters plus the underscore,
8518<code>[0-7]</code> represents the octal digits,
8519and <code>[0-7%l%-]</code> represents the octal digits plus
8520the lowercase letters plus the '<code>-</code>' character.
8521
8522
8523<p>
8524The interaction between ranges and classes is not defined.
8525Therefore, patterns like <code>[%a-z]</code> or <code>[a-%%]</code>
8526have no meaning.
8527</li>
8528
8529<li><b><code>[^<em>set</em>]</code>: </b>
8530represents the complement of <em>set</em>,
8531where <em>set</em> is interpreted as above.
8532</li>
8533
8534</ul><p>
8535For all classes represented by single letters (<code>%a</code>, <code>%c</code>, etc.),
8536the corresponding uppercase letter represents the complement of the class.
8537For instance, <code>%S</code> represents all non-space characters.
8538
8539
8540<p>
8541The definitions of letter, space, and other character groups
8542depend on the current locale.
8543In particular, the class <code>[a-z]</code> may not be equivalent to <code>%l</code>.
8544
8545
8546
8547
8548
8549<h4>Pattern Item:</h4><p>
8550A <em>pattern item</em> can be
8551
8552<ul>
8553
8554<li>
8555a single character class,
8556which matches any single character in the class;
8557</li>
8558
8559<li>
8560a single character class followed by '<code>*</code>',
8561which matches zero or more repetitions of characters in the class.
8562These repetition items will always match the longest possible sequence;
8563</li>
8564
8565<li>
8566a single character class followed by '<code>+</code>',
8567which matches one or more repetitions of characters in the class.
8568These repetition items will always match the longest possible sequence;
8569</li>
8570
8571<li>
8572a single character class followed by '<code>-</code>',
8573which also matches zero or more repetitions of characters in the class.
8574Unlike '<code>*</code>',
8575these repetition items will always match the shortest possible sequence;
8576</li>
8577
8578<li>
8579a single character class followed by '<code>?</code>',
8580which matches zero or one occurrence of a character in the class.
8581It always matches one occurrence if possible;
8582</li>
8583
8584<li>
8585<code>%<em>n</em></code>, for <em>n</em> between 1 and 9;
8586such item matches a substring equal to the <em>n</em>-th captured string
8587(see below);
8588</li>
8589
8590<li>
8591<code>%b<em>xy</em></code>, where <em>x</em> and <em>y</em> are two distinct characters;
8592such item matches strings that start with&nbsp;<em>x</em>, end with&nbsp;<em>y</em>,
8593and where the <em>x</em> and <em>y</em> are <em>balanced</em>.
8594This means that, if one reads the string from left to right,
8595counting <em>+1</em> for an <em>x</em> and <em>-1</em> for a <em>y</em>,
8596the ending <em>y</em> is the first <em>y</em> where the count reaches 0.
8597For instance, the item <code>%b()</code> matches expressions with
8598balanced parentheses.
8599</li>
8600
8601<li>
8602<code>%f[<em>set</em>]</code>, a <em>frontier pattern</em>;
8603such item matches an empty string at any position such that
8604the next character belongs to <em>set</em>
8605and the previous character does not belong to <em>set</em>.
8606The set <em>set</em> is interpreted as previously described.
8607The beginning and the end of the subject are handled as if
8608they were the character '<code>\0</code>'.
8609</li>
8610
8611</ul>
8612
8613
8614
8615
8616<h4>Pattern:</h4><p>
8617A <em>pattern</em> is a sequence of pattern items.
8618A caret '<code>^</code>' at the beginning of a pattern anchors the match at the
8619beginning of the subject string.
8620A '<code>$</code>' at the end of a pattern anchors the match at the
8621end of the subject string.
8622At other positions,
8623'<code>^</code>' and '<code>$</code>' have no special meaning and represent themselves.
8624
8625
8626
8627
8628
8629<h4>Captures:</h4><p>
8630A pattern can contain sub-patterns enclosed in parentheses;
8631they describe <em>captures</em>.
8632When a match succeeds, the substrings of the subject string
8633that match captures are stored (<em>captured</em>) for future use.
8634Captures are numbered according to their left parentheses.
8635For instance, in the pattern <code>"(a*(.)%w(%s*))"</code>,
8636the part of the string matching <code>"a*(.)%w(%s*)"</code> is
8637stored as the first capture (and therefore has number&nbsp;1);
8638the character matching "<code>.</code>" is captured with number&nbsp;2,
8639and the part matching "<code>%s*</code>" has number&nbsp;3.
8640
8641
8642<p>
8643As a special case, the empty capture <code>()</code> captures
8644the current string position (a number).
8645For instance, if we apply the pattern <code>"()aa()"</code> on the
8646string <code>"flaaap"</code>, there will be two captures: 3&nbsp;and&nbsp;5.
8647
8648
8649
8650
8651
8652
8653
8654<h3>6.4.2 &ndash; <a name="6.4.2">Format Strings for Pack and Unpack</a></h3>
8655
8656<p>
8657The first argument to <a href="#pdf-string.pack"><code>string.pack</code></a>,
8658<a href="#pdf-string.packsize"><code>string.packsize</code></a>, and <a href="#pdf-string.unpack"><code>string.unpack</code></a>
8659is a format string,
8660which describes the layout of the structure being created or read.
8661
8662
8663<p>
8664A format string is a sequence of conversion options.
8665The conversion options are as follows:
8666
8667<ul>
8668<li><b><code>&lt;</code>: </b>sets little endian</li>
8669<li><b><code>&gt;</code>: </b>sets big endian</li>
8670<li><b><code>=</code>: </b>sets native endian</li>
8671<li><b><code>![<em>n</em>]</code>: </b>sets maximum alignment to <code>n</code>
8672(default is native alignment)</li>
8673<li><b><code>b</code>: </b>a signed byte (<code>char</code>)</li>
8674<li><b><code>B</code>: </b>an unsigned byte (<code>char</code>)</li>
8675<li><b><code>h</code>: </b>a signed <code>short</code> (native size)</li>
8676<li><b><code>H</code>: </b>an unsigned <code>short</code> (native size)</li>
8677<li><b><code>l</code>: </b>a signed <code>long</code> (native size)</li>
8678<li><b><code>L</code>: </b>an unsigned <code>long</code> (native size)</li>
8679<li><b><code>j</code>: </b>a <code>lua_Integer</code></li>
8680<li><b><code>J</code>: </b>a <code>lua_Unsigned</code></li>
8681<li><b><code>T</code>: </b>a <code>size_t</code> (native size)</li>
8682<li><b><code>i[<em>n</em>]</code>: </b>a signed <code>int</code> with <code>n</code> bytes
8683(default is native size)</li>
8684<li><b><code>I[<em>n</em>]</code>: </b>an unsigned <code>int</code> with <code>n</code> bytes
8685(default is native size)</li>
8686<li><b><code>f</code>: </b>a <code>float</code> (native size)</li>
8687<li><b><code>d</code>: </b>a <code>double</code> (native size)</li>
8688<li><b><code>n</code>: </b>a <code>lua_Number</code></li>
8689<li><b><code>c<em>n</em></code>: </b>a fixed-sized string with <code>n</code> bytes</li>
8690<li><b><code>z</code>: </b>a zero-terminated string</li>
8691<li><b><code>s[<em>n</em>]</code>: </b>a string preceded by its length
8692coded as an unsigned integer with <code>n</code> bytes
8693(default is a <code>size_t</code>)</li>
8694<li><b><code>x</code>: </b>one byte of padding</li>
8695<li><b><code>X<em>op</em></code>: </b>an empty item that aligns
8696according to option <code>op</code>
8697(which is otherwise ignored)</li>
8698<li><b>'<code> </code>': </b>(empty space) ignored</li>
8699</ul><p>
8700(A "<code>[<em>n</em>]</code>" means an optional integral numeral.)
8701Except for padding, spaces, and configurations
8702(options "<code>xX &lt;=&gt;!</code>"),
8703each option corresponds to an argument (in <a href="#pdf-string.pack"><code>string.pack</code></a>)
8704or a result (in <a href="#pdf-string.unpack"><code>string.unpack</code></a>).
8705
8706
8707<p>
8708For options "<code>!<em>n</em></code>", "<code>s<em>n</em></code>", "<code>i<em>n</em></code>", and "<code>I<em>n</em></code>",
8709<code>n</code> can be any integer between 1 and 16.
8710All integral options check overflows;
8711<a href="#pdf-string.pack"><code>string.pack</code></a> checks whether the given value fits in the given size;
8712<a href="#pdf-string.unpack"><code>string.unpack</code></a> checks whether the read value fits in a Lua integer.
8713
8714
8715<p>
8716Any format string starts as if prefixed by "<code>!1=</code>",
8717that is,
8718with maximum alignment of 1 (no alignment)
8719and native endianness.
8720
8721
8722<p>
8723Alignment works as follows:
8724For each option,
8725the format gets extra padding until the data starts
8726at an offset that is a multiple of the minimum between the
8727option size and the maximum alignment;
8728this minimum must be a power of 2.
8729Options "<code>c</code>" and "<code>z</code>" are not aligned;
8730option "<code>s</code>" follows the alignment of its starting integer.
8731
8732
8733<p>
8734All padding is filled with zeros by <a href="#pdf-string.pack"><code>string.pack</code></a>
8735(and ignored by <a href="#pdf-string.unpack"><code>string.unpack</code></a>).
8736
8737
8738
8739
8740
8741
8742
8743<h2>6.5 &ndash; <a name="6.5">UTF-8 Support</a></h2>
8744
8745<p>
8746This library provides basic support for UTF-8 encoding.
8747It provides all its functions inside the table <a name="pdf-utf8"><code>utf8</code></a>.
8748This library does not provide any support for Unicode other
8749than the handling of the encoding.
8750Any operation that needs the meaning of a character,
8751such as character classification, is outside its scope.
8752
8753
8754<p>
8755Unless stated otherwise,
8756all functions that expect a byte position as a parameter
8757assume that the given position is either the start of a byte sequence
8758or one plus the length of the subject string.
8759As in the string library,
8760negative indices count from the end of the string.
8761
8762
8763<p>
8764<hr><h3><a name="pdf-utf8.char"><code>utf8.char (&middot;&middot;&middot;)</code></a></h3>
8765Receives zero or more integers,
8766converts each one to its corresponding UTF-8 byte sequence
8767and returns a string with the concatenation of all these sequences.
8768
8769
8770
8771
8772<p>
8773<hr><h3><a name="pdf-utf8.charpattern"><code>utf8.charpattern</code></a></h3>
8774The pattern (a string, not a function) "<code>[\0-\x7F\xC2-\xF4][\x80-\xBF]*</code>"
8775(see <a href="#6.4.1">&sect;6.4.1</a>),
8776which matches exactly one UTF-8 byte sequence,
8777assuming that the subject is a valid UTF-8 string.
8778
8779
8780
8781
8782<p>
8783<hr><h3><a name="pdf-utf8.codes"><code>utf8.codes (s)</code></a></h3>
8784
8785
8786<p>
8787Returns values so that the construction
8788
8789<pre>
8790     for p, c in utf8.codes(s) do <em>body</em> end
8791</pre><p>
8792will iterate over all characters in string <code>s</code>,
8793with <code>p</code> being the position (in bytes) and <code>c</code> the code point
8794of each character.
8795It raises an error if it meets any invalid byte sequence.
8796
8797
8798
8799
8800<p>
8801<hr><h3><a name="pdf-utf8.codepoint"><code>utf8.codepoint (s [, i [, j]])</code></a></h3>
8802Returns the codepoints (as integers) from all characters in <code>s</code>
8803that start between byte position <code>i</code> and <code>j</code> (both included).
8804The default for <code>i</code> is 1 and for <code>j</code> is <code>i</code>.
8805It raises an error if it meets any invalid byte sequence.
8806
8807
8808
8809
8810<p>
8811<hr><h3><a name="pdf-utf8.len"><code>utf8.len (s [, i [, j]])</code></a></h3>
8812Returns the number of UTF-8 characters in string <code>s</code>
8813that start between positions <code>i</code> and <code>j</code> (both inclusive).
8814The default for <code>i</code> is 1 and for <code>j</code> is -1.
8815If it finds any invalid byte sequence,
8816returns a false value plus the position of the first invalid byte.
8817
8818
8819
8820
8821<p>
8822<hr><h3><a name="pdf-utf8.offset"><code>utf8.offset (s, n [, i])</code></a></h3>
8823Returns the position (in bytes) where the encoding of the
8824<code>n</code>-th character of <code>s</code>
8825(counting from position <code>i</code>) starts.
8826A negative <code>n</code> gets characters before position <code>i</code>.
8827The default for <code>i</code> is 1 when <code>n</code> is non-negative
8828and <code>#s + 1</code> otherwise,
8829so that <code>utf8.offset(s, -n)</code> gets the offset of the
8830<code>n</code>-th character from the end of the string.
8831If the specified character is neither in the subject
8832nor right after its end,
8833the function returns <b>nil</b>.
8834
8835
8836<p>
8837As a special case,
8838when <code>n</code> is 0 the function returns the start of the encoding
8839of the character that contains the <code>i</code>-th byte of <code>s</code>.
8840
8841
8842<p>
8843This function assumes that <code>s</code> is a valid UTF-8 string.
8844
8845
8846
8847
8848
8849
8850
8851<h2>6.6 &ndash; <a name="6.6">Table Manipulation</a></h2>
8852
8853<p>
8854This library provides generic functions for table manipulation.
8855It provides all its functions inside the table <a name="pdf-table"><code>table</code></a>.
8856
8857
8858<p>
8859Remember that, whenever an operation needs the length of a table,
8860the table must be a proper sequence
8861or have a <code>__len</code> metamethod (see <a href="#3.4.7">&sect;3.4.7</a>).
8862All functions ignore non-numeric keys
8863in the tables given as arguments.
8864
8865
8866<p>
8867<hr><h3><a name="pdf-table.concat"><code>table.concat (list [, sep [, i [, j]]])</code></a></h3>
8868
8869
8870<p>
8871Given a list where all elements are strings or numbers,
8872returns the string <code>list[i]..sep..list[i+1] &middot;&middot;&middot; sep..list[j]</code>.
8873The default value for <code>sep</code> is the empty string,
8874the default for <code>i</code> is 1,
8875and the default for <code>j</code> is <code>#list</code>.
8876If <code>i</code> is greater than <code>j</code>, returns the empty string.
8877
8878
8879
8880
8881<p>
8882<hr><h3><a name="pdf-table.insert"><code>table.insert (list, [pos,] value)</code></a></h3>
8883
8884
8885<p>
8886Inserts element <code>value</code> at position <code>pos</code> in <code>list</code>,
8887shifting up the elements
8888<code>list[pos], list[pos+1], &middot;&middot;&middot;, list[#list]</code>.
8889The default value for <code>pos</code> is <code>#list+1</code>,
8890so that a call <code>table.insert(t,x)</code> inserts <code>x</code> at the end
8891of list <code>t</code>.
8892
8893
8894
8895
8896<p>
8897<hr><h3><a name="pdf-table.move"><code>table.move (a1, f, e, t [,a2])</code></a></h3>
8898
8899
8900<p>
8901Moves elements from table <code>a1</code> to table <code>a2</code>.
8902This function performs the equivalent to the following
8903multiple assignment:
8904<code>a2[t],&middot;&middot;&middot; = a1[f],&middot;&middot;&middot;,a1[e]</code>.
8905The default for <code>a2</code> is <code>a1</code>.
8906The destination range can overlap with the source range.
8907Index <code>f</code> must be positive.
8908
8909
8910
8911
8912<p>
8913<hr><h3><a name="pdf-table.pack"><code>table.pack (&middot;&middot;&middot;)</code></a></h3>
8914
8915
8916<p>
8917Returns a new table with all parameters stored into keys 1, 2, etc.
8918and with a field "<code>n</code>" with the total number of parameters.
8919Note that the resulting table may not be a sequence.
8920
8921
8922
8923
8924<p>
8925<hr><h3><a name="pdf-table.remove"><code>table.remove (list [, pos])</code></a></h3>
8926
8927
8928<p>
8929Removes from <code>list</code> the element at position <code>pos</code>,
8930returning the value of the removed element.
8931When <code>pos</code> is an integer between 1 and <code>#list</code>,
8932it shifts down the elements
8933<code>list[pos+1], list[pos+2], &middot;&middot;&middot;, list[#list]</code>
8934and erases element <code>list[#list]</code>;
8935The index <code>pos</code> can also be 0 when <code>#list</code> is 0,
8936or <code>#list + 1</code>;
8937in those cases, the function erases the element <code>list[pos]</code>.
8938
8939
8940<p>
8941The default value for <code>pos</code> is <code>#list</code>,
8942so that a call <code>table.remove(l)</code> removes the last element
8943of list <code>l</code>.
8944
8945
8946
8947
8948<p>
8949<hr><h3><a name="pdf-table.sort"><code>table.sort (list [, comp])</code></a></h3>
8950
8951
8952<p>
8953Sorts list elements in a given order, <em>in-place</em>,
8954from <code>list[1]</code> to <code>list[#list]</code>.
8955If <code>comp</code> is given,
8956then it must be a function that receives two list elements
8957and returns true when the first element must come
8958before the second in the final order
8959(so that <code>not comp(list[i+1],list[i])</code> will be true after the sort).
8960If <code>comp</code> is not given,
8961then the standard Lua operator <code>&lt;</code> is used instead.
8962
8963
8964<p>
8965The sort algorithm is not stable;
8966that is, elements considered equal by the given order
8967may have their relative positions changed by the sort.
8968
8969
8970
8971
8972<p>
8973<hr><h3><a name="pdf-table.unpack"><code>table.unpack (list [, i [, j]])</code></a></h3>
8974
8975
8976<p>
8977Returns the elements from the given list.
8978This function is equivalent to
8979
8980<pre>
8981     return list[i], list[i+1], &middot;&middot;&middot;, list[j]
8982</pre><p>
8983By default, <code>i</code> is&nbsp;1 and <code>j</code> is <code>#list</code>.
8984
8985
8986
8987
8988
8989
8990
8991<h2>6.7 &ndash; <a name="6.7">Mathematical Functions</a></h2>
8992
8993<p>
8994This library provides basic mathematical functions.
8995It provides all its functions and constants inside the table <a name="pdf-math"><code>math</code></a>.
8996Functions with the annotation "<code>integer/float</code>" give
8997integer results for integer arguments
8998and float results for float (or mixed) arguments.
8999Rounding functions
9000(<a href="#pdf-math.ceil"><code>math.ceil</code></a>, <a href="#pdf-math.floor"><code>math.floor</code></a>, and <a href="#pdf-math.modf"><code>math.modf</code></a>)
9001return an integer when the result fits in the range of an integer,
9002or a float otherwise.
9003
9004
9005<p>
9006<hr><h3><a name="pdf-math.abs"><code>math.abs (x)</code></a></h3>
9007
9008
9009<p>
9010Returns the absolute value of <code>x</code>. (integer/float)
9011
9012
9013
9014
9015<p>
9016<hr><h3><a name="pdf-math.acos"><code>math.acos (x)</code></a></h3>
9017
9018
9019<p>
9020Returns the arc cosine of <code>x</code> (in radians).
9021
9022
9023
9024
9025<p>
9026<hr><h3><a name="pdf-math.asin"><code>math.asin (x)</code></a></h3>
9027
9028
9029<p>
9030Returns the arc sine of <code>x</code> (in radians).
9031
9032
9033
9034
9035<p>
9036<hr><h3><a name="pdf-math.atan"><code>math.atan (y [, x])</code></a></h3>
9037
9038
9039<p>
9040
9041Returns the arc tangent of <code>y/x</code> (in radians),
9042but uses the signs of both parameters to find the
9043quadrant of the result.
9044(It also handles correctly the case of <code>x</code> being zero.)
9045
9046
9047<p>
9048The default value for <code>x</code> is 1,
9049so that the call <code>math.atan(y)</code>
9050returns the arc tangent of <code>y</code>.
9051
9052
9053
9054
9055<p>
9056<hr><h3><a name="pdf-math.ceil"><code>math.ceil (x)</code></a></h3>
9057
9058
9059<p>
9060Returns the smallest integral value larger than or equal to <code>x</code>.
9061
9062
9063
9064
9065<p>
9066<hr><h3><a name="pdf-math.cos"><code>math.cos (x)</code></a></h3>
9067
9068
9069<p>
9070Returns the cosine of <code>x</code> (assumed to be in radians).
9071
9072
9073
9074
9075<p>
9076<hr><h3><a name="pdf-math.deg"><code>math.deg (x)</code></a></h3>
9077
9078
9079<p>
9080Converts the angle <code>x</code> from radians to degrees.
9081
9082
9083
9084
9085<p>
9086<hr><h3><a name="pdf-math.exp"><code>math.exp (x)</code></a></h3>
9087
9088
9089<p>
9090Returns the value <em>e<sup>x</sup></em>
9091(where <code>e</code> is the base of natural logarithms).
9092
9093
9094
9095
9096<p>
9097<hr><h3><a name="pdf-math.floor"><code>math.floor (x)</code></a></h3>
9098
9099
9100<p>
9101Returns the largest integral value smaller than or equal to <code>x</code>.
9102
9103
9104
9105
9106<p>
9107<hr><h3><a name="pdf-math.fmod"><code>math.fmod (x, y)</code></a></h3>
9108
9109
9110<p>
9111Returns the remainder of the division of <code>x</code> by <code>y</code>
9112that rounds the quotient towards zero. (integer/float)
9113
9114
9115
9116
9117<p>
9118<hr><h3><a name="pdf-math.huge"><code>math.huge</code></a></h3>
9119
9120
9121<p>
9122The float value <code>HUGE_VAL</code>,
9123a value larger than any other numerical value.
9124
9125
9126
9127
9128<p>
9129<hr><h3><a name="pdf-math.log"><code>math.log (x [, base])</code></a></h3>
9130
9131
9132<p>
9133Returns the logarithm of <code>x</code> in the given base.
9134The default for <code>base</code> is <em>e</em>
9135(so that the function returns the natural logarithm of <code>x</code>).
9136
9137
9138
9139
9140<p>
9141<hr><h3><a name="pdf-math.max"><code>math.max (x, &middot;&middot;&middot;)</code></a></h3>
9142
9143
9144<p>
9145Returns the argument with the maximum value,
9146according to the Lua operator <code>&lt;</code>. (integer/float)
9147
9148
9149
9150
9151<p>
9152<hr><h3><a name="pdf-math.maxinteger"><code>math.maxinteger</code></a></h3>
9153An integer with the maximum value for an integer.
9154
9155
9156
9157
9158<p>
9159<hr><h3><a name="pdf-math.min"><code>math.min (x, &middot;&middot;&middot;)</code></a></h3>
9160
9161
9162<p>
9163Returns the argument with the minimum value,
9164according to the Lua operator <code>&lt;</code>. (integer/float)
9165
9166
9167
9168
9169<p>
9170<hr><h3><a name="pdf-math.mininteger"><code>math.mininteger</code></a></h3>
9171An integer with the minimum value for an integer.
9172
9173
9174
9175
9176<p>
9177<hr><h3><a name="pdf-math.modf"><code>math.modf (x)</code></a></h3>
9178
9179
9180<p>
9181Returns the integral part of <code>x</code> and the fractional part of <code>x</code>.
9182Its second result is always a float.
9183
9184
9185
9186
9187<p>
9188<hr><h3><a name="pdf-math.pi"><code>math.pi</code></a></h3>
9189
9190
9191<p>
9192The value of <em>&pi;</em>.
9193
9194
9195
9196
9197<p>
9198<hr><h3><a name="pdf-math.rad"><code>math.rad (x)</code></a></h3>
9199
9200
9201<p>
9202Converts the angle <code>x</code> from degrees to radians.
9203
9204
9205
9206
9207<p>
9208<hr><h3><a name="pdf-math.random"><code>math.random ([m [, n]])</code></a></h3>
9209
9210
9211<p>
9212When called without arguments,
9213returns a pseudo-random float with uniform distribution
9214in the range  <em>[0,1)</em>.
9215When called with two integers <code>m</code> and <code>n</code>,
9216<code>math.random</code> returns a pseudo-random integer
9217with uniform distribution in the range <em>[m, n]</em>.
9218(The value <em>m-n</em> cannot be negative and must fit in a Lua integer.)
9219The call <code>math.random(n)</code> is equivalent to <code>math.random(1,n)</code>.
9220
9221
9222<p>
9223This function is an interface to the underling
9224pseudo-random generator function provided by C.
9225No guarantees can be given for its statistical properties.
9226
9227
9228
9229
9230<p>
9231<hr><h3><a name="pdf-math.randomseed"><code>math.randomseed (x)</code></a></h3>
9232
9233
9234<p>
9235Sets <code>x</code> as the "seed"
9236for the pseudo-random generator:
9237equal seeds produce equal sequences of numbers.
9238
9239
9240
9241
9242<p>
9243<hr><h3><a name="pdf-math.sin"><code>math.sin (x)</code></a></h3>
9244
9245
9246<p>
9247Returns the sine of <code>x</code> (assumed to be in radians).
9248
9249
9250
9251
9252<p>
9253<hr><h3><a name="pdf-math.sqrt"><code>math.sqrt (x)</code></a></h3>
9254
9255
9256<p>
9257Returns the square root of <code>x</code>.
9258(You can also use the expression <code>x^0.5</code> to compute this value.)
9259
9260
9261
9262
9263<p>
9264<hr><h3><a name="pdf-math.tan"><code>math.tan (x)</code></a></h3>
9265
9266
9267<p>
9268Returns the tangent of <code>x</code> (assumed to be in radians).
9269
9270
9271
9272
9273<p>
9274<hr><h3><a name="pdf-math.tointeger"><code>math.tointeger (x)</code></a></h3>
9275
9276
9277<p>
9278If the value <code>x</code> is convertible to an integer,
9279returns that integer.
9280Otherwise, returns <b>nil</b>.
9281
9282
9283
9284
9285<p>
9286<hr><h3><a name="pdf-math.type"><code>math.type (x)</code></a></h3>
9287
9288
9289<p>
9290Returns "<code>integer</code>" if <code>x</code> is an integer,
9291"<code>float</code>" if it is a float,
9292or <b>nil</b> if <code>x</code> is not a number.
9293
9294
9295
9296
9297<p>
9298<hr><h3><a name="pdf-math.ult"><code>math.ult (m, n)</code></a></h3>
9299
9300
9301<p>
9302Returns a boolean,
9303true if integer <code>m</code> is below integer <code>n</code> when
9304they are compared as unsigned integers.
9305
9306
9307
9308
9309
9310
9311
9312<h2>6.8 &ndash; <a name="6.8">Input and Output Facilities</a></h2>
9313
9314<p>
9315The I/O library provides two different styles for file manipulation.
9316The first one uses implicit file handles;
9317that is, there are operations to set a default input file and a
9318default output file,
9319and all input/output operations are over these default files.
9320The second style uses explicit file handles.
9321
9322
9323<p>
9324When using implicit file handles,
9325all operations are supplied by table <a name="pdf-io"><code>io</code></a>.
9326When using explicit file handles,
9327the operation <a href="#pdf-io.open"><code>io.open</code></a> returns a file handle
9328and then all operations are supplied as methods of the file handle.
9329
9330
9331<p>
9332The table <code>io</code> also provides
9333three predefined file handles with their usual meanings from C:
9334<a name="pdf-io.stdin"><code>io.stdin</code></a>, <a name="pdf-io.stdout"><code>io.stdout</code></a>, and <a name="pdf-io.stderr"><code>io.stderr</code></a>.
9335The I/O library never closes these files.
9336
9337
9338<p>
9339Unless otherwise stated,
9340all I/O functions return <b>nil</b> on failure
9341(plus an error message as a second result and
9342a system-dependent error code as a third result)
9343and some value different from <b>nil</b> on success.
9344On non-POSIX systems,
9345the computation of the error message and error code
9346in case of errors
9347may be not thread safe,
9348because they rely on the global C variable <code>errno</code>.
9349
9350
9351<p>
9352<hr><h3><a name="pdf-io.close"><code>io.close ([file])</code></a></h3>
9353
9354
9355<p>
9356Equivalent to <code>file:close()</code>.
9357Without a <code>file</code>, closes the default output file.
9358
9359
9360
9361
9362<p>
9363<hr><h3><a name="pdf-io.flush"><code>io.flush ()</code></a></h3>
9364
9365
9366<p>
9367Equivalent to <code>io.output():flush()</code>.
9368
9369
9370
9371
9372<p>
9373<hr><h3><a name="pdf-io.input"><code>io.input ([file])</code></a></h3>
9374
9375
9376<p>
9377When called with a file name, it opens the named file (in text mode),
9378and sets its handle as the default input file.
9379When called with a file handle,
9380it simply sets this file handle as the default input file.
9381When called without parameters,
9382it returns the current default input file.
9383
9384
9385<p>
9386In case of errors this function raises the error,
9387instead of returning an error code.
9388
9389
9390
9391
9392<p>
9393<hr><h3><a name="pdf-io.lines"><code>io.lines ([filename &middot;&middot;&middot;])</code></a></h3>
9394
9395
9396<p>
9397Opens the given file name in read mode
9398and returns an iterator function that
9399works like <code>file:lines(&middot;&middot;&middot;)</code> over the opened file.
9400When the iterator function detects the end of file,
9401it returns no values (to finish the loop) and automatically closes the file.
9402
9403
9404<p>
9405The call <code>io.lines()</code> (with no file name) is equivalent
9406to <code>io.input():lines("*l")</code>;
9407that is, it iterates over the lines of the default input file.
9408In this case it does not close the file when the loop ends.
9409
9410
9411<p>
9412In case of errors this function raises the error,
9413instead of returning an error code.
9414
9415
9416
9417
9418<p>
9419<hr><h3><a name="pdf-io.open"><code>io.open (filename [, mode])</code></a></h3>
9420
9421
9422<p>
9423This function opens a file,
9424in the mode specified in the string <code>mode</code>.
9425It returns a new file handle,
9426or, in case of errors, <b>nil</b> plus an error message.
9427
9428
9429<p>
9430The <code>mode</code> string can be any of the following:
9431
9432<ul>
9433<li><b>"<code>r</code>": </b> read mode (the default);</li>
9434<li><b>"<code>w</code>": </b> write mode;</li>
9435<li><b>"<code>a</code>": </b> append mode;</li>
9436<li><b>"<code>r+</code>": </b> update mode, all previous data is preserved;</li>
9437<li><b>"<code>w+</code>": </b> update mode, all previous data is erased;</li>
9438<li><b>"<code>a+</code>": </b> append update mode, previous data is preserved,
9439  writing is only allowed at the end of file.</li>
9440</ul><p>
9441The <code>mode</code> string can also have a '<code>b</code>' at the end,
9442which is needed in some systems to open the file in binary mode.
9443
9444
9445
9446
9447<p>
9448<hr><h3><a name="pdf-io.output"><code>io.output ([file])</code></a></h3>
9449
9450
9451<p>
9452Similar to <a href="#pdf-io.input"><code>io.input</code></a>, but operates over the default output file.
9453
9454
9455
9456
9457<p>
9458<hr><h3><a name="pdf-io.popen"><code>io.popen (prog [, mode])</code></a></h3>
9459
9460
9461<p>
9462This function is system dependent and is not available
9463on all platforms.
9464
9465
9466<p>
9467Starts program <code>prog</code> in a separated process and returns
9468a file handle that you can use to read data from this program
9469(if <code>mode</code> is <code>"r"</code>, the default)
9470or to write data to this program
9471(if <code>mode</code> is <code>"w"</code>).
9472
9473
9474
9475
9476<p>
9477<hr><h3><a name="pdf-io.read"><code>io.read (&middot;&middot;&middot;)</code></a></h3>
9478
9479
9480<p>
9481Equivalent to <code>io.input():read(&middot;&middot;&middot;)</code>.
9482
9483
9484
9485
9486<p>
9487<hr><h3><a name="pdf-io.tmpfile"><code>io.tmpfile ()</code></a></h3>
9488
9489
9490<p>
9491Returns a handle for a temporary file.
9492This file is opened in update mode
9493and it is automatically removed when the program ends.
9494
9495
9496
9497
9498<p>
9499<hr><h3><a name="pdf-io.type"><code>io.type (obj)</code></a></h3>
9500
9501
9502<p>
9503Checks whether <code>obj</code> is a valid file handle.
9504Returns the string <code>"file"</code> if <code>obj</code> is an open file handle,
9505<code>"closed file"</code> if <code>obj</code> is a closed file handle,
9506or <b>nil</b> if <code>obj</code> is not a file handle.
9507
9508
9509
9510
9511<p>
9512<hr><h3><a name="pdf-io.write"><code>io.write (&middot;&middot;&middot;)</code></a></h3>
9513
9514
9515<p>
9516Equivalent to <code>io.output():write(&middot;&middot;&middot;)</code>.
9517
9518
9519
9520
9521<p>
9522<hr><h3><a name="pdf-file:close"><code>file:close ()</code></a></h3>
9523
9524
9525<p>
9526Closes <code>file</code>.
9527Note that files are automatically closed when
9528their handles are garbage collected,
9529but that takes an unpredictable amount of time to happen.
9530
9531
9532<p>
9533When closing a file handle created with <a href="#pdf-io.popen"><code>io.popen</code></a>,
9534<a href="#pdf-file:close"><code>file:close</code></a> returns the same values
9535returned by <a href="#pdf-os.execute"><code>os.execute</code></a>.
9536
9537
9538
9539
9540<p>
9541<hr><h3><a name="pdf-file:flush"><code>file:flush ()</code></a></h3>
9542
9543
9544<p>
9545Saves any written data to <code>file</code>.
9546
9547
9548
9549
9550<p>
9551<hr><h3><a name="pdf-file:lines"><code>file:lines (&middot;&middot;&middot;)</code></a></h3>
9552
9553
9554<p>
9555Returns an iterator function that,
9556each time it is called,
9557reads the file according to the given formats.
9558When no format is given,
9559uses "<code>l</code>" as a default.
9560As an example, the construction
9561
9562<pre>
9563     for c in file:lines(1) do <em>body</em> end
9564</pre><p>
9565will iterate over all characters of the file,
9566starting at the current position.
9567Unlike <a href="#pdf-io.lines"><code>io.lines</code></a>, this function does not close the file
9568when the loop ends.
9569
9570
9571<p>
9572In case of errors this function raises the error,
9573instead of returning an error code.
9574
9575
9576
9577
9578<p>
9579<hr><h3><a name="pdf-file:read"><code>file:read (&middot;&middot;&middot;)</code></a></h3>
9580
9581
9582<p>
9583Reads the file <code>file</code>,
9584according to the given formats, which specify what to read.
9585For each format,
9586the function returns a string or a number with the characters read,
9587or <b>nil</b> if it cannot read data with the specified format.
9588(In this latter case,
9589the function does not read subsequent formats.)
9590When called without formats,
9591it uses a default format that reads the next line
9592(see below).
9593
9594
9595<p>
9596The available formats are
9597
9598<ul>
9599
9600<li><b>"<code>n</code>": </b>
9601reads a numeral and returns it as a float or an integer,
9602following the lexical conventions of Lua.
9603(The numeral may have leading spaces and a sign.)
9604This format always reads the longest input sequence that
9605is a valid prefix for a number;
9606if that prefix does not form a valid number
9607(e.g., an empty string, "<code>0x</code>", or "<code>3.4e-</code>"),
9608it is discarded and the function returns <b>nil</b>.
9609</li>
9610
9611<li><b>"<code>i</code>": </b>
9612reads an integral number and returns it as an integer.
9613</li>
9614
9615<li><b>"<code>a</code>": </b>
9616reads the whole file, starting at the current position.
9617On end of file, it returns the empty string.
9618</li>
9619
9620<li><b>"<code>l</code>": </b>
9621reads the next line skipping the end of line,
9622returning <b>nil</b> on end of file.
9623This is the default format.
9624</li>
9625
9626<li><b>"<code>L</code>": </b>
9627reads the next line keeping the end-of-line character (if present),
9628returning <b>nil</b> on end of file.
9629</li>
9630
9631<li><b><em>number</em>: </b>
9632reads a string with up to this number of bytes,
9633returning <b>nil</b> on end of file.
9634If <code>number</code> is zero,
9635it reads nothing and returns an empty string,
9636or <b>nil</b> on end of file.
9637</li>
9638
9639</ul><p>
9640The formats "<code>l</code>" and "<code>L</code>" should be used only for text files.
9641
9642
9643
9644
9645<p>
9646<hr><h3><a name="pdf-file:seek"><code>file:seek ([whence [, offset]])</code></a></h3>
9647
9648
9649<p>
9650Sets and gets the file position,
9651measured from the beginning of the file,
9652to the position given by <code>offset</code> plus a base
9653specified by the string <code>whence</code>, as follows:
9654
9655<ul>
9656<li><b>"<code>set</code>": </b> base is position 0 (beginning of the file);</li>
9657<li><b>"<code>cur</code>": </b> base is current position;</li>
9658<li><b>"<code>end</code>": </b> base is end of file;</li>
9659</ul><p>
9660In case of success, <code>seek</code> returns the final file position,
9661measured in bytes from the beginning of the file.
9662If <code>seek</code> fails, it returns <b>nil</b>,
9663plus a string describing the error.
9664
9665
9666<p>
9667The default value for <code>whence</code> is <code>"cur"</code>,
9668and for <code>offset</code> is 0.
9669Therefore, the call <code>file:seek()</code> returns the current
9670file position, without changing it;
9671the call <code>file:seek("set")</code> sets the position to the
9672beginning of the file (and returns 0);
9673and the call <code>file:seek("end")</code> sets the position to the
9674end of the file, and returns its size.
9675
9676
9677
9678
9679<p>
9680<hr><h3><a name="pdf-file:setvbuf"><code>file:setvbuf (mode [, size])</code></a></h3>
9681
9682
9683<p>
9684Sets the buffering mode for an output file.
9685There are three available modes:
9686
9687<ul>
9688
9689<li><b>"<code>no</code>": </b>
9690no buffering; the result of any output operation appears immediately.
9691</li>
9692
9693<li><b>"<code>full</code>": </b>
9694full buffering; output operation is performed only
9695when the buffer is full or when
9696you explicitly <code>flush</code> the file (see <a href="#pdf-io.flush"><code>io.flush</code></a>).
9697</li>
9698
9699<li><b>"<code>line</code>": </b>
9700line buffering; output is buffered until a newline is output
9701or there is any input from some special files
9702(such as a terminal device).
9703</li>
9704
9705</ul><p>
9706For the last two cases, <code>size</code>
9707specifies the size of the buffer, in bytes.
9708The default is an appropriate size.
9709
9710
9711
9712
9713<p>
9714<hr><h3><a name="pdf-file:write"><code>file:write (&middot;&middot;&middot;)</code></a></h3>
9715
9716
9717<p>
9718Writes the value of each of its arguments to <code>file</code>.
9719The arguments must be strings or numbers.
9720
9721
9722<p>
9723In case of success, this function returns <code>file</code>.
9724Otherwise it returns <b>nil</b> plus a string describing the error.
9725
9726
9727
9728
9729
9730
9731
9732<h2>6.9 &ndash; <a name="6.9">Operating System Facilities</a></h2>
9733
9734<p>
9735This library is implemented through table <a name="pdf-os"><code>os</code></a>.
9736
9737
9738<p>
9739<hr><h3><a name="pdf-os.clock"><code>os.clock ()</code></a></h3>
9740
9741
9742<p>
9743Returns an approximation of the amount in seconds of CPU time
9744used by the program.
9745
9746
9747
9748
9749<p>
9750<hr><h3><a name="pdf-os.date"><code>os.date ([format [, time]])</code></a></h3>
9751
9752
9753<p>
9754Returns a string or a table containing date and time,
9755formatted according to the given string <code>format</code>.
9756
9757
9758<p>
9759If the <code>time</code> argument is present,
9760this is the time to be formatted
9761(see the <a href="#pdf-os.time"><code>os.time</code></a> function for a description of this value).
9762Otherwise, <code>date</code> formats the current time.
9763
9764
9765<p>
9766If <code>format</code> starts with '<code>!</code>',
9767then the date is formatted in Coordinated Universal Time.
9768After this optional character,
9769if <code>format</code> is the string "<code>*t</code>",
9770then <code>date</code> returns a table with the following fields:
9771<code>year</code> (four digits), <code>month</code> (1&ndash;12), <code>day</code> (1&ndash;31),
9772<code>hour</code> (0&ndash;23), <code>min</code> (0&ndash;59), <code>sec</code> (0&ndash;61),
9773<code>wday</code> (weekday, Sunday is&nbsp;1),
9774<code>yday</code> (day of the year),
9775and <code>isdst</code> (daylight saving flag, a boolean).
9776This last field may be absent
9777if the information is not available.
9778
9779
9780<p>
9781If <code>format</code> is not "<code>*t</code>",
9782then <code>date</code> returns the date as a string,
9783formatted according to the same rules as the ISO&nbsp;C function <code>strftime</code>.
9784
9785
9786<p>
9787When called without arguments,
9788<code>date</code> returns a reasonable date and time representation that depends on
9789the host system and on the current locale
9790(that is, <code>os.date()</code> is equivalent to <code>os.date("%c")</code>).
9791
9792
9793<p>
9794On non-POSIX systems,
9795this function may be not thread safe
9796because of its reliance on C&nbsp;function <code>gmtime</code> and C&nbsp;function <code>localtime</code>.
9797
9798
9799
9800
9801<p>
9802<hr><h3><a name="pdf-os.difftime"><code>os.difftime (t2, t1)</code></a></h3>
9803
9804
9805<p>
9806Returns the difference, in seconds,
9807from time <code>t1</code> to time <code>t2</code>
9808(where the times are values returned by <a href="#pdf-os.time"><code>os.time</code></a>).
9809In POSIX, Windows, and some other systems,
9810this value is exactly <code>t2</code><em>-</em><code>t1</code>.
9811
9812
9813
9814
9815<p>
9816<hr><h3><a name="pdf-os.execute"><code>os.execute ([command])</code></a></h3>
9817
9818
9819<p>
9820This function is equivalent to the ISO&nbsp;C function <code>system</code>.
9821It passes <code>command</code> to be executed by an operating system shell.
9822Its first result is <b>true</b>
9823if the command terminated successfully,
9824or <b>nil</b> otherwise.
9825After this first result
9826the function returns a string plus a number,
9827as follows:
9828
9829<ul>
9830
9831<li><b>"<code>exit</code>": </b>
9832the command terminated normally;
9833the following number is the exit status of the command.
9834</li>
9835
9836<li><b>"<code>signal</code>": </b>
9837the command was terminated by a signal;
9838the following number is the signal that terminated the command.
9839</li>
9840
9841</ul>
9842
9843<p>
9844When called without a <code>command</code>,
9845<code>os.execute</code> returns a boolean that is true if a shell is available.
9846
9847
9848
9849
9850<p>
9851<hr><h3><a name="pdf-os.exit"><code>os.exit ([code [, close]])</code></a></h3>
9852
9853
9854<p>
9855Calls the ISO&nbsp;C function <code>exit</code> to terminate the host program.
9856If <code>code</code> is <b>true</b>,
9857the returned status is <code>EXIT_SUCCESS</code>;
9858if <code>code</code> is <b>false</b>,
9859the returned status is <code>EXIT_FAILURE</code>;
9860if <code>code</code> is a number,
9861the returned status is this number.
9862The default value for <code>code</code> is <b>true</b>.
9863
9864
9865<p>
9866If the optional second argument <code>close</code> is true,
9867closes the Lua state before exiting.
9868
9869
9870
9871
9872<p>
9873<hr><h3><a name="pdf-os.getenv"><code>os.getenv (varname)</code></a></h3>
9874
9875
9876<p>
9877Returns the value of the process environment variable <code>varname</code>,
9878or <b>nil</b> if the variable is not defined.
9879
9880
9881
9882
9883<p>
9884<hr><h3><a name="pdf-os.remove"><code>os.remove (filename)</code></a></h3>
9885
9886
9887<p>
9888Deletes the file (or empty directory, on POSIX systems)
9889with the given name.
9890If this function fails, it returns <b>nil</b>,
9891plus a string describing the error and the error code.
9892
9893
9894
9895
9896<p>
9897<hr><h3><a name="pdf-os.rename"><code>os.rename (oldname, newname)</code></a></h3>
9898
9899
9900<p>
9901Renames file or directory named <code>oldname</code> to <code>newname</code>.
9902If this function fails, it returns <b>nil</b>,
9903plus a string describing the error and the error code.
9904
9905
9906
9907
9908<p>
9909<hr><h3><a name="pdf-os.setlocale"><code>os.setlocale (locale [, category])</code></a></h3>
9910
9911
9912<p>
9913Sets the current locale of the program.
9914<code>locale</code> is a system-dependent string specifying a locale;
9915<code>category</code> is an optional string describing which category to change:
9916<code>"all"</code>, <code>"collate"</code>, <code>"ctype"</code>,
9917<code>"monetary"</code>, <code>"numeric"</code>, or <code>"time"</code>;
9918the default category is <code>"all"</code>.
9919The function returns the name of the new locale,
9920or <b>nil</b> if the request cannot be honored.
9921
9922
9923<p>
9924If <code>locale</code> is the empty string,
9925the current locale is set to an implementation-defined native locale.
9926If <code>locale</code> is the string "<code>C</code>",
9927the current locale is set to the standard C locale.
9928
9929
9930<p>
9931When called with <b>nil</b> as the first argument,
9932this function only returns the name of the current locale
9933for the given category.
9934
9935
9936<p>
9937This function may be not thread safe
9938because of its reliance on C&nbsp;function <code>setlocale</code>.
9939
9940
9941
9942
9943<p>
9944<hr><h3><a name="pdf-os.time"><code>os.time ([table])</code></a></h3>
9945
9946
9947<p>
9948Returns the current time when called without arguments,
9949or a time representing the date and time specified by the given table.
9950This table must have fields <code>year</code>, <code>month</code>, and <code>day</code>,
9951and may have fields
9952<code>hour</code> (default is 12),
9953<code>min</code> (default is 0),
9954<code>sec</code> (default is 0),
9955and <code>isdst</code> (default is <b>nil</b>).
9956For a description of these fields, see the <a href="#pdf-os.date"><code>os.date</code></a> function.
9957
9958
9959<p>
9960The returned value is a number, whose meaning depends on your system.
9961In POSIX, Windows, and some other systems,
9962this number counts the number
9963of seconds since some given start time (the "epoch").
9964In other systems, the meaning is not specified,
9965and the number returned by <code>time</code> can be used only as an argument to
9966<a href="#pdf-os.date"><code>os.date</code></a> and <a href="#pdf-os.difftime"><code>os.difftime</code></a>.
9967
9968
9969
9970
9971<p>
9972<hr><h3><a name="pdf-os.tmpname"><code>os.tmpname ()</code></a></h3>
9973
9974
9975<p>
9976Returns a string with a file name that can
9977be used for a temporary file.
9978The file must be explicitly opened before its use
9979and explicitly removed when no longer needed.
9980
9981
9982<p>
9983On POSIX systems,
9984this function also creates a file with that name,
9985to avoid security risks.
9986(Someone else might create the file with wrong permissions
9987in the time between getting the name and creating the file.)
9988You still have to open the file to use it
9989and to remove it (even if you do not use it).
9990
9991
9992<p>
9993When possible,
9994you may prefer to use <a href="#pdf-io.tmpfile"><code>io.tmpfile</code></a>,
9995which automatically removes the file when the program ends.
9996
9997
9998
9999
10000
10001
10002
10003<h2>6.10 &ndash; <a name="6.10">The Debug Library</a></h2>
10004
10005<p>
10006This library provides
10007the functionality of the debug interface (<a href="#4.9">&sect;4.9</a>) to Lua programs.
10008You should exert care when using this library.
10009Several of its functions
10010violate basic assumptions about Lua code
10011(e.g., that variables local to a function
10012cannot be accessed from outside;
10013that userdata metatables cannot be changed by Lua code;
10014that Lua programs do not crash)
10015and therefore can compromise otherwise secure code.
10016Moreover, some functions in this library may be slow.
10017
10018
10019<p>
10020All functions in this library are provided
10021inside the <a name="pdf-debug"><code>debug</code></a> table.
10022All functions that operate over a thread
10023have an optional first argument which is the
10024thread to operate over.
10025The default is always the current thread.
10026
10027
10028<p>
10029<hr><h3><a name="pdf-debug.debug"><code>debug.debug ()</code></a></h3>
10030
10031
10032<p>
10033Enters an interactive mode with the user,
10034running each string that the user enters.
10035Using simple commands and other debug facilities,
10036the user can inspect global and local variables,
10037change their values, evaluate expressions, and so on.
10038A line containing only the word <code>cont</code> finishes this function,
10039so that the caller continues its execution.
10040
10041
10042<p>
10043Note that commands for <code>debug.debug</code> are not lexically nested
10044within any function and so have no direct access to local variables.
10045
10046
10047
10048
10049<p>
10050<hr><h3><a name="pdf-debug.gethook"><code>debug.gethook ([thread])</code></a></h3>
10051
10052
10053<p>
10054Returns the current hook settings of the thread, as three values:
10055the current hook function, the current hook mask,
10056and the current hook count
10057(as set by the <a href="#pdf-debug.sethook"><code>debug.sethook</code></a> function).
10058
10059
10060
10061
10062<p>
10063<hr><h3><a name="pdf-debug.getinfo"><code>debug.getinfo ([thread,] f [, what])</code></a></h3>
10064
10065
10066<p>
10067Returns a table with information about a function.
10068You can give the function directly
10069or you can give a number as the value of <code>f</code>,
10070which means the function running at level <code>f</code> of the call stack
10071of the given thread:
10072level&nbsp;0 is the current function (<code>getinfo</code> itself);
10073level&nbsp;1 is the function that called <code>getinfo</code>
10074(except for tail calls, which do not count on the stack);
10075and so on.
10076If <code>f</code> is a number larger than the number of active functions,
10077then <code>getinfo</code> returns <b>nil</b>.
10078
10079
10080<p>
10081The returned table can contain all the fields returned by <a href="#lua_getinfo"><code>lua_getinfo</code></a>,
10082with the string <code>what</code> describing which fields to fill in.
10083The default for <code>what</code> is to get all information available,
10084except the table of valid lines.
10085If present,
10086the option '<code>f</code>'
10087adds a field named <code>func</code> with the function itself.
10088If present,
10089the option '<code>L</code>'
10090adds a field named <code>activelines</code> with the table of
10091valid lines.
10092
10093
10094<p>
10095For instance, the expression <code>debug.getinfo(1,"n").name</code> returns
10096a table with a name for the current function,
10097if a reasonable name can be found,
10098and the expression <code>debug.getinfo(print)</code>
10099returns a table with all available information
10100about the <a href="#pdf-print"><code>print</code></a> function.
10101
10102
10103
10104
10105<p>
10106<hr><h3><a name="pdf-debug.getlocal"><code>debug.getlocal ([thread,] f, local)</code></a></h3>
10107
10108
10109<p>
10110This function returns the name and the value of the local variable
10111with index <code>local</code> of the function at level <code>f</code> of the stack.
10112This function accesses not only explicit local variables,
10113but also parameters, temporaries, etc.
10114
10115
10116<p>
10117The first parameter or local variable has index&nbsp;1, and so on,
10118following the order that they are declared in the code,
10119counting only the variables that are active
10120in the current scope of the function.
10121Negative indices refer to vararg parameters;
10122-1 is the first vararg parameter.
10123The function returns <b>nil</b> if there is no variable with the given index,
10124and raises an error when called with a level out of range.
10125(You can call <a href="#pdf-debug.getinfo"><code>debug.getinfo</code></a> to check whether the level is valid.)
10126
10127
10128<p>
10129Variable names starting with '<code>(</code>' (open parenthesis)
10130represent variables with no known names
10131(internal variables such as loop control variables,
10132and variables from chunks saved without debug information).
10133
10134
10135<p>
10136The parameter <code>f</code> may also be a function.
10137In that case, <code>getlocal</code> returns only the name of function parameters.
10138
10139
10140
10141
10142<p>
10143<hr><h3><a name="pdf-debug.getmetatable"><code>debug.getmetatable (value)</code></a></h3>
10144
10145
10146<p>
10147Returns the metatable of the given <code>value</code>
10148or <b>nil</b> if it does not have a metatable.
10149
10150
10151
10152
10153<p>
10154<hr><h3><a name="pdf-debug.getregistry"><code>debug.getregistry ()</code></a></h3>
10155
10156
10157<p>
10158Returns the registry table (see <a href="#4.5">&sect;4.5</a>).
10159
10160
10161
10162
10163<p>
10164<hr><h3><a name="pdf-debug.getupvalue"><code>debug.getupvalue (f, up)</code></a></h3>
10165
10166
10167<p>
10168This function returns the name and the value of the upvalue
10169with index <code>up</code> of the function <code>f</code>.
10170The function returns <b>nil</b> if there is no upvalue with the given index.
10171
10172
10173<p>
10174Variable names starting with '<code>(</code>' (open parenthesis)
10175represent variables with no known names
10176(variables from chunks saved without debug information).
10177
10178
10179
10180
10181<p>
10182<hr><h3><a name="pdf-debug.getuservalue"><code>debug.getuservalue (u)</code></a></h3>
10183
10184
10185<p>
10186Returns the Lua value associated to <code>u</code>.
10187If <code>u</code> is not a userdata,
10188returns <b>nil</b>.
10189
10190
10191
10192
10193<p>
10194<hr><h3><a name="pdf-debug.sethook"><code>debug.sethook ([thread,] hook, mask [, count])</code></a></h3>
10195
10196
10197<p>
10198Sets the given function as a hook.
10199The string <code>mask</code> and the number <code>count</code> describe
10200when the hook will be called.
10201The string mask may have any combination of the following characters,
10202with the given meaning:
10203
10204<ul>
10205<li><b>'<code>c</code>': </b> the hook is called every time Lua calls a function;</li>
10206<li><b>'<code>r</code>': </b> the hook is called every time Lua returns from a function;</li>
10207<li><b>'<code>l</code>': </b> the hook is called every time Lua enters a new line of code.</li>
10208</ul><p>
10209Moreover,
10210with a <code>count</code> different from zero,
10211the hook is called also after every <code>count</code> instructions.
10212
10213
10214<p>
10215When called without arguments,
10216<a href="#pdf-debug.sethook"><code>debug.sethook</code></a> turns off the hook.
10217
10218
10219<p>
10220When the hook is called, its first parameter is a string
10221describing the event that has triggered its call:
10222<code>"call"</code> (or <code>"tail call"</code>),
10223<code>"return"</code>,
10224<code>"line"</code>, and <code>"count"</code>.
10225For line events,
10226the hook also gets the new line number as its second parameter.
10227Inside a hook,
10228you can call <code>getinfo</code> with level&nbsp;2 to get more information about
10229the running function
10230(level&nbsp;0 is the <code>getinfo</code> function,
10231and level&nbsp;1 is the hook function).
10232
10233
10234
10235
10236<p>
10237<hr><h3><a name="pdf-debug.setlocal"><code>debug.setlocal ([thread,] level, local, value)</code></a></h3>
10238
10239
10240<p>
10241This function assigns the value <code>value</code> to the local variable
10242with index <code>local</code> of the function at level <code>level</code> of the stack.
10243The function returns <b>nil</b> if there is no local
10244variable with the given index,
10245and raises an error when called with a <code>level</code> out of range.
10246(You can call <code>getinfo</code> to check whether the level is valid.)
10247Otherwise, it returns the name of the local variable.
10248
10249
10250<p>
10251See <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for more information about
10252variable indices and names.
10253
10254
10255
10256
10257<p>
10258<hr><h3><a name="pdf-debug.setmetatable"><code>debug.setmetatable (value, table)</code></a></h3>
10259
10260
10261<p>
10262Sets the metatable for the given <code>value</code> to the given <code>table</code>
10263(which can be <b>nil</b>).
10264Returns <code>value</code>.
10265
10266
10267
10268
10269<p>
10270<hr><h3><a name="pdf-debug.setupvalue"><code>debug.setupvalue (f, up, value)</code></a></h3>
10271
10272
10273<p>
10274This function assigns the value <code>value</code> to the upvalue
10275with index <code>up</code> of the function <code>f</code>.
10276The function returns <b>nil</b> if there is no upvalue
10277with the given index.
10278Otherwise, it returns the name of the upvalue.
10279
10280
10281
10282
10283<p>
10284<hr><h3><a name="pdf-debug.setuservalue"><code>debug.setuservalue (udata, value)</code></a></h3>
10285
10286
10287<p>
10288Sets the given <code>value</code> as
10289the Lua value associated to the given <code>udata</code>.
10290<code>udata</code> must be a full userdata.
10291
10292
10293<p>
10294Returns <code>udata</code>.
10295
10296
10297
10298
10299<p>
10300<hr><h3><a name="pdf-debug.traceback"><code>debug.traceback ([thread,] [message [, level]])</code></a></h3>
10301
10302
10303<p>
10304If <code>message</code> is present but is neither a string nor <b>nil</b>,
10305this function returns <code>message</code> without further processing.
10306Otherwise,
10307it returns a string with a traceback of the call stack.
10308The optional <code>message</code> string is appended
10309at the beginning of the traceback.
10310An optional <code>level</code> number tells at which level
10311to start the traceback
10312(default is 1, the function calling <code>traceback</code>).
10313
10314
10315
10316
10317<p>
10318<hr><h3><a name="pdf-debug.upvalueid"><code>debug.upvalueid (f, n)</code></a></h3>
10319
10320
10321<p>
10322Returns a unique identifier (as a light userdata)
10323for the upvalue numbered <code>n</code>
10324from the given function.
10325
10326
10327<p>
10328These unique identifiers allow a program to check whether different
10329closures share upvalues.
10330Lua closures that share an upvalue
10331(that is, that access a same external local variable)
10332will return identical ids for those upvalue indices.
10333
10334
10335
10336
10337<p>
10338<hr><h3><a name="pdf-debug.upvaluejoin"><code>debug.upvaluejoin (f1, n1, f2, n2)</code></a></h3>
10339
10340
10341<p>
10342Make the <code>n1</code>-th upvalue of the Lua closure <code>f1</code>
10343refer to the <code>n2</code>-th upvalue of the Lua closure <code>f2</code>.
10344
10345
10346
10347
10348
10349
10350
10351<h1>7 &ndash; <a name="7">Lua Standalone</a></h1>
10352
10353<p>
10354Although Lua has been designed as an extension language,
10355to be embedded in a host C&nbsp;program,
10356it is also frequently used as a standalone language.
10357An interpreter for Lua as a standalone language,
10358called simply <code>lua</code>,
10359is provided with the standard distribution.
10360The standalone interpreter includes
10361all standard libraries, including the debug library.
10362Its usage is:
10363
10364<pre>
10365     lua [options] [script [args]]
10366</pre><p>
10367The options are:
10368
10369<ul>
10370<li><b><code>-e <em>stat</em></code>: </b> executes string <em>stat</em>;</li>
10371<li><b><code>-l <em>mod</em></code>: </b> "requires" <em>mod</em>;</li>
10372<li><b><code>-i</code>: </b> enters interactive mode after running <em>script</em>;</li>
10373<li><b><code>-v</code>: </b> prints version information;</li>
10374<li><b><code>-E</code>: </b> ignores environment variables;</li>
10375<li><b><code>--</code>: </b> stops handling options;</li>
10376<li><b><code>-</code>: </b> executes <code>stdin</code> as a file and stops handling options.</li>
10377</ul><p>
10378After handling its options, <code>lua</code> runs the given <em>script</em>.
10379When called without arguments,
10380<code>lua</code> behaves as <code>lua -v -i</code>
10381when the standard input (<code>stdin</code>) is a terminal,
10382and as <code>lua -</code> otherwise.
10383
10384
10385<p>
10386When called without option <code>-E</code>,
10387the interpreter checks for an environment variable <a name="pdf-LUA_INIT_5_3"><code>LUA_INIT_5_3</code></a>
10388(or <a name="pdf-LUA_INIT"><code>LUA_INIT</code></a> if the versioned name is not defined)
10389before running any argument.
10390If the variable content has the format <code>@<em>filename</em></code>,
10391then <code>lua</code> executes the file.
10392Otherwise, <code>lua</code> executes the string itself.
10393
10394
10395<p>
10396When called with option <code>-E</code>,
10397besides ignoring <code>LUA_INIT</code>,
10398Lua also ignores
10399the values of <code>LUA_PATH</code> and <code>LUA_CPATH</code>,
10400setting the values of
10401<a href="#pdf-package.path"><code>package.path</code></a> and <a href="#pdf-package.cpath"><code>package.cpath</code></a>
10402with the default paths defined in <code>luaconf.h</code>.
10403
10404
10405<p>
10406All options are handled in order, except <code>-i</code> and <code>-E</code>.
10407For instance, an invocation like
10408
10409<pre>
10410     $ lua -e'a=1' -e 'print(a)' script.lua
10411</pre><p>
10412will first set <code>a</code> to 1, then print the value of <code>a</code>,
10413and finally run the file <code>script.lua</code> with no arguments.
10414(Here <code>$</code> is the shell prompt. Your prompt may be different.)
10415
10416
10417<p>
10418Before running any code,
10419<code>lua</code> collects all command-line arguments
10420in a global table called <code>arg</code>.
10421The script name goes to index 0,
10422the first argument after the script name goes to index 1,
10423and so on.
10424Any arguments before the script name
10425(that is, the interpreter name plus its options)
10426go to negative indices.
10427For instance, in the call
10428
10429<pre>
10430     $ lua -la b.lua t1 t2
10431</pre><p>
10432the table is like this:
10433
10434<pre>
10435     arg = { [-2] = "lua", [-1] = "-la",
10436             [0] = "b.lua",
10437             [1] = "t1", [2] = "t2" }
10438</pre><p>
10439If there is no script in the call,
10440the interpreter name goes to index 0,
10441followed by the other arguments.
10442For instance, the call
10443
10444<pre>
10445     $ lua -e "print(arg[1])"
10446</pre><p>
10447will print "<code>-e</code>".
10448If there is a script,
10449the script is called with parameters
10450<code>arg[1]</code>, &middot;&middot;&middot;, <code>arg[#arg]</code>.
10451(Like all chunks in Lua,
10452the script is compiled as a vararg function.)
10453
10454
10455<p>
10456In interactive mode,
10457Lua repeatedly prompts and waits for a line.
10458After reading a line,
10459Lua first try to interpret the line as an expression.
10460If it succeeds, it prints its value.
10461Otherwise, it interprets the line as a statement.
10462If you write an incomplete statement,
10463the interpreter waits for its completion
10464by issuing a different prompt.
10465
10466
10467<p>
10468In case of unprotected errors in the script,
10469the interpreter reports the error to the standard error stream.
10470If the error object is not a string but
10471has a metamethod <code>__tostring</code>,
10472the interpreter calls this metamethod to produce the final message.
10473Otherwise, the interpreter converts the error object to a string
10474and adds a stack traceback to it.
10475
10476
10477<p>
10478When finishing normally,
10479the interpreter closes its main Lua state
10480(see <a href="#lua_close"><code>lua_close</code></a>).
10481The script can avoid this step by
10482calling <a href="#pdf-os.exit"><code>os.exit</code></a> to terminate.
10483
10484
10485<p>
10486To allow the use of Lua as a
10487script interpreter in Unix systems,
10488the standalone interpreter skips
10489the first line of a chunk if it starts with <code>#</code>.
10490Therefore, Lua scripts can be made into executable programs
10491by using <code>chmod +x</code> and the&nbsp;<code>#!</code> form,
10492as in
10493
10494<pre>
10495     #!/usr/local/bin/lua
10496</pre><p>
10497(Of course,
10498the location of the Lua interpreter may be different in your machine.
10499If <code>lua</code> is in your <code>PATH</code>,
10500then
10501
10502<pre>
10503     #!/usr/bin/env lua
10504</pre><p>
10505is a more portable solution.)
10506
10507
10508
10509<h1>8 &ndash; <a name="8">Incompatibilities with the Previous Version</a></h1>
10510
10511<p>
10512Here we list the incompatibilities that you may find when moving a program
10513from Lua&nbsp;5.2 to Lua&nbsp;5.3.
10514You can avoid some incompatibilities by compiling Lua with
10515appropriate options (see file <code>luaconf.h</code>).
10516However,
10517all these compatibility options will be removed in the future.
10518
10519
10520<p>
10521Lua versions can always change the C API in ways that
10522do not imply source-code changes in a program,
10523such as the numeric values for constants
10524or the implementation of functions as macros.
10525Therefore,
10526you should not assume that binaries are compatible between
10527different Lua versions.
10528Always recompile clients of the Lua API when
10529using a new version.
10530
10531
10532<p>
10533Similarly, Lua versions can always change the internal representation
10534of precompiled chunks;
10535precompiled chunks are not compatible between different Lua versions.
10536
10537
10538<p>
10539The standard paths in the official distribution may
10540change between versions.
10541
10542
10543
10544<h2>8.1 &ndash; <a name="8.1">Changes in the Language</a></h2>
10545<ul>
10546
10547<li>
10548The main difference between Lua&nbsp;5.2 and Lua&nbsp;5.3 is the
10549introduction of an integer subtype for numbers.
10550Although this change should not affect "normal" computations,
10551some computations
10552(mainly those that involve some kind of overflow)
10553can give different results.
10554
10555
10556<p>
10557You can fix these differences by forcing a number to be a float
10558(in Lua&nbsp;5.2 all numbers were float),
10559in particular writing constants with an ending <code>.0</code>
10560or using <code>x = x + 0.0</code> to convert a variable.
10561(This recommendation is only for a quick fix
10562for an occasional incompatibility;
10563it is not a general guideline for good programming.
10564For good programming,
10565use floats where you need floats
10566and integers where you need integers.)
10567</li>
10568
10569<li>
10570The conversion of a float to a string now adds a <code>.0</code> suffix
10571to the result if it looks like an integer.
10572(For instance, the float 2.0 will be printed as <code>2.0</code>,
10573not as <code>2</code>.)
10574You should always use an explicit format
10575when you need a specific format for numbers.
10576
10577
10578<p>
10579(Formally this is not an incompatibility,
10580because Lua does not specify how numbers are formatted as strings,
10581but some programs assumed a specific format.)
10582</li>
10583
10584<li>
10585The generational mode for the garbage collector was removed.
10586(It was an experimental feature in Lua&nbsp;5.2.)
10587</li>
10588
10589</ul>
10590
10591
10592
10593
10594<h2>8.2 &ndash; <a name="8.2">Changes in the Libraries</a></h2>
10595<ul>
10596
10597<li>
10598The <code>bit32</code> library has been deprecated.
10599It is easy to require a compatible external library or,
10600better yet, to replace its functions with appropriate bitwise operations.
10601(Keep in mind that <code>bit32</code> operates on 32-bit integers,
10602while the bitwise operators in standard Lua operate on 64-bit integers.)
10603</li>
10604
10605<li>
10606The Table library now respects metamethods
10607for setting and getting elements.
10608</li>
10609
10610<li>
10611The <a href="#pdf-ipairs"><code>ipairs</code></a> iterator now respects metamethods and
10612its <code>__ipairs</code> metamethod has been deprecated.
10613</li>
10614
10615<li>
10616Option names in <a href="#pdf-io.read"><code>io.read</code></a> do not have a starting '<code>*</code>' anymore.
10617For compatibility, Lua will continue to ignore this character.
10618</li>
10619
10620<li>
10621The following functions were deprecated in the mathematical library:
10622<code>atan2</code>, <code>cosh</code>, <code>sinh</code>, <code>tanh</code>, <code>pow</code>,
10623<code>frexp</code>, and <code>ldexp</code>.
10624You can replace <code>math.pow(x,y)</code> with <code>x^y</code>;
10625you can replace <code>math.atan2</code> with <code>math.atan</code>,
10626which now accepts one or two parameters;
10627you can replace <code>math.ldexp(x,exp)</code> with <code>x * 2.0^exp</code>.
10628For the other operations,
10629you can either use an external library or
10630implement them in Lua.
10631</li>
10632
10633<li>
10634The searcher for C loaders used by <a href="#pdf-require"><code>require</code></a>
10635changed the way it handles versioned names.
10636Now, the version should come after the module name
10637(as is usual in most other tools).
10638For compatibility, that searcher still tries the old format
10639if it cannot find an open function according to the new style.
10640(Lua&nbsp;5.2 already worked that way,
10641but it did not document the change.)
10642</li>
10643
10644</ul>
10645
10646
10647
10648
10649<h2>8.3 &ndash; <a name="8.3">Changes in the API</a></h2>
10650
10651
10652<ul>
10653
10654<li>
10655Continuation functions now receive as parameters what they needed
10656to get through <code>lua_getctx</code>,
10657so <code>lua_getctx</code> has been removed.
10658Adapt your code accordingly.
10659</li>
10660
10661<li>
10662Function <a href="#lua_dump"><code>lua_dump</code></a> has an extra parameter, <code>strip</code>.
10663Use 0 as the value of this parameter to get the old behavior.
10664</li>
10665
10666<li>
10667Functions to inject/project unsigned integers
10668(<code>lua_pushunsigned</code>, <code>lua_tounsigned</code>, <code>lua_tounsignedx</code>,
10669<code>luaL_checkunsigned</code>, <code>luaL_optunsigned</code>)
10670were deprecated.
10671Use their signed equivalents with a type cast.
10672</li>
10673
10674<li>
10675Macros to project non-default integer types
10676(<code>luaL_checkint</code>, <code>luaL_optint</code>, <code>luaL_checklong</code>, <code>luaL_optlong</code>)
10677were deprecated.
10678Use their equivalent over <a href="#lua_Integer"><code>lua_Integer</code></a> with a type cast
10679(or, when possible, use <a href="#lua_Integer"><code>lua_Integer</code></a> in your code).
10680</li>
10681
10682</ul>
10683
10684
10685
10686
10687<h1>9 &ndash; <a name="9">The Complete Syntax of Lua</a></h1>
10688
10689<p>
10690Here is the complete syntax of Lua in extended BNF.
10691As usual in extended BNF,
10692{A} means 0 or more As,
10693and [A] means an optional A.
10694(For operator precedences, see <a href="#3.4.8">&sect;3.4.8</a>;
10695for a description of the terminals
10696Name, Numeral,
10697and LiteralString, see <a href="#3.1">&sect;3.1</a>.)
10698
10699
10700
10701
10702<pre>
10703
10704	chunk ::= block
10705
10706	block ::= {stat} [retstat]
10707
10708	stat ::=  &lsquo;<b>;</b>&rsquo; |
10709		 varlist &lsquo;<b>=</b>&rsquo; explist |
10710		 functioncall |
10711		 label |
10712		 <b>break</b> |
10713		 <b>goto</b> Name |
10714		 <b>do</b> block <b>end</b> |
10715		 <b>while</b> exp <b>do</b> block <b>end</b> |
10716		 <b>repeat</b> block <b>until</b> exp |
10717		 <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> |
10718		 <b>for</b> Name &lsquo;<b>=</b>&rsquo; exp &lsquo;<b>,</b>&rsquo; exp [&lsquo;<b>,</b>&rsquo; exp] <b>do</b> block <b>end</b> |
10719		 <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b> |
10720		 <b>function</b> funcname funcbody |
10721		 <b>local</b> <b>function</b> Name funcbody |
10722		 <b>local</b> namelist [&lsquo;<b>=</b>&rsquo; explist]
10723
10724	retstat ::= <b>return</b> [explist] [&lsquo;<b>;</b>&rsquo;]
10725
10726	label ::= &lsquo;<b>::</b>&rsquo; Name &lsquo;<b>::</b>&rsquo;
10727
10728	funcname ::= Name {&lsquo;<b>.</b>&rsquo; Name} [&lsquo;<b>:</b>&rsquo; Name]
10729
10730	varlist ::= var {&lsquo;<b>,</b>&rsquo; var}
10731
10732	var ::=  Name | prefixexp &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; | prefixexp &lsquo;<b>.</b>&rsquo; Name
10733
10734	namelist ::= Name {&lsquo;<b>,</b>&rsquo; Name}
10735
10736	explist ::= exp {&lsquo;<b>,</b>&rsquo; exp}
10737
10738	exp ::=  <b>nil</b> | <b>false</b> | <b>true</b> | Numeral | LiteralString | &lsquo;<b>...</b>&rsquo; | functiondef |
10739		 prefixexp | tableconstructor | exp binop exp | unop exp
10740
10741	prefixexp ::= var | functioncall | &lsquo;<b>(</b>&rsquo; exp &lsquo;<b>)</b>&rsquo;
10742
10743	functioncall ::=  prefixexp args | prefixexp &lsquo;<b>:</b>&rsquo; Name args
10744
10745	args ::=  &lsquo;<b>(</b>&rsquo; [explist] &lsquo;<b>)</b>&rsquo; | tableconstructor | LiteralString
10746
10747	functiondef ::= <b>function</b> funcbody
10748
10749	funcbody ::= &lsquo;<b>(</b>&rsquo; [parlist] &lsquo;<b>)</b>&rsquo; block <b>end</b>
10750
10751	parlist ::= namelist [&lsquo;<b>,</b>&rsquo; &lsquo;<b>...</b>&rsquo;] | &lsquo;<b>...</b>&rsquo;
10752
10753	tableconstructor ::= &lsquo;<b>{</b>&rsquo; [fieldlist] &lsquo;<b>}</b>&rsquo;
10754
10755	fieldlist ::= field {fieldsep field} [fieldsep]
10756
10757	field ::= &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; &lsquo;<b>=</b>&rsquo; exp | Name &lsquo;<b>=</b>&rsquo; exp | exp
10758
10759	fieldsep ::= &lsquo;<b>,</b>&rsquo; | &lsquo;<b>;</b>&rsquo;
10760
10761	binop ::=  &lsquo;<b>+</b>&rsquo; | &lsquo;<b>-</b>&rsquo; | &lsquo;<b>*</b>&rsquo; | &lsquo;<b>/</b>&rsquo; | &lsquo;<b>//</b>&rsquo; | &lsquo;<b>^</b>&rsquo; | &lsquo;<b>%</b>&rsquo; |
10762		 &lsquo;<b>&amp;</b>&rsquo; | &lsquo;<b>~</b>&rsquo; | &lsquo;<b>|</b>&rsquo; | &lsquo;<b>&gt;&gt;</b>&rsquo; | &lsquo;<b>&lt;&lt;</b>&rsquo; | &lsquo;<b>..</b>&rsquo; |
10763		 &lsquo;<b>&lt;</b>&rsquo; | &lsquo;<b>&lt;=</b>&rsquo; | &lsquo;<b>&gt;</b>&rsquo; | &lsquo;<b>&gt;=</b>&rsquo; | &lsquo;<b>==</b>&rsquo; | &lsquo;<b>~=</b>&rsquo; |
10764		 <b>and</b> | <b>or</b>
10765
10766	unop ::= &lsquo;<b>-</b>&rsquo; | <b>not</b> | &lsquo;<b>#</b>&rsquo; | &lsquo;<b>~</b>&rsquo;
10767
10768</pre>
10769
10770<p>
10771
10772
10773
10774
10775
10776
10777
10778
10779<HR>
10780<SMALL CLASS="footer">
10781Last update:
10782Tue Jan  6 10:10:50 BRST 2015
10783</SMALL>
10784<!--
10785Last change: revised for Lua 5.3.0 (final)
10786-->
10787
10788</body></html>
10789
10790