xref: /netbsd-src/external/mit/lua/dist/doc/manual.html (revision 2d6cb6c23b5834954dcff13b6fbf82dc30f8f604)
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<HTML>
3<HEAD>
4<TITLE>Lua 5.3 Reference Manual</TITLE>
5<LINK REL="stylesheet" TYPE="text/css" HREF="lua.css">
6<LINK REL="stylesheet" TYPE="text/css" HREF="manual.css">
7<META HTTP-EQUIV="content-type" CONTENT="text/html; charset=iso-8859-1">
8</HEAD>
9
10<BODY>
11
12<H1>
13<A HREF="http://www.lua.org/"><IMG SRC="logo.gif" ALT="Lua"></A>
14Lua 5.3 Reference Manual
15</H1>
16
17<P>
18by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes
19
20<P>
21<SMALL>
22Copyright &copy; 2015 Lua.org, PUC-Rio.
23Freely available under the terms of the
24<a href="http://www.lua.org/license.html">Lua license</a>.
25</SMALL>
26
27<DIV CLASS="menubar">
28<A HREF="contents.html#contents">contents</A>
29&middot;
30<A HREF="contents.html#index">index</A>
31&middot;
32<A HREF="http://www.lua.org/manual/">other versions</A>
33</DIV>
34
35<!-- ====================================================================== -->
36<p>
37
38<!-- Id: manual.of,v 1.153 2015/11/25 16:57:42 roberto Exp  -->
39
40
41
42
43<h1>1 &ndash; <a name="1">Introduction</a></h1>
44
45<p>
46Lua is an extension programming language designed to support
47general procedural programming with data description
48facilities.
49Lua also offers good support for object-oriented programming,
50functional programming, and data-driven programming.
51Lua is intended to be used as a powerful, lightweight,
52embeddable scripting language for any program that needs one.
53Lua is implemented as a library, written in <em>clean C</em>,
54the common subset of Standard&nbsp;C and C++.
55
56
57<p>
58As an extension language, Lua has no notion of a "main" program:
59it only works <em>embedded</em> in a host client,
60called the <em>embedding program</em> or simply the <em>host</em>.
61The host program can invoke functions to execute a piece of Lua code,
62can write and read Lua variables,
63and can register C&nbsp;functions to be called by Lua code.
64Through the use of C&nbsp;functions, Lua can be augmented to cope with
65a wide range of different domains,
66thus creating customized programming languages sharing a syntactical framework.
67The Lua distribution includes a sample host program called <code>lua</code>,
68which uses the Lua library to offer a complete, standalone Lua interpreter,
69for interactive or batch use.
70
71
72<p>
73Lua is free software,
74and is provided as usual with no guarantees,
75as stated in its license.
76The implementation described in this manual is available
77at Lua's official web site, <code>www.lua.org</code>.
78
79
80<p>
81Like any other reference manual,
82this document is dry in places.
83For a discussion of the decisions behind the design of Lua,
84see the technical papers available at Lua's web site.
85For a detailed introduction to programming in Lua,
86see Roberto's book, <em>Programming in Lua</em>.
87
88
89
90<h1>2 &ndash; <a name="2">Basic Concepts</a></h1>
91
92<p>
93This section describes the basic concepts of the language.
94
95
96
97<h2>2.1 &ndash; <a name="2.1">Values and Types</a></h2>
98
99<p>
100Lua is a <em>dynamically typed language</em>.
101This means that
102variables do not have types; only values do.
103There are no type definitions in the language.
104All values carry their own type.
105
106
107<p>
108All values in Lua are <em>first-class values</em>.
109This means that all values can be stored in variables,
110passed as arguments to other functions, and returned as results.
111
112
113<p>
114There are eight basic types in Lua:
115<em>nil</em>, <em>boolean</em>, <em>number</em>,
116<em>string</em>, <em>function</em>, <em>userdata</em>,
117<em>thread</em>, and <em>table</em>.
118The type <em>nil</em> has one single value, <b>nil</b>,
119whose main property is to be different from any other value;
120it usually represents the absence of a useful value.
121The type <em>boolean</em> has two values, <b>false</b> and <b>true</b>.
122Both <b>nil</b> and <b>false</b> make a condition false;
123any other value makes it true.
124The type <em>number</em> represents both
125integer numbers and real (floating-point) numbers.
126The type <em>string</em> represents immutable sequences of bytes.
127
128Lua is 8-bit clean:
129strings can contain any 8-bit value,
130including embedded zeros ('<code>\0</code>').
131Lua is also encoding-agnostic;
132it makes no assumptions about the contents of a string.
133
134
135<p>
136The type <em>number</em> uses two internal representations,
137or two subtypes,
138one called <em>integer</em> and the other called <em>float</em>.
139Lua has explicit rules about when each representation is used,
140but it also converts between them automatically as needed (see <a href="#3.4.3">&sect;3.4.3</a>).
141Therefore,
142the programmer may choose to mostly ignore the difference
143between integers and floats
144or to assume complete control over the representation of each number.
145Standard Lua uses 64-bit integers and double-precision (64-bit) floats,
146but you can also compile Lua so that it
147uses 32-bit integers and/or single-precision (32-bit) floats.
148The option with 32 bits for both integers and floats
149is particularly attractive
150for small machines and embedded systems.
151(See macro <code>LUA_32BITS</code> in file <code>luaconf.h</code>.)
152
153
154<p>
155Lua can call (and manipulate) functions written in Lua and
156functions written in C (see <a href="#3.4.10">&sect;3.4.10</a>).
157Both are represented by the type <em>function</em>.
158
159
160<p>
161The type <em>userdata</em> is provided to allow arbitrary C&nbsp;data to
162be stored in Lua variables.
163A userdata value represents a block of raw memory.
164There are two kinds of userdata:
165<em>full userdata</em>,
166which is an object with a block of memory managed by Lua,
167and <em>light userdata</em>,
168which is simply a C&nbsp;pointer value.
169Userdata has no predefined operations in Lua,
170except assignment and identity test.
171By using <em>metatables</em>,
172the programmer can define operations for full userdata values
173(see <a href="#2.4">&sect;2.4</a>).
174Userdata values cannot be created or modified in Lua,
175only through the C&nbsp;API.
176This guarantees the integrity of data owned by the host program.
177
178
179<p>
180The type <em>thread</em> represents independent threads of execution
181and it is used to implement coroutines (see <a href="#2.6">&sect;2.6</a>).
182Lua threads are not related to operating-system threads.
183Lua supports coroutines on all systems,
184even those that do not support threads natively.
185
186
187<p>
188The type <em>table</em> implements associative arrays,
189that is, arrays that can be indexed not only with numbers,
190but with any Lua value except <b>nil</b> and NaN.
191(<em>Not a Number</em> is a special value used to represent
192undefined or unrepresentable numerical results, such as <code>0/0</code>.)
193Tables can be <em>heterogeneous</em>;
194that is, they can contain values of all types (except <b>nil</b>).
195Any key with value <b>nil</b> is not considered part of the table.
196Conversely, any key that is not part of a table has
197an associated value <b>nil</b>.
198
199
200<p>
201Tables are the sole data-structuring mechanism in Lua;
202they can be used to represent ordinary arrays, sequences,
203symbol tables, sets, records, graphs, trees, etc.
204To represent records, Lua uses the field name as an index.
205The language supports this representation by
206providing <code>a.name</code> as syntactic sugar for <code>a["name"]</code>.
207There are several convenient ways to create tables in Lua
208(see <a href="#3.4.9">&sect;3.4.9</a>).
209
210
211<p>
212We use the term <em>sequence</em> to denote a table where
213the set of all positive numeric keys is equal to {1..<em>n</em>}
214for some non-negative integer <em>n</em>,
215which is called the length of the sequence (see <a href="#3.4.7">&sect;3.4.7</a>).
216
217
218<p>
219Like indices,
220the values of table fields can be of any type.
221In particular,
222because functions are first-class values,
223table fields can contain functions.
224Thus tables can also carry <em>methods</em> (see <a href="#3.4.11">&sect;3.4.11</a>).
225
226
227<p>
228The indexing of tables follows
229the definition of raw equality in the language.
230The expressions <code>a[i]</code> and <code>a[j]</code>
231denote the same table element
232if and only if <code>i</code> and <code>j</code> are raw equal
233(that is, equal without metamethods).
234In particular, floats with integral values
235are equal to their respective integers
236(e.g., <code>1.0 == 1</code>).
237To avoid ambiguities,
238any float with integral value used as a key
239is converted to its respective integer.
240For instance, if you write <code>a[2.0] = true</code>,
241the actual key inserted into the table will be the
242integer <code>2</code>.
243(On the other hand,
2442 and "<code>2</code>" are different Lua values and therefore
245denote different table entries.)
246
247
248<p>
249Tables, functions, threads, and (full) userdata values are <em>objects</em>:
250variables do not actually <em>contain</em> these values,
251only <em>references</em> to them.
252Assignment, parameter passing, and function returns
253always manipulate references to such values;
254these operations do not imply any kind of copy.
255
256
257<p>
258The library function <a href="#pdf-type"><code>type</code></a> returns a string describing the type
259of a given value (see <a href="#6.1">&sect;6.1</a>).
260
261
262
263
264
265<h2>2.2 &ndash; <a name="2.2">Environments and the Global Environment</a></h2>
266
267<p>
268As will be discussed in <a href="#3.2">&sect;3.2</a> and <a href="#3.3.3">&sect;3.3.3</a>,
269any reference to a free name
270(that is, a name not bound to any declaration) <code>var</code>
271is syntactically translated to <code>_ENV.var</code>.
272Moreover, every chunk is compiled in the scope of
273an external local variable named <code>_ENV</code> (see <a href="#3.3.2">&sect;3.3.2</a>),
274so <code>_ENV</code> itself is never a free name in a chunk.
275
276
277<p>
278Despite the existence of this external <code>_ENV</code> variable and
279the translation of free names,
280<code>_ENV</code> is a completely regular name.
281In particular,
282you can define new variables and parameters with that name.
283Each reference to a free name uses the <code>_ENV</code> that is
284visible at that point in the program,
285following the usual visibility rules of Lua (see <a href="#3.5">&sect;3.5</a>).
286
287
288<p>
289Any table used as the value of <code>_ENV</code> is called an <em>environment</em>.
290
291
292<p>
293Lua keeps a distinguished environment called the <em>global environment</em>.
294This value is kept at a special index in the C registry (see <a href="#4.5">&sect;4.5</a>).
295In Lua, the global variable <a href="#pdf-_G"><code>_G</code></a> is initialized with this same value.
296(<a href="#pdf-_G"><code>_G</code></a> is never used internally.)
297
298
299<p>
300When Lua loads a chunk,
301the default value for its <code>_ENV</code> upvalue
302is the global environment (see <a href="#pdf-load"><code>load</code></a>).
303Therefore, by default,
304free names in Lua code refer to entries in the global environment
305(and, therefore, they are also called <em>global variables</em>).
306Moreover, all standard libraries are loaded in the global environment
307and some functions there operate on that environment.
308You can use <a href="#pdf-load"><code>load</code></a> (or <a href="#pdf-loadfile"><code>loadfile</code></a>)
309to load a chunk with a different environment.
310(In C, you have to load the chunk and then change the value
311of its first upvalue.)
312
313
314
315
316
317<h2>2.3 &ndash; <a name="2.3">Error Handling</a></h2>
318
319<p>
320Because Lua is an embedded extension language,
321all Lua actions start from C&nbsp;code in the host program
322calling a function from the Lua library.
323(When you use Lua standalone,
324the <code>lua</code> application is the host program.)
325Whenever an error occurs during
326the compilation or execution of a Lua chunk,
327control returns to the host,
328which can take appropriate measures
329(such as printing an error message).
330
331
332<p>
333Lua code can explicitly generate an error by calling the
334<a href="#pdf-error"><code>error</code></a> function.
335If you need to catch errors in Lua,
336you can use <a href="#pdf-pcall"><code>pcall</code></a> or <a href="#pdf-xpcall"><code>xpcall</code></a>
337to call a given function in <em>protected mode</em>.
338
339
340<p>
341Whenever there is an error,
342an <em>error object</em> (also called an <em>error message</em>)
343is propagated with information about the error.
344Lua itself only generates errors whose error object is a string,
345but programs may generate errors with
346any value as the error object.
347It is up to the Lua program or its host to handle such error objects.
348
349
350<p>
351When you use <a href="#pdf-xpcall"><code>xpcall</code></a> or <a href="#lua_pcall"><code>lua_pcall</code></a>,
352you may give a <em>message handler</em>
353to be called in case of errors.
354This function is called with the original error message
355and returns a new error message.
356It is called before the error unwinds the stack,
357so that it can gather more information about the error,
358for instance by inspecting the stack and creating a stack traceback.
359This message handler is still protected by the protected call;
360so, an error inside the message handler
361will call the message handler again.
362If this loop goes on for too long,
363Lua breaks it and returns an appropriate message.
364
365
366
367
368
369<h2>2.4 &ndash; <a name="2.4">Metatables and Metamethods</a></h2>
370
371<p>
372Every value in Lua can have a <em>metatable</em>.
373This <em>metatable</em> is an ordinary Lua table
374that defines the behavior of the original value
375under certain special operations.
376You can change several aspects of the behavior
377of operations over a value by setting specific fields in its metatable.
378For instance, when a non-numeric value is the operand of an addition,
379Lua checks for a function in the field "<code>__add</code>" of the value's metatable.
380If it finds one,
381Lua calls this function to perform the addition.
382
383
384<p>
385The keys in a metatable are derived from the <em>event</em> names;
386the corresponding values are called <em>metamethods</em>.
387In the previous example, the event is <code>"add"</code>
388and the metamethod is the function that performs the addition.
389
390
391<p>
392You can query the metatable of any value
393using the <a href="#pdf-getmetatable"><code>getmetatable</code></a> function.
394
395
396<p>
397You can replace the metatable of tables
398using the <a href="#pdf-setmetatable"><code>setmetatable</code></a> function.
399You cannot change the metatable of other types from Lua code
400(except by using the debug library (<a href="#6.10">&sect;6.10</a>));
401you should use the C&nbsp;API for that.
402
403
404<p>
405Tables and full userdata have individual metatables
406(although multiple tables and userdata can share their metatables).
407Values of all other types share one single metatable per type;
408that is, there is one single metatable for all numbers,
409one for all strings, etc.
410By default, a value has no metatable,
411but the string library sets a metatable for the string type (see <a href="#6.4">&sect;6.4</a>).
412
413
414<p>
415A metatable controls how an object behaves in
416arithmetic operations, bitwise operations,
417order comparisons, concatenation, length operation, calls, and indexing.
418A metatable also can define a function to be called
419when a userdata or a table is garbage collected (<a href="#2.5">&sect;2.5</a>).
420
421
422<p>
423A detailed list of events controlled by metatables is given next.
424Each operation is identified by its corresponding event name.
425The key for each event is a string with its name prefixed by
426two underscores, '<code>__</code>';
427for instance, the key for operation "add" is the
428string "<code>__add</code>".
429Note that queries for metamethods are always raw;
430the access to a metamethod does not invoke other metamethods.
431
432
433<p>
434For the unary operators (negation, length, and bitwise not),
435the metamethod is computed and called with a dummy second operand,
436equal to the first one.
437This extra operand is only to simplify Lua's internals
438(by making these operators behave like a binary operation)
439and may be removed in future versions.
440(For most uses this extra operand is irrelevant.)
441
442
443
444<ul>
445
446<li><b>"add": </b>
447the <code>+</code> operation.
448
449If any operand for an addition is not a number
450(nor a string coercible to a number),
451Lua will try to call a metamethod.
452First, Lua will check the first operand (even if it is valid).
453If that operand does not define a metamethod for the "<code>__add</code>" event,
454then Lua will check the second operand.
455If Lua can find a metamethod,
456it calls the metamethod with the two operands as arguments,
457and the result of the call
458(adjusted to one value)
459is the result of the operation.
460Otherwise,
461it raises an error.
462</li>
463
464<li><b>"sub": </b>
465the <code>-</code> operation.
466
467Behavior similar to the "add" operation.
468</li>
469
470<li><b>"mul": </b>
471the <code>*</code> operation.
472
473Behavior similar to the "add" operation.
474</li>
475
476<li><b>"div": </b>
477the <code>/</code> operation.
478
479Behavior similar to the "add" operation.
480</li>
481
482<li><b>"mod": </b>
483the <code>%</code> operation.
484
485Behavior similar to the "add" operation.
486</li>
487
488<li><b>"pow": </b>
489the <code>^</code> (exponentiation) operation.
490
491Behavior similar to the "add" operation.
492</li>
493
494<li><b>"unm": </b>
495the <code>-</code> (unary minus) operation.
496
497Behavior similar to the "add" operation.
498</li>
499
500<li><b>"idiv": </b>
501the <code>//</code> (floor division) operation.
502
503Behavior similar to the "add" operation.
504</li>
505
506<li><b>"band": </b>
507the <code>&amp;</code> (bitwise and) operation.
508
509Behavior similar to the "add" operation,
510except that Lua will try a metamethod
511if any operand is neither an integer
512nor a value coercible to an integer (see <a href="#3.4.3">&sect;3.4.3</a>).
513</li>
514
515<li><b>"bor": </b>
516the <code>|</code> (bitwise or) operation.
517
518Behavior similar to the "band" operation.
519</li>
520
521<li><b>"bxor": </b>
522the <code>~</code> (bitwise exclusive or) operation.
523
524Behavior similar to the "band" operation.
525</li>
526
527<li><b>"bnot": </b>
528the <code>~</code> (bitwise unary not) operation.
529
530Behavior similar to the "band" operation.
531</li>
532
533<li><b>"shl": </b>
534the <code>&lt;&lt;</code> (bitwise left shift) operation.
535
536Behavior similar to the "band" operation.
537</li>
538
539<li><b>"shr": </b>
540the <code>&gt;&gt;</code> (bitwise right shift) operation.
541
542Behavior similar to the "band" operation.
543</li>
544
545<li><b>"concat": </b>
546the <code>..</code> (concatenation) operation.
547
548Behavior similar to the "add" operation,
549except that Lua will try a metamethod
550if any operand is neither a string nor a number
551(which is always coercible to a string).
552</li>
553
554<li><b>"len": </b>
555the <code>#</code> (length) operation.
556
557If the object is not a string,
558Lua will try its metamethod.
559If there is a metamethod,
560Lua calls it with the object as argument,
561and the result of the call
562(always adjusted to one value)
563is the result of the operation.
564If there is no metamethod but the object is a table,
565then Lua uses the table length operation (see <a href="#3.4.7">&sect;3.4.7</a>).
566Otherwise, Lua raises an error.
567</li>
568
569<li><b>"eq": </b>
570the <code>==</code> (equal) operation.
571
572Behavior similar to the "add" operation,
573except that Lua will try a metamethod only when the values
574being compared are either both tables or both full userdata
575and they are not primitively equal.
576The result of the call is always converted to a boolean.
577</li>
578
579<li><b>"lt": </b>
580the <code>&lt;</code> (less than) operation.
581
582Behavior similar to the "add" operation,
583except that Lua will try a metamethod only when the values
584being compared are neither both numbers nor both strings.
585The result of the call is always converted to a boolean.
586</li>
587
588<li><b>"le": </b>
589the <code>&lt;=</code> (less equal) operation.
590
591Unlike other operations,
592the less-equal operation can use two different events.
593First, Lua looks for the "<code>__le</code>" metamethod in both operands,
594like in the "lt" operation.
595If it cannot find such a metamethod,
596then it will try the "<code>__lt</code>" event,
597assuming that <code>a &lt;= b</code> is equivalent to <code>not (b &lt; a)</code>.
598As with the other comparison operators,
599the result is always a boolean.
600(This use of the "<code>__lt</code>" event can be removed in future versions;
601it is also slower than a real "<code>__le</code>" metamethod.)
602</li>
603
604<li><b>"index": </b>
605The indexing access <code>table[key]</code>.
606
607This event happens when <code>table</code> is not a table or
608when <code>key</code> is not present in <code>table</code>.
609The metamethod is looked up in <code>table</code>.
610
611
612<p>
613Despite the name,
614the metamethod for this event can be either a function or a table.
615If it is a function,
616it is called with <code>table</code> and <code>key</code> as arguments.
617If it is a table,
618the final result is the result of indexing this table with <code>key</code>.
619(This indexing is regular, not raw,
620and therefore can trigger another metamethod.)
621</li>
622
623<li><b>"newindex": </b>
624The indexing assignment <code>table[key] = value</code>.
625
626Like the index event,
627this event happens when <code>table</code> is not a table or
628when <code>key</code> is not present in <code>table</code>.
629The metamethod is looked up in <code>table</code>.
630
631
632<p>
633Like with indexing,
634the metamethod for this event can be either a function or a table.
635If it is a function,
636it is called with <code>table</code>, <code>key</code>, and <code>value</code> as arguments.
637If it is a table,
638Lua does an indexing assignment to this table with the same key and value.
639(This assignment is regular, not raw,
640and therefore can trigger another metamethod.)
641
642
643<p>
644Whenever there is a "newindex" metamethod,
645Lua does not perform the primitive assignment.
646(If necessary,
647the metamethod itself can call <a href="#pdf-rawset"><code>rawset</code></a>
648to do the assignment.)
649</li>
650
651<li><b>"call": </b>
652The call operation <code>func(args)</code>.
653
654This event happens when Lua tries to call a non-function value
655(that is, <code>func</code> is not a function).
656The metamethod is looked up in <code>func</code>.
657If present,
658the metamethod is called with <code>func</code> as its first argument,
659followed by the arguments of the original call (<code>args</code>).
660</li>
661
662</ul>
663
664<p>
665It is a good practice to add all needed metamethods to a table
666before setting it as a metatable of some object.
667In particular, the "<code>__gc</code>" metamethod works only when this order
668is followed (see <a href="#2.5.1">&sect;2.5.1</a>).
669
670
671
672
673
674<h2>2.5 &ndash; <a name="2.5">Garbage Collection</a></h2>
675
676<p>
677Lua performs automatic memory management.
678This means that
679you do not have to worry about allocating memory for new objects
680or freeing it when the objects are no longer needed.
681Lua manages memory automatically by running
682a <em>garbage collector</em> to collect all <em>dead objects</em>
683(that is, objects that are no longer accessible from Lua).
684All memory used by Lua is subject to automatic management:
685strings, tables, userdata, functions, threads, internal structures, etc.
686
687
688<p>
689Lua implements an incremental mark-and-sweep collector.
690It uses two numbers to control its garbage-collection cycles:
691the <em>garbage-collector pause</em> and
692the <em>garbage-collector step multiplier</em>.
693Both use percentage points as units
694(e.g., a value of 100 means an internal value of 1).
695
696
697<p>
698The garbage-collector pause
699controls how long the collector waits before starting a new cycle.
700Larger values make the collector less aggressive.
701Values smaller than 100 mean the collector will not wait to
702start a new cycle.
703A value of 200 means that the collector waits for the total memory in use
704to double before starting a new cycle.
705
706
707<p>
708The garbage-collector step multiplier
709controls the relative speed of the collector relative to
710memory allocation.
711Larger values make the collector more aggressive but also increase
712the size of each incremental step.
713You should not use values smaller than 100,
714because they make the collector too slow and
715can result in the collector never finishing a cycle.
716The default is 200,
717which means that the collector runs at "twice"
718the speed of memory allocation.
719
720
721<p>
722If you set the step multiplier to a very large number
723(larger than 10% of the maximum number of
724bytes that the program may use),
725the collector behaves like a stop-the-world collector.
726If you then set the pause to 200,
727the collector behaves as in old Lua versions,
728doing a complete collection every time Lua doubles its
729memory usage.
730
731
732<p>
733You can change these numbers by calling <a href="#lua_gc"><code>lua_gc</code></a> in C
734or <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> in Lua.
735You can also use these functions to control
736the collector directly (e.g., stop and restart it).
737
738
739
740<h3>2.5.1 &ndash; <a name="2.5.1">Garbage-Collection Metamethods</a></h3>
741
742<p>
743You can set garbage-collector metamethods for tables
744and, using the C&nbsp;API,
745for full userdata (see <a href="#2.4">&sect;2.4</a>).
746These metamethods are also called <em>finalizers</em>.
747Finalizers allow you to coordinate Lua's garbage collection
748with external resource management
749(such as closing files, network or database connections,
750or freeing your own memory).
751
752
753<p>
754For an object (table or userdata) to be finalized when collected,
755you must <em>mark</em> it for finalization.
756
757You mark an object for finalization when you set its metatable
758and the metatable has a field indexed by the string "<code>__gc</code>".
759Note that if you set a metatable without a <code>__gc</code> field
760and later create that field in the metatable,
761the object will not be marked for finalization.
762
763
764<p>
765When a marked object becomes garbage,
766it is not collected immediately by the garbage collector.
767Instead, Lua puts it in a list.
768After the collection,
769Lua goes through that list.
770For each object in the list,
771it checks the object's <code>__gc</code> metamethod:
772If it is a function,
773Lua calls it with the object as its single argument;
774if the metamethod is not a function,
775Lua simply ignores it.
776
777
778<p>
779At the end of each garbage-collection cycle,
780the finalizers for objects are called in
781the reverse order that the objects were marked for finalization,
782among those collected in that cycle;
783that is, the first finalizer to be called is the one associated
784with the object marked last in the program.
785The execution of each finalizer may occur at any point during
786the execution of the regular code.
787
788
789<p>
790Because the object being collected must still be used by the finalizer,
791that object (and other objects accessible only through it)
792must be <em>resurrected</em> by Lua.
793Usually, this resurrection is transient,
794and the object memory is freed in the next garbage-collection cycle.
795However, if the finalizer stores the object in some global place
796(e.g., a global variable),
797then the resurrection is permanent.
798Moreover, if the finalizer marks a finalizing object for finalization again,
799its finalizer will be called again in the next cycle where the
800object is unreachable.
801In any case,
802the object memory is freed only in a GC cycle where
803the object is unreachable and not marked for finalization.
804
805
806<p>
807When you close a state (see <a href="#lua_close"><code>lua_close</code></a>),
808Lua calls the finalizers of all objects marked for finalization,
809following the reverse order that they were marked.
810If any finalizer marks objects for collection during that phase,
811these marks have no effect.
812
813
814
815
816
817<h3>2.5.2 &ndash; <a name="2.5.2">Weak Tables</a></h3>
818
819<p>
820A <em>weak table</em> is a table whose elements are
821<em>weak references</em>.
822A weak reference is ignored by the garbage collector.
823In other words,
824if the only references to an object are weak references,
825then the garbage collector will collect that object.
826
827
828<p>
829A weak table can have weak keys, weak values, or both.
830A table with weak values allows the collection of its values,
831but prevents the collection of its keys.
832A table with both weak keys and weak values allows the collection of
833both keys and values.
834In any case, if either the key or the value is collected,
835the whole pair is removed from the table.
836The weakness of a table is controlled by the
837<code>__mode</code> field of its metatable.
838If the <code>__mode</code> field is a string containing the character&nbsp;'<code>k</code>',
839the keys in the table are weak.
840If <code>__mode</code> contains '<code>v</code>',
841the values in the table are weak.
842
843
844<p>
845A table with weak keys and strong values
846is also called an <em>ephemeron table</em>.
847In an ephemeron table,
848a value is considered reachable only if its key is reachable.
849In particular,
850if the only reference to a key comes through its value,
851the pair is removed.
852
853
854<p>
855Any change in the weakness of a table may take effect only
856at the next collect cycle.
857In particular, if you change the weakness to a stronger mode,
858Lua may still collect some items from that table
859before the change takes effect.
860
861
862<p>
863Only objects that have an explicit construction
864are removed from weak tables.
865Values, such as numbers and light C functions,
866are not subject to garbage collection,
867and therefore are not removed from weak tables
868(unless their associated values are collected).
869Although strings are subject to garbage collection,
870they do not have an explicit construction,
871and therefore are not removed from weak tables.
872
873
874<p>
875Resurrected objects
876(that is, objects being finalized
877and objects accessible only through objects being finalized)
878have a special behavior in weak tables.
879They are removed from weak values before running their finalizers,
880but are removed from weak keys only in the next collection
881after running their finalizers, when such objects are actually freed.
882This behavior allows the finalizer to access properties
883associated with the object through weak tables.
884
885
886<p>
887If a weak table is among the resurrected objects in a collection cycle,
888it may not be properly cleared until the next cycle.
889
890
891
892
893
894
895
896<h2>2.6 &ndash; <a name="2.6">Coroutines</a></h2>
897
898<p>
899Lua supports coroutines,
900also called <em>collaborative multithreading</em>.
901A coroutine in Lua represents an independent thread of execution.
902Unlike threads in multithread systems, however,
903a coroutine only suspends its execution by explicitly calling
904a yield function.
905
906
907<p>
908You create a coroutine by calling <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>.
909Its sole argument is a function
910that is the main function of the coroutine.
911The <code>create</code> function only creates a new coroutine and
912returns a handle to it (an object of type <em>thread</em>);
913it does not start the coroutine.
914
915
916<p>
917You execute a coroutine by calling <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
918When you first call <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
919passing as its first argument
920a thread returned by <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
921the coroutine starts its execution by
922calling its main function.
923Extra arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> are passed
924as arguments to that function.
925After the coroutine starts running,
926it runs until it terminates or <em>yields</em>.
927
928
929<p>
930A coroutine can terminate its execution in two ways:
931normally, when its main function returns
932(explicitly or implicitly, after the last instruction);
933and abnormally, if there is an unprotected error.
934In case of normal termination,
935<a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>true</b>,
936plus any values returned by the coroutine main function.
937In case of errors, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>false</b>
938plus an error message.
939
940
941<p>
942A coroutine yields by calling <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
943When a coroutine yields,
944the corresponding <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns immediately,
945even if the yield happens inside nested function calls
946(that is, not in the main function,
947but in a function directly or indirectly called by the main function).
948In the case of a yield, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> also returns <b>true</b>,
949plus any values passed to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
950The next time you resume the same coroutine,
951it continues its execution from the point where it yielded,
952with the call to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a> returning any extra
953arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
954
955
956<p>
957Like <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
958the <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> function also creates a coroutine,
959but instead of returning the coroutine itself,
960it returns a function that, when called, resumes the coroutine.
961Any arguments passed to this function
962go as extra arguments to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
963<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> returns all the values returned by <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
964except the first one (the boolean error code).
965Unlike <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
966<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> does not catch errors;
967any error is propagated to the caller.
968
969
970<p>
971As an example of how coroutines work,
972consider the following code:
973
974<pre>
975     function foo (a)
976       print("foo", a)
977       return coroutine.yield(2*a)
978     end
979
980     co = coroutine.create(function (a,b)
981           print("co-body", a, b)
982           local r = foo(a+1)
983           print("co-body", r)
984           local r, s = coroutine.yield(a+b, a-b)
985           print("co-body", r, s)
986           return b, "end"
987     end)
988
989     print("main", coroutine.resume(co, 1, 10))
990     print("main", coroutine.resume(co, "r"))
991     print("main", coroutine.resume(co, "x", "y"))
992     print("main", coroutine.resume(co, "x", "y"))
993</pre><p>
994When you run it, it produces the following output:
995
996<pre>
997     co-body 1       10
998     foo     2
999     main    true    4
1000     co-body r
1001     main    true    11      -9
1002     co-body x       y
1003     main    true    10      end
1004     main    false   cannot resume dead coroutine
1005</pre>
1006
1007<p>
1008You can also create and manipulate coroutines through the C API:
1009see functions <a href="#lua_newthread"><code>lua_newthread</code></a>, <a href="#lua_resume"><code>lua_resume</code></a>,
1010and <a href="#lua_yield"><code>lua_yield</code></a>.
1011
1012
1013
1014
1015
1016<h1>3 &ndash; <a name="3">The Language</a></h1>
1017
1018<p>
1019This section describes the lexis, the syntax, and the semantics of Lua.
1020In other words,
1021this section describes
1022which tokens are valid,
1023how they can be combined,
1024and what their combinations mean.
1025
1026
1027<p>
1028Language constructs will be explained using the usual extended BNF notation,
1029in which
1030{<em>a</em>}&nbsp;means&nbsp;0 or more <em>a</em>'s, and
1031[<em>a</em>]&nbsp;means an optional <em>a</em>.
1032Non-terminals are shown like non-terminal,
1033keywords are shown like <b>kword</b>,
1034and other terminal symbols are shown like &lsquo;<b>=</b>&rsquo;.
1035The complete syntax of Lua can be found in <a href="#9">&sect;9</a>
1036at the end of this manual.
1037
1038
1039
1040<h2>3.1 &ndash; <a name="3.1">Lexical Conventions</a></h2>
1041
1042<p>
1043Lua is a free-form language.
1044It ignores spaces (including new lines) and comments
1045between lexical elements (tokens),
1046except as delimiters between names and keywords.
1047
1048
1049<p>
1050<em>Names</em>
1051(also called <em>identifiers</em>)
1052in Lua can be any string of letters,
1053digits, and underscores,
1054not beginning with a digit and
1055not being a reserved word.
1056Identifiers are used to name variables, table fields, and labels.
1057
1058
1059<p>
1060The following <em>keywords</em> are reserved
1061and cannot be used as names:
1062
1063
1064<pre>
1065     and       break     do        else      elseif    end
1066     false     for       function  goto      if        in
1067     local     nil       not       or        repeat    return
1068     then      true      until     while
1069</pre>
1070
1071<p>
1072Lua is a case-sensitive language:
1073<code>and</code> is a reserved word, but <code>And</code> and <code>AND</code>
1074are two different, valid names.
1075As a convention,
1076programs should avoid creating
1077names that start with an underscore followed by
1078one or more uppercase letters (such as <a href="#pdf-_VERSION"><code>_VERSION</code></a>).
1079
1080
1081<p>
1082The following strings denote other tokens:
1083
1084<pre>
1085     +     -     *     /     %     ^     #
1086     &amp;     ~     |     &lt;&lt;    &gt;&gt;    //
1087     ==    ~=    &lt;=    &gt;=    &lt;     &gt;     =
1088     (     )     {     }     [     ]     ::
1089     ;     :     ,     .     ..    ...
1090</pre>
1091
1092<p>
1093<em>Literal strings</em>
1094can be delimited by matching single or double quotes,
1095and can contain the following C-like escape sequences:
1096'<code>\a</code>' (bell),
1097'<code>\b</code>' (backspace),
1098'<code>\f</code>' (form feed),
1099'<code>\n</code>' (newline),
1100'<code>\r</code>' (carriage return),
1101'<code>\t</code>' (horizontal tab),
1102'<code>\v</code>' (vertical tab),
1103'<code>\\</code>' (backslash),
1104'<code>\"</code>' (quotation mark [double quote]),
1105and '<code>\'</code>' (apostrophe [single quote]).
1106A backslash followed by a real newline
1107results in a newline in the string.
1108The escape sequence '<code>\z</code>' skips the following span
1109of white-space characters,
1110including line breaks;
1111it is particularly useful to break and indent a long literal string
1112into multiple lines without adding the newlines and spaces
1113into the string contents.
1114
1115
1116<p>
1117Strings in Lua can contain any 8-bit value, including embedded zeros,
1118which can be specified as '<code>\0</code>'.
1119More generally,
1120we can specify any byte in a literal string by its numeric value.
1121This can be done
1122with the escape sequence <code>\x<em>XX</em></code>,
1123where <em>XX</em> is a sequence of exactly two hexadecimal digits,
1124or with the escape sequence <code>\<em>ddd</em></code>,
1125where <em>ddd</em> is a sequence of up to three decimal digits.
1126(Note that if a decimal escape sequence is to be followed by a digit,
1127it must be expressed using exactly three digits.)
1128
1129
1130<p>
1131The UTF-8 encoding of a Unicode character
1132can be inserted in a literal string with
1133the escape sequence <code>\u{<em>XXX</em>}</code>
1134(note the mandatory enclosing brackets),
1135where <em>XXX</em> is a sequence of one or more hexadecimal digits
1136representing the character code point.
1137
1138
1139<p>
1140Literal strings can also be defined using a long format
1141enclosed by <em>long brackets</em>.
1142We define an <em>opening long bracket of level <em>n</em></em> as an opening
1143square bracket followed by <em>n</em> equal signs followed by another
1144opening square bracket.
1145So, an opening long bracket of level&nbsp;0 is written as <code>[[</code>,
1146an opening long bracket of level&nbsp;1 is written as <code>[=[</code>,
1147and so on.
1148A <em>closing long bracket</em> is defined similarly;
1149for instance,
1150a closing long bracket of level&nbsp;4 is written as  <code>]====]</code>.
1151A <em>long literal</em> starts with an opening long bracket of any level and
1152ends at the first closing long bracket of the same level.
1153It can contain any text except a closing bracket of the same level.
1154Literals in this bracketed form can run for several lines,
1155do not interpret any escape sequences,
1156and ignore long brackets of any other level.
1157Any kind of end-of-line sequence
1158(carriage return, newline, carriage return followed by newline,
1159or newline followed by carriage return)
1160is converted to a simple newline.
1161
1162
1163<p>
1164Any byte in a literal string not
1165explicitly affected by the previous rules represents itself.
1166However, Lua opens files for parsing in text mode,
1167and the system file functions may have problems with
1168some control characters.
1169So, it is safer to represent
1170non-text data as a quoted literal with
1171explicit escape sequences for non-text characters.
1172
1173
1174<p>
1175For convenience,
1176when the opening long bracket is immediately followed by a newline,
1177the newline is not included in the string.
1178As an example, in a system using ASCII
1179(in which '<code>a</code>' is coded as&nbsp;97,
1180newline is coded as&nbsp;10, and '<code>1</code>' is coded as&nbsp;49),
1181the five literal strings below denote the same string:
1182
1183<pre>
1184     a = 'alo\n123"'
1185     a = "alo\n123\""
1186     a = '\97lo\10\04923"'
1187     a = [[alo
1188     123"]]
1189     a = [==[
1190     alo
1191     123"]==]
1192</pre>
1193
1194<p>
1195A <em>numeric constant</em> (or <em>numeral</em>)
1196can be written with an optional fractional part
1197and an optional decimal exponent,
1198marked by a letter '<code>e</code>' or '<code>E</code>'.
1199Lua also accepts hexadecimal constants,
1200which start with <code>0x</code> or <code>0X</code>.
1201Hexadecimal constants also accept an optional fractional part
1202plus an optional binary exponent,
1203marked by a letter '<code>p</code>' or '<code>P</code>'.
1204A numeric constant with a fractional dot or an exponent
1205denotes a float;
1206otherwise it denotes an integer.
1207Examples of valid integer constants are
1208
1209<pre>
1210     3   345   0xff   0xBEBADA
1211</pre><p>
1212Examples of valid float constants are
1213
1214<pre>
1215     3.0     3.1416     314.16e-2     0.31416E1     34e1
1216     0x0.1E  0xA23p-4   0X1.921FB54442D18P+1
1217</pre>
1218
1219<p>
1220A <em>comment</em> starts with a double hyphen (<code>--</code>)
1221anywhere outside a string.
1222If the text immediately after <code>--</code> is not an opening long bracket,
1223the comment is a <em>short comment</em>,
1224which runs until the end of the line.
1225Otherwise, it is a <em>long comment</em>,
1226which runs until the corresponding closing long bracket.
1227Long comments are frequently used to disable code temporarily.
1228
1229
1230
1231
1232
1233<h2>3.2 &ndash; <a name="3.2">Variables</a></h2>
1234
1235<p>
1236Variables are places that store values.
1237There are three kinds of variables in Lua:
1238global variables, local variables, and table fields.
1239
1240
1241<p>
1242A single name can denote a global variable or a local variable
1243(or a function's formal parameter,
1244which is a particular kind of local variable):
1245
1246<pre>
1247	var ::= Name
1248</pre><p>
1249Name denotes identifiers, as defined in <a href="#3.1">&sect;3.1</a>.
1250
1251
1252<p>
1253Any variable name is assumed to be global unless explicitly declared
1254as a local (see <a href="#3.3.7">&sect;3.3.7</a>).
1255Local variables are <em>lexically scoped</em>:
1256local variables can be freely accessed by functions
1257defined inside their scope (see <a href="#3.5">&sect;3.5</a>).
1258
1259
1260<p>
1261Before the first assignment to a variable, its value is <b>nil</b>.
1262
1263
1264<p>
1265Square brackets are used to index a table:
1266
1267<pre>
1268	var ::= prefixexp &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo;
1269</pre><p>
1270The meaning of accesses to table fields can be changed via metatables.
1271An access to an indexed variable <code>t[i]</code> is equivalent to
1272a call <code>gettable_event(t,i)</code>.
1273(See <a href="#2.4">&sect;2.4</a> for a complete description of the
1274<code>gettable_event</code> function.
1275This function is not defined or callable in Lua.
1276We use it here only for explanatory purposes.)
1277
1278
1279<p>
1280The syntax <code>var.Name</code> is just syntactic sugar for
1281<code>var["Name"]</code>:
1282
1283<pre>
1284	var ::= prefixexp &lsquo;<b>.</b>&rsquo; Name
1285</pre>
1286
1287<p>
1288An access to a global variable <code>x</code>
1289is equivalent to <code>_ENV.x</code>.
1290Due to the way that chunks are compiled,
1291<code>_ENV</code> is never a global name (see <a href="#2.2">&sect;2.2</a>).
1292
1293
1294
1295
1296
1297<h2>3.3 &ndash; <a name="3.3">Statements</a></h2>
1298
1299<p>
1300Lua supports an almost conventional set of statements,
1301similar to those in Pascal or C.
1302This set includes
1303assignments, control structures, function calls,
1304and variable declarations.
1305
1306
1307
1308<h3>3.3.1 &ndash; <a name="3.3.1">Blocks</a></h3>
1309
1310<p>
1311A block is a list of statements,
1312which are executed sequentially:
1313
1314<pre>
1315	block ::= {stat}
1316</pre><p>
1317Lua has <em>empty statements</em>
1318that allow you to separate statements with semicolons,
1319start a block with a semicolon
1320or write two semicolons in sequence:
1321
1322<pre>
1323	stat ::= &lsquo;<b>;</b>&rsquo;
1324</pre>
1325
1326<p>
1327Function calls and assignments
1328can start with an open parenthesis.
1329This possibility leads to an ambiguity in Lua's grammar.
1330Consider the following fragment:
1331
1332<pre>
1333     a = b + c
1334     (print or io.write)('done')
1335</pre><p>
1336The grammar could see it in two ways:
1337
1338<pre>
1339     a = b + c(print or io.write)('done')
1340
1341     a = b + c; (print or io.write)('done')
1342</pre><p>
1343The current parser always sees such constructions
1344in the first way,
1345interpreting the open parenthesis
1346as the start of the arguments to a call.
1347To avoid this ambiguity,
1348it is a good practice to always precede with a semicolon
1349statements that start with a parenthesis:
1350
1351<pre>
1352     ;(print or io.write)('done')
1353</pre>
1354
1355<p>
1356A block can be explicitly delimited to produce a single statement:
1357
1358<pre>
1359	stat ::= <b>do</b> block <b>end</b>
1360</pre><p>
1361Explicit blocks are useful
1362to control the scope of variable declarations.
1363Explicit blocks are also sometimes used to
1364add a <b>return</b> statement in the middle
1365of another block (see <a href="#3.3.4">&sect;3.3.4</a>).
1366
1367
1368
1369
1370
1371<h3>3.3.2 &ndash; <a name="3.3.2">Chunks</a></h3>
1372
1373<p>
1374The unit of compilation of Lua is called a <em>chunk</em>.
1375Syntactically,
1376a chunk is simply a block:
1377
1378<pre>
1379	chunk ::= block
1380</pre>
1381
1382<p>
1383Lua handles a chunk as the body of an anonymous function
1384with a variable number of arguments
1385(see <a href="#3.4.11">&sect;3.4.11</a>).
1386As such, chunks can define local variables,
1387receive arguments, and return values.
1388Moreover, such anonymous function is compiled as in the
1389scope of an external local variable called <code>_ENV</code> (see <a href="#2.2">&sect;2.2</a>).
1390The resulting function always has <code>_ENV</code> as its only upvalue,
1391even if it does not use that variable.
1392
1393
1394<p>
1395A chunk can be stored in a file or in a string inside the host program.
1396To execute a chunk,
1397Lua first <em>loads</em> it,
1398precompiling the chunk's code into instructions for a virtual machine,
1399and then Lua executes the compiled code
1400with an interpreter for the virtual machine.
1401
1402
1403<p>
1404Chunks can also be precompiled into binary form;
1405see program <code>luac</code> and function <a href="#pdf-string.dump"><code>string.dump</code></a> for details.
1406Programs in source and compiled forms are interchangeable;
1407Lua automatically detects the file type and acts accordingly (see <a href="#pdf-load"><code>load</code></a>).
1408
1409
1410
1411
1412
1413<h3>3.3.3 &ndash; <a name="3.3.3">Assignment</a></h3>
1414
1415<p>
1416Lua allows multiple assignments.
1417Therefore, the syntax for assignment
1418defines a list of variables on the left side
1419and a list of expressions on the right side.
1420The elements in both lists are separated by commas:
1421
1422<pre>
1423	stat ::= varlist &lsquo;<b>=</b>&rsquo; explist
1424	varlist ::= var {&lsquo;<b>,</b>&rsquo; var}
1425	explist ::= exp {&lsquo;<b>,</b>&rsquo; exp}
1426</pre><p>
1427Expressions are discussed in <a href="#3.4">&sect;3.4</a>.
1428
1429
1430<p>
1431Before the assignment,
1432the list of values is <em>adjusted</em> to the length of
1433the list of variables.
1434If there are more values than needed,
1435the excess values are thrown away.
1436If there are fewer values than needed,
1437the list is extended with as many  <b>nil</b>'s as needed.
1438If the list of expressions ends with a function call,
1439then all values returned by that call enter the list of values,
1440before the adjustment
1441(except when the call is enclosed in parentheses; see <a href="#3.4">&sect;3.4</a>).
1442
1443
1444<p>
1445The assignment statement first evaluates all its expressions
1446and only then the assignments are performed.
1447Thus the code
1448
1449<pre>
1450     i = 3
1451     i, a[i] = i+1, 20
1452</pre><p>
1453sets <code>a[3]</code> to 20, without affecting <code>a[4]</code>
1454because the <code>i</code> in <code>a[i]</code> is evaluated (to 3)
1455before it is assigned&nbsp;4.
1456Similarly, the line
1457
1458<pre>
1459     x, y = y, x
1460</pre><p>
1461exchanges the values of <code>x</code> and <code>y</code>,
1462and
1463
1464<pre>
1465     x, y, z = y, z, x
1466</pre><p>
1467cyclically permutes the values of <code>x</code>, <code>y</code>, and <code>z</code>.
1468
1469
1470<p>
1471The meaning of assignments to global variables
1472and table fields can be changed via metatables.
1473An assignment to an indexed variable <code>t[i] = val</code> is equivalent to
1474<code>settable_event(t,i,val)</code>.
1475(See <a href="#2.4">&sect;2.4</a> for a complete description of the
1476<code>settable_event</code> function.
1477This function is not defined or callable in Lua.
1478We use it here only for explanatory purposes.)
1479
1480
1481<p>
1482An assignment to a global name <code>x = val</code>
1483is equivalent to the assignment
1484<code>_ENV.x = val</code> (see <a href="#2.2">&sect;2.2</a>).
1485
1486
1487
1488
1489
1490<h3>3.3.4 &ndash; <a name="3.3.4">Control Structures</a></h3><p>
1491The control structures
1492<b>if</b>, <b>while</b>, and <b>repeat</b> have the usual meaning and
1493familiar syntax:
1494
1495
1496
1497
1498<pre>
1499	stat ::= <b>while</b> exp <b>do</b> block <b>end</b>
1500	stat ::= <b>repeat</b> block <b>until</b> exp
1501	stat ::= <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b>
1502</pre><p>
1503Lua also has a <b>for</b> statement, in two flavors (see <a href="#3.3.5">&sect;3.3.5</a>).
1504
1505
1506<p>
1507The condition expression of a
1508control structure can return any value.
1509Both <b>false</b> and <b>nil</b> are considered false.
1510All values different from <b>nil</b> and <b>false</b> are considered true
1511(in particular, the number 0 and the empty string are also true).
1512
1513
1514<p>
1515In the <b>repeat</b>&ndash;<b>until</b> loop,
1516the inner block does not end at the <b>until</b> keyword,
1517but only after the condition.
1518So, the condition can refer to local variables
1519declared inside the loop block.
1520
1521
1522<p>
1523The <b>goto</b> statement transfers the program control to a label.
1524For syntactical reasons,
1525labels in Lua are considered statements too:
1526
1527
1528
1529<pre>
1530	stat ::= <b>goto</b> Name
1531	stat ::= label
1532	label ::= &lsquo;<b>::</b>&rsquo; Name &lsquo;<b>::</b>&rsquo;
1533</pre>
1534
1535<p>
1536A label is visible in the entire block where it is defined,
1537except
1538inside nested blocks where a label with the same name is defined and
1539inside nested functions.
1540A goto may jump to any visible label as long as it does not
1541enter into the scope of a local variable.
1542
1543
1544<p>
1545Labels and empty statements are called <em>void statements</em>,
1546as they perform no actions.
1547
1548
1549<p>
1550The <b>break</b> statement terminates the execution of a
1551<b>while</b>, <b>repeat</b>, or <b>for</b> loop,
1552skipping to the next statement after the loop:
1553
1554
1555<pre>
1556	stat ::= <b>break</b>
1557</pre><p>
1558A <b>break</b> ends the innermost enclosing loop.
1559
1560
1561<p>
1562The <b>return</b> statement is used to return values
1563from a function or a chunk
1564(which is an anonymous function).
1565
1566Functions can return more than one value,
1567so the syntax for the <b>return</b> statement is
1568
1569<pre>
1570	stat ::= <b>return</b> [explist] [&lsquo;<b>;</b>&rsquo;]
1571</pre>
1572
1573<p>
1574The <b>return</b> statement can only be written
1575as the last statement of a block.
1576If it is really necessary to <b>return</b> in the middle of a block,
1577then an explicit inner block can be used,
1578as in the idiom <code>do return end</code>,
1579because now <b>return</b> is the last statement in its (inner) block.
1580
1581
1582
1583
1584
1585<h3>3.3.5 &ndash; <a name="3.3.5">For Statement</a></h3>
1586
1587<p>
1588
1589The <b>for</b> statement has two forms:
1590one numerical and one generic.
1591
1592
1593<p>
1594The numerical <b>for</b> loop repeats a block of code while a
1595control variable runs through an arithmetic progression.
1596It has the following syntax:
1597
1598<pre>
1599	stat ::= <b>for</b> Name &lsquo;<b>=</b>&rsquo; exp &lsquo;<b>,</b>&rsquo; exp [&lsquo;<b>,</b>&rsquo; exp] <b>do</b> block <b>end</b>
1600</pre><p>
1601The <em>block</em> is repeated for <em>name</em> starting at the value of
1602the first <em>exp</em>, until it passes the second <em>exp</em> by steps of the
1603third <em>exp</em>.
1604More precisely, a <b>for</b> statement like
1605
1606<pre>
1607     for v = <em>e1</em>, <em>e2</em>, <em>e3</em> do <em>block</em> end
1608</pre><p>
1609is equivalent to the code:
1610
1611<pre>
1612     do
1613       local <em>var</em>, <em>limit</em>, <em>step</em> = tonumber(<em>e1</em>), tonumber(<em>e2</em>), tonumber(<em>e3</em>)
1614       if not (<em>var</em> and <em>limit</em> and <em>step</em>) then error() end
1615       <em>var</em> = <em>var</em> - <em>step</em>
1616       while true do
1617         <em>var</em> = <em>var</em> + <em>step</em>
1618         if (<em>step</em> &gt;= 0 and <em>var</em> &gt; <em>limit</em>) or (<em>step</em> &lt; 0 and <em>var</em> &lt; <em>limit</em>) then
1619           break
1620         end
1621         local v = <em>var</em>
1622         <em>block</em>
1623       end
1624     end
1625</pre>
1626
1627<p>
1628Note the following:
1629
1630<ul>
1631
1632<li>
1633All three control expressions are evaluated only once,
1634before the loop starts.
1635They must all result in numbers.
1636</li>
1637
1638<li>
1639<code><em>var</em></code>, <code><em>limit</em></code>, and <code><em>step</em></code> are invisible variables.
1640The names shown here are for explanatory purposes only.
1641</li>
1642
1643<li>
1644If the third expression (the step) is absent,
1645then a step of&nbsp;1 is used.
1646</li>
1647
1648<li>
1649You can use <b>break</b> and <b>goto</b> to exit a <b>for</b> loop.
1650</li>
1651
1652<li>
1653The loop variable <code>v</code> is local to the loop body.
1654If you need its value after the loop,
1655assign it to another variable before exiting the loop.
1656</li>
1657
1658</ul>
1659
1660<p>
1661The generic <b>for</b> statement works over functions,
1662called <em>iterators</em>.
1663On each iteration, the iterator function is called to produce a new value,
1664stopping when this new value is <b>nil</b>.
1665The generic <b>for</b> loop has the following syntax:
1666
1667<pre>
1668	stat ::= <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b>
1669	namelist ::= Name {&lsquo;<b>,</b>&rsquo; Name}
1670</pre><p>
1671A <b>for</b> statement like
1672
1673<pre>
1674     for <em>var_1</em>, &middot;&middot;&middot;, <em>var_n</em> in <em>explist</em> do <em>block</em> end
1675</pre><p>
1676is equivalent to the code:
1677
1678<pre>
1679     do
1680       local <em>f</em>, <em>s</em>, <em>var</em> = <em>explist</em>
1681       while true do
1682         local <em>var_1</em>, &middot;&middot;&middot;, <em>var_n</em> = <em>f</em>(<em>s</em>, <em>var</em>)
1683         if <em>var_1</em> == nil then break end
1684         <em>var</em> = <em>var_1</em>
1685         <em>block</em>
1686       end
1687     end
1688</pre><p>
1689Note the following:
1690
1691<ul>
1692
1693<li>
1694<code><em>explist</em></code> is evaluated only once.
1695Its results are an <em>iterator</em> function,
1696a <em>state</em>,
1697and an initial value for the first <em>iterator variable</em>.
1698</li>
1699
1700<li>
1701<code><em>f</em></code>, <code><em>s</em></code>, and <code><em>var</em></code> are invisible variables.
1702The names are here for explanatory purposes only.
1703</li>
1704
1705<li>
1706You can use <b>break</b> to exit a <b>for</b> loop.
1707</li>
1708
1709<li>
1710The loop variables <code><em>var_i</em></code> are local to the loop;
1711you cannot use their values after the <b>for</b> ends.
1712If you need these values,
1713then assign them to other variables before breaking or exiting the loop.
1714</li>
1715
1716</ul>
1717
1718
1719
1720
1721<h3>3.3.6 &ndash; <a name="3.3.6">Function Calls as Statements</a></h3><p>
1722To allow possible side-effects,
1723function calls can be executed as statements:
1724
1725<pre>
1726	stat ::= functioncall
1727</pre><p>
1728In this case, all returned values are thrown away.
1729Function calls are explained in <a href="#3.4.10">&sect;3.4.10</a>.
1730
1731
1732
1733
1734
1735<h3>3.3.7 &ndash; <a name="3.3.7">Local Declarations</a></h3><p>
1736Local variables can be declared anywhere inside a block.
1737The declaration can include an initial assignment:
1738
1739<pre>
1740	stat ::= <b>local</b> namelist [&lsquo;<b>=</b>&rsquo; explist]
1741</pre><p>
1742If present, an initial assignment has the same semantics
1743of a multiple assignment (see <a href="#3.3.3">&sect;3.3.3</a>).
1744Otherwise, all variables are initialized with <b>nil</b>.
1745
1746
1747<p>
1748A chunk is also a block (see <a href="#3.3.2">&sect;3.3.2</a>),
1749and so local variables can be declared in a chunk outside any explicit block.
1750
1751
1752<p>
1753The visibility rules for local variables are explained in <a href="#3.5">&sect;3.5</a>.
1754
1755
1756
1757
1758
1759
1760
1761<h2>3.4 &ndash; <a name="3.4">Expressions</a></h2>
1762
1763<p>
1764The basic expressions in Lua are the following:
1765
1766<pre>
1767	exp ::= prefixexp
1768	exp ::= <b>nil</b> | <b>false</b> | <b>true</b>
1769	exp ::= Numeral
1770	exp ::= LiteralString
1771	exp ::= functiondef
1772	exp ::= tableconstructor
1773	exp ::= &lsquo;<b>...</b>&rsquo;
1774	exp ::= exp binop exp
1775	exp ::= unop exp
1776	prefixexp ::= var | functioncall | &lsquo;<b>(</b>&rsquo; exp &lsquo;<b>)</b>&rsquo;
1777</pre>
1778
1779<p>
1780Numerals and literal strings are explained in <a href="#3.1">&sect;3.1</a>;
1781variables are explained in <a href="#3.2">&sect;3.2</a>;
1782function definitions are explained in <a href="#3.4.11">&sect;3.4.11</a>;
1783function calls are explained in <a href="#3.4.10">&sect;3.4.10</a>;
1784table constructors are explained in <a href="#3.4.9">&sect;3.4.9</a>.
1785Vararg expressions,
1786denoted by three dots ('<code>...</code>'), can only be used when
1787directly inside a vararg function;
1788they are explained in <a href="#3.4.11">&sect;3.4.11</a>.
1789
1790
1791<p>
1792Binary operators comprise arithmetic operators (see <a href="#3.4.1">&sect;3.4.1</a>),
1793bitwise operators (see <a href="#3.4.2">&sect;3.4.2</a>),
1794relational operators (see <a href="#3.4.4">&sect;3.4.4</a>), logical operators (see <a href="#3.4.5">&sect;3.4.5</a>),
1795and the concatenation operator (see <a href="#3.4.6">&sect;3.4.6</a>).
1796Unary operators comprise the unary minus (see <a href="#3.4.1">&sect;3.4.1</a>),
1797the unary bitwise not (see <a href="#3.4.2">&sect;3.4.2</a>),
1798the unary logical <b>not</b> (see <a href="#3.4.5">&sect;3.4.5</a>),
1799and the unary <em>length operator</em> (see <a href="#3.4.7">&sect;3.4.7</a>).
1800
1801
1802<p>
1803Both function calls and vararg expressions can result in multiple values.
1804If a function call is used as a statement (see <a href="#3.3.6">&sect;3.3.6</a>),
1805then its return list is adjusted to zero elements,
1806thus discarding all returned values.
1807If an expression is used as the last (or the only) element
1808of a list of expressions,
1809then no adjustment is made
1810(unless the expression is enclosed in parentheses).
1811In all other contexts,
1812Lua adjusts the result list to one element,
1813either discarding all values except the first one
1814or adding a single <b>nil</b> if there are no values.
1815
1816
1817<p>
1818Here are some examples:
1819
1820<pre>
1821     f()                -- adjusted to 0 results
1822     g(f(), x)          -- f() is adjusted to 1 result
1823     g(x, f())          -- g gets x plus all results from f()
1824     a,b,c = f(), x     -- f() is adjusted to 1 result (c gets nil)
1825     a,b = ...          -- a gets the first vararg parameter, b gets
1826                        -- the second (both a and b can get nil if there
1827                        -- is no corresponding vararg parameter)
1828
1829     a,b,c = x, f()     -- f() is adjusted to 2 results
1830     a,b,c = f()        -- f() is adjusted to 3 results
1831     return f()         -- returns all results from f()
1832     return ...         -- returns all received vararg parameters
1833     return x,y,f()     -- returns x, y, and all results from f()
1834     {f()}              -- creates a list with all results from f()
1835     {...}              -- creates a list with all vararg parameters
1836     {f(), nil}         -- f() is adjusted to 1 result
1837</pre>
1838
1839<p>
1840Any expression enclosed in parentheses always results in only one value.
1841Thus,
1842<code>(f(x,y,z))</code> is always a single value,
1843even if <code>f</code> returns several values.
1844(The value of <code>(f(x,y,z))</code> is the first value returned by <code>f</code>
1845or <b>nil</b> if <code>f</code> does not return any values.)
1846
1847
1848
1849<h3>3.4.1 &ndash; <a name="3.4.1">Arithmetic Operators</a></h3><p>
1850Lua supports the following arithmetic operators:
1851
1852<ul>
1853<li><b><code>+</code>: </b>addition</li>
1854<li><b><code>-</code>: </b>subtraction</li>
1855<li><b><code>*</code>: </b>multiplication</li>
1856<li><b><code>/</code>: </b>float division</li>
1857<li><b><code>//</code>: </b>floor division</li>
1858<li><b><code>%</code>: </b>modulo</li>
1859<li><b><code>^</code>: </b>exponentiation</li>
1860<li><b><code>-</code>: </b>unary minus</li>
1861</ul>
1862
1863<p>
1864With the exception of exponentiation and float division,
1865the arithmetic operators work as follows:
1866If both operands are integers,
1867the operation is performed over integers and the result is an integer.
1868Otherwise, if both operands are numbers
1869or strings that can be converted to
1870numbers (see <a href="#3.4.3">&sect;3.4.3</a>),
1871then they are converted to floats,
1872the operation is performed following the usual rules
1873for floating-point arithmetic
1874(usually the IEEE 754 standard),
1875and the result is a float.
1876
1877
1878<p>
1879Exponentiation and float division (<code>/</code>)
1880always convert their operands to floats
1881and the result is always a float.
1882Exponentiation uses the ISO&nbsp;C function <code>pow</code>,
1883so that it works for non-integer exponents too.
1884
1885
1886<p>
1887Floor division (<code>//</code>) is a division
1888that rounds the quotient towards minus infinity,
1889that is, the floor of the division of its operands.
1890
1891
1892<p>
1893Modulo is defined as the remainder of a division
1894that rounds the quotient towards minus infinity (floor division).
1895
1896
1897<p>
1898In case of overflows in integer arithmetic,
1899all operations <em>wrap around</em>,
1900according to the usual rules of two-complement arithmetic.
1901(In other words,
1902they return the unique representable integer
1903that is equal modulo <em>2<sup>64</sup></em> to the mathematical result.)
1904
1905
1906
1907<h3>3.4.2 &ndash; <a name="3.4.2">Bitwise Operators</a></h3><p>
1908Lua supports the following bitwise operators:
1909
1910<ul>
1911<li><b><code>&amp;</code>: </b>bitwise and</li>
1912<li><b><code>&#124;</code>: </b>bitwise or</li>
1913<li><b><code>~</code>: </b>bitwise exclusive or</li>
1914<li><b><code>&gt;&gt;</code>: </b>right shift</li>
1915<li><b><code>&lt;&lt;</code>: </b>left shift</li>
1916<li><b><code>~</code>: </b>unary bitwise not</li>
1917</ul>
1918
1919<p>
1920All bitwise operations convert its operands to integers
1921(see <a href="#3.4.3">&sect;3.4.3</a>),
1922operate on all bits of those integers,
1923and result in an integer.
1924
1925
1926<p>
1927Both right and left shifts fill the vacant bits with zeros.
1928Negative displacements shift to the other direction;
1929displacements with absolute values equal to or higher than
1930the number of bits in an integer
1931result in zero (as all bits are shifted out).
1932
1933
1934
1935
1936
1937<h3>3.4.3 &ndash; <a name="3.4.3">Coercions and Conversions</a></h3><p>
1938Lua provides some automatic conversions between some
1939types and representations at run time.
1940Bitwise operators always convert float operands to integers.
1941Exponentiation and float division
1942always convert integer operands to floats.
1943All other arithmetic operations applied to mixed numbers
1944(integers and floats) convert the integer operand to a float;
1945this is called the <em>usual rule</em>.
1946The C API also converts both integers to floats and
1947floats to integers, as needed.
1948Moreover, string concatenation accepts numbers as arguments,
1949besides strings.
1950
1951
1952<p>
1953Lua also converts strings to numbers,
1954whenever a number is expected.
1955
1956
1957<p>
1958In a conversion from integer to float,
1959if the integer value has an exact representation as a float,
1960that is the result.
1961Otherwise,
1962the conversion gets the nearest higher or
1963the nearest lower representable value.
1964This kind of conversion never fails.
1965
1966
1967<p>
1968The conversion from float to integer
1969checks whether the float has an exact representation as an integer
1970(that is, the float has an integral value and
1971it is in the range of integer representation).
1972If it does, that representation is the result.
1973Otherwise, the conversion fails.
1974
1975
1976<p>
1977The conversion from strings to numbers goes as follows:
1978First, the string is converted to an integer or a float,
1979following its syntax and the rules of the Lua lexer.
1980(The string may have also leading and trailing spaces and a sign.)
1981Then, the resulting number (float or integer)
1982is converted to the type (float or integer) required by the context
1983(e.g., the operation that forced the conversion).
1984
1985
1986<p>
1987The conversion from numbers to strings uses a
1988non-specified human-readable format.
1989For complete control over how numbers are converted to strings,
1990use the <code>format</code> function from the string library
1991(see <a href="#pdf-string.format"><code>string.format</code></a>).
1992
1993
1994
1995
1996
1997<h3>3.4.4 &ndash; <a name="3.4.4">Relational Operators</a></h3><p>
1998Lua supports the following relational operators:
1999
2000<ul>
2001<li><b><code>==</code>: </b>equality</li>
2002<li><b><code>~=</code>: </b>inequality</li>
2003<li><b><code>&lt;</code>: </b>less than</li>
2004<li><b><code>&gt;</code>: </b>greater than</li>
2005<li><b><code>&lt;=</code>: </b>less or equal</li>
2006<li><b><code>&gt;=</code>: </b>greater or equal</li>
2007</ul><p>
2008These operators always result in <b>false</b> or <b>true</b>.
2009
2010
2011<p>
2012Equality (<code>==</code>) first compares the type of its operands.
2013If the types are different, then the result is <b>false</b>.
2014Otherwise, the values of the operands are compared.
2015Strings are compared in the obvious way.
2016Numbers are equal if they denote the same mathematical value.
2017
2018
2019<p>
2020Tables, userdata, and threads
2021are compared by reference:
2022two objects are considered equal only if they are the same object.
2023Every time you create a new object
2024(a table, userdata, or thread),
2025this new object is different from any previously existing object.
2026Closures with the same reference are always equal.
2027Closures with any detectable difference
2028(different behavior, different definition) are always different.
2029
2030
2031<p>
2032You can change the way that Lua compares tables and userdata
2033by using the "eq" metamethod (see <a href="#2.4">&sect;2.4</a>).
2034
2035
2036<p>
2037Equality comparisons do not convert strings to numbers
2038or vice versa.
2039Thus, <code>"0"==0</code> evaluates to <b>false</b>,
2040and <code>t[0]</code> and <code>t["0"]</code> denote different
2041entries in a table.
2042
2043
2044<p>
2045The operator <code>~=</code> is exactly the negation of equality (<code>==</code>).
2046
2047
2048<p>
2049The order operators work as follows.
2050If both arguments are numbers,
2051then they are compared according to their mathematical values
2052(regardless of their subtypes).
2053Otherwise, if both arguments are strings,
2054then their values are compared according to the current locale.
2055Otherwise, Lua tries to call the "lt" or the "le"
2056metamethod (see <a href="#2.4">&sect;2.4</a>).
2057A comparison <code>a &gt; b</code> is translated to <code>b &lt; a</code>
2058and <code>a &gt;= b</code> is translated to <code>b &lt;= a</code>.
2059
2060
2061<p>
2062Following the IEEE 754 standard,
2063NaN is considered neither smaller than,
2064nor equal to, nor greater than any value (including itself).
2065
2066
2067
2068
2069
2070<h3>3.4.5 &ndash; <a name="3.4.5">Logical Operators</a></h3><p>
2071The logical operators in Lua are
2072<b>and</b>, <b>or</b>, and <b>not</b>.
2073Like the control structures (see <a href="#3.3.4">&sect;3.3.4</a>),
2074all logical operators consider both <b>false</b> and <b>nil</b> as false
2075and anything else as true.
2076
2077
2078<p>
2079The negation operator <b>not</b> always returns <b>false</b> or <b>true</b>.
2080The conjunction operator <b>and</b> returns its first argument
2081if this value is <b>false</b> or <b>nil</b>;
2082otherwise, <b>and</b> returns its second argument.
2083The disjunction operator <b>or</b> returns its first argument
2084if this value is different from <b>nil</b> and <b>false</b>;
2085otherwise, <b>or</b> returns its second argument.
2086Both <b>and</b> and <b>or</b> use short-circuit evaluation;
2087that is,
2088the second operand is evaluated only if necessary.
2089Here are some examples:
2090
2091<pre>
2092     10 or 20            --&gt; 10
2093     10 or error()       --&gt; 10
2094     nil or "a"          --&gt; "a"
2095     nil and 10          --&gt; nil
2096     false and error()   --&gt; false
2097     false and nil       --&gt; false
2098     false or nil        --&gt; nil
2099     10 and 20           --&gt; 20
2100</pre><p>
2101(In this manual,
2102<code>--&gt;</code> indicates the result of the preceding expression.)
2103
2104
2105
2106
2107
2108<h3>3.4.6 &ndash; <a name="3.4.6">Concatenation</a></h3><p>
2109The string concatenation operator in Lua is
2110denoted by two dots ('<code>..</code>').
2111If both operands are strings or numbers, then they are converted to
2112strings according to the rules described in <a href="#3.4.3">&sect;3.4.3</a>.
2113Otherwise, the <code>__concat</code> metamethod is called (see <a href="#2.4">&sect;2.4</a>).
2114
2115
2116
2117
2118
2119<h3>3.4.7 &ndash; <a name="3.4.7">The Length Operator</a></h3>
2120
2121<p>
2122The length operator is denoted by the unary prefix operator <code>#</code>.
2123The length of a string is its number of bytes
2124(that is, the usual meaning of string length when each
2125character is one byte).
2126
2127
2128<p>
2129A program can modify the behavior of the length operator for
2130any value but strings through the <code>__len</code> metamethod (see <a href="#2.4">&sect;2.4</a>).
2131
2132
2133<p>
2134Unless a <code>__len</code> metamethod is given,
2135the length of a table <code>t</code> is only defined if the
2136table is a <em>sequence</em>,
2137that is,
2138the set of its positive numeric keys is equal to <em>{1..n}</em>
2139for some non-negative integer <em>n</em>.
2140In that case, <em>n</em> is its length.
2141Note that a table like
2142
2143<pre>
2144     {10, 20, nil, 40}
2145</pre><p>
2146is not a sequence, because it has the key <code>4</code>
2147but does not have the key <code>3</code>.
2148(So, there is no <em>n</em> such that the set <em>{1..n}</em> is equal
2149to the set of positive numeric keys of that table.)
2150Note, however, that non-numeric keys do not interfere
2151with whether a table is a sequence.
2152
2153
2154
2155
2156
2157<h3>3.4.8 &ndash; <a name="3.4.8">Precedence</a></h3><p>
2158Operator precedence in Lua follows the table below,
2159from lower to higher priority:
2160
2161<pre>
2162     or
2163     and
2164     &lt;     &gt;     &lt;=    &gt;=    ~=    ==
2165     |
2166     ~
2167     &amp;
2168     &lt;&lt;    &gt;&gt;
2169     ..
2170     +     -
2171     *     /     //    %
2172     unary operators (not   #     -     ~)
2173     ^
2174</pre><p>
2175As usual,
2176you can use parentheses to change the precedences of an expression.
2177The concatenation ('<code>..</code>') and exponentiation ('<code>^</code>')
2178operators are right associative.
2179All other binary operators are left associative.
2180
2181
2182
2183
2184
2185<h3>3.4.9 &ndash; <a name="3.4.9">Table Constructors</a></h3><p>
2186Table constructors are expressions that create tables.
2187Every time a constructor is evaluated, a new table is created.
2188A constructor can be used to create an empty table
2189or to create a table and initialize some of its fields.
2190The general syntax for constructors is
2191
2192<pre>
2193	tableconstructor ::= &lsquo;<b>{</b>&rsquo; [fieldlist] &lsquo;<b>}</b>&rsquo;
2194	fieldlist ::= field {fieldsep field} [fieldsep]
2195	field ::= &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; &lsquo;<b>=</b>&rsquo; exp | Name &lsquo;<b>=</b>&rsquo; exp | exp
2196	fieldsep ::= &lsquo;<b>,</b>&rsquo; | &lsquo;<b>;</b>&rsquo;
2197</pre>
2198
2199<p>
2200Each field of the form <code>[exp1] = exp2</code> adds to the new table an entry
2201with key <code>exp1</code> and value <code>exp2</code>.
2202A field of the form <code>name = exp</code> is equivalent to
2203<code>["name"] = exp</code>.
2204Finally, fields of the form <code>exp</code> are equivalent to
2205<code>[i] = exp</code>, where <code>i</code> are consecutive integers
2206starting with 1.
2207Fields in the other formats do not affect this counting.
2208For example,
2209
2210<pre>
2211     a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }
2212</pre><p>
2213is equivalent to
2214
2215<pre>
2216     do
2217       local t = {}
2218       t[f(1)] = g
2219       t[1] = "x"         -- 1st exp
2220       t[2] = "y"         -- 2nd exp
2221       t.x = 1            -- t["x"] = 1
2222       t[3] = f(x)        -- 3rd exp
2223       t[30] = 23
2224       t[4] = 45          -- 4th exp
2225       a = t
2226     end
2227</pre>
2228
2229<p>
2230The order of the assignments in a constructor is undefined.
2231(This order would be relevant only when there are repeated keys.)
2232
2233
2234<p>
2235If the last field in the list has the form <code>exp</code>
2236and the expression is a function call or a vararg expression,
2237then all values returned by this expression enter the list consecutively
2238(see <a href="#3.4.10">&sect;3.4.10</a>).
2239
2240
2241<p>
2242The field list can have an optional trailing separator,
2243as a convenience for machine-generated code.
2244
2245
2246
2247
2248
2249<h3>3.4.10 &ndash; <a name="3.4.10">Function Calls</a></h3><p>
2250A function call in Lua has the following syntax:
2251
2252<pre>
2253	functioncall ::= prefixexp args
2254</pre><p>
2255In a function call,
2256first prefixexp and args are evaluated.
2257If the value of prefixexp has type <em>function</em>,
2258then this function is called
2259with the given arguments.
2260Otherwise, the prefixexp "call" metamethod is called,
2261having as first parameter the value of prefixexp,
2262followed by the original call arguments
2263(see <a href="#2.4">&sect;2.4</a>).
2264
2265
2266<p>
2267The form
2268
2269<pre>
2270	functioncall ::= prefixexp &lsquo;<b>:</b>&rsquo; Name args
2271</pre><p>
2272can be used to call "methods".
2273A call <code>v:name(<em>args</em>)</code>
2274is syntactic sugar for <code>v.name(v,<em>args</em>)</code>,
2275except that <code>v</code> is evaluated only once.
2276
2277
2278<p>
2279Arguments have the following syntax:
2280
2281<pre>
2282	args ::= &lsquo;<b>(</b>&rsquo; [explist] &lsquo;<b>)</b>&rsquo;
2283	args ::= tableconstructor
2284	args ::= LiteralString
2285</pre><p>
2286All argument expressions are evaluated before the call.
2287A call of the form <code>f{<em>fields</em>}</code> is
2288syntactic sugar for <code>f({<em>fields</em>})</code>;
2289that is, the argument list is a single new table.
2290A call of the form <code>f'<em>string</em>'</code>
2291(or <code>f"<em>string</em>"</code> or <code>f[[<em>string</em>]]</code>)
2292is syntactic sugar for <code>f('<em>string</em>')</code>;
2293that is, the argument list is a single literal string.
2294
2295
2296<p>
2297A call of the form <code>return <em>functioncall</em></code> is called
2298a <em>tail call</em>.
2299Lua implements <em>proper tail calls</em>
2300(or <em>proper tail recursion</em>):
2301in a tail call,
2302the called function reuses the stack entry of the calling function.
2303Therefore, there is no limit on the number of nested tail calls that
2304a program can execute.
2305However, a tail call erases any debug information about the
2306calling function.
2307Note that a tail call only happens with a particular syntax,
2308where the <b>return</b> has one single function call as argument;
2309this syntax makes the calling function return exactly
2310the returns of the called function.
2311So, none of the following examples are tail calls:
2312
2313<pre>
2314     return (f(x))        -- results adjusted to 1
2315     return 2 * f(x)
2316     return x, f(x)       -- additional results
2317     f(x); return         -- results discarded
2318     return x or f(x)     -- results adjusted to 1
2319</pre>
2320
2321
2322
2323
2324<h3>3.4.11 &ndash; <a name="3.4.11">Function Definitions</a></h3>
2325
2326<p>
2327The syntax for function definition is
2328
2329<pre>
2330	functiondef ::= <b>function</b> funcbody
2331	funcbody ::= &lsquo;<b>(</b>&rsquo; [parlist] &lsquo;<b>)</b>&rsquo; block <b>end</b>
2332</pre>
2333
2334<p>
2335The following syntactic sugar simplifies function definitions:
2336
2337<pre>
2338	stat ::= <b>function</b> funcname funcbody
2339	stat ::= <b>local</b> <b>function</b> Name funcbody
2340	funcname ::= Name {&lsquo;<b>.</b>&rsquo; Name} [&lsquo;<b>:</b>&rsquo; Name]
2341</pre><p>
2342The statement
2343
2344<pre>
2345     function f () <em>body</em> end
2346</pre><p>
2347translates to
2348
2349<pre>
2350     f = function () <em>body</em> end
2351</pre><p>
2352The statement
2353
2354<pre>
2355     function t.a.b.c.f () <em>body</em> end
2356</pre><p>
2357translates to
2358
2359<pre>
2360     t.a.b.c.f = function () <em>body</em> end
2361</pre><p>
2362The statement
2363
2364<pre>
2365     local function f () <em>body</em> end
2366</pre><p>
2367translates to
2368
2369<pre>
2370     local f; f = function () <em>body</em> end
2371</pre><p>
2372not to
2373
2374<pre>
2375     local f = function () <em>body</em> end
2376</pre><p>
2377(This only makes a difference when the body of the function
2378contains references to <code>f</code>.)
2379
2380
2381<p>
2382A function definition is an executable expression,
2383whose value has type <em>function</em>.
2384When Lua precompiles a chunk,
2385all its function bodies are precompiled too.
2386Then, whenever Lua executes the function definition,
2387the function is <em>instantiated</em> (or <em>closed</em>).
2388This function instance (or <em>closure</em>)
2389is the final value of the expression.
2390
2391
2392<p>
2393Parameters act as local variables that are
2394initialized with the argument values:
2395
2396<pre>
2397	parlist ::= namelist [&lsquo;<b>,</b>&rsquo; &lsquo;<b>...</b>&rsquo;] | &lsquo;<b>...</b>&rsquo;
2398</pre><p>
2399When a function is called,
2400the list of arguments is adjusted to
2401the length of the list of parameters,
2402unless the function is a <em>vararg function</em>,
2403which is indicated by three dots ('<code>...</code>')
2404at the end of its parameter list.
2405A vararg function does not adjust its argument list;
2406instead, it collects all extra arguments and supplies them
2407to the function through a <em>vararg expression</em>,
2408which is also written as three dots.
2409The value of this expression is a list of all actual extra arguments,
2410similar to a function with multiple results.
2411If a vararg expression is used inside another expression
2412or in the middle of a list of expressions,
2413then its return list is adjusted to one element.
2414If the expression is used as the last element of a list of expressions,
2415then no adjustment is made
2416(unless that last expression is enclosed in parentheses).
2417
2418
2419<p>
2420As an example, consider the following definitions:
2421
2422<pre>
2423     function f(a, b) end
2424     function g(a, b, ...) end
2425     function r() return 1,2,3 end
2426</pre><p>
2427Then, we have the following mapping from arguments to parameters and
2428to the vararg expression:
2429
2430<pre>
2431     CALL            PARAMETERS
2432
2433     f(3)             a=3, b=nil
2434     f(3, 4)          a=3, b=4
2435     f(3, 4, 5)       a=3, b=4
2436     f(r(), 10)       a=1, b=10
2437     f(r())           a=1, b=2
2438
2439     g(3)             a=3, b=nil, ... --&gt;  (nothing)
2440     g(3, 4)          a=3, b=4,   ... --&gt;  (nothing)
2441     g(3, 4, 5, 8)    a=3, b=4,   ... --&gt;  5  8
2442     g(5, r())        a=5, b=1,   ... --&gt;  2  3
2443</pre>
2444
2445<p>
2446Results are returned using the <b>return</b> statement (see <a href="#3.3.4">&sect;3.3.4</a>).
2447If control reaches the end of a function
2448without encountering a <b>return</b> statement,
2449then the function returns with no results.
2450
2451
2452<p>
2453
2454There is a system-dependent limit on the number of values
2455that a function may return.
2456This limit is guaranteed to be larger than 1000.
2457
2458
2459<p>
2460The <em>colon</em> syntax
2461is used for defining <em>methods</em>,
2462that is, functions that have an implicit extra parameter <code>self</code>.
2463Thus, the statement
2464
2465<pre>
2466     function t.a.b.c:f (<em>params</em>) <em>body</em> end
2467</pre><p>
2468is syntactic sugar for
2469
2470<pre>
2471     t.a.b.c.f = function (self, <em>params</em>) <em>body</em> end
2472</pre>
2473
2474
2475
2476
2477
2478
2479<h2>3.5 &ndash; <a name="3.5">Visibility Rules</a></h2>
2480
2481<p>
2482
2483Lua is a lexically scoped language.
2484The scope of a local variable begins at the first statement after
2485its declaration and lasts until the last non-void statement
2486of the innermost block that includes the declaration.
2487Consider the following example:
2488
2489<pre>
2490     x = 10                -- global variable
2491     do                    -- new block
2492       local x = x         -- new 'x', with value 10
2493       print(x)            --&gt; 10
2494       x = x+1
2495       do                  -- another block
2496         local x = x+1     -- another 'x'
2497         print(x)          --&gt; 12
2498       end
2499       print(x)            --&gt; 11
2500     end
2501     print(x)              --&gt; 10  (the global one)
2502</pre>
2503
2504<p>
2505Notice that, in a declaration like <code>local x = x</code>,
2506the new <code>x</code> being declared is not in scope yet,
2507and so the second <code>x</code> refers to the outside variable.
2508
2509
2510<p>
2511Because of the lexical scoping rules,
2512local variables can be freely accessed by functions
2513defined inside their scope.
2514A local variable used by an inner function is called
2515an <em>upvalue</em>, or <em>external local variable</em>,
2516inside the inner function.
2517
2518
2519<p>
2520Notice that each execution of a <b>local</b> statement
2521defines new local variables.
2522Consider the following example:
2523
2524<pre>
2525     a = {}
2526     local x = 20
2527     for i=1,10 do
2528       local y = 0
2529       a[i] = function () y=y+1; return x+y end
2530     end
2531</pre><p>
2532The loop creates ten closures
2533(that is, ten instances of the anonymous function).
2534Each of these closures uses a different <code>y</code> variable,
2535while all of them share the same <code>x</code>.
2536
2537
2538
2539
2540
2541<h1>4 &ndash; <a name="4">The Application Program Interface</a></h1>
2542
2543<p>
2544
2545This section describes the C&nbsp;API for Lua, that is,
2546the set of C&nbsp;functions available to the host program to communicate
2547with Lua.
2548All API functions and related types and constants
2549are declared in the header file <a name="pdf-lua.h"><code>lua.h</code></a>.
2550
2551
2552<p>
2553Even when we use the term "function",
2554any facility in the API may be provided as a macro instead.
2555Except where stated otherwise,
2556all such macros use each of their arguments exactly once
2557(except for the first argument, which is always a Lua state),
2558and so do not generate any hidden side-effects.
2559
2560
2561<p>
2562As in most C&nbsp;libraries,
2563the Lua API functions do not check their arguments for validity or consistency.
2564However, you can change this behavior by compiling Lua
2565with the macro <a name="pdf-LUA_USE_APICHECK"><code>LUA_USE_APICHECK</code></a> defined.
2566
2567
2568
2569<h2>4.1 &ndash; <a name="4.1">The Stack</a></h2>
2570
2571<p>
2572Lua uses a <em>virtual stack</em> to pass values to and from C.
2573Each element in this stack represents a Lua value
2574(<b>nil</b>, number, string, etc.).
2575
2576
2577<p>
2578Whenever Lua calls C, the called function gets a new stack,
2579which is independent of previous stacks and of stacks of
2580C&nbsp;functions that are still active.
2581This stack initially contains any arguments to the C&nbsp;function
2582and it is where the C&nbsp;function pushes its results
2583to be returned to the caller (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
2584
2585
2586<p>
2587For convenience,
2588most query operations in the API do not follow a strict stack discipline.
2589Instead, they can refer to any element in the stack
2590by using an <em>index</em>:
2591A positive index represents an absolute stack position
2592(starting at&nbsp;1);
2593a negative index represents an offset relative to the top of the stack.
2594More specifically, if the stack has <em>n</em> elements,
2595then index&nbsp;1 represents the first element
2596(that is, the element that was pushed onto the stack first)
2597and
2598index&nbsp;<em>n</em> represents the last element;
2599index&nbsp;-1 also represents the last element
2600(that is, the element at the&nbsp;top)
2601and index <em>-n</em> represents the first element.
2602
2603
2604
2605
2606
2607<h2>4.2 &ndash; <a name="4.2">Stack Size</a></h2>
2608
2609<p>
2610When you interact with the Lua API,
2611you are responsible for ensuring consistency.
2612In particular,
2613<em>you are responsible for controlling stack overflow</em>.
2614You can use the function <a href="#lua_checkstack"><code>lua_checkstack</code></a>
2615to ensure that the stack has enough space for pushing new elements.
2616
2617
2618<p>
2619Whenever Lua calls C,
2620it ensures that the stack has space for
2621at least <a name="pdf-LUA_MINSTACK"><code>LUA_MINSTACK</code></a> extra slots.
2622<code>LUA_MINSTACK</code> is defined as 20,
2623so that usually you do not have to worry about stack space
2624unless your code has loops pushing elements onto the stack.
2625
2626
2627<p>
2628When you call a Lua function
2629without a fixed number of results (see <a href="#lua_call"><code>lua_call</code></a>),
2630Lua ensures that the stack has enough space for all results,
2631but it does not ensure any extra space.
2632So, before pushing anything in the stack after such a call
2633you should use <a href="#lua_checkstack"><code>lua_checkstack</code></a>.
2634
2635
2636
2637
2638
2639<h2>4.3 &ndash; <a name="4.3">Valid and Acceptable Indices</a></h2>
2640
2641<p>
2642Any function in the API that receives stack indices
2643works only with <em>valid indices</em> or <em>acceptable indices</em>.
2644
2645
2646<p>
2647A <em>valid index</em> is an index that refers to a
2648position that stores a modifiable Lua value.
2649It comprises stack indices between&nbsp;1 and the stack top
2650(<code>1 &le; abs(index) &le; top</code>)
2651
2652plus <em>pseudo-indices</em>,
2653which represent some positions that are accessible to C&nbsp;code
2654but that are not in the stack.
2655Pseudo-indices are used to access the registry (see <a href="#4.5">&sect;4.5</a>)
2656and the upvalues of a C&nbsp;function (see <a href="#4.4">&sect;4.4</a>).
2657
2658
2659<p>
2660Functions that do not need a specific mutable position,
2661but only a value (e.g., query functions),
2662can be called with acceptable indices.
2663An <em>acceptable index</em> can be any valid index,
2664but it also can be any positive index after the stack top
2665within the space allocated for the stack,
2666that is, indices up to the stack size.
2667(Note that 0 is never an acceptable index.)
2668Except when noted otherwise,
2669functions in the API work with acceptable indices.
2670
2671
2672<p>
2673Acceptable indices serve to avoid extra tests
2674against the stack top when querying the stack.
2675For instance, a C&nbsp;function can query its third argument
2676without the need to first check whether there is a third argument,
2677that is, without the need to check whether 3 is a valid index.
2678
2679
2680<p>
2681For functions that can be called with acceptable indices,
2682any non-valid index is treated as if it
2683contains a value of a virtual type <a name="pdf-LUA_TNONE"><code>LUA_TNONE</code></a>,
2684which behaves like a nil value.
2685
2686
2687
2688
2689
2690<h2>4.4 &ndash; <a name="4.4">C Closures</a></h2>
2691
2692<p>
2693When a C&nbsp;function is created,
2694it is possible to associate some values with it,
2695thus creating a <em>C&nbsp;closure</em>
2696(see <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>);
2697these values are called <em>upvalues</em> and are
2698accessible to the function whenever it is called.
2699
2700
2701<p>
2702Whenever a C&nbsp;function is called,
2703its upvalues are located at specific pseudo-indices.
2704These pseudo-indices are produced by the macro
2705<a href="#lua_upvalueindex"><code>lua_upvalueindex</code></a>.
2706The first upvalue associated with a function is at index
2707<code>lua_upvalueindex(1)</code>, and so on.
2708Any access to <code>lua_upvalueindex(<em>n</em>)</code>,
2709where <em>n</em> is greater than the number of upvalues of the
2710current function
2711(but not greater than 256,
2712which is one plus the maximum number of upvalues in a closure),
2713produces an acceptable but invalid index.
2714
2715
2716
2717
2718
2719<h2>4.5 &ndash; <a name="4.5">Registry</a></h2>
2720
2721<p>
2722Lua provides a <em>registry</em>,
2723a predefined table that can be used by any C&nbsp;code to
2724store whatever Lua values it needs to store.
2725The registry table is always located at pseudo-index
2726<a name="pdf-LUA_REGISTRYINDEX"><code>LUA_REGISTRYINDEX</code></a>.
2727Any C&nbsp;library can store data into this table,
2728but it must take care to choose keys
2729that are different from those used
2730by other libraries, to avoid collisions.
2731Typically, you should use as key a string containing your library name,
2732or a light userdata with the address of a C&nbsp;object in your code,
2733or any Lua object created by your code.
2734As with variable names,
2735string keys starting with an underscore followed by
2736uppercase letters are reserved for Lua.
2737
2738
2739<p>
2740The integer keys in the registry are used
2741by the reference mechanism (see <a href="#luaL_ref"><code>luaL_ref</code></a>)
2742and by some predefined values.
2743Therefore, integer keys must not be used for other purposes.
2744
2745
2746<p>
2747When you create a new Lua state,
2748its registry comes with some predefined values.
2749These predefined values are indexed with integer keys
2750defined as constants in <code>lua.h</code>.
2751The following constants are defined:
2752
2753<ul>
2754<li><b><a name="pdf-LUA_RIDX_MAINTHREAD"><code>LUA_RIDX_MAINTHREAD</code></a>: </b> At this index the registry has
2755the main thread of the state.
2756(The main thread is the one created together with the state.)
2757</li>
2758
2759<li><b><a name="pdf-LUA_RIDX_GLOBALS"><code>LUA_RIDX_GLOBALS</code></a>: </b> At this index the registry has
2760the global environment.
2761</li>
2762</ul>
2763
2764
2765
2766
2767<h2>4.6 &ndash; <a name="4.6">Error Handling in C</a></h2>
2768
2769<p>
2770Internally, Lua uses the C <code>longjmp</code> facility to handle errors.
2771(Lua will use exceptions if you compile it as C++;
2772search for <code>LUAI_THROW</code> in the source code for details.)
2773When Lua faces any error
2774(such as a memory allocation error, type errors, syntax errors,
2775and runtime errors)
2776it <em>raises</em> an error;
2777that is, it does a long jump.
2778A <em>protected environment</em> uses <code>setjmp</code>
2779to set a recovery point;
2780any error jumps to the most recent active recovery point.
2781
2782
2783<p>
2784If an error happens outside any protected environment,
2785Lua calls a <em>panic function</em> (see <a href="#lua_atpanic"><code>lua_atpanic</code></a>)
2786and then calls <code>abort</code>,
2787thus exiting the host application.
2788Your panic function can avoid this exit by
2789never returning
2790(e.g., doing a long jump to your own recovery point outside Lua).
2791
2792
2793<p>
2794The panic function runs as if it were a message handler (see <a href="#2.3">&sect;2.3</a>);
2795in particular, the error message is at the top of the stack.
2796However, there is no guarantee about stack space.
2797To push anything on the stack,
2798the panic function must first check the available space (see <a href="#4.2">&sect;4.2</a>).
2799
2800
2801<p>
2802Most functions in the API can raise an error,
2803for instance due to a memory allocation error.
2804The documentation for each function indicates whether
2805it can raise errors.
2806
2807
2808<p>
2809Inside a C&nbsp;function you can raise an error by calling <a href="#lua_error"><code>lua_error</code></a>.
2810
2811
2812
2813
2814
2815<h2>4.7 &ndash; <a name="4.7">Handling Yields in C</a></h2>
2816
2817<p>
2818Internally, Lua uses the C <code>longjmp</code> facility to yield a coroutine.
2819Therefore, if a C function <code>foo</code> calls an API function
2820and this API function yields
2821(directly or indirectly by calling another function that yields),
2822Lua cannot return to <code>foo</code> any more,
2823because the <code>longjmp</code> removes its frame from the C stack.
2824
2825
2826<p>
2827To avoid this kind of problem,
2828Lua raises an error whenever it tries to yield across an API call,
2829except for three functions:
2830<a href="#lua_yieldk"><code>lua_yieldk</code></a>, <a href="#lua_callk"><code>lua_callk</code></a>, and <a href="#lua_pcallk"><code>lua_pcallk</code></a>.
2831All those functions receive a <em>continuation function</em>
2832(as a parameter named <code>k</code>) to continue execution after a yield.
2833
2834
2835<p>
2836We need to set some terminology to explain continuations.
2837We have a C function called from Lua which we will call
2838the <em>original function</em>.
2839This original function then calls one of those three functions in the C API,
2840which we will call the <em>callee function</em>,
2841that then yields the current thread.
2842(This can happen when the callee function is <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
2843or when the callee function is either <a href="#lua_callk"><code>lua_callk</code></a> or <a href="#lua_pcallk"><code>lua_pcallk</code></a>
2844and the function called by them yields.)
2845
2846
2847<p>
2848Suppose the running thread yields while executing the callee function.
2849After the thread resumes,
2850it eventually will finish running the callee function.
2851However,
2852the callee function cannot return to the original function,
2853because its frame in the C stack was destroyed by the yield.
2854Instead, Lua calls a <em>continuation function</em>,
2855which was given as an argument to the callee function.
2856As the name implies,
2857the continuation function should continue the task
2858of the original function.
2859
2860
2861<p>
2862As an illustration, consider the following function:
2863
2864<pre>
2865     int original_function (lua_State *L) {
2866       ...     /* code 1 */
2867       status = lua_pcall(L, n, m, h);  /* calls Lua */
2868       ...     /* code 2 */
2869     }
2870</pre><p>
2871Now we want to allow
2872the Lua code being run by <a href="#lua_pcall"><code>lua_pcall</code></a> to yield.
2873First, we can rewrite our function like here:
2874
2875<pre>
2876     int k (lua_State *L, int status, lua_KContext ctx) {
2877       ...  /* code 2 */
2878     }
2879
2880     int original_function (lua_State *L) {
2881       ...     /* code 1 */
2882       return k(L, lua_pcall(L, n, m, h), ctx);
2883     }
2884</pre><p>
2885In the above code,
2886the new function <code>k</code> is a
2887<em>continuation function</em> (with type <a href="#lua_KFunction"><code>lua_KFunction</code></a>),
2888which should do all the work that the original function
2889was doing after calling <a href="#lua_pcall"><code>lua_pcall</code></a>.
2890Now, we must inform Lua that it must call <code>k</code> if the Lua code
2891being executed by <a href="#lua_pcall"><code>lua_pcall</code></a> gets interrupted in some way
2892(errors or yielding),
2893so we rewrite the code as here,
2894replacing <a href="#lua_pcall"><code>lua_pcall</code></a> by <a href="#lua_pcallk"><code>lua_pcallk</code></a>:
2895
2896<pre>
2897     int original_function (lua_State *L) {
2898       ...     /* code 1 */
2899       return k(L, lua_pcallk(L, n, m, h, ctx2, k), ctx1);
2900     }
2901</pre><p>
2902Note the external, explicit call to the continuation:
2903Lua will call the continuation only if needed, that is,
2904in case of errors or resuming after a yield.
2905If the called function returns normally without ever yielding,
2906<a href="#lua_pcallk"><code>lua_pcallk</code></a> (and <a href="#lua_callk"><code>lua_callk</code></a>) will also return normally.
2907(Of course, instead of calling the continuation in that case,
2908you can do the equivalent work directly inside the original function.)
2909
2910
2911<p>
2912Besides the Lua state,
2913the continuation function has two other parameters:
2914the final status of the call plus the context value (<code>ctx</code>) that
2915was passed originally to <a href="#lua_pcallk"><code>lua_pcallk</code></a>.
2916(Lua does not use this context value;
2917it only passes this value from the original function to the
2918continuation function.)
2919For <a href="#lua_pcallk"><code>lua_pcallk</code></a>,
2920the status is the same value that would be returned by <a href="#lua_pcallk"><code>lua_pcallk</code></a>,
2921except that it is <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> when being executed after a yield
2922(instead of <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>).
2923For <a href="#lua_yieldk"><code>lua_yieldk</code></a> and <a href="#lua_callk"><code>lua_callk</code></a>,
2924the status is always <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> when Lua calls the continuation.
2925(For these two functions,
2926Lua will not call the continuation in case of errors,
2927because they do not handle errors.)
2928Similarly, when using <a href="#lua_callk"><code>lua_callk</code></a>,
2929you should call the continuation function
2930with <a href="#pdf-LUA_OK"><code>LUA_OK</code></a> as the status.
2931(For <a href="#lua_yieldk"><code>lua_yieldk</code></a>, there is not much point in calling
2932directly the continuation function,
2933because <a href="#lua_yieldk"><code>lua_yieldk</code></a> usually does not return.)
2934
2935
2936<p>
2937Lua treats the continuation function as if it were the original function.
2938The continuation function receives the same Lua stack
2939from the original function,
2940in the same state it would be if the callee function had returned.
2941(For instance,
2942after a <a href="#lua_callk"><code>lua_callk</code></a> the function and its arguments are
2943removed from the stack and replaced by the results from the call.)
2944It also has the same upvalues.
2945Whatever it returns is handled by Lua as if it were the return
2946of the original function.
2947
2948
2949
2950
2951
2952<h2>4.8 &ndash; <a name="4.8">Functions and Types</a></h2>
2953
2954<p>
2955Here we list all functions and types from the C&nbsp;API in
2956alphabetical order.
2957Each function has an indicator like this:
2958<span class="apii">[-o, +p, <em>x</em>]</span>
2959
2960
2961<p>
2962The first field, <code>o</code>,
2963is how many elements the function pops from the stack.
2964The second field, <code>p</code>,
2965is how many elements the function pushes onto the stack.
2966(Any function always pushes its results after popping its arguments.)
2967A field in the form <code>x|y</code> means the function can push (or pop)
2968<code>x</code> or <code>y</code> elements,
2969depending on the situation;
2970an interrogation mark '<code>?</code>' means that
2971we cannot know how many elements the function pops/pushes
2972by looking only at its arguments
2973(e.g., they may depend on what is on the stack).
2974The third field, <code>x</code>,
2975tells whether the function may raise errors:
2976'<code>-</code>' means the function never raises any error;
2977'<code>m</code>' means the function may raise memory errors;
2978'<code>e</code>' means the function may raise errors;
2979'<code>v</code>' means the function may raise an error on purpose.
2980
2981
2982
2983<hr><h3><a name="lua_absindex"><code>lua_absindex</code></a></h3><p>
2984<span class="apii">[-0, +0, &ndash;]</span>
2985<pre>int lua_absindex (lua_State *L, int idx);</pre>
2986
2987<p>
2988Converts the acceptable index <code>idx</code>
2989into an equivalent absolute index
2990(that is, one that does not depend on the stack top).
2991
2992
2993
2994
2995
2996<hr><h3><a name="lua_Alloc"><code>lua_Alloc</code></a></h3>
2997<pre>typedef void * (*lua_Alloc) (void *ud,
2998                             void *ptr,
2999                             size_t osize,
3000                             size_t nsize);</pre>
3001
3002<p>
3003The type of the memory-allocation function used by Lua states.
3004The allocator function must provide a
3005functionality similar to <code>realloc</code>,
3006but not exactly the same.
3007Its arguments are
3008<code>ud</code>, an opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>;
3009<code>ptr</code>, a pointer to the block being allocated/reallocated/freed;
3010<code>osize</code>, the original size of the block or some code about what
3011is being allocated;
3012and <code>nsize</code>, the new size of the block.
3013
3014
3015<p>
3016When <code>ptr</code> is not <code>NULL</code>,
3017<code>osize</code> is the size of the block pointed by <code>ptr</code>,
3018that is, the size given when it was allocated or reallocated.
3019
3020
3021<p>
3022When <code>ptr</code> is <code>NULL</code>,
3023<code>osize</code> encodes the kind of object that Lua is allocating.
3024<code>osize</code> is any of
3025<a href="#pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>, <a href="#pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>, <a href="#pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>,
3026<a href="#pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>, or <a href="#pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a> when (and only when)
3027Lua is creating a new object of that type.
3028When <code>osize</code> is some other value,
3029Lua is allocating memory for something else.
3030
3031
3032<p>
3033Lua assumes the following behavior from the allocator function:
3034
3035
3036<p>
3037When <code>nsize</code> is zero,
3038the allocator must behave like <code>free</code>
3039and return <code>NULL</code>.
3040
3041
3042<p>
3043When <code>nsize</code> is not zero,
3044the allocator must behave like <code>realloc</code>.
3045The allocator returns <code>NULL</code>
3046if and only if it cannot fulfill the request.
3047Lua assumes that the allocator never fails when
3048<code>osize &gt;= nsize</code>.
3049
3050
3051<p>
3052Here is a simple implementation for the allocator function.
3053It is used in the auxiliary library by <a href="#luaL_newstate"><code>luaL_newstate</code></a>.
3054
3055<pre>
3056     static void *l_alloc (void *ud, void *ptr, size_t osize,
3057                                                size_t nsize) {
3058       (void)ud;  (void)osize;  /* not used */
3059       if (nsize == 0) {
3060         free(ptr);
3061         return NULL;
3062       }
3063       else
3064         return realloc(ptr, nsize);
3065     }
3066</pre><p>
3067Note that Standard&nbsp;C ensures
3068that <code>free(NULL)</code> has no effect and that
3069<code>realloc(NULL,size)</code> is equivalent to <code>malloc(size)</code>.
3070This code assumes that <code>realloc</code> does not fail when shrinking a block.
3071(Although Standard&nbsp;C does not ensure this behavior,
3072it seems to be a safe assumption.)
3073
3074
3075
3076
3077
3078<hr><h3><a name="lua_arith"><code>lua_arith</code></a></h3><p>
3079<span class="apii">[-(2|1), +1, <em>e</em>]</span>
3080<pre>void lua_arith (lua_State *L, int op);</pre>
3081
3082<p>
3083Performs an arithmetic or bitwise operation over the two values
3084(or one, in the case of negations)
3085at the top of the stack,
3086with the value at the top being the second operand,
3087pops these values, and pushes the result of the operation.
3088The function follows the semantics of the corresponding Lua operator
3089(that is, it may call metamethods).
3090
3091
3092<p>
3093The value of <code>op</code> must be one of the following constants:
3094
3095<ul>
3096
3097<li><b><a name="pdf-LUA_OPADD"><code>LUA_OPADD</code></a>: </b> performs addition (<code>+</code>)</li>
3098<li><b><a name="pdf-LUA_OPSUB"><code>LUA_OPSUB</code></a>: </b> performs subtraction (<code>-</code>)</li>
3099<li><b><a name="pdf-LUA_OPMUL"><code>LUA_OPMUL</code></a>: </b> performs multiplication (<code>*</code>)</li>
3100<li><b><a name="pdf-LUA_OPDIV"><code>LUA_OPDIV</code></a>: </b> performs float division (<code>/</code>)</li>
3101<li><b><a name="pdf-LUA_OPIDIV"><code>LUA_OPIDIV</code></a>: </b> performs floor division (<code>//</code>)</li>
3102<li><b><a name="pdf-LUA_OPMOD"><code>LUA_OPMOD</code></a>: </b> performs modulo (<code>%</code>)</li>
3103<li><b><a name="pdf-LUA_OPPOW"><code>LUA_OPPOW</code></a>: </b> performs exponentiation (<code>^</code>)</li>
3104<li><b><a name="pdf-LUA_OPUNM"><code>LUA_OPUNM</code></a>: </b> performs mathematical negation (unary <code>-</code>)</li>
3105<li><b><a name="pdf-LUA_OPBNOT"><code>LUA_OPBNOT</code></a>: </b> performs bitwise negation (<code>~</code>)</li>
3106<li><b><a name="pdf-LUA_OPBAND"><code>LUA_OPBAND</code></a>: </b> performs bitwise and (<code>&amp;</code>)</li>
3107<li><b><a name="pdf-LUA_OPBOR"><code>LUA_OPBOR</code></a>: </b> performs bitwise or (<code>|</code>)</li>
3108<li><b><a name="pdf-LUA_OPBXOR"><code>LUA_OPBXOR</code></a>: </b> performs bitwise exclusive or (<code>~</code>)</li>
3109<li><b><a name="pdf-LUA_OPSHL"><code>LUA_OPSHL</code></a>: </b> performs left shift (<code>&lt;&lt;</code>)</li>
3110<li><b><a name="pdf-LUA_OPSHR"><code>LUA_OPSHR</code></a>: </b> performs right shift (<code>&gt;&gt;</code>)</li>
3111
3112</ul>
3113
3114
3115
3116
3117<hr><h3><a name="lua_atpanic"><code>lua_atpanic</code></a></h3><p>
3118<span class="apii">[-0, +0, &ndash;]</span>
3119<pre>lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);</pre>
3120
3121<p>
3122Sets a new panic function and returns the old one (see <a href="#4.6">&sect;4.6</a>).
3123
3124
3125
3126
3127
3128<hr><h3><a name="lua_call"><code>lua_call</code></a></h3><p>
3129<span class="apii">[-(nargs+1), +nresults, <em>e</em>]</span>
3130<pre>void lua_call (lua_State *L, int nargs, int nresults);</pre>
3131
3132<p>
3133Calls a function.
3134
3135
3136<p>
3137To call a function you must use the following protocol:
3138first, the function to be called is pushed onto the stack;
3139then, the arguments to the function are pushed
3140in direct order;
3141that is, the first argument is pushed first.
3142Finally you call <a href="#lua_call"><code>lua_call</code></a>;
3143<code>nargs</code> is the number of arguments that you pushed onto the stack.
3144All arguments and the function value are popped from the stack
3145when the function is called.
3146The function results are pushed onto the stack when the function returns.
3147The number of results is adjusted to <code>nresults</code>,
3148unless <code>nresults</code> is <a name="pdf-LUA_MULTRET"><code>LUA_MULTRET</code></a>.
3149In this case, all results from the function are pushed.
3150Lua takes care that the returned values fit into the stack space,
3151but it does not ensure any extra space in the stack.
3152The function results are pushed onto the stack in direct order
3153(the first result is pushed first),
3154so that after the call the last result is on the top of the stack.
3155
3156
3157<p>
3158Any error inside the called function is propagated upwards
3159(with a <code>longjmp</code>).
3160
3161
3162<p>
3163The following example shows how the host program can do the
3164equivalent to this Lua code:
3165
3166<pre>
3167     a = f("how", t.x, 14)
3168</pre><p>
3169Here it is in&nbsp;C:
3170
3171<pre>
3172     lua_getglobal(L, "f");                  /* function to be called */
3173     lua_pushliteral(L, "how");                       /* 1st argument */
3174     lua_getglobal(L, "t");                    /* table to be indexed */
3175     lua_getfield(L, -1, "x");        /* push result of t.x (2nd arg) */
3176     lua_remove(L, -2);                  /* remove 't' from the stack */
3177     lua_pushinteger(L, 14);                          /* 3rd argument */
3178     lua_call(L, 3, 1);     /* call 'f' with 3 arguments and 1 result */
3179     lua_setglobal(L, "a");                         /* set global 'a' */
3180</pre><p>
3181Note that the code above is <em>balanced</em>:
3182at its end, the stack is back to its original configuration.
3183This is considered good programming practice.
3184
3185
3186
3187
3188
3189<hr><h3><a name="lua_callk"><code>lua_callk</code></a></h3><p>
3190<span class="apii">[-(nargs + 1), +nresults, <em>e</em>]</span>
3191<pre>void lua_callk (lua_State *L,
3192                int nargs,
3193                int nresults,
3194                lua_KContext ctx,
3195                lua_KFunction k);</pre>
3196
3197<p>
3198This function behaves exactly like <a href="#lua_call"><code>lua_call</code></a>,
3199but allows the called function to yield (see <a href="#4.7">&sect;4.7</a>).
3200
3201
3202
3203
3204
3205<hr><h3><a name="lua_CFunction"><code>lua_CFunction</code></a></h3>
3206<pre>typedef int (*lua_CFunction) (lua_State *L);</pre>
3207
3208<p>
3209Type for C&nbsp;functions.
3210
3211
3212<p>
3213In order to communicate properly with Lua,
3214a C&nbsp;function must use the following protocol,
3215which defines the way parameters and results are passed:
3216a C&nbsp;function receives its arguments from Lua in its stack
3217in direct order (the first argument is pushed first).
3218So, when the function starts,
3219<code>lua_gettop(L)</code> returns the number of arguments received by the function.
3220The first argument (if any) is at index 1
3221and its last argument is at index <code>lua_gettop(L)</code>.
3222To return values to Lua, a C&nbsp;function just pushes them onto the stack,
3223in direct order (the first result is pushed first),
3224and returns the number of results.
3225Any other value in the stack below the results will be properly
3226discarded by Lua.
3227Like a Lua function, a C&nbsp;function called by Lua can also return
3228many results.
3229
3230
3231<p>
3232As an example, the following function receives a variable number
3233of numeric arguments and returns their average and their sum:
3234
3235<pre>
3236     static int foo (lua_State *L) {
3237       int n = lua_gettop(L);    /* number of arguments */
3238       lua_Number sum = 0.0;
3239       int i;
3240       for (i = 1; i &lt;= n; i++) {
3241         if (!lua_isnumber(L, i)) {
3242           lua_pushliteral(L, "incorrect argument");
3243           lua_error(L);
3244         }
3245         sum += lua_tonumber(L, i);
3246       }
3247       lua_pushnumber(L, sum/n);        /* first result */
3248       lua_pushnumber(L, sum);         /* second result */
3249       return 2;                   /* number of results */
3250     }
3251</pre>
3252
3253
3254
3255
3256<hr><h3><a name="lua_checkstack"><code>lua_checkstack</code></a></h3><p>
3257<span class="apii">[-0, +0, &ndash;]</span>
3258<pre>int lua_checkstack (lua_State *L, int n);</pre>
3259
3260<p>
3261Ensures that the stack has space for at least <code>n</code> extra slots
3262(that is, that you can safely push up to <code>n</code> values into it).
3263It returns false if it cannot fulfill the request,
3264either because it would cause the stack
3265to be larger than a fixed maximum size
3266(typically at least several thousand elements) or
3267because it cannot allocate memory for the extra space.
3268This function never shrinks the stack;
3269if the stack already has space for the extra slots,
3270it is left unchanged.
3271
3272
3273
3274
3275
3276<hr><h3><a name="lua_close"><code>lua_close</code></a></h3><p>
3277<span class="apii">[-0, +0, &ndash;]</span>
3278<pre>void lua_close (lua_State *L);</pre>
3279
3280<p>
3281Destroys all objects in the given Lua state
3282(calling the corresponding garbage-collection metamethods, if any)
3283and frees all dynamic memory used by this state.
3284On several platforms, you may not need to call this function,
3285because all resources are naturally released when the host program ends.
3286On the other hand, long-running programs that create multiple states,
3287such as daemons or web servers,
3288will probably need to close states as soon as they are not needed.
3289
3290
3291
3292
3293
3294<hr><h3><a name="lua_compare"><code>lua_compare</code></a></h3><p>
3295<span class="apii">[-0, +0, <em>e</em>]</span>
3296<pre>int lua_compare (lua_State *L, int index1, int index2, int op);</pre>
3297
3298<p>
3299Compares two Lua values.
3300Returns 1 if the value at index <code>index1</code> satisfies <code>op</code>
3301when compared with the value at index <code>index2</code>,
3302following the semantics of the corresponding Lua operator
3303(that is, it may call metamethods).
3304Otherwise returns&nbsp;0.
3305Also returns&nbsp;0 if any of the indices is not valid.
3306
3307
3308<p>
3309The value of <code>op</code> must be one of the following constants:
3310
3311<ul>
3312
3313<li><b><a name="pdf-LUA_OPEQ"><code>LUA_OPEQ</code></a>: </b> compares for equality (<code>==</code>)</li>
3314<li><b><a name="pdf-LUA_OPLT"><code>LUA_OPLT</code></a>: </b> compares for less than (<code>&lt;</code>)</li>
3315<li><b><a name="pdf-LUA_OPLE"><code>LUA_OPLE</code></a>: </b> compares for less or equal (<code>&lt;=</code>)</li>
3316
3317</ul>
3318
3319
3320
3321
3322<hr><h3><a name="lua_concat"><code>lua_concat</code></a></h3><p>
3323<span class="apii">[-n, +1, <em>e</em>]</span>
3324<pre>void lua_concat (lua_State *L, int n);</pre>
3325
3326<p>
3327Concatenates the <code>n</code> values at the top of the stack,
3328pops them, and leaves the result at the top.
3329If <code>n</code>&nbsp;is&nbsp;1, the result is the single value on the stack
3330(that is, the function does nothing);
3331if <code>n</code> is 0, the result is the empty string.
3332Concatenation is performed following the usual semantics of Lua
3333(see <a href="#3.4.6">&sect;3.4.6</a>).
3334
3335
3336
3337
3338
3339<hr><h3><a name="lua_copy"><code>lua_copy</code></a></h3><p>
3340<span class="apii">[-0, +0, &ndash;]</span>
3341<pre>void lua_copy (lua_State *L, int fromidx, int toidx);</pre>
3342
3343<p>
3344Copies the element at index <code>fromidx</code>
3345into the valid index <code>toidx</code>,
3346replacing the value at that position.
3347Values at other positions are not affected.
3348
3349
3350
3351
3352
3353<hr><h3><a name="lua_createtable"><code>lua_createtable</code></a></h3><p>
3354<span class="apii">[-0, +1, <em>m</em>]</span>
3355<pre>void lua_createtable (lua_State *L, int narr, int nrec);</pre>
3356
3357<p>
3358Creates a new empty table and pushes it onto the stack.
3359Parameter <code>narr</code> is a hint for how many elements the table
3360will have as a sequence;
3361parameter <code>nrec</code> is a hint for how many other elements
3362the table will have.
3363Lua may use these hints to preallocate memory for the new table.
3364This preallocation is useful for performance when you know in advance
3365how many elements the table will have.
3366Otherwise you can use the function <a href="#lua_newtable"><code>lua_newtable</code></a>.
3367
3368
3369
3370
3371
3372<hr><h3><a name="lua_dump"><code>lua_dump</code></a></h3><p>
3373<span class="apii">[-0, +0, &ndash;]</span>
3374<pre>int lua_dump (lua_State *L,
3375                        lua_Writer writer,
3376                        void *data,
3377                        int strip);</pre>
3378
3379<p>
3380Dumps a function as a binary chunk.
3381Receives a Lua function on the top of the stack
3382and produces a binary chunk that,
3383if loaded again,
3384results in a function equivalent to the one dumped.
3385As it produces parts of the chunk,
3386<a href="#lua_dump"><code>lua_dump</code></a> calls function <code>writer</code> (see <a href="#lua_Writer"><code>lua_Writer</code></a>)
3387with the given <code>data</code>
3388to write them.
3389
3390
3391<p>
3392If <code>strip</code> is true,
3393the binary representation may not include all debug information
3394about the function,
3395to save space.
3396
3397
3398<p>
3399The value returned is the error code returned by the last
3400call to the writer;
34010&nbsp;means no errors.
3402
3403
3404<p>
3405This function does not pop the Lua function from the stack.
3406
3407
3408
3409
3410
3411<hr><h3><a name="lua_error"><code>lua_error</code></a></h3><p>
3412<span class="apii">[-1, +0, <em>v</em>]</span>
3413<pre>int lua_error (lua_State *L);</pre>
3414
3415<p>
3416Generates a Lua error,
3417using the value at the top of the stack as the error object.
3418This function does a long jump,
3419and therefore never returns
3420(see <a href="#luaL_error"><code>luaL_error</code></a>).
3421
3422
3423
3424
3425
3426<hr><h3><a name="lua_gc"><code>lua_gc</code></a></h3><p>
3427<span class="apii">[-0, +0, <em>e</em>]</span>
3428<pre>int lua_gc (lua_State *L, int what, int data);</pre>
3429
3430<p>
3431Controls the garbage collector.
3432
3433
3434<p>
3435This function performs several tasks,
3436according to the value of the parameter <code>what</code>:
3437
3438<ul>
3439
3440<li><b><code>LUA_GCSTOP</code>: </b>
3441stops the garbage collector.
3442</li>
3443
3444<li><b><code>LUA_GCRESTART</code>: </b>
3445restarts the garbage collector.
3446</li>
3447
3448<li><b><code>LUA_GCCOLLECT</code>: </b>
3449performs a full garbage-collection cycle.
3450</li>
3451
3452<li><b><code>LUA_GCCOUNT</code>: </b>
3453returns the current amount of memory (in Kbytes) in use by Lua.
3454</li>
3455
3456<li><b><code>LUA_GCCOUNTB</code>: </b>
3457returns the remainder of dividing the current amount of bytes of
3458memory in use by Lua by 1024.
3459</li>
3460
3461<li><b><code>LUA_GCSTEP</code>: </b>
3462performs an incremental step of garbage collection.
3463</li>
3464
3465<li><b><code>LUA_GCSETPAUSE</code>: </b>
3466sets <code>data</code> as the new value
3467for the <em>pause</em> of the collector (see <a href="#2.5">&sect;2.5</a>)
3468and returns the previous value of the pause.
3469</li>
3470
3471<li><b><code>LUA_GCSETSTEPMUL</code>: </b>
3472sets <code>data</code> as the new value for the <em>step multiplier</em> of
3473the collector (see <a href="#2.5">&sect;2.5</a>)
3474and returns the previous value of the step multiplier.
3475</li>
3476
3477<li><b><code>LUA_GCISRUNNING</code>: </b>
3478returns a boolean that tells whether the collector is running
3479(i.e., not stopped).
3480</li>
3481
3482</ul>
3483
3484<p>
3485For more details about these options,
3486see <a href="#pdf-collectgarbage"><code>collectgarbage</code></a>.
3487
3488
3489
3490
3491
3492<hr><h3><a name="lua_getallocf"><code>lua_getallocf</code></a></h3><p>
3493<span class="apii">[-0, +0, &ndash;]</span>
3494<pre>lua_Alloc lua_getallocf (lua_State *L, void **ud);</pre>
3495
3496<p>
3497Returns the memory-allocation function of a given state.
3498If <code>ud</code> is not <code>NULL</code>, Lua stores in <code>*ud</code> the
3499opaque pointer given when the memory-allocator function was set.
3500
3501
3502
3503
3504
3505<hr><h3><a name="lua_getfield"><code>lua_getfield</code></a></h3><p>
3506<span class="apii">[-0, +1, <em>e</em>]</span>
3507<pre>int lua_getfield (lua_State *L, int index, const char *k);</pre>
3508
3509<p>
3510Pushes onto the stack the value <code>t[k]</code>,
3511where <code>t</code> is the value at the given index.
3512As in Lua, this function may trigger a metamethod
3513for the "index" event (see <a href="#2.4">&sect;2.4</a>).
3514
3515
3516<p>
3517Returns the type of the pushed value.
3518
3519
3520
3521
3522
3523<hr><h3><a name="lua_getextraspace"><code>lua_getextraspace</code></a></h3><p>
3524<span class="apii">[-0, +0, &ndash;]</span>
3525<pre>void *lua_getextraspace (lua_State *L);</pre>
3526
3527<p>
3528Returns a pointer to a raw memory area associated with the
3529given Lua state.
3530The application can use this area for any purpose;
3531Lua does not use it for anything.
3532
3533
3534<p>
3535Each new thread has this area initialized with a copy
3536of the area of the main thread.
3537
3538
3539<p>
3540By default, this area has the size of a pointer to void,
3541but you can recompile Lua with a different size for this area.
3542(See <code>LUA_EXTRASPACE</code> in <code>luaconf.h</code>.)
3543
3544
3545
3546
3547
3548<hr><h3><a name="lua_getglobal"><code>lua_getglobal</code></a></h3><p>
3549<span class="apii">[-0, +1, <em>e</em>]</span>
3550<pre>int lua_getglobal (lua_State *L, const char *name);</pre>
3551
3552<p>
3553Pushes onto the stack the value of the global <code>name</code>.
3554Returns the type of that value.
3555
3556
3557
3558
3559
3560<hr><h3><a name="lua_geti"><code>lua_geti</code></a></h3><p>
3561<span class="apii">[-0, +1, <em>e</em>]</span>
3562<pre>int lua_geti (lua_State *L, int index, lua_Integer i);</pre>
3563
3564<p>
3565Pushes onto the stack the value <code>t[i]</code>,
3566where <code>t</code> is the value at the given index.
3567As in Lua, this function may trigger a metamethod
3568for the "index" event (see <a href="#2.4">&sect;2.4</a>).
3569
3570
3571<p>
3572Returns the type of the pushed value.
3573
3574
3575
3576
3577
3578<hr><h3><a name="lua_getmetatable"><code>lua_getmetatable</code></a></h3><p>
3579<span class="apii">[-0, +(0|1), &ndash;]</span>
3580<pre>int lua_getmetatable (lua_State *L, int index);</pre>
3581
3582<p>
3583If the value at the given index has a metatable,
3584the function pushes that metatable onto the stack and returns&nbsp;1.
3585Otherwise,
3586the function returns&nbsp;0 and pushes nothing on the stack.
3587
3588
3589
3590
3591
3592<hr><h3><a name="lua_gettable"><code>lua_gettable</code></a></h3><p>
3593<span class="apii">[-1, +1, <em>e</em>]</span>
3594<pre>int lua_gettable (lua_State *L, int index);</pre>
3595
3596<p>
3597Pushes onto the stack the value <code>t[k]</code>,
3598where <code>t</code> is the value at the given index
3599and <code>k</code> is the value at the top of the stack.
3600
3601
3602<p>
3603This function pops the key from the stack,
3604pushing the resulting value in its place.
3605As in Lua, this function may trigger a metamethod
3606for the "index" event (see <a href="#2.4">&sect;2.4</a>).
3607
3608
3609<p>
3610Returns the type of the pushed value.
3611
3612
3613
3614
3615
3616<hr><h3><a name="lua_gettop"><code>lua_gettop</code></a></h3><p>
3617<span class="apii">[-0, +0, &ndash;]</span>
3618<pre>int lua_gettop (lua_State *L);</pre>
3619
3620<p>
3621Returns the index of the top element in the stack.
3622Because indices start at&nbsp;1,
3623this result is equal to the number of elements in the stack;
3624in particular, 0&nbsp;means an empty stack.
3625
3626
3627
3628
3629
3630<hr><h3><a name="lua_getuservalue"><code>lua_getuservalue</code></a></h3><p>
3631<span class="apii">[-0, +1, &ndash;]</span>
3632<pre>int lua_getuservalue (lua_State *L, int index);</pre>
3633
3634<p>
3635Pushes onto the stack the Lua value associated with the userdata
3636at the given index.
3637
3638
3639<p>
3640Returns the type of the pushed value.
3641
3642
3643
3644
3645
3646<hr><h3><a name="lua_insert"><code>lua_insert</code></a></h3><p>
3647<span class="apii">[-1, +1, &ndash;]</span>
3648<pre>void lua_insert (lua_State *L, int index);</pre>
3649
3650<p>
3651Moves the top element into the given valid index,
3652shifting up the elements above this index to open space.
3653This function cannot be called with a pseudo-index,
3654because a pseudo-index is not an actual stack position.
3655
3656
3657
3658
3659
3660<hr><h3><a name="lua_Integer"><code>lua_Integer</code></a></h3>
3661<pre>typedef ... lua_Integer;</pre>
3662
3663<p>
3664The type of integers in Lua.
3665
3666
3667<p>
3668By default this type is <code>long long</code>,
3669(usually a 64-bit two-complement integer),
3670but that can be changed to <code>long</code> or <code>int</code>
3671(usually a 32-bit two-complement integer).
3672(See <code>LUA_INT_TYPE</code> in <code>luaconf.h</code>.)
3673
3674
3675<p>
3676Lua also defines the constants
3677<a name="pdf-LUA_MININTEGER"><code>LUA_MININTEGER</code></a> and <a name="pdf-LUA_MAXINTEGER"><code>LUA_MAXINTEGER</code></a>,
3678with the minimum and the maximum values that fit in this type.
3679
3680
3681
3682
3683
3684<hr><h3><a name="lua_isboolean"><code>lua_isboolean</code></a></h3><p>
3685<span class="apii">[-0, +0, &ndash;]</span>
3686<pre>int lua_isboolean (lua_State *L, int index);</pre>
3687
3688<p>
3689Returns 1 if the value at the given index is a boolean,
3690and 0&nbsp;otherwise.
3691
3692
3693
3694
3695
3696<hr><h3><a name="lua_iscfunction"><code>lua_iscfunction</code></a></h3><p>
3697<span class="apii">[-0, +0, &ndash;]</span>
3698<pre>int lua_iscfunction (lua_State *L, int index);</pre>
3699
3700<p>
3701Returns 1 if the value at the given index is a C&nbsp;function,
3702and 0&nbsp;otherwise.
3703
3704
3705
3706
3707
3708<hr><h3><a name="lua_isfunction"><code>lua_isfunction</code></a></h3><p>
3709<span class="apii">[-0, +0, &ndash;]</span>
3710<pre>int lua_isfunction (lua_State *L, int index);</pre>
3711
3712<p>
3713Returns 1 if the value at the given index is a function
3714(either C or Lua), and 0&nbsp;otherwise.
3715
3716
3717
3718
3719
3720<hr><h3><a name="lua_isinteger"><code>lua_isinteger</code></a></h3><p>
3721<span class="apii">[-0, +0, &ndash;]</span>
3722<pre>int lua_isinteger (lua_State *L, int index);</pre>
3723
3724<p>
3725Returns 1 if the value at the given index is an integer
3726(that is, the value is a number and is represented as an integer),
3727and 0&nbsp;otherwise.
3728
3729
3730
3731
3732
3733<hr><h3><a name="lua_islightuserdata"><code>lua_islightuserdata</code></a></h3><p>
3734<span class="apii">[-0, +0, &ndash;]</span>
3735<pre>int lua_islightuserdata (lua_State *L, int index);</pre>
3736
3737<p>
3738Returns 1 if the value at the given index is a light userdata,
3739and 0&nbsp;otherwise.
3740
3741
3742
3743
3744
3745<hr><h3><a name="lua_isnil"><code>lua_isnil</code></a></h3><p>
3746<span class="apii">[-0, +0, &ndash;]</span>
3747<pre>int lua_isnil (lua_State *L, int index);</pre>
3748
3749<p>
3750Returns 1 if the value at the given index is <b>nil</b>,
3751and 0&nbsp;otherwise.
3752
3753
3754
3755
3756
3757<hr><h3><a name="lua_isnone"><code>lua_isnone</code></a></h3><p>
3758<span class="apii">[-0, +0, &ndash;]</span>
3759<pre>int lua_isnone (lua_State *L, int index);</pre>
3760
3761<p>
3762Returns 1 if the given index is not valid,
3763and 0&nbsp;otherwise.
3764
3765
3766
3767
3768
3769<hr><h3><a name="lua_isnoneornil"><code>lua_isnoneornil</code></a></h3><p>
3770<span class="apii">[-0, +0, &ndash;]</span>
3771<pre>int lua_isnoneornil (lua_State *L, int index);</pre>
3772
3773<p>
3774Returns 1 if the given index is not valid
3775or if the value at this index is <b>nil</b>,
3776and 0&nbsp;otherwise.
3777
3778
3779
3780
3781
3782<hr><h3><a name="lua_isnumber"><code>lua_isnumber</code></a></h3><p>
3783<span class="apii">[-0, +0, &ndash;]</span>
3784<pre>int lua_isnumber (lua_State *L, int index);</pre>
3785
3786<p>
3787Returns 1 if the value at the given index is a number
3788or a string convertible to a number,
3789and 0&nbsp;otherwise.
3790
3791
3792
3793
3794
3795<hr><h3><a name="lua_isstring"><code>lua_isstring</code></a></h3><p>
3796<span class="apii">[-0, +0, &ndash;]</span>
3797<pre>int lua_isstring (lua_State *L, int index);</pre>
3798
3799<p>
3800Returns 1 if the value at the given index is a string
3801or a number (which is always convertible to a string),
3802and 0&nbsp;otherwise.
3803
3804
3805
3806
3807
3808<hr><h3><a name="lua_istable"><code>lua_istable</code></a></h3><p>
3809<span class="apii">[-0, +0, &ndash;]</span>
3810<pre>int lua_istable (lua_State *L, int index);</pre>
3811
3812<p>
3813Returns 1 if the value at the given index is a table,
3814and 0&nbsp;otherwise.
3815
3816
3817
3818
3819
3820<hr><h3><a name="lua_isthread"><code>lua_isthread</code></a></h3><p>
3821<span class="apii">[-0, +0, &ndash;]</span>
3822<pre>int lua_isthread (lua_State *L, int index);</pre>
3823
3824<p>
3825Returns 1 if the value at the given index is a thread,
3826and 0&nbsp;otherwise.
3827
3828
3829
3830
3831
3832<hr><h3><a name="lua_isuserdata"><code>lua_isuserdata</code></a></h3><p>
3833<span class="apii">[-0, +0, &ndash;]</span>
3834<pre>int lua_isuserdata (lua_State *L, int index);</pre>
3835
3836<p>
3837Returns 1 if the value at the given index is a userdata
3838(either full or light), and 0&nbsp;otherwise.
3839
3840
3841
3842
3843
3844<hr><h3><a name="lua_isyieldable"><code>lua_isyieldable</code></a></h3><p>
3845<span class="apii">[-0, +0, &ndash;]</span>
3846<pre>int lua_isyieldable (lua_State *L);</pre>
3847
3848<p>
3849Returns 1 if the given coroutine can yield,
3850and 0&nbsp;otherwise.
3851
3852
3853
3854
3855
3856<hr><h3><a name="lua_KContext"><code>lua_KContext</code></a></h3>
3857<pre>typedef ... lua_KContext;</pre>
3858
3859<p>
3860The type for continuation-function contexts.
3861It must be a numeric type.
3862This type is defined as <code>intptr_t</code>
3863when <code>intptr_t</code> is available,
3864so that it can store pointers too.
3865Otherwise, it is defined as <code>ptrdiff_t</code>.
3866
3867
3868
3869
3870
3871<hr><h3><a name="lua_KFunction"><code>lua_KFunction</code></a></h3>
3872<pre>typedef int (*lua_KFunction) (lua_State *L, int status, lua_KContext ctx);</pre>
3873
3874<p>
3875Type for continuation functions (see <a href="#4.7">&sect;4.7</a>).
3876
3877
3878
3879
3880
3881<hr><h3><a name="lua_len"><code>lua_len</code></a></h3><p>
3882<span class="apii">[-0, +1, <em>e</em>]</span>
3883<pre>void lua_len (lua_State *L, int index);</pre>
3884
3885<p>
3886Returns the length of the value at the given index.
3887It is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.7">&sect;3.4.7</a>) and
3888may trigger a metamethod for the "length" event (see <a href="#2.4">&sect;2.4</a>).
3889The result is pushed on the stack.
3890
3891
3892
3893
3894
3895<hr><h3><a name="lua_load"><code>lua_load</code></a></h3><p>
3896<span class="apii">[-0, +1, &ndash;]</span>
3897<pre>int lua_load (lua_State *L,
3898              lua_Reader reader,
3899              void *data,
3900              const char *chunkname,
3901              const char *mode);</pre>
3902
3903<p>
3904Loads a Lua chunk without running it.
3905If there are no errors,
3906<code>lua_load</code> pushes the compiled chunk as a Lua
3907function on top of the stack.
3908Otherwise, it pushes an error message.
3909
3910
3911<p>
3912The return values of <code>lua_load</code> are:
3913
3914<ul>
3915
3916<li><b><a href="#pdf-LUA_OK"><code>LUA_OK</code></a>: </b> no errors;</li>
3917
3918<li><b><a name="pdf-LUA_ERRSYNTAX"><code>LUA_ERRSYNTAX</code></a>: </b>
3919syntax error during precompilation;</li>
3920
3921<li><b><a href="#pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b>
3922memory allocation error;</li>
3923
3924<li><b><a href="#pdf-LUA_ERRGCMM"><code>LUA_ERRGCMM</code></a>: </b>
3925error while running a <code>__gc</code> metamethod.
3926(This error has no relation with the chunk being loaded.
3927It is generated by the garbage collector.)
3928</li>
3929
3930</ul>
3931
3932<p>
3933The <code>lua_load</code> function uses a user-supplied <code>reader</code> function
3934to read the chunk (see <a href="#lua_Reader"><code>lua_Reader</code></a>).
3935The <code>data</code> argument is an opaque value passed to the reader function.
3936
3937
3938<p>
3939The <code>chunkname</code> argument gives a name to the chunk,
3940which is used for error messages and in debug information (see <a href="#4.9">&sect;4.9</a>).
3941
3942
3943<p>
3944<code>lua_load</code> automatically detects whether the chunk is text or binary
3945and loads it accordingly (see program <code>luac</code>).
3946The string <code>mode</code> works as in function <a href="#pdf-load"><code>load</code></a>,
3947with the addition that
3948a <code>NULL</code> value is equivalent to the string "<code>bt</code>".
3949
3950
3951<p>
3952<code>lua_load</code> uses the stack internally,
3953so the reader function must always leave the stack
3954unmodified when returning.
3955
3956
3957<p>
3958If the resulting function has upvalues,
3959its first upvalue is set to the value of the global environment
3960stored at index <code>LUA_RIDX_GLOBALS</code> in the registry (see <a href="#4.5">&sect;4.5</a>).
3961When loading main chunks,
3962this upvalue will be the <code>_ENV</code> variable (see <a href="#2.2">&sect;2.2</a>).
3963Other upvalues are initialized with <b>nil</b>.
3964
3965
3966
3967
3968
3969<hr><h3><a name="lua_newstate"><code>lua_newstate</code></a></h3><p>
3970<span class="apii">[-0, +0, &ndash;]</span>
3971<pre>lua_State *lua_newstate (lua_Alloc f, void *ud);</pre>
3972
3973<p>
3974Creates a new thread running in a new, independent state.
3975Returns <code>NULL</code> if it cannot create the thread or the state
3976(due to lack of memory).
3977The argument <code>f</code> is the allocator function;
3978Lua does all memory allocation for this state through this function.
3979The second argument, <code>ud</code>, is an opaque pointer that Lua
3980passes to the allocator in every call.
3981
3982
3983
3984
3985
3986<hr><h3><a name="lua_newtable"><code>lua_newtable</code></a></h3><p>
3987<span class="apii">[-0, +1, <em>m</em>]</span>
3988<pre>void lua_newtable (lua_State *L);</pre>
3989
3990<p>
3991Creates a new empty table and pushes it onto the stack.
3992It is equivalent to <code>lua_createtable(L, 0, 0)</code>.
3993
3994
3995
3996
3997
3998<hr><h3><a name="lua_newthread"><code>lua_newthread</code></a></h3><p>
3999<span class="apii">[-0, +1, <em>m</em>]</span>
4000<pre>lua_State *lua_newthread (lua_State *L);</pre>
4001
4002<p>
4003Creates a new thread, pushes it on the stack,
4004and returns a pointer to a <a href="#lua_State"><code>lua_State</code></a> that represents this new thread.
4005The new thread returned by this function shares with the original thread
4006its global environment,
4007but has an independent execution stack.
4008
4009
4010<p>
4011There is no explicit function to close or to destroy a thread.
4012Threads are subject to garbage collection,
4013like any Lua object.
4014
4015
4016
4017
4018
4019<hr><h3><a name="lua_newuserdata"><code>lua_newuserdata</code></a></h3><p>
4020<span class="apii">[-0, +1, <em>m</em>]</span>
4021<pre>void *lua_newuserdata (lua_State *L, size_t size);</pre>
4022
4023<p>
4024This function allocates a new block of memory with the given size,
4025pushes onto the stack a new full userdata with the block address,
4026and returns this address.
4027The host program can freely use this memory.
4028
4029
4030
4031
4032
4033<hr><h3><a name="lua_next"><code>lua_next</code></a></h3><p>
4034<span class="apii">[-1, +(2|0), <em>e</em>]</span>
4035<pre>int lua_next (lua_State *L, int index);</pre>
4036
4037<p>
4038Pops a key from the stack,
4039and pushes a key&ndash;value pair from the table at the given index
4040(the "next" pair after the given key).
4041If there are no more elements in the table,
4042then <a href="#lua_next"><code>lua_next</code></a> returns 0 (and pushes nothing).
4043
4044
4045<p>
4046A typical traversal looks like this:
4047
4048<pre>
4049     /* table is in the stack at index 't' */
4050     lua_pushnil(L);  /* first key */
4051     while (lua_next(L, t) != 0) {
4052       /* uses 'key' (at index -2) and 'value' (at index -1) */
4053       printf("%s - %s\n",
4054              lua_typename(L, lua_type(L, -2)),
4055              lua_typename(L, lua_type(L, -1)));
4056       /* removes 'value'; keeps 'key' for next iteration */
4057       lua_pop(L, 1);
4058     }
4059</pre>
4060
4061<p>
4062While traversing a table,
4063do not call <a href="#lua_tolstring"><code>lua_tolstring</code></a> directly on a key,
4064unless you know that the key is actually a string.
4065Recall that <a href="#lua_tolstring"><code>lua_tolstring</code></a> may change
4066the value at the given index;
4067this confuses the next call to <a href="#lua_next"><code>lua_next</code></a>.
4068
4069
4070<p>
4071See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying
4072the table during its traversal.
4073
4074
4075
4076
4077
4078<hr><h3><a name="lua_Number"><code>lua_Number</code></a></h3>
4079<pre>typedef ... lua_Number;</pre>
4080
4081<p>
4082The type of floats in Lua.
4083
4084
4085<p>
4086By default this type is double,
4087but that can be changed to a single float or a long double.
4088(See <code>LUA_FLOAT_TYPE</code> in <code>luaconf.h</code>.)
4089
4090
4091
4092
4093
4094<hr><h3><a name="lua_numbertointeger"><code>lua_numbertointeger</code></a></h3>
4095<pre>int lua_numbertointeger (lua_Number n, lua_Integer *p);</pre>
4096
4097<p>
4098Converts a Lua float to a Lua integer.
4099This macro assumes that <code>n</code> has an integral value.
4100If that value is within the range of Lua integers,
4101it is converted to an integer and assigned to <code>*p</code>.
4102The macro results in a boolean indicating whether the
4103conversion was successful.
4104(Note that this range test can be tricky to do
4105correctly without this macro,
4106due to roundings.)
4107
4108
4109<p>
4110This macro may evaluate its arguments more than once.
4111
4112
4113
4114
4115
4116<hr><h3><a name="lua_pcall"><code>lua_pcall</code></a></h3><p>
4117<span class="apii">[-(nargs + 1), +(nresults|1), &ndash;]</span>
4118<pre>int lua_pcall (lua_State *L, int nargs, int nresults, int msgh);</pre>
4119
4120<p>
4121Calls a function in protected mode.
4122
4123
4124<p>
4125Both <code>nargs</code> and <code>nresults</code> have the same meaning as
4126in <a href="#lua_call"><code>lua_call</code></a>.
4127If there are no errors during the call,
4128<a href="#lua_pcall"><code>lua_pcall</code></a> behaves exactly like <a href="#lua_call"><code>lua_call</code></a>.
4129However, if there is any error,
4130<a href="#lua_pcall"><code>lua_pcall</code></a> catches it,
4131pushes a single value on the stack (the error message),
4132and returns an error code.
4133Like <a href="#lua_call"><code>lua_call</code></a>,
4134<a href="#lua_pcall"><code>lua_pcall</code></a> always removes the function
4135and its arguments from the stack.
4136
4137
4138<p>
4139If <code>msgh</code> is 0,
4140then the error message returned on the stack
4141is exactly the original error message.
4142Otherwise, <code>msgh</code> is the stack index of a
4143<em>message handler</em>.
4144(This index cannot be a pseudo-index.)
4145In case of runtime errors,
4146this function will be called with the error message
4147and its return value will be the message
4148returned on the stack by <a href="#lua_pcall"><code>lua_pcall</code></a>.
4149
4150
4151<p>
4152Typically, the message handler is used to add more debug
4153information to the error message, such as a stack traceback.
4154Such information cannot be gathered after the return of <a href="#lua_pcall"><code>lua_pcall</code></a>,
4155since by then the stack has unwound.
4156
4157
4158<p>
4159The <a href="#lua_pcall"><code>lua_pcall</code></a> function returns one of the following constants
4160(defined in <code>lua.h</code>):
4161
4162<ul>
4163
4164<li><b><a name="pdf-LUA_OK"><code>LUA_OK</code></a> (0): </b>
4165success.</li>
4166
4167<li><b><a name="pdf-LUA_ERRRUN"><code>LUA_ERRRUN</code></a>: </b>
4168a runtime error.
4169</li>
4170
4171<li><b><a name="pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b>
4172memory allocation error.
4173For such errors, Lua does not call the message handler.
4174</li>
4175
4176<li><b><a name="pdf-LUA_ERRERR"><code>LUA_ERRERR</code></a>: </b>
4177error while running the message handler.
4178</li>
4179
4180<li><b><a name="pdf-LUA_ERRGCMM"><code>LUA_ERRGCMM</code></a>: </b>
4181error while running a <code>__gc</code> metamethod.
4182(This error typically has no relation with the function being called.)
4183</li>
4184
4185</ul>
4186
4187
4188
4189
4190<hr><h3><a name="lua_pcallk"><code>lua_pcallk</code></a></h3><p>
4191<span class="apii">[-(nargs + 1), +(nresults|1), &ndash;]</span>
4192<pre>int lua_pcallk (lua_State *L,
4193                int nargs,
4194                int nresults,
4195                int msgh,
4196                lua_KContext ctx,
4197                lua_KFunction k);</pre>
4198
4199<p>
4200This function behaves exactly like <a href="#lua_pcall"><code>lua_pcall</code></a>,
4201but allows the called function to yield (see <a href="#4.7">&sect;4.7</a>).
4202
4203
4204
4205
4206
4207<hr><h3><a name="lua_pop"><code>lua_pop</code></a></h3><p>
4208<span class="apii">[-n, +0, &ndash;]</span>
4209<pre>void lua_pop (lua_State *L, int n);</pre>
4210
4211<p>
4212Pops <code>n</code> elements from the stack.
4213
4214
4215
4216
4217
4218<hr><h3><a name="lua_pushboolean"><code>lua_pushboolean</code></a></h3><p>
4219<span class="apii">[-0, +1, &ndash;]</span>
4220<pre>void lua_pushboolean (lua_State *L, int b);</pre>
4221
4222<p>
4223Pushes a boolean value with value <code>b</code> onto the stack.
4224
4225
4226
4227
4228
4229<hr><h3><a name="lua_pushcclosure"><code>lua_pushcclosure</code></a></h3><p>
4230<span class="apii">[-n, +1, <em>m</em>]</span>
4231<pre>void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);</pre>
4232
4233<p>
4234Pushes a new C&nbsp;closure onto the stack.
4235
4236
4237<p>
4238When a C&nbsp;function is created,
4239it is possible to associate some values with it,
4240thus creating a C&nbsp;closure (see <a href="#4.4">&sect;4.4</a>);
4241these values are then accessible to the function whenever it is called.
4242To associate values with a C&nbsp;function,
4243first these values must be pushed onto the stack
4244(when there are multiple values, the first value is pushed first).
4245Then <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>
4246is called to create and push the C&nbsp;function onto the stack,
4247with the argument <code>n</code> telling how many values will be
4248associated with the function.
4249<a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> also pops these values from the stack.
4250
4251
4252<p>
4253The maximum value for <code>n</code> is 255.
4254
4255
4256<p>
4257When <code>n</code> is zero,
4258this function creates a <em>light C function</em>,
4259which is just a pointer to the C&nbsp;function.
4260In that case, it never raises a memory error.
4261
4262
4263
4264
4265
4266<hr><h3><a name="lua_pushcfunction"><code>lua_pushcfunction</code></a></h3><p>
4267<span class="apii">[-0, +1, &ndash;]</span>
4268<pre>void lua_pushcfunction (lua_State *L, lua_CFunction f);</pre>
4269
4270<p>
4271Pushes a C&nbsp;function onto the stack.
4272This function receives a pointer to a C function
4273and pushes onto the stack a Lua value of type <code>function</code> that,
4274when called, invokes the corresponding C&nbsp;function.
4275
4276
4277<p>
4278Any function to be callable by Lua must
4279follow the correct protocol to receive its parameters
4280and return its results (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
4281
4282
4283
4284
4285
4286<hr><h3><a name="lua_pushfstring"><code>lua_pushfstring</code></a></h3><p>
4287<span class="apii">[-0, +1, <em>m</em>]</span>
4288<pre>const char *lua_pushfstring (lua_State *L, const char *fmt, ...);</pre>
4289
4290<p>
4291Pushes onto the stack a formatted string
4292and returns a pointer to this string.
4293It is similar to the ISO&nbsp;C function <code>sprintf</code>,
4294but has some important differences:
4295
4296<ul>
4297
4298<li>
4299You do not have to allocate space for the result:
4300the result is a Lua string and Lua takes care of memory allocation
4301(and deallocation, through garbage collection).
4302</li>
4303
4304<li>
4305The conversion specifiers are quite restricted.
4306There are no flags, widths, or precisions.
4307The conversion specifiers can only be
4308'<code>%%</code>' (inserts the character '<code>%</code>'),
4309'<code>%s</code>' (inserts a zero-terminated string, with no size restrictions),
4310'<code>%f</code>' (inserts a <a href="#lua_Number"><code>lua_Number</code></a>),
4311'<code>%I</code>' (inserts a <a href="#lua_Integer"><code>lua_Integer</code></a>),
4312'<code>%p</code>' (inserts a pointer as a hexadecimal numeral),
4313'<code>%d</code>' (inserts an <code>int</code>),
4314'<code>%c</code>' (inserts an <code>int</code> as a one-byte character), and
4315'<code>%U</code>' (inserts a <code>long int</code> as a UTF-8 byte sequence).
4316</li>
4317
4318</ul>
4319
4320
4321
4322
4323<hr><h3><a name="lua_pushglobaltable"><code>lua_pushglobaltable</code></a></h3><p>
4324<span class="apii">[-0, +1, &ndash;]</span>
4325<pre>void lua_pushglobaltable (lua_State *L);</pre>
4326
4327<p>
4328Pushes the global environment onto the stack.
4329
4330
4331
4332
4333
4334<hr><h3><a name="lua_pushinteger"><code>lua_pushinteger</code></a></h3><p>
4335<span class="apii">[-0, +1, &ndash;]</span>
4336<pre>void lua_pushinteger (lua_State *L, lua_Integer n);</pre>
4337
4338<p>
4339Pushes an integer with value <code>n</code> onto the stack.
4340
4341
4342
4343
4344
4345<hr><h3><a name="lua_pushlightuserdata"><code>lua_pushlightuserdata</code></a></h3><p>
4346<span class="apii">[-0, +1, &ndash;]</span>
4347<pre>void lua_pushlightuserdata (lua_State *L, void *p);</pre>
4348
4349<p>
4350Pushes a light userdata onto the stack.
4351
4352
4353<p>
4354Userdata represent C&nbsp;values in Lua.
4355A <em>light userdata</em> represents a pointer, a <code>void*</code>.
4356It is a value (like a number):
4357you do not create it, it has no individual metatable,
4358and it is not collected (as it was never created).
4359A light userdata is equal to "any"
4360light userdata with the same C&nbsp;address.
4361
4362
4363
4364
4365
4366<hr><h3><a name="lua_pushliteral"><code>lua_pushliteral</code></a></h3><p>
4367<span class="apii">[-0, +1, <em>m</em>]</span>
4368<pre>const char *lua_pushliteral (lua_State *L, const char *s);</pre>
4369
4370<p>
4371This macro is equivalent to <a href="#lua_pushstring"><code>lua_pushstring</code></a>,
4372but should be used only when <code>s</code> is a literal string.
4373
4374
4375
4376
4377
4378<hr><h3><a name="lua_pushlstring"><code>lua_pushlstring</code></a></h3><p>
4379<span class="apii">[-0, +1, <em>m</em>]</span>
4380<pre>const char *lua_pushlstring (lua_State *L, const char *s, size_t len);</pre>
4381
4382<p>
4383Pushes the string pointed to by <code>s</code> with size <code>len</code>
4384onto the stack.
4385Lua makes (or reuses) an internal copy of the given string,
4386so the memory at <code>s</code> can be freed or reused immediately after
4387the function returns.
4388The string can contain any binary data,
4389including embedded zeros.
4390
4391
4392<p>
4393Returns a pointer to the internal copy of the string.
4394
4395
4396
4397
4398
4399<hr><h3><a name="lua_pushnil"><code>lua_pushnil</code></a></h3><p>
4400<span class="apii">[-0, +1, &ndash;]</span>
4401<pre>void lua_pushnil (lua_State *L);</pre>
4402
4403<p>
4404Pushes a nil value onto the stack.
4405
4406
4407
4408
4409
4410<hr><h3><a name="lua_pushnumber"><code>lua_pushnumber</code></a></h3><p>
4411<span class="apii">[-0, +1, &ndash;]</span>
4412<pre>void lua_pushnumber (lua_State *L, lua_Number n);</pre>
4413
4414<p>
4415Pushes a float with value <code>n</code> onto the stack.
4416
4417
4418
4419
4420
4421<hr><h3><a name="lua_pushstring"><code>lua_pushstring</code></a></h3><p>
4422<span class="apii">[-0, +1, <em>m</em>]</span>
4423<pre>const char *lua_pushstring (lua_State *L, const char *s);</pre>
4424
4425<p>
4426Pushes the zero-terminated string pointed to by <code>s</code>
4427onto the stack.
4428Lua makes (or reuses) an internal copy of the given string,
4429so the memory at <code>s</code> can be freed or reused immediately after
4430the function returns.
4431
4432
4433<p>
4434Returns a pointer to the internal copy of the string.
4435
4436
4437<p>
4438If <code>s</code> is <code>NULL</code>, pushes <b>nil</b> and returns <code>NULL</code>.
4439
4440
4441
4442
4443
4444<hr><h3><a name="lua_pushthread"><code>lua_pushthread</code></a></h3><p>
4445<span class="apii">[-0, +1, &ndash;]</span>
4446<pre>int lua_pushthread (lua_State *L);</pre>
4447
4448<p>
4449Pushes the thread represented by <code>L</code> onto the stack.
4450Returns 1 if this thread is the main thread of its state.
4451
4452
4453
4454
4455
4456<hr><h3><a name="lua_pushvalue"><code>lua_pushvalue</code></a></h3><p>
4457<span class="apii">[-0, +1, &ndash;]</span>
4458<pre>void lua_pushvalue (lua_State *L, int index);</pre>
4459
4460<p>
4461Pushes a copy of the element at the given index
4462onto the stack.
4463
4464
4465
4466
4467
4468<hr><h3><a name="lua_pushvfstring"><code>lua_pushvfstring</code></a></h3><p>
4469<span class="apii">[-0, +1, <em>m</em>]</span>
4470<pre>const char *lua_pushvfstring (lua_State *L,
4471                              const char *fmt,
4472                              va_list argp);</pre>
4473
4474<p>
4475Equivalent to <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>, except that it receives a <code>va_list</code>
4476instead of a variable number of arguments.
4477
4478
4479
4480
4481
4482<hr><h3><a name="lua_rawequal"><code>lua_rawequal</code></a></h3><p>
4483<span class="apii">[-0, +0, &ndash;]</span>
4484<pre>int lua_rawequal (lua_State *L, int index1, int index2);</pre>
4485
4486<p>
4487Returns 1 if the two values in indices <code>index1</code> and
4488<code>index2</code> are primitively equal
4489(that is, without calling metamethods).
4490Otherwise returns&nbsp;0.
4491Also returns&nbsp;0 if any of the indices are not valid.
4492
4493
4494
4495
4496
4497<hr><h3><a name="lua_rawget"><code>lua_rawget</code></a></h3><p>
4498<span class="apii">[-1, +1, &ndash;]</span>
4499<pre>int lua_rawget (lua_State *L, int index);</pre>
4500
4501<p>
4502Similar to <a href="#lua_gettable"><code>lua_gettable</code></a>, but does a raw access
4503(i.e., without metamethods).
4504
4505
4506
4507
4508
4509<hr><h3><a name="lua_rawgeti"><code>lua_rawgeti</code></a></h3><p>
4510<span class="apii">[-0, +1, &ndash;]</span>
4511<pre>int lua_rawgeti (lua_State *L, int index, lua_Integer n);</pre>
4512
4513<p>
4514Pushes onto the stack the value <code>t[n]</code>,
4515where <code>t</code> is the table at the given index.
4516The access is raw;
4517that is, it does not invoke metamethods.
4518
4519
4520<p>
4521Returns the type of the pushed value.
4522
4523
4524
4525
4526
4527<hr><h3><a name="lua_rawgetp"><code>lua_rawgetp</code></a></h3><p>
4528<span class="apii">[-0, +1, &ndash;]</span>
4529<pre>int lua_rawgetp (lua_State *L, int index, const void *p);</pre>
4530
4531<p>
4532Pushes onto the stack the value <code>t[k]</code>,
4533where <code>t</code> is the table at the given index and
4534<code>k</code> is the pointer <code>p</code> represented as a light userdata.
4535The access is raw;
4536that is, it does not invoke metamethods.
4537
4538
4539<p>
4540Returns the type of the pushed value.
4541
4542
4543
4544
4545
4546<hr><h3><a name="lua_rawlen"><code>lua_rawlen</code></a></h3><p>
4547<span class="apii">[-0, +0, &ndash;]</span>
4548<pre>size_t lua_rawlen (lua_State *L, int index);</pre>
4549
4550<p>
4551Returns the raw "length" of the value at the given index:
4552for strings, this is the string length;
4553for tables, this is the result of the length operator ('<code>#</code>')
4554with no metamethods;
4555for userdata, this is the size of the block of memory allocated
4556for the userdata;
4557for other values, it is&nbsp;0.
4558
4559
4560
4561
4562
4563<hr><h3><a name="lua_rawset"><code>lua_rawset</code></a></h3><p>
4564<span class="apii">[-2, +0, <em>m</em>]</span>
4565<pre>void lua_rawset (lua_State *L, int index);</pre>
4566
4567<p>
4568Similar to <a href="#lua_settable"><code>lua_settable</code></a>, but does a raw assignment
4569(i.e., without metamethods).
4570
4571
4572
4573
4574
4575<hr><h3><a name="lua_rawseti"><code>lua_rawseti</code></a></h3><p>
4576<span class="apii">[-1, +0, <em>m</em>]</span>
4577<pre>void lua_rawseti (lua_State *L, int index, lua_Integer i);</pre>
4578
4579<p>
4580Does the equivalent of <code>t[i] = v</code>,
4581where <code>t</code> is the table at the given index
4582and <code>v</code> is the value at the top of the stack.
4583
4584
4585<p>
4586This function pops the value from the stack.
4587The assignment is raw;
4588that is, it does not invoke metamethods.
4589
4590
4591
4592
4593
4594<hr><h3><a name="lua_rawsetp"><code>lua_rawsetp</code></a></h3><p>
4595<span class="apii">[-1, +0, <em>m</em>]</span>
4596<pre>void lua_rawsetp (lua_State *L, int index, const void *p);</pre>
4597
4598<p>
4599Does the equivalent of <code>t[p] = v</code>,
4600where <code>t</code> is the table at the given index,
4601<code>p</code> is encoded as a light userdata,
4602and <code>v</code> is the value at the top of the stack.
4603
4604
4605<p>
4606This function pops the value from the stack.
4607The assignment is raw;
4608that is, it does not invoke metamethods.
4609
4610
4611
4612
4613
4614<hr><h3><a name="lua_Reader"><code>lua_Reader</code></a></h3>
4615<pre>typedef const char * (*lua_Reader) (lua_State *L,
4616                                    void *data,
4617                                    size_t *size);</pre>
4618
4619<p>
4620The reader function used by <a href="#lua_load"><code>lua_load</code></a>.
4621Every time it needs another piece of the chunk,
4622<a href="#lua_load"><code>lua_load</code></a> calls the reader,
4623passing along its <code>data</code> parameter.
4624The reader must return a pointer to a block of memory
4625with a new piece of the chunk
4626and set <code>size</code> to the block size.
4627The block must exist until the reader function is called again.
4628To signal the end of the chunk,
4629the reader must return <code>NULL</code> or set <code>size</code> to zero.
4630The reader function may return pieces of any size greater than zero.
4631
4632
4633
4634
4635
4636<hr><h3><a name="lua_register"><code>lua_register</code></a></h3><p>
4637<span class="apii">[-0, +0, <em>e</em>]</span>
4638<pre>void lua_register (lua_State *L, const char *name, lua_CFunction f);</pre>
4639
4640<p>
4641Sets the C function <code>f</code> as the new value of global <code>name</code>.
4642It is defined as a macro:
4643
4644<pre>
4645     #define lua_register(L,n,f) \
4646            (lua_pushcfunction(L, f), lua_setglobal(L, n))
4647</pre>
4648
4649
4650
4651
4652<hr><h3><a name="lua_remove"><code>lua_remove</code></a></h3><p>
4653<span class="apii">[-1, +0, &ndash;]</span>
4654<pre>void lua_remove (lua_State *L, int index);</pre>
4655
4656<p>
4657Removes the element at the given valid index,
4658shifting down the elements above this index to fill the gap.
4659This function cannot be called with a pseudo-index,
4660because a pseudo-index is not an actual stack position.
4661
4662
4663
4664
4665
4666<hr><h3><a name="lua_replace"><code>lua_replace</code></a></h3><p>
4667<span class="apii">[-1, +0, &ndash;]</span>
4668<pre>void lua_replace (lua_State *L, int index);</pre>
4669
4670<p>
4671Moves the top element into the given valid index
4672without shifting any element
4673(therefore replacing the value at that given index),
4674and then pops the top element.
4675
4676
4677
4678
4679
4680<hr><h3><a name="lua_resume"><code>lua_resume</code></a></h3><p>
4681<span class="apii">[-?, +?, &ndash;]</span>
4682<pre>int lua_resume (lua_State *L, lua_State *from, int nargs);</pre>
4683
4684<p>
4685Starts and resumes a coroutine in the given thread <code>L</code>.
4686
4687
4688<p>
4689To start a coroutine,
4690you push onto the thread stack the main function plus any arguments;
4691then you call <a href="#lua_resume"><code>lua_resume</code></a>,
4692with <code>nargs</code> being the number of arguments.
4693This call returns when the coroutine suspends or finishes its execution.
4694When it returns, the stack contains all values passed to <a href="#lua_yield"><code>lua_yield</code></a>,
4695or all values returned by the body function.
4696<a href="#lua_resume"><code>lua_resume</code></a> returns
4697<a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the coroutine yields,
4698<a href="#pdf-LUA_OK"><code>LUA_OK</code></a> if the coroutine finishes its execution
4699without errors,
4700or an error code in case of errors (see <a href="#lua_pcall"><code>lua_pcall</code></a>).
4701
4702
4703<p>
4704In case of errors,
4705the stack is not unwound,
4706so you can use the debug API over it.
4707The error message is on the top of the stack.
4708
4709
4710<p>
4711To resume a coroutine,
4712you remove any results from the last <a href="#lua_yield"><code>lua_yield</code></a>,
4713put on its stack only the values to
4714be passed as results from <code>yield</code>,
4715and then call <a href="#lua_resume"><code>lua_resume</code></a>.
4716
4717
4718<p>
4719The parameter <code>from</code> represents the coroutine that is resuming <code>L</code>.
4720If there is no such coroutine,
4721this parameter can be <code>NULL</code>.
4722
4723
4724
4725
4726
4727<hr><h3><a name="lua_rotate"><code>lua_rotate</code></a></h3><p>
4728<span class="apii">[-0, +0, &ndash;]</span>
4729<pre>void lua_rotate (lua_State *L, int idx, int n);</pre>
4730
4731<p>
4732Rotates the stack elements between the valid index <code>idx</code>
4733and the top of the stack.
4734The elements are rotated <code>n</code> positions in the direction of the top,
4735for a positive <code>n</code>,
4736or <code>-n</code> positions in the direction of the bottom,
4737for a negative <code>n</code>.
4738The absolute value of <code>n</code> must not be greater than the size
4739of the slice being rotated.
4740This function cannot be called with a pseudo-index,
4741because a pseudo-index is not an actual stack position.
4742
4743
4744
4745
4746
4747<hr><h3><a name="lua_setallocf"><code>lua_setallocf</code></a></h3><p>
4748<span class="apii">[-0, +0, &ndash;]</span>
4749<pre>void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);</pre>
4750
4751<p>
4752Changes the allocator function of a given state to <code>f</code>
4753with user data <code>ud</code>.
4754
4755
4756
4757
4758
4759<hr><h3><a name="lua_setfield"><code>lua_setfield</code></a></h3><p>
4760<span class="apii">[-1, +0, <em>e</em>]</span>
4761<pre>void lua_setfield (lua_State *L, int index, const char *k);</pre>
4762
4763<p>
4764Does the equivalent to <code>t[k] = v</code>,
4765where <code>t</code> is the value at the given index
4766and <code>v</code> is the value at the top of the stack.
4767
4768
4769<p>
4770This function pops the value from the stack.
4771As in Lua, this function may trigger a metamethod
4772for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).
4773
4774
4775
4776
4777
4778<hr><h3><a name="lua_setglobal"><code>lua_setglobal</code></a></h3><p>
4779<span class="apii">[-1, +0, <em>e</em>]</span>
4780<pre>void lua_setglobal (lua_State *L, const char *name);</pre>
4781
4782<p>
4783Pops a value from the stack and
4784sets it as the new value of global <code>name</code>.
4785
4786
4787
4788
4789
4790<hr><h3><a name="lua_seti"><code>lua_seti</code></a></h3><p>
4791<span class="apii">[-1, +0, <em>e</em>]</span>
4792<pre>void lua_seti (lua_State *L, int index, lua_Integer n);</pre>
4793
4794<p>
4795Does the equivalent to <code>t[n] = v</code>,
4796where <code>t</code> is the value at the given index
4797and <code>v</code> is the value at the top of the stack.
4798
4799
4800<p>
4801This function pops the value from the stack.
4802As in Lua, this function may trigger a metamethod
4803for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).
4804
4805
4806
4807
4808
4809<hr><h3><a name="lua_setmetatable"><code>lua_setmetatable</code></a></h3><p>
4810<span class="apii">[-1, +0, &ndash;]</span>
4811<pre>void lua_setmetatable (lua_State *L, int index);</pre>
4812
4813<p>
4814Pops a table from the stack and
4815sets it as the new metatable for the value at the given index.
4816
4817
4818
4819
4820
4821<hr><h3><a name="lua_settable"><code>lua_settable</code></a></h3><p>
4822<span class="apii">[-2, +0, <em>e</em>]</span>
4823<pre>void lua_settable (lua_State *L, int index);</pre>
4824
4825<p>
4826Does the equivalent to <code>t[k] = v</code>,
4827where <code>t</code> is the value at the given index,
4828<code>v</code> is the value at the top of the stack,
4829and <code>k</code> is the value just below the top.
4830
4831
4832<p>
4833This function pops both the key and the value from the stack.
4834As in Lua, this function may trigger a metamethod
4835for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).
4836
4837
4838
4839
4840
4841<hr><h3><a name="lua_settop"><code>lua_settop</code></a></h3><p>
4842<span class="apii">[-?, +?, &ndash;]</span>
4843<pre>void lua_settop (lua_State *L, int index);</pre>
4844
4845<p>
4846Accepts any index, or&nbsp;0,
4847and sets the stack top to this index.
4848If the new top is larger than the old one,
4849then the new elements are filled with <b>nil</b>.
4850If <code>index</code> is&nbsp;0, then all stack elements are removed.
4851
4852
4853
4854
4855
4856<hr><h3><a name="lua_setuservalue"><code>lua_setuservalue</code></a></h3><p>
4857<span class="apii">[-1, +0, &ndash;]</span>
4858<pre>void lua_setuservalue (lua_State *L, int index);</pre>
4859
4860<p>
4861Pops a value from the stack and sets it as
4862the new value associated to the userdata at the given index.
4863
4864
4865
4866
4867
4868<hr><h3><a name="lua_State"><code>lua_State</code></a></h3>
4869<pre>typedef struct lua_State lua_State;</pre>
4870
4871<p>
4872An opaque structure that points to a thread and indirectly
4873(through the thread) to the whole state of a Lua interpreter.
4874The Lua library is fully reentrant:
4875it has no global variables.
4876All information about a state is accessible through this structure.
4877
4878
4879<p>
4880A pointer to this structure must be passed as the first argument to
4881every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>,
4882which creates a Lua state from scratch.
4883
4884
4885
4886
4887
4888<hr><h3><a name="lua_status"><code>lua_status</code></a></h3><p>
4889<span class="apii">[-0, +0, &ndash;]</span>
4890<pre>int lua_status (lua_State *L);</pre>
4891
4892<p>
4893Returns the status of the thread <code>L</code>.
4894
4895
4896<p>
4897The status can be 0 (<a href="#pdf-LUA_OK"><code>LUA_OK</code></a>) for a normal thread,
4898an error code if the thread finished the execution
4899of a <a href="#lua_resume"><code>lua_resume</code></a> with an error,
4900or <a name="pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the thread is suspended.
4901
4902
4903<p>
4904You can only call functions in threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>.
4905You can resume threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>
4906(to start a new coroutine) or <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a>
4907(to resume a coroutine).
4908
4909
4910
4911
4912
4913<hr><h3><a name="lua_stringtonumber"><code>lua_stringtonumber</code></a></h3><p>
4914<span class="apii">[-0, +1, &ndash;]</span>
4915<pre>size_t lua_stringtonumber (lua_State *L, const char *s);</pre>
4916
4917<p>
4918Converts the zero-terminated string <code>s</code> to a number,
4919pushes that number into the stack,
4920and returns the total size of the string,
4921that is, its length plus one.
4922The conversion can result in an integer or a float,
4923according to the lexical conventions of Lua (see <a href="#3.1">&sect;3.1</a>).
4924The string may have leading and trailing spaces and a sign.
4925If the string is not a valid numeral,
4926returns 0 and pushes nothing.
4927(Note that the result can be used as a boolean,
4928true if the conversion succeeds.)
4929
4930
4931
4932
4933
4934<hr><h3><a name="lua_toboolean"><code>lua_toboolean</code></a></h3><p>
4935<span class="apii">[-0, +0, &ndash;]</span>
4936<pre>int lua_toboolean (lua_State *L, int index);</pre>
4937
4938<p>
4939Converts the Lua value at the given index to a C&nbsp;boolean
4940value (0&nbsp;or&nbsp;1).
4941Like all tests in Lua,
4942<a href="#lua_toboolean"><code>lua_toboolean</code></a> returns true for any Lua value
4943different from <b>false</b> and <b>nil</b>;
4944otherwise it returns false.
4945(If you want to accept only actual boolean values,
4946use <a href="#lua_isboolean"><code>lua_isboolean</code></a> to test the value's type.)
4947
4948
4949
4950
4951
4952<hr><h3><a name="lua_tocfunction"><code>lua_tocfunction</code></a></h3><p>
4953<span class="apii">[-0, +0, &ndash;]</span>
4954<pre>lua_CFunction lua_tocfunction (lua_State *L, int index);</pre>
4955
4956<p>
4957Converts a value at the given index to a C&nbsp;function.
4958That value must be a C&nbsp;function;
4959otherwise, returns <code>NULL</code>.
4960
4961
4962
4963
4964
4965<hr><h3><a name="lua_tointeger"><code>lua_tointeger</code></a></h3><p>
4966<span class="apii">[-0, +0, &ndash;]</span>
4967<pre>lua_Integer lua_tointeger (lua_State *L, int index);</pre>
4968
4969<p>
4970Equivalent to <a href="#lua_tointegerx"><code>lua_tointegerx</code></a> with <code>isnum</code> equal to <code>NULL</code>.
4971
4972
4973
4974
4975
4976<hr><h3><a name="lua_tointegerx"><code>lua_tointegerx</code></a></h3><p>
4977<span class="apii">[-0, +0, &ndash;]</span>
4978<pre>lua_Integer lua_tointegerx (lua_State *L, int index, int *isnum);</pre>
4979
4980<p>
4981Converts the Lua value at the given index
4982to the signed integral type <a href="#lua_Integer"><code>lua_Integer</code></a>.
4983The Lua value must be an integer,
4984or a number or string convertible to an integer (see <a href="#3.4.3">&sect;3.4.3</a>);
4985otherwise, <code>lua_tointegerx</code> returns&nbsp;0.
4986
4987
4988<p>
4989If <code>isnum</code> is not <code>NULL</code>,
4990its referent is assigned a boolean value that
4991indicates whether the operation succeeded.
4992
4993
4994
4995
4996
4997<hr><h3><a name="lua_tolstring"><code>lua_tolstring</code></a></h3><p>
4998<span class="apii">[-0, +0, <em>m</em>]</span>
4999<pre>const char *lua_tolstring (lua_State *L, int index, size_t *len);</pre>
5000
5001<p>
5002Converts the Lua value at the given index to a C&nbsp;string.
5003If <code>len</code> is not <code>NULL</code>,
5004it sets <code>*len</code> with the string length.
5005The Lua value must be a string or a number;
5006otherwise, the function returns <code>NULL</code>.
5007If the value is a number,
5008then <code>lua_tolstring</code> also
5009<em>changes the actual value in the stack to a string</em>.
5010(This change confuses <a href="#lua_next"><code>lua_next</code></a>
5011when <code>lua_tolstring</code> is applied to keys during a table traversal.)
5012
5013
5014<p>
5015<code>lua_tolstring</code> returns a pointer
5016to a string inside the Lua state.
5017This string always has a zero ('<code>\0</code>')
5018after its last character (as in&nbsp;C),
5019but can contain other zeros in its body.
5020
5021
5022<p>
5023Because Lua has garbage collection,
5024there is no guarantee that the pointer returned by <code>lua_tolstring</code>
5025will be valid after the corresponding Lua value is removed from the stack.
5026
5027
5028
5029
5030
5031<hr><h3><a name="lua_tonumber"><code>lua_tonumber</code></a></h3><p>
5032<span class="apii">[-0, +0, &ndash;]</span>
5033<pre>lua_Number lua_tonumber (lua_State *L, int index);</pre>
5034
5035<p>
5036Equivalent to <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> with <code>isnum</code> equal to <code>NULL</code>.
5037
5038
5039
5040
5041
5042<hr><h3><a name="lua_tonumberx"><code>lua_tonumberx</code></a></h3><p>
5043<span class="apii">[-0, +0, &ndash;]</span>
5044<pre>lua_Number lua_tonumberx (lua_State *L, int index, int *isnum);</pre>
5045
5046<p>
5047Converts the Lua value at the given index
5048to the C&nbsp;type <a href="#lua_Number"><code>lua_Number</code></a> (see <a href="#lua_Number"><code>lua_Number</code></a>).
5049The Lua value must be a number or a string convertible to a number
5050(see <a href="#3.4.3">&sect;3.4.3</a>);
5051otherwise, <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> returns&nbsp;0.
5052
5053
5054<p>
5055If <code>isnum</code> is not <code>NULL</code>,
5056its referent is assigned a boolean value that
5057indicates whether the operation succeeded.
5058
5059
5060
5061
5062
5063<hr><h3><a name="lua_topointer"><code>lua_topointer</code></a></h3><p>
5064<span class="apii">[-0, +0, &ndash;]</span>
5065<pre>const void *lua_topointer (lua_State *L, int index);</pre>
5066
5067<p>
5068Converts the value at the given index to a generic
5069C&nbsp;pointer (<code>void*</code>).
5070The value can be a userdata, a table, a thread, or a function;
5071otherwise, <code>lua_topointer</code> returns <code>NULL</code>.
5072Different objects will give different pointers.
5073There is no way to convert the pointer back to its original value.
5074
5075
5076<p>
5077Typically this function is used only for hashing and debug information.
5078
5079
5080
5081
5082
5083<hr><h3><a name="lua_tostring"><code>lua_tostring</code></a></h3><p>
5084<span class="apii">[-0, +0, <em>m</em>]</span>
5085<pre>const char *lua_tostring (lua_State *L, int index);</pre>
5086
5087<p>
5088Equivalent to <a href="#lua_tolstring"><code>lua_tolstring</code></a> with <code>len</code> equal to <code>NULL</code>.
5089
5090
5091
5092
5093
5094<hr><h3><a name="lua_tothread"><code>lua_tothread</code></a></h3><p>
5095<span class="apii">[-0, +0, &ndash;]</span>
5096<pre>lua_State *lua_tothread (lua_State *L, int index);</pre>
5097
5098<p>
5099Converts the value at the given index to a Lua thread
5100(represented as <code>lua_State*</code>).
5101This value must be a thread;
5102otherwise, the function returns <code>NULL</code>.
5103
5104
5105
5106
5107
5108<hr><h3><a name="lua_touserdata"><code>lua_touserdata</code></a></h3><p>
5109<span class="apii">[-0, +0, &ndash;]</span>
5110<pre>void *lua_touserdata (lua_State *L, int index);</pre>
5111
5112<p>
5113If the value at the given index is a full userdata,
5114returns its block address.
5115If the value is a light userdata,
5116returns its pointer.
5117Otherwise, returns <code>NULL</code>.
5118
5119
5120
5121
5122
5123<hr><h3><a name="lua_type"><code>lua_type</code></a></h3><p>
5124<span class="apii">[-0, +0, &ndash;]</span>
5125<pre>int lua_type (lua_State *L, int index);</pre>
5126
5127<p>
5128Returns the type of the value in the given valid index,
5129or <code>LUA_TNONE</code> for a non-valid (but acceptable) index.
5130The types returned by <a href="#lua_type"><code>lua_type</code></a> are coded by the following constants
5131defined in <code>lua.h</code>:
5132<a name="pdf-LUA_TNIL"><code>LUA_TNIL</code></a> (0),
5133<a name="pdf-LUA_TNUMBER"><code>LUA_TNUMBER</code></a>,
5134<a name="pdf-LUA_TBOOLEAN"><code>LUA_TBOOLEAN</code></a>,
5135<a name="pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>,
5136<a name="pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>,
5137<a name="pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>,
5138<a name="pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>,
5139<a name="pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a>,
5140and
5141<a name="pdf-LUA_TLIGHTUSERDATA"><code>LUA_TLIGHTUSERDATA</code></a>.
5142
5143
5144
5145
5146
5147<hr><h3><a name="lua_typename"><code>lua_typename</code></a></h3><p>
5148<span class="apii">[-0, +0, &ndash;]</span>
5149<pre>const char *lua_typename (lua_State *L, int tp);</pre>
5150
5151<p>
5152Returns the name of the type encoded by the value <code>tp</code>,
5153which must be one the values returned by <a href="#lua_type"><code>lua_type</code></a>.
5154
5155
5156
5157
5158
5159<hr><h3><a name="lua_Unsigned"><code>lua_Unsigned</code></a></h3>
5160<pre>typedef ... lua_Unsigned;</pre>
5161
5162<p>
5163The unsigned version of <a href="#lua_Integer"><code>lua_Integer</code></a>.
5164
5165
5166
5167
5168
5169<hr><h3><a name="lua_upvalueindex"><code>lua_upvalueindex</code></a></h3><p>
5170<span class="apii">[-0, +0, &ndash;]</span>
5171<pre>int lua_upvalueindex (int i);</pre>
5172
5173<p>
5174Returns the pseudo-index that represents the <code>i</code>-th upvalue of
5175the running function (see <a href="#4.4">&sect;4.4</a>).
5176
5177
5178
5179
5180
5181<hr><h3><a name="lua_version"><code>lua_version</code></a></h3><p>
5182<span class="apii">[-0, +0, <em>v</em>]</span>
5183<pre>const lua_Number *lua_version (lua_State *L);</pre>
5184
5185<p>
5186Returns the address of the version number stored in the Lua core.
5187When called with a valid <a href="#lua_State"><code>lua_State</code></a>,
5188returns the address of the version used to create that state.
5189When called with <code>NULL</code>,
5190returns the address of the version running the call.
5191
5192
5193
5194
5195
5196<hr><h3><a name="lua_Writer"><code>lua_Writer</code></a></h3>
5197<pre>typedef int (*lua_Writer) (lua_State *L,
5198                           const void* p,
5199                           size_t sz,
5200                           void* ud);</pre>
5201
5202<p>
5203The type of the writer function used by <a href="#lua_dump"><code>lua_dump</code></a>.
5204Every time it produces another piece of chunk,
5205<a href="#lua_dump"><code>lua_dump</code></a> calls the writer,
5206passing along the buffer to be written (<code>p</code>),
5207its size (<code>sz</code>),
5208and the <code>data</code> parameter supplied to <a href="#lua_dump"><code>lua_dump</code></a>.
5209
5210
5211<p>
5212The writer returns an error code:
52130&nbsp;means no errors;
5214any other value means an error and stops <a href="#lua_dump"><code>lua_dump</code></a> from
5215calling the writer again.
5216
5217
5218
5219
5220
5221<hr><h3><a name="lua_xmove"><code>lua_xmove</code></a></h3><p>
5222<span class="apii">[-?, +?, &ndash;]</span>
5223<pre>void lua_xmove (lua_State *from, lua_State *to, int n);</pre>
5224
5225<p>
5226Exchange values between different threads of the same state.
5227
5228
5229<p>
5230This function pops <code>n</code> values from the stack <code>from</code>,
5231and pushes them onto the stack <code>to</code>.
5232
5233
5234
5235
5236
5237<hr><h3><a name="lua_yield"><code>lua_yield</code></a></h3><p>
5238<span class="apii">[-?, +?, <em>e</em>]</span>
5239<pre>int lua_yield (lua_State *L, int nresults);</pre>
5240
5241<p>
5242This function is equivalent to <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
5243but it has no continuation (see <a href="#4.7">&sect;4.7</a>).
5244Therefore, when the thread resumes,
5245it continues the function that called
5246the function calling <code>lua_yield</code>.
5247
5248
5249
5250
5251
5252<hr><h3><a name="lua_yieldk"><code>lua_yieldk</code></a></h3><p>
5253<span class="apii">[-?, +?, <em>e</em>]</span>
5254<pre>int lua_yieldk (lua_State *L,
5255                int nresults,
5256                lua_KContext ctx,
5257                lua_KFunction k);</pre>
5258
5259<p>
5260Yields a coroutine (thread).
5261
5262
5263<p>
5264When a C&nbsp;function calls <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
5265the running coroutine suspends its execution,
5266and the call to <a href="#lua_resume"><code>lua_resume</code></a> that started this coroutine returns.
5267The parameter <code>nresults</code> is the number of values from the stack
5268that will be passed as results to <a href="#lua_resume"><code>lua_resume</code></a>.
5269
5270
5271<p>
5272When the coroutine is resumed again,
5273Lua calls the given continuation function <code>k</code> to continue
5274the execution of the C function that yielded (see <a href="#4.7">&sect;4.7</a>).
5275This continuation function receives the same stack
5276from the previous function,
5277with the <code>n</code> results removed and
5278replaced by the arguments passed to <a href="#lua_resume"><code>lua_resume</code></a>.
5279Moreover,
5280the continuation function receives the value <code>ctx</code>
5281that was passed to <a href="#lua_yieldk"><code>lua_yieldk</code></a>.
5282
5283
5284<p>
5285Usually, this function does not return;
5286when the coroutine eventually resumes,
5287it continues executing the continuation function.
5288However, there is one special case,
5289which is when this function is called
5290from inside a line hook (see <a href="#4.9">&sect;4.9</a>).
5291In that case, <code>lua_yieldk</code> should be called with no continuation
5292(probably in the form of <a href="#lua_yield"><code>lua_yield</code></a>),
5293and the hook should return immediately after the call.
5294Lua will yield and,
5295when the coroutine resumes again,
5296it will continue the normal execution
5297of the (Lua) function that triggered the hook.
5298
5299
5300<p>
5301This function can raise an error if it is called from a thread
5302with a pending C call with no continuation function,
5303or it is called from a thread that is not running inside a resume
5304(e.g., the main thread).
5305
5306
5307
5308
5309
5310
5311
5312<h2>4.9 &ndash; <a name="4.9">The Debug Interface</a></h2>
5313
5314<p>
5315Lua has no built-in debugging facilities.
5316Instead, it offers a special interface
5317by means of functions and <em>hooks</em>.
5318This interface allows the construction of different
5319kinds of debuggers, profilers, and other tools
5320that need "inside information" from the interpreter.
5321
5322
5323
5324<hr><h3><a name="lua_Debug"><code>lua_Debug</code></a></h3>
5325<pre>typedef struct lua_Debug {
5326  int event;
5327  const char *name;           /* (n) */
5328  const char *namewhat;       /* (n) */
5329  const char *what;           /* (S) */
5330  const char *source;         /* (S) */
5331  int currentline;            /* (l) */
5332  int linedefined;            /* (S) */
5333  int lastlinedefined;        /* (S) */
5334  unsigned char nups;         /* (u) number of upvalues */
5335  unsigned char nparams;      /* (u) number of parameters */
5336  char isvararg;              /* (u) */
5337  char istailcall;            /* (t) */
5338  char short_src[LUA_IDSIZE]; /* (S) */
5339  /* private part */
5340  <em>other fields</em>
5341} lua_Debug;</pre>
5342
5343<p>
5344A structure used to carry different pieces of
5345information about a function or an activation record.
5346<a href="#lua_getstack"><code>lua_getstack</code></a> fills only the private part
5347of this structure, for later use.
5348To fill the other fields of <a href="#lua_Debug"><code>lua_Debug</code></a> with useful information,
5349call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
5350
5351
5352<p>
5353The fields of <a href="#lua_Debug"><code>lua_Debug</code></a> have the following meaning:
5354
5355<ul>
5356
5357<li><b><code>source</code>: </b>
5358the name of the chunk that created the function.
5359If <code>source</code> starts with a '<code>@</code>',
5360it means that the function was defined in a file where
5361the file name follows the '<code>@</code>'.
5362If <code>source</code> starts with a '<code>=</code>',
5363the remainder of its contents describe the source in a user-dependent manner.
5364Otherwise,
5365the function was defined in a string where
5366<code>source</code> is that string.
5367</li>
5368
5369<li><b><code>short_src</code>: </b>
5370a "printable" version of <code>source</code>, to be used in error messages.
5371</li>
5372
5373<li><b><code>linedefined</code>: </b>
5374the line number where the definition of the function starts.
5375</li>
5376
5377<li><b><code>lastlinedefined</code>: </b>
5378the line number where the definition of the function ends.
5379</li>
5380
5381<li><b><code>what</code>: </b>
5382the string <code>"Lua"</code> if the function is a Lua function,
5383<code>"C"</code> if it is a C&nbsp;function,
5384<code>"main"</code> if it is the main part of a chunk.
5385</li>
5386
5387<li><b><code>currentline</code>: </b>
5388the current line where the given function is executing.
5389When no line information is available,
5390<code>currentline</code> is set to -1.
5391</li>
5392
5393<li><b><code>name</code>: </b>
5394a reasonable name for the given function.
5395Because functions in Lua are first-class values,
5396they do not have a fixed name:
5397some functions can be the value of multiple global variables,
5398while others can be stored only in a table field.
5399The <code>lua_getinfo</code> function checks how the function was
5400called to find a suitable name.
5401If it cannot find a name,
5402then <code>name</code> is set to <code>NULL</code>.
5403</li>
5404
5405<li><b><code>namewhat</code>: </b>
5406explains the <code>name</code> field.
5407The value of <code>namewhat</code> can be
5408<code>"global"</code>, <code>"local"</code>, <code>"method"</code>,
5409<code>"field"</code>, <code>"upvalue"</code>, or <code>""</code> (the empty string),
5410according to how the function was called.
5411(Lua uses the empty string when no other option seems to apply.)
5412</li>
5413
5414<li><b><code>istailcall</code>: </b>
5415true if this function invocation was called by a tail call.
5416In this case, the caller of this level is not in the stack.
5417</li>
5418
5419<li><b><code>nups</code>: </b>
5420the number of upvalues of the function.
5421</li>
5422
5423<li><b><code>nparams</code>: </b>
5424the number of fixed parameters of the function
5425(always 0&nbsp;for C&nbsp;functions).
5426</li>
5427
5428<li><b><code>isvararg</code>: </b>
5429true if the function is a vararg function
5430(always true for C&nbsp;functions).
5431</li>
5432
5433</ul>
5434
5435
5436
5437
5438<hr><h3><a name="lua_gethook"><code>lua_gethook</code></a></h3><p>
5439<span class="apii">[-0, +0, &ndash;]</span>
5440<pre>lua_Hook lua_gethook (lua_State *L);</pre>
5441
5442<p>
5443Returns the current hook function.
5444
5445
5446
5447
5448
5449<hr><h3><a name="lua_gethookcount"><code>lua_gethookcount</code></a></h3><p>
5450<span class="apii">[-0, +0, &ndash;]</span>
5451<pre>int lua_gethookcount (lua_State *L);</pre>
5452
5453<p>
5454Returns the current hook count.
5455
5456
5457
5458
5459
5460<hr><h3><a name="lua_gethookmask"><code>lua_gethookmask</code></a></h3><p>
5461<span class="apii">[-0, +0, &ndash;]</span>
5462<pre>int lua_gethookmask (lua_State *L);</pre>
5463
5464<p>
5465Returns the current hook mask.
5466
5467
5468
5469
5470
5471<hr><h3><a name="lua_getinfo"><code>lua_getinfo</code></a></h3><p>
5472<span class="apii">[-(0|1), +(0|1|2), <em>e</em>]</span>
5473<pre>int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);</pre>
5474
5475<p>
5476Gets information about a specific function or function invocation.
5477
5478
5479<p>
5480To get information about a function invocation,
5481the parameter <code>ar</code> must be a valid activation record that was
5482filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
5483given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).
5484
5485
5486<p>
5487To get information about a function you push it onto the stack
5488and start the <code>what</code> string with the character '<code>&gt;</code>'.
5489(In that case,
5490<code>lua_getinfo</code> pops the function from the top of the stack.)
5491For instance, to know in which line a function <code>f</code> was defined,
5492you can write the following code:
5493
5494<pre>
5495     lua_Debug ar;
5496     lua_getglobal(L, "f");  /* get global 'f' */
5497     lua_getinfo(L, "&gt;S", &amp;ar);
5498     printf("%d\n", ar.linedefined);
5499</pre>
5500
5501<p>
5502Each character in the string <code>what</code>
5503selects some fields of the structure <code>ar</code> to be filled or
5504a value to be pushed on the stack:
5505
5506<ul>
5507
5508<li><b>'<code>n</code>': </b> fills in the field <code>name</code> and <code>namewhat</code>;
5509</li>
5510
5511<li><b>'<code>S</code>': </b>
5512fills in the fields <code>source</code>, <code>short_src</code>,
5513<code>linedefined</code>, <code>lastlinedefined</code>, and <code>what</code>;
5514</li>
5515
5516<li><b>'<code>l</code>': </b> fills in the field <code>currentline</code>;
5517</li>
5518
5519<li><b>'<code>t</code>': </b> fills in the field <code>istailcall</code>;
5520</li>
5521
5522<li><b>'<code>u</code>': </b> fills in the fields
5523<code>nups</code>, <code>nparams</code>, and <code>isvararg</code>;
5524</li>
5525
5526<li><b>'<code>f</code>': </b>
5527pushes onto the stack the function that is
5528running at the given level;
5529</li>
5530
5531<li><b>'<code>L</code>': </b>
5532pushes onto the stack a table whose indices are the
5533numbers of the lines that are valid on the function.
5534(A <em>valid line</em> is a line with some associated code,
5535that is, a line where you can put a break point.
5536Non-valid lines include empty lines and comments.)
5537
5538
5539<p>
5540If this option is given together with option '<code>f</code>',
5541its table is pushed after the function.
5542</li>
5543
5544</ul>
5545
5546<p>
5547This function returns 0 on error
5548(for instance, an invalid option in <code>what</code>).
5549
5550
5551
5552
5553
5554<hr><h3><a name="lua_getlocal"><code>lua_getlocal</code></a></h3><p>
5555<span class="apii">[-0, +(0|1), &ndash;]</span>
5556<pre>const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);</pre>
5557
5558<p>
5559Gets information about a local variable of
5560a given activation record or a given function.
5561
5562
5563<p>
5564In the first case,
5565the parameter <code>ar</code> must be a valid activation record that was
5566filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
5567given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).
5568The index <code>n</code> selects which local variable to inspect;
5569see <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for details about variable indices
5570and names.
5571
5572
5573<p>
5574<a href="#lua_getlocal"><code>lua_getlocal</code></a> pushes the variable's value onto the stack
5575and returns its name.
5576
5577
5578<p>
5579In the second case, <code>ar</code> must be <code>NULL</code> and the function
5580to be inspected must be at the top of the stack.
5581In this case, only parameters of Lua functions are visible
5582(as there is no information about what variables are active)
5583and no values are pushed onto the stack.
5584
5585
5586<p>
5587Returns <code>NULL</code> (and pushes nothing)
5588when the index is greater than
5589the number of active local variables.
5590
5591
5592
5593
5594
5595<hr><h3><a name="lua_getstack"><code>lua_getstack</code></a></h3><p>
5596<span class="apii">[-0, +0, &ndash;]</span>
5597<pre>int lua_getstack (lua_State *L, int level, lua_Debug *ar);</pre>
5598
5599<p>
5600Gets information about the interpreter runtime stack.
5601
5602
5603<p>
5604This function fills parts of a <a href="#lua_Debug"><code>lua_Debug</code></a> structure with
5605an identification of the <em>activation record</em>
5606of the function executing at a given level.
5607Level&nbsp;0 is the current running function,
5608whereas level <em>n+1</em> is the function that has called level <em>n</em>
5609(except for tail calls, which do not count on the stack).
5610When there are no errors, <a href="#lua_getstack"><code>lua_getstack</code></a> returns 1;
5611when called with a level greater than the stack depth,
5612it returns 0.
5613
5614
5615
5616
5617
5618<hr><h3><a name="lua_getupvalue"><code>lua_getupvalue</code></a></h3><p>
5619<span class="apii">[-0, +(0|1), &ndash;]</span>
5620<pre>const char *lua_getupvalue (lua_State *L, int funcindex, int n);</pre>
5621
5622<p>
5623Gets information about the <code>n</code>-th upvalue
5624of the closure at index <code>funcindex</code>.
5625It pushes the upvalue's value onto the stack
5626and returns its name.
5627Returns <code>NULL</code> (and pushes nothing)
5628when the index <code>n</code> is greater than the number of upvalues.
5629
5630
5631<p>
5632For C&nbsp;functions, this function uses the empty string <code>""</code>
5633as a name for all upvalues.
5634(For Lua functions,
5635upvalues are the external local variables that the function uses,
5636and that are consequently included in its closure.)
5637
5638
5639<p>
5640Upvalues have no particular order,
5641as they are active through the whole function.
5642They are numbered in an arbitrary order.
5643
5644
5645
5646
5647
5648<hr><h3><a name="lua_Hook"><code>lua_Hook</code></a></h3>
5649<pre>typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);</pre>
5650
5651<p>
5652Type for debugging hook functions.
5653
5654
5655<p>
5656Whenever a hook is called, its <code>ar</code> argument has its field
5657<code>event</code> set to the specific event that triggered the hook.
5658Lua identifies these events with the following constants:
5659<a name="pdf-LUA_HOOKCALL"><code>LUA_HOOKCALL</code></a>, <a name="pdf-LUA_HOOKRET"><code>LUA_HOOKRET</code></a>,
5660<a name="pdf-LUA_HOOKTAILCALL"><code>LUA_HOOKTAILCALL</code></a>, <a name="pdf-LUA_HOOKLINE"><code>LUA_HOOKLINE</code></a>,
5661and <a name="pdf-LUA_HOOKCOUNT"><code>LUA_HOOKCOUNT</code></a>.
5662Moreover, for line events, the field <code>currentline</code> is also set.
5663To get the value of any other field in <code>ar</code>,
5664the hook must call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
5665
5666
5667<p>
5668For call events, <code>event</code> can be <code>LUA_HOOKCALL</code>,
5669the normal value, or <code>LUA_HOOKTAILCALL</code>, for a tail call;
5670in this case, there will be no corresponding return event.
5671
5672
5673<p>
5674While Lua is running a hook, it disables other calls to hooks.
5675Therefore, if a hook calls back Lua to execute a function or a chunk,
5676this execution occurs without any calls to hooks.
5677
5678
5679<p>
5680Hook functions cannot have continuations,
5681that is, they cannot call <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
5682<a href="#lua_pcallk"><code>lua_pcallk</code></a>, or <a href="#lua_callk"><code>lua_callk</code></a> with a non-null <code>k</code>.
5683
5684
5685<p>
5686Hook functions can yield under the following conditions:
5687Only count and line events can yield;
5688to yield, a hook function must finish its execution
5689calling <a href="#lua_yield"><code>lua_yield</code></a> with <code>nresults</code> equal to zero
5690(that is, with no values).
5691
5692
5693
5694
5695
5696<hr><h3><a name="lua_sethook"><code>lua_sethook</code></a></h3><p>
5697<span class="apii">[-0, +0, &ndash;]</span>
5698<pre>void lua_sethook (lua_State *L, lua_Hook f, int mask, int count);</pre>
5699
5700<p>
5701Sets the debugging hook function.
5702
5703
5704<p>
5705Argument <code>f</code> is the hook function.
5706<code>mask</code> specifies on which events the hook will be called:
5707it is formed by a bitwise or of the constants
5708<a name="pdf-LUA_MASKCALL"><code>LUA_MASKCALL</code></a>,
5709<a name="pdf-LUA_MASKRET"><code>LUA_MASKRET</code></a>,
5710<a name="pdf-LUA_MASKLINE"><code>LUA_MASKLINE</code></a>,
5711and <a name="pdf-LUA_MASKCOUNT"><code>LUA_MASKCOUNT</code></a>.
5712The <code>count</code> argument is only meaningful when the mask
5713includes <code>LUA_MASKCOUNT</code>.
5714For each event, the hook is called as explained below:
5715
5716<ul>
5717
5718<li><b>The call hook: </b> is called when the interpreter calls a function.
5719The hook is called just after Lua enters the new function,
5720before the function gets its arguments.
5721</li>
5722
5723<li><b>The return hook: </b> is called when the interpreter returns from a function.
5724The hook is called just before Lua leaves the function.
5725There is no standard way to access the values
5726to be returned by the function.
5727</li>
5728
5729<li><b>The line hook: </b> is called when the interpreter is about to
5730start the execution of a new line of code,
5731or when it jumps back in the code (even to the same line).
5732(This event only happens while Lua is executing a Lua function.)
5733</li>
5734
5735<li><b>The count hook: </b> is called after the interpreter executes every
5736<code>count</code> instructions.
5737(This event only happens while Lua is executing a Lua function.)
5738</li>
5739
5740</ul>
5741
5742<p>
5743A hook is disabled by setting <code>mask</code> to zero.
5744
5745
5746
5747
5748
5749<hr><h3><a name="lua_setlocal"><code>lua_setlocal</code></a></h3><p>
5750<span class="apii">[-(0|1), +0, &ndash;]</span>
5751<pre>const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);</pre>
5752
5753<p>
5754Sets the value of a local variable of a given activation record.
5755It assigns the value at the top of the stack
5756to the variable and returns its name.
5757It also pops the value from the stack.
5758
5759
5760<p>
5761Returns <code>NULL</code> (and pops nothing)
5762when the index is greater than
5763the number of active local variables.
5764
5765
5766<p>
5767Parameters <code>ar</code> and <code>n</code> are as in function <a href="#lua_getlocal"><code>lua_getlocal</code></a>.
5768
5769
5770
5771
5772
5773<hr><h3><a name="lua_setupvalue"><code>lua_setupvalue</code></a></h3><p>
5774<span class="apii">[-(0|1), +0, &ndash;]</span>
5775<pre>const char *lua_setupvalue (lua_State *L, int funcindex, int n);</pre>
5776
5777<p>
5778Sets the value of a closure's upvalue.
5779It assigns the value at the top of the stack
5780to the upvalue and returns its name.
5781It also pops the value from the stack.
5782
5783
5784<p>
5785Returns <code>NULL</code> (and pops nothing)
5786when the index <code>n</code> is greater than the number of upvalues.
5787
5788
5789<p>
5790Parameters <code>funcindex</code> and <code>n</code> are as in function <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>.
5791
5792
5793
5794
5795
5796<hr><h3><a name="lua_upvalueid"><code>lua_upvalueid</code></a></h3><p>
5797<span class="apii">[-0, +0, &ndash;]</span>
5798<pre>void *lua_upvalueid (lua_State *L, int funcindex, int n);</pre>
5799
5800<p>
5801Returns a unique identifier for the upvalue numbered <code>n</code>
5802from the closure at index <code>funcindex</code>.
5803
5804
5805<p>
5806These unique identifiers allow a program to check whether different
5807closures share upvalues.
5808Lua closures that share an upvalue
5809(that is, that access a same external local variable)
5810will return identical ids for those upvalue indices.
5811
5812
5813<p>
5814Parameters <code>funcindex</code> and <code>n</code> are as in function <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>,
5815but <code>n</code> cannot be greater than the number of upvalues.
5816
5817
5818
5819
5820
5821<hr><h3><a name="lua_upvaluejoin"><code>lua_upvaluejoin</code></a></h3><p>
5822<span class="apii">[-0, +0, &ndash;]</span>
5823<pre>void lua_upvaluejoin (lua_State *L, int funcindex1, int n1,
5824                                    int funcindex2, int n2);</pre>
5825
5826<p>
5827Make the <code>n1</code>-th upvalue of the Lua closure at index <code>funcindex1</code>
5828refer to the <code>n2</code>-th upvalue of the Lua closure at index <code>funcindex2</code>.
5829
5830
5831
5832
5833
5834
5835
5836<h1>5 &ndash; <a name="5">The Auxiliary Library</a></h1>
5837
5838<p>
5839
5840The <em>auxiliary library</em> provides several convenient functions
5841to interface C with Lua.
5842While the basic API provides the primitive functions for all
5843interactions between C and Lua,
5844the auxiliary library provides higher-level functions for some
5845common tasks.
5846
5847
5848<p>
5849All functions and types from the auxiliary library
5850are defined in header file <code>lauxlib.h</code> and
5851have a prefix <code>luaL_</code>.
5852
5853
5854<p>
5855All functions in the auxiliary library are built on
5856top of the basic API,
5857and so they provide nothing that cannot be done with that API.
5858Nevertheless, the use of the auxiliary library ensures
5859more consistency to your code.
5860
5861
5862<p>
5863Several functions in the auxiliary library use internally some
5864extra stack slots.
5865When a function in the auxiliary library uses less than five slots,
5866it does not check the stack size;
5867it simply assumes that there are enough slots.
5868
5869
5870<p>
5871Several functions in the auxiliary library are used to
5872check C&nbsp;function arguments.
5873Because the error message is formatted for arguments
5874(e.g., "<code>bad argument #1</code>"),
5875you should not use these functions for other stack values.
5876
5877
5878<p>
5879Functions called <code>luaL_check*</code>
5880always raise an error if the check is not satisfied.
5881
5882
5883
5884<h2>5.1 &ndash; <a name="5.1">Functions and Types</a></h2>
5885
5886<p>
5887Here we list all functions and types from the auxiliary library
5888in alphabetical order.
5889
5890
5891
5892<hr><h3><a name="luaL_addchar"><code>luaL_addchar</code></a></h3><p>
5893<span class="apii">[-?, +?, <em>m</em>]</span>
5894<pre>void luaL_addchar (luaL_Buffer *B, char c);</pre>
5895
5896<p>
5897Adds the byte <code>c</code> to the buffer <code>B</code>
5898(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
5899
5900
5901
5902
5903
5904<hr><h3><a name="luaL_addlstring"><code>luaL_addlstring</code></a></h3><p>
5905<span class="apii">[-?, +?, <em>m</em>]</span>
5906<pre>void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);</pre>
5907
5908<p>
5909Adds the string pointed to by <code>s</code> with length <code>l</code> to
5910the buffer <code>B</code>
5911(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
5912The string can contain embedded zeros.
5913
5914
5915
5916
5917
5918<hr><h3><a name="luaL_addsize"><code>luaL_addsize</code></a></h3><p>
5919<span class="apii">[-?, +?, &ndash;]</span>
5920<pre>void luaL_addsize (luaL_Buffer *B, size_t n);</pre>
5921
5922<p>
5923Adds to the buffer <code>B</code> (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>)
5924a string of length <code>n</code> previously copied to the
5925buffer area (see <a href="#luaL_prepbuffer"><code>luaL_prepbuffer</code></a>).
5926
5927
5928
5929
5930
5931<hr><h3><a name="luaL_addstring"><code>luaL_addstring</code></a></h3><p>
5932<span class="apii">[-?, +?, <em>m</em>]</span>
5933<pre>void luaL_addstring (luaL_Buffer *B, const char *s);</pre>
5934
5935<p>
5936Adds the zero-terminated string pointed to by <code>s</code>
5937to the buffer <code>B</code>
5938(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
5939
5940
5941
5942
5943
5944<hr><h3><a name="luaL_addvalue"><code>luaL_addvalue</code></a></h3><p>
5945<span class="apii">[-1, +?, <em>m</em>]</span>
5946<pre>void luaL_addvalue (luaL_Buffer *B);</pre>
5947
5948<p>
5949Adds the value at the top of the stack
5950to the buffer <code>B</code>
5951(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
5952Pops the value.
5953
5954
5955<p>
5956This is the only function on string buffers that can (and must)
5957be called with an extra element on the stack,
5958which is the value to be added to the buffer.
5959
5960
5961
5962
5963
5964<hr><h3><a name="luaL_argcheck"><code>luaL_argcheck</code></a></h3><p>
5965<span class="apii">[-0, +0, <em>v</em>]</span>
5966<pre>void luaL_argcheck (lua_State *L,
5967                    int cond,
5968                    int arg,
5969                    const char *extramsg);</pre>
5970
5971<p>
5972Checks whether <code>cond</code> is true.
5973If it is not, raises an error with a standard message (see <a href="#luaL_argerror"><code>luaL_argerror</code></a>).
5974
5975
5976
5977
5978
5979<hr><h3><a name="luaL_argerror"><code>luaL_argerror</code></a></h3><p>
5980<span class="apii">[-0, +0, <em>v</em>]</span>
5981<pre>int luaL_argerror (lua_State *L, int arg, const char *extramsg);</pre>
5982
5983<p>
5984Raises an error reporting a problem with argument <code>arg</code>
5985of the C function that called it,
5986using a standard message
5987that includes <code>extramsg</code> as a comment:
5988
5989<pre>
5990     bad argument #<em>arg</em> to '<em>funcname</em>' (<em>extramsg</em>)
5991</pre><p>
5992This function never returns.
5993
5994
5995
5996
5997
5998<hr><h3><a name="luaL_Buffer"><code>luaL_Buffer</code></a></h3>
5999<pre>typedef struct luaL_Buffer luaL_Buffer;</pre>
6000
6001<p>
6002Type for a <em>string buffer</em>.
6003
6004
6005<p>
6006A string buffer allows C&nbsp;code to build Lua strings piecemeal.
6007Its pattern of use is as follows:
6008
6009<ul>
6010
6011<li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li>
6012
6013<li>Then initialize it with a call <code>luaL_buffinit(L, &amp;b)</code>.</li>
6014
6015<li>
6016Then add string pieces to the buffer calling any of
6017the <code>luaL_add*</code> functions.
6018</li>
6019
6020<li>
6021Finish by calling <code>luaL_pushresult(&amp;b)</code>.
6022This call leaves the final string on the top of the stack.
6023</li>
6024
6025</ul>
6026
6027<p>
6028If you know beforehand the total size of the resulting string,
6029you can use the buffer like this:
6030
6031<ul>
6032
6033<li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li>
6034
6035<li>Then initialize it and preallocate a space of
6036size <code>sz</code> with a call <code>luaL_buffinitsize(L, &amp;b, sz)</code>.</li>
6037
6038<li>Then copy the string into that space.</li>
6039
6040<li>
6041Finish by calling <code>luaL_pushresultsize(&amp;b, sz)</code>,
6042where <code>sz</code> is the total size of the resulting string
6043copied into that space.
6044</li>
6045
6046</ul>
6047
6048<p>
6049During its normal operation,
6050a string buffer uses a variable number of stack slots.
6051So, while using a buffer, you cannot assume that you know where
6052the top of the stack is.
6053You can use the stack between successive calls to buffer operations
6054as long as that use is balanced;
6055that is,
6056when you call a buffer operation,
6057the stack is at the same level
6058it was immediately after the previous buffer operation.
6059(The only exception to this rule is <a href="#luaL_addvalue"><code>luaL_addvalue</code></a>.)
6060After calling <a href="#luaL_pushresult"><code>luaL_pushresult</code></a> the stack is back to its
6061level when the buffer was initialized,
6062plus the final string on its top.
6063
6064
6065
6066
6067
6068<hr><h3><a name="luaL_buffinit"><code>luaL_buffinit</code></a></h3><p>
6069<span class="apii">[-0, +0, &ndash;]</span>
6070<pre>void luaL_buffinit (lua_State *L, luaL_Buffer *B);</pre>
6071
6072<p>
6073Initializes a buffer <code>B</code>.
6074This function does not allocate any space;
6075the buffer must be declared as a variable
6076(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
6077
6078
6079
6080
6081
6082<hr><h3><a name="luaL_buffinitsize"><code>luaL_buffinitsize</code></a></h3><p>
6083<span class="apii">[-?, +?, <em>m</em>]</span>
6084<pre>char *luaL_buffinitsize (lua_State *L, luaL_Buffer *B, size_t sz);</pre>
6085
6086<p>
6087Equivalent to the sequence
6088<a href="#luaL_buffinit"><code>luaL_buffinit</code></a>, <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a>.
6089
6090
6091
6092
6093
6094<hr><h3><a name="luaL_callmeta"><code>luaL_callmeta</code></a></h3><p>
6095<span class="apii">[-0, +(0|1), <em>e</em>]</span>
6096<pre>int luaL_callmeta (lua_State *L, int obj, const char *e);</pre>
6097
6098<p>
6099Calls a metamethod.
6100
6101
6102<p>
6103If the object at index <code>obj</code> has a metatable and this
6104metatable has a field <code>e</code>,
6105this function calls this field passing the object as its only argument.
6106In this case this function returns true and pushes onto the
6107stack the value returned by the call.
6108If there is no metatable or no metamethod,
6109this function returns false (without pushing any value on the stack).
6110
6111
6112
6113
6114
6115<hr><h3><a name="luaL_checkany"><code>luaL_checkany</code></a></h3><p>
6116<span class="apii">[-0, +0, <em>v</em>]</span>
6117<pre>void luaL_checkany (lua_State *L, int arg);</pre>
6118
6119<p>
6120Checks whether the function has an argument
6121of any type (including <b>nil</b>) at position <code>arg</code>.
6122
6123
6124
6125
6126
6127<hr><h3><a name="luaL_checkinteger"><code>luaL_checkinteger</code></a></h3><p>
6128<span class="apii">[-0, +0, <em>v</em>]</span>
6129<pre>lua_Integer luaL_checkinteger (lua_State *L, int arg);</pre>
6130
6131<p>
6132Checks whether the function argument <code>arg</code> is an integer
6133(or can be converted to an integer)
6134and returns this integer cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>.
6135
6136
6137
6138
6139
6140<hr><h3><a name="luaL_checklstring"><code>luaL_checklstring</code></a></h3><p>
6141<span class="apii">[-0, +0, <em>v</em>]</span>
6142<pre>const char *luaL_checklstring (lua_State *L, int arg, size_t *l);</pre>
6143
6144<p>
6145Checks whether the function argument <code>arg</code> is a string
6146and returns this string;
6147if <code>l</code> is not <code>NULL</code> fills <code>*l</code>
6148with the string's length.
6149
6150
6151<p>
6152This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
6153so all conversions and caveats of that function apply here.
6154
6155
6156
6157
6158
6159<hr><h3><a name="luaL_checknumber"><code>luaL_checknumber</code></a></h3><p>
6160<span class="apii">[-0, +0, <em>v</em>]</span>
6161<pre>lua_Number luaL_checknumber (lua_State *L, int arg);</pre>
6162
6163<p>
6164Checks whether the function argument <code>arg</code> is a number
6165and returns this number.
6166
6167
6168
6169
6170
6171<hr><h3><a name="luaL_checkoption"><code>luaL_checkoption</code></a></h3><p>
6172<span class="apii">[-0, +0, <em>v</em>]</span>
6173<pre>int luaL_checkoption (lua_State *L,
6174                      int arg,
6175                      const char *def,
6176                      const char *const lst[]);</pre>
6177
6178<p>
6179Checks whether the function argument <code>arg</code> is a string and
6180searches for this string in the array <code>lst</code>
6181(which must be NULL-terminated).
6182Returns the index in the array where the string was found.
6183Raises an error if the argument is not a string or
6184if the string cannot be found.
6185
6186
6187<p>
6188If <code>def</code> is not <code>NULL</code>,
6189the function uses <code>def</code> as a default value when
6190there is no argument <code>arg</code> or when this argument is <b>nil</b>.
6191
6192
6193<p>
6194This is a useful function for mapping strings to C&nbsp;enums.
6195(The usual convention in Lua libraries is
6196to use strings instead of numbers to select options.)
6197
6198
6199
6200
6201
6202<hr><h3><a name="luaL_checkstack"><code>luaL_checkstack</code></a></h3><p>
6203<span class="apii">[-0, +0, <em>v</em>]</span>
6204<pre>void luaL_checkstack (lua_State *L, int sz, const char *msg);</pre>
6205
6206<p>
6207Grows the stack size to <code>top + sz</code> elements,
6208raising an error if the stack cannot grow to that size.
6209<code>msg</code> is an additional text to go into the error message
6210(or <code>NULL</code> for no additional text).
6211
6212
6213
6214
6215
6216<hr><h3><a name="luaL_checkstring"><code>luaL_checkstring</code></a></h3><p>
6217<span class="apii">[-0, +0, <em>v</em>]</span>
6218<pre>const char *luaL_checkstring (lua_State *L, int arg);</pre>
6219
6220<p>
6221Checks whether the function argument <code>arg</code> is a string
6222and returns this string.
6223
6224
6225<p>
6226This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
6227so all conversions and caveats of that function apply here.
6228
6229
6230
6231
6232
6233<hr><h3><a name="luaL_checktype"><code>luaL_checktype</code></a></h3><p>
6234<span class="apii">[-0, +0, <em>v</em>]</span>
6235<pre>void luaL_checktype (lua_State *L, int arg, int t);</pre>
6236
6237<p>
6238Checks whether the function argument <code>arg</code> has type <code>t</code>.
6239See <a href="#lua_type"><code>lua_type</code></a> for the encoding of types for <code>t</code>.
6240
6241
6242
6243
6244
6245<hr><h3><a name="luaL_checkudata"><code>luaL_checkudata</code></a></h3><p>
6246<span class="apii">[-0, +0, <em>v</em>]</span>
6247<pre>void *luaL_checkudata (lua_State *L, int arg, const char *tname);</pre>
6248
6249<p>
6250Checks whether the function argument <code>arg</code> is a userdata
6251of the type <code>tname</code> (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>) and
6252returns the userdata address (see <a href="#lua_touserdata"><code>lua_touserdata</code></a>).
6253
6254
6255
6256
6257
6258<hr><h3><a name="luaL_checkversion"><code>luaL_checkversion</code></a></h3><p>
6259<span class="apii">[-0, +0, &ndash;]</span>
6260<pre>void luaL_checkversion (lua_State *L);</pre>
6261
6262<p>
6263Checks whether the core running the call,
6264the core that created the Lua state,
6265and the code making the call are all using the same version of Lua.
6266Also checks whether the core running the call
6267and the core that created the Lua state
6268are using the same address space.
6269
6270
6271
6272
6273
6274<hr><h3><a name="luaL_dofile"><code>luaL_dofile</code></a></h3><p>
6275<span class="apii">[-0, +?, <em>e</em>]</span>
6276<pre>int luaL_dofile (lua_State *L, const char *filename);</pre>
6277
6278<p>
6279Loads and runs the given file.
6280It is defined as the following macro:
6281
6282<pre>
6283     (luaL_loadfile(L, filename) || lua_pcall(L, 0, LUA_MULTRET, 0))
6284</pre><p>
6285It returns false if there are no errors
6286or true in case of errors.
6287
6288
6289
6290
6291
6292<hr><h3><a name="luaL_dostring"><code>luaL_dostring</code></a></h3><p>
6293<span class="apii">[-0, +?, &ndash;]</span>
6294<pre>int luaL_dostring (lua_State *L, const char *str);</pre>
6295
6296<p>
6297Loads and runs the given string.
6298It is defined as the following macro:
6299
6300<pre>
6301     (luaL_loadstring(L, str) || lua_pcall(L, 0, LUA_MULTRET, 0))
6302</pre><p>
6303It returns false if there are no errors
6304or true in case of errors.
6305
6306
6307
6308
6309
6310<hr><h3><a name="luaL_error"><code>luaL_error</code></a></h3><p>
6311<span class="apii">[-0, +0, <em>v</em>]</span>
6312<pre>int luaL_error (lua_State *L, const char *fmt, ...);</pre>
6313
6314<p>
6315Raises an error.
6316The error message format is given by <code>fmt</code>
6317plus any extra arguments,
6318following the same rules of <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>.
6319It also adds at the beginning of the message the file name and
6320the line number where the error occurred,
6321if this information is available.
6322
6323
6324<p>
6325This function never returns,
6326but it is an idiom to use it in C&nbsp;functions
6327as <code>return luaL_error(<em>args</em>)</code>.
6328
6329
6330
6331
6332
6333<hr><h3><a name="luaL_execresult"><code>luaL_execresult</code></a></h3><p>
6334<span class="apii">[-0, +3, <em>m</em>]</span>
6335<pre>int luaL_execresult (lua_State *L, int stat);</pre>
6336
6337<p>
6338This function produces the return values for
6339process-related functions in the standard library
6340(<a href="#pdf-os.execute"><code>os.execute</code></a> and <a href="#pdf-io.close"><code>io.close</code></a>).
6341
6342
6343
6344
6345
6346<hr><h3><a name="luaL_fileresult"><code>luaL_fileresult</code></a></h3><p>
6347<span class="apii">[-0, +(1|3), <em>m</em>]</span>
6348<pre>int luaL_fileresult (lua_State *L, int stat, const char *fname);</pre>
6349
6350<p>
6351This function produces the return values for
6352file-related functions in the standard library
6353(<a href="#pdf-io.open"><code>io.open</code></a>, <a href="#pdf-os.rename"><code>os.rename</code></a>, <a href="#pdf-file:seek"><code>file:seek</code></a>, etc.).
6354
6355
6356
6357
6358
6359<hr><h3><a name="luaL_getmetafield"><code>luaL_getmetafield</code></a></h3><p>
6360<span class="apii">[-0, +(0|1), <em>m</em>]</span>
6361<pre>int luaL_getmetafield (lua_State *L, int obj, const char *e);</pre>
6362
6363<p>
6364Pushes onto the stack the field <code>e</code> from the metatable
6365of the object at index <code>obj</code> and returns the type of pushed value.
6366If the object does not have a metatable,
6367or if the metatable does not have this field,
6368pushes nothing and returns <code>LUA_TNIL</code>.
6369
6370
6371
6372
6373
6374<hr><h3><a name="luaL_getmetatable"><code>luaL_getmetatable</code></a></h3><p>
6375<span class="apii">[-0, +1, <em>m</em>]</span>
6376<pre>int luaL_getmetatable (lua_State *L, const char *tname);</pre>
6377
6378<p>
6379Pushes onto the stack the metatable associated with name <code>tname</code>
6380in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>)
6381(<b>nil</b> if there is no metatable associated with that name).
6382Returns the type of the pushed value.
6383
6384
6385
6386
6387
6388<hr><h3><a name="luaL_getsubtable"><code>luaL_getsubtable</code></a></h3><p>
6389<span class="apii">[-0, +1, <em>e</em>]</span>
6390<pre>int luaL_getsubtable (lua_State *L, int idx, const char *fname);</pre>
6391
6392<p>
6393Ensures that the value <code>t[fname]</code>,
6394where <code>t</code> is the value at index <code>idx</code>,
6395is a table,
6396and pushes that table onto the stack.
6397Returns true if it finds a previous table there
6398and false if it creates a new table.
6399
6400
6401
6402
6403
6404<hr><h3><a name="luaL_gsub"><code>luaL_gsub</code></a></h3><p>
6405<span class="apii">[-0, +1, <em>m</em>]</span>
6406<pre>const char *luaL_gsub (lua_State *L,
6407                       const char *s,
6408                       const char *p,
6409                       const char *r);</pre>
6410
6411<p>
6412Creates a copy of string <code>s</code> by replacing
6413any occurrence of the string <code>p</code>
6414with the string <code>r</code>.
6415Pushes the resulting string on the stack and returns it.
6416
6417
6418
6419
6420
6421<hr><h3><a name="luaL_len"><code>luaL_len</code></a></h3><p>
6422<span class="apii">[-0, +0, <em>e</em>]</span>
6423<pre>lua_Integer luaL_len (lua_State *L, int index);</pre>
6424
6425<p>
6426Returns the "length" of the value at the given index
6427as a number;
6428it is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.7">&sect;3.4.7</a>).
6429Raises an error if the result of the operation is not an integer.
6430(This case only can happen through metamethods.)
6431
6432
6433
6434
6435
6436<hr><h3><a name="luaL_loadbuffer"><code>luaL_loadbuffer</code></a></h3><p>
6437<span class="apii">[-0, +1, &ndash;]</span>
6438<pre>int luaL_loadbuffer (lua_State *L,
6439                     const char *buff,
6440                     size_t sz,
6441                     const char *name);</pre>
6442
6443<p>
6444Equivalent to <a href="#luaL_loadbufferx"><code>luaL_loadbufferx</code></a> with <code>mode</code> equal to <code>NULL</code>.
6445
6446
6447
6448
6449
6450<hr><h3><a name="luaL_loadbufferx"><code>luaL_loadbufferx</code></a></h3><p>
6451<span class="apii">[-0, +1, &ndash;]</span>
6452<pre>int luaL_loadbufferx (lua_State *L,
6453                      const char *buff,
6454                      size_t sz,
6455                      const char *name,
6456                      const char *mode);</pre>
6457
6458<p>
6459Loads a buffer as a Lua chunk.
6460This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the
6461buffer pointed to by <code>buff</code> with size <code>sz</code>.
6462
6463
6464<p>
6465This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.
6466<code>name</code> is the chunk name,
6467used for debug information and error messages.
6468The string <code>mode</code> works as in function <a href="#lua_load"><code>lua_load</code></a>.
6469
6470
6471
6472
6473
6474<hr><h3><a name="luaL_loadfile"><code>luaL_loadfile</code></a></h3><p>
6475<span class="apii">[-0, +1, <em>e</em>]</span>
6476<pre>int luaL_loadfile (lua_State *L, const char *filename);</pre>
6477
6478<p>
6479Equivalent to <a href="#luaL_loadfilex"><code>luaL_loadfilex</code></a> with <code>mode</code> equal to <code>NULL</code>.
6480
6481
6482
6483
6484
6485<hr><h3><a name="luaL_loadfilex"><code>luaL_loadfilex</code></a></h3><p>
6486<span class="apii">[-0, +1, <em>e</em>]</span>
6487<pre>int luaL_loadfilex (lua_State *L, const char *filename,
6488                                            const char *mode);</pre>
6489
6490<p>
6491Loads a file as a Lua chunk.
6492This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the file
6493named <code>filename</code>.
6494If <code>filename</code> is <code>NULL</code>,
6495then it loads from the standard input.
6496The first line in the file is ignored if it starts with a <code>#</code>.
6497
6498
6499<p>
6500The string <code>mode</code> works as in function <a href="#lua_load"><code>lua_load</code></a>.
6501
6502
6503<p>
6504This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>,
6505but it has an extra error code <a name="pdf-LUA_ERRFILE"><code>LUA_ERRFILE</code></a>
6506if it cannot open/read the file or the file has a wrong mode.
6507
6508
6509<p>
6510As <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk;
6511it does not run it.
6512
6513
6514
6515
6516
6517<hr><h3><a name="luaL_loadstring"><code>luaL_loadstring</code></a></h3><p>
6518<span class="apii">[-0, +1, &ndash;]</span>
6519<pre>int luaL_loadstring (lua_State *L, const char *s);</pre>
6520
6521<p>
6522Loads a string as a Lua chunk.
6523This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in
6524the zero-terminated string <code>s</code>.
6525
6526
6527<p>
6528This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.
6529
6530
6531<p>
6532Also as <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk;
6533it does not run it.
6534
6535
6536
6537
6538
6539<hr><h3><a name="luaL_newlib"><code>luaL_newlib</code></a></h3><p>
6540<span class="apii">[-0, +1, <em>m</em>]</span>
6541<pre>void luaL_newlib (lua_State *L, const luaL_Reg l[]);</pre>
6542
6543<p>
6544Creates a new table and registers there
6545the functions in list <code>l</code>.
6546
6547
6548<p>
6549It is implemented as the following macro:
6550
6551<pre>
6552     (luaL_newlibtable(L,l), luaL_setfuncs(L,l,0))
6553</pre><p>
6554The array <code>l</code> must be the actual array,
6555not a pointer to it.
6556
6557
6558
6559
6560
6561<hr><h3><a name="luaL_newlibtable"><code>luaL_newlibtable</code></a></h3><p>
6562<span class="apii">[-0, +1, <em>m</em>]</span>
6563<pre>void luaL_newlibtable (lua_State *L, const luaL_Reg l[]);</pre>
6564
6565<p>
6566Creates a new table with a size optimized
6567to store all entries in the array <code>l</code>
6568(but does not actually store them).
6569It is intended to be used in conjunction with <a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a>
6570(see <a href="#luaL_newlib"><code>luaL_newlib</code></a>).
6571
6572
6573<p>
6574It is implemented as a macro.
6575The array <code>l</code> must be the actual array,
6576not a pointer to it.
6577
6578
6579
6580
6581
6582<hr><h3><a name="luaL_newmetatable"><code>luaL_newmetatable</code></a></h3><p>
6583<span class="apii">[-0, +1, <em>m</em>]</span>
6584<pre>int luaL_newmetatable (lua_State *L, const char *tname);</pre>
6585
6586<p>
6587If the registry already has the key <code>tname</code>,
6588returns 0.
6589Otherwise,
6590creates a new table to be used as a metatable for userdata,
6591adds to this new table the pair <code>__name = tname</code>,
6592adds to the registry the pair <code>[tname] = new table</code>,
6593and returns 1.
6594(The entry <code>__name</code> is used by some error-reporting functions.)
6595
6596
6597<p>
6598In both cases pushes onto the stack the final value associated
6599with <code>tname</code> in the registry.
6600
6601
6602
6603
6604
6605<hr><h3><a name="luaL_newstate"><code>luaL_newstate</code></a></h3><p>
6606<span class="apii">[-0, +0, &ndash;]</span>
6607<pre>lua_State *luaL_newstate (void);</pre>
6608
6609<p>
6610Creates a new Lua state.
6611It calls <a href="#lua_newstate"><code>lua_newstate</code></a> with an
6612allocator based on the standard&nbsp;C <code>realloc</code> function
6613and then sets a panic function (see <a href="#4.6">&sect;4.6</a>) that prints
6614an error message to the standard error output in case of fatal
6615errors.
6616
6617
6618<p>
6619Returns the new state,
6620or <code>NULL</code> if there is a memory allocation error.
6621
6622
6623
6624
6625
6626<hr><h3><a name="luaL_openlibs"><code>luaL_openlibs</code></a></h3><p>
6627<span class="apii">[-0, +0, <em>e</em>]</span>
6628<pre>void luaL_openlibs (lua_State *L);</pre>
6629
6630<p>
6631Opens all standard Lua libraries into the given state.
6632
6633
6634
6635
6636
6637<hr><h3><a name="luaL_optinteger"><code>luaL_optinteger</code></a></h3><p>
6638<span class="apii">[-0, +0, <em>v</em>]</span>
6639<pre>lua_Integer luaL_optinteger (lua_State *L,
6640                             int arg,
6641                             lua_Integer d);</pre>
6642
6643<p>
6644If the function argument <code>arg</code> is an integer
6645(or convertible to an integer),
6646returns this integer.
6647If this argument is absent or is <b>nil</b>,
6648returns <code>d</code>.
6649Otherwise, raises an error.
6650
6651
6652
6653
6654
6655<hr><h3><a name="luaL_optlstring"><code>luaL_optlstring</code></a></h3><p>
6656<span class="apii">[-0, +0, <em>v</em>]</span>
6657<pre>const char *luaL_optlstring (lua_State *L,
6658                             int arg,
6659                             const char *d,
6660                             size_t *l);</pre>
6661
6662<p>
6663If the function argument <code>arg</code> is a string,
6664returns this string.
6665If this argument is absent or is <b>nil</b>,
6666returns <code>d</code>.
6667Otherwise, raises an error.
6668
6669
6670<p>
6671If <code>l</code> is not <code>NULL</code>,
6672fills the position <code>*l</code> with the result's length.
6673If the result is <code>NULL</code>
6674(only possible when returning <code>d</code> and <code>d == NULL</code>),
6675its length is considered zero.
6676
6677
6678
6679
6680
6681<hr><h3><a name="luaL_optnumber"><code>luaL_optnumber</code></a></h3><p>
6682<span class="apii">[-0, +0, <em>v</em>]</span>
6683<pre>lua_Number luaL_optnumber (lua_State *L, int arg, lua_Number d);</pre>
6684
6685<p>
6686If the function argument <code>arg</code> is a number,
6687returns this number.
6688If this argument is absent or is <b>nil</b>,
6689returns <code>d</code>.
6690Otherwise, raises an error.
6691
6692
6693
6694
6695
6696<hr><h3><a name="luaL_optstring"><code>luaL_optstring</code></a></h3><p>
6697<span class="apii">[-0, +0, <em>v</em>]</span>
6698<pre>const char *luaL_optstring (lua_State *L,
6699                            int arg,
6700                            const char *d);</pre>
6701
6702<p>
6703If the function argument <code>arg</code> is a string,
6704returns this string.
6705If this argument is absent or is <b>nil</b>,
6706returns <code>d</code>.
6707Otherwise, raises an error.
6708
6709
6710
6711
6712
6713<hr><h3><a name="luaL_prepbuffer"><code>luaL_prepbuffer</code></a></h3><p>
6714<span class="apii">[-?, +?, <em>m</em>]</span>
6715<pre>char *luaL_prepbuffer (luaL_Buffer *B);</pre>
6716
6717<p>
6718Equivalent to <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a>
6719with the predefined size <a name="pdf-LUAL_BUFFERSIZE"><code>LUAL_BUFFERSIZE</code></a>.
6720
6721
6722
6723
6724
6725<hr><h3><a name="luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a></h3><p>
6726<span class="apii">[-?, +?, <em>m</em>]</span>
6727<pre>char *luaL_prepbuffsize (luaL_Buffer *B, size_t sz);</pre>
6728
6729<p>
6730Returns an address to a space of size <code>sz</code>
6731where you can copy a string to be added to buffer <code>B</code>
6732(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
6733After copying the string into this space you must call
6734<a href="#luaL_addsize"><code>luaL_addsize</code></a> with the size of the string to actually add
6735it to the buffer.
6736
6737
6738
6739
6740
6741<hr><h3><a name="luaL_pushresult"><code>luaL_pushresult</code></a></h3><p>
6742<span class="apii">[-?, +1, <em>m</em>]</span>
6743<pre>void luaL_pushresult (luaL_Buffer *B);</pre>
6744
6745<p>
6746Finishes the use of buffer <code>B</code> leaving the final string on
6747the top of the stack.
6748
6749
6750
6751
6752
6753<hr><h3><a name="luaL_pushresultsize"><code>luaL_pushresultsize</code></a></h3><p>
6754<span class="apii">[-?, +1, <em>m</em>]</span>
6755<pre>void luaL_pushresultsize (luaL_Buffer *B, size_t sz);</pre>
6756
6757<p>
6758Equivalent to the sequence <a href="#luaL_addsize"><code>luaL_addsize</code></a>, <a href="#luaL_pushresult"><code>luaL_pushresult</code></a>.
6759
6760
6761
6762
6763
6764<hr><h3><a name="luaL_ref"><code>luaL_ref</code></a></h3><p>
6765<span class="apii">[-1, +0, <em>m</em>]</span>
6766<pre>int luaL_ref (lua_State *L, int t);</pre>
6767
6768<p>
6769Creates and returns a <em>reference</em>,
6770in the table at index <code>t</code>,
6771for the object at the top of the stack (and pops the object).
6772
6773
6774<p>
6775A reference is a unique integer key.
6776As long as you do not manually add integer keys into table <code>t</code>,
6777<a href="#luaL_ref"><code>luaL_ref</code></a> ensures the uniqueness of the key it returns.
6778You can retrieve an object referred by reference <code>r</code>
6779by calling <code>lua_rawgeti(L, t, r)</code>.
6780Function <a href="#luaL_unref"><code>luaL_unref</code></a> frees a reference and its associated object.
6781
6782
6783<p>
6784If the object at the top of the stack is <b>nil</b>,
6785<a href="#luaL_ref"><code>luaL_ref</code></a> returns the constant <a name="pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>.
6786The constant <a name="pdf-LUA_NOREF"><code>LUA_NOREF</code></a> is guaranteed to be different
6787from any reference returned by <a href="#luaL_ref"><code>luaL_ref</code></a>.
6788
6789
6790
6791
6792
6793<hr><h3><a name="luaL_Reg"><code>luaL_Reg</code></a></h3>
6794<pre>typedef struct luaL_Reg {
6795  const char *name;
6796  lua_CFunction func;
6797} luaL_Reg;</pre>
6798
6799<p>
6800Type for arrays of functions to be registered by
6801<a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a>.
6802<code>name</code> is the function name and <code>func</code> is a pointer to
6803the function.
6804Any array of <a href="#luaL_Reg"><code>luaL_Reg</code></a> must end with a sentinel entry
6805in which both <code>name</code> and <code>func</code> are <code>NULL</code>.
6806
6807
6808
6809
6810
6811<hr><h3><a name="luaL_requiref"><code>luaL_requiref</code></a></h3><p>
6812<span class="apii">[-0, +1, <em>e</em>]</span>
6813<pre>void luaL_requiref (lua_State *L, const char *modname,
6814                    lua_CFunction openf, int glb);</pre>
6815
6816<p>
6817If <code>modname</code> is not already present in <a href="#pdf-package.loaded"><code>package.loaded</code></a>,
6818calls function <code>openf</code> with string <code>modname</code> as an argument
6819and sets the call result in <code>package.loaded[modname]</code>,
6820as if that function has been called through <a href="#pdf-require"><code>require</code></a>.
6821
6822
6823<p>
6824If <code>glb</code> is true,
6825also stores the module into global <code>modname</code>.
6826
6827
6828<p>
6829Leaves a copy of the module on the stack.
6830
6831
6832
6833
6834
6835<hr><h3><a name="luaL_setfuncs"><code>luaL_setfuncs</code></a></h3><p>
6836<span class="apii">[-nup, +0, <em>m</em>]</span>
6837<pre>void luaL_setfuncs (lua_State *L, const luaL_Reg *l, int nup);</pre>
6838
6839<p>
6840Registers all functions in the array <code>l</code>
6841(see <a href="#luaL_Reg"><code>luaL_Reg</code></a>) into the table on the top of the stack
6842(below optional upvalues, see next).
6843
6844
6845<p>
6846When <code>nup</code> is not zero,
6847all functions are created sharing <code>nup</code> upvalues,
6848which must be previously pushed on the stack
6849on top of the library table.
6850These values are popped from the stack after the registration.
6851
6852
6853
6854
6855
6856<hr><h3><a name="luaL_setmetatable"><code>luaL_setmetatable</code></a></h3><p>
6857<span class="apii">[-0, +0, &ndash;]</span>
6858<pre>void luaL_setmetatable (lua_State *L, const char *tname);</pre>
6859
6860<p>
6861Sets the metatable of the object at the top of the stack
6862as the metatable associated with name <code>tname</code>
6863in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).
6864
6865
6866
6867
6868
6869<hr><h3><a name="luaL_Stream"><code>luaL_Stream</code></a></h3>
6870<pre>typedef struct luaL_Stream {
6871  FILE *f;
6872  lua_CFunction closef;
6873} luaL_Stream;</pre>
6874
6875<p>
6876The standard representation for file handles,
6877which is used by the standard I/O library.
6878
6879
6880<p>
6881A file handle is implemented as a full userdata,
6882with a metatable called <code>LUA_FILEHANDLE</code>
6883(where <code>LUA_FILEHANDLE</code> is a macro with the actual metatable's name).
6884The metatable is created by the I/O library
6885(see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).
6886
6887
6888<p>
6889This userdata must start with the structure <code>luaL_Stream</code>;
6890it can contain other data after this initial structure.
6891Field <code>f</code> points to the corresponding C stream
6892(or it can be <code>NULL</code> to indicate an incompletely created handle).
6893Field <code>closef</code> points to a Lua function
6894that will be called to close the stream
6895when the handle is closed or collected;
6896this function receives the file handle as its sole argument and
6897must return either <b>true</b> (in case of success)
6898or <b>nil</b> plus an error message (in case of error).
6899Once Lua calls this field,
6900it changes the field value to <code>NULL</code>
6901to signal that the handle is closed.
6902
6903
6904
6905
6906
6907<hr><h3><a name="luaL_testudata"><code>luaL_testudata</code></a></h3><p>
6908<span class="apii">[-0, +0, <em>m</em>]</span>
6909<pre>void *luaL_testudata (lua_State *L, int arg, const char *tname);</pre>
6910
6911<p>
6912This function works like <a href="#luaL_checkudata"><code>luaL_checkudata</code></a>,
6913except that, when the test fails,
6914it returns <code>NULL</code> instead of raising an error.
6915
6916
6917
6918
6919
6920<hr><h3><a name="luaL_tolstring"><code>luaL_tolstring</code></a></h3><p>
6921<span class="apii">[-0, +1, <em>e</em>]</span>
6922<pre>const char *luaL_tolstring (lua_State *L, int idx, size_t *len);</pre>
6923
6924<p>
6925Converts any Lua value at the given index to a C&nbsp;string
6926in a reasonable format.
6927The resulting string is pushed onto the stack and also
6928returned by the function.
6929If <code>len</code> is not <code>NULL</code>,
6930the function also sets <code>*len</code> with the string length.
6931
6932
6933<p>
6934If the value has a metatable with a <code>"__tostring"</code> field,
6935then <code>luaL_tolstring</code> calls the corresponding metamethod
6936with the value as argument,
6937and uses the result of the call as its result.
6938
6939
6940
6941
6942
6943<hr><h3><a name="luaL_traceback"><code>luaL_traceback</code></a></h3><p>
6944<span class="apii">[-0, +1, <em>m</em>]</span>
6945<pre>void luaL_traceback (lua_State *L, lua_State *L1, const char *msg,
6946                     int level);</pre>
6947
6948<p>
6949Creates and pushes a traceback of the stack <code>L1</code>.
6950If <code>msg</code> is not <code>NULL</code> it is appended
6951at the beginning of the traceback.
6952The <code>level</code> parameter tells at which level
6953to start the traceback.
6954
6955
6956
6957
6958
6959<hr><h3><a name="luaL_typename"><code>luaL_typename</code></a></h3><p>
6960<span class="apii">[-0, +0, &ndash;]</span>
6961<pre>const char *luaL_typename (lua_State *L, int index);</pre>
6962
6963<p>
6964Returns the name of the type of the value at the given index.
6965
6966
6967
6968
6969
6970<hr><h3><a name="luaL_unref"><code>luaL_unref</code></a></h3><p>
6971<span class="apii">[-0, +0, &ndash;]</span>
6972<pre>void luaL_unref (lua_State *L, int t, int ref);</pre>
6973
6974<p>
6975Releases reference <code>ref</code> from the table at index <code>t</code>
6976(see <a href="#luaL_ref"><code>luaL_ref</code></a>).
6977The entry is removed from the table,
6978so that the referred object can be collected.
6979The reference <code>ref</code> is also freed to be used again.
6980
6981
6982<p>
6983If <code>ref</code> is <a href="#pdf-LUA_NOREF"><code>LUA_NOREF</code></a> or <a href="#pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>,
6984<a href="#luaL_unref"><code>luaL_unref</code></a> does nothing.
6985
6986
6987
6988
6989
6990<hr><h3><a name="luaL_where"><code>luaL_where</code></a></h3><p>
6991<span class="apii">[-0, +1, <em>m</em>]</span>
6992<pre>void luaL_where (lua_State *L, int lvl);</pre>
6993
6994<p>
6995Pushes onto the stack a string identifying the current position
6996of the control at level <code>lvl</code> in the call stack.
6997Typically this string has the following format:
6998
6999<pre>
7000     <em>chunkname</em>:<em>currentline</em>:
7001</pre><p>
7002Level&nbsp;0 is the running function,
7003level&nbsp;1 is the function that called the running function,
7004etc.
7005
7006
7007<p>
7008This function is used to build a prefix for error messages.
7009
7010
7011
7012
7013
7014
7015
7016<h1>6 &ndash; <a name="6">Standard Libraries</a></h1>
7017
7018<p>
7019The standard Lua libraries provide useful functions
7020that are implemented directly through the C&nbsp;API.
7021Some of these functions provide essential services to the language
7022(e.g., <a href="#pdf-type"><code>type</code></a> and <a href="#pdf-getmetatable"><code>getmetatable</code></a>);
7023others provide access to "outside" services (e.g., I/O);
7024and others could be implemented in Lua itself,
7025but are quite useful or have critical performance requirements that
7026deserve an implementation in C (e.g., <a href="#pdf-table.sort"><code>table.sort</code></a>).
7027
7028
7029<p>
7030All libraries are implemented through the official C&nbsp;API
7031and are provided as separate C&nbsp;modules.
7032Currently, Lua has the following standard libraries:
7033
7034<ul>
7035
7036<li>basic library (<a href="#6.1">&sect;6.1</a>);</li>
7037
7038<li>coroutine library (<a href="#6.2">&sect;6.2</a>);</li>
7039
7040<li>package library (<a href="#6.3">&sect;6.3</a>);</li>
7041
7042<li>string manipulation (<a href="#6.4">&sect;6.4</a>);</li>
7043
7044<li>basic UTF-8 support (<a href="#6.5">&sect;6.5</a>);</li>
7045
7046<li>table manipulation (<a href="#6.6">&sect;6.6</a>);</li>
7047
7048<li>mathematical functions (<a href="#6.7">&sect;6.7</a>) (sin, log, etc.);</li>
7049
7050<li>input and output (<a href="#6.8">&sect;6.8</a>);</li>
7051
7052<li>operating system facilities (<a href="#6.9">&sect;6.9</a>);</li>
7053
7054<li>debug facilities (<a href="#6.10">&sect;6.10</a>).</li>
7055
7056</ul><p>
7057Except for the basic and the package libraries,
7058each library provides all its functions as fields of a global table
7059or as methods of its objects.
7060
7061
7062<p>
7063To have access to these libraries,
7064the C&nbsp;host program should call the <a href="#luaL_openlibs"><code>luaL_openlibs</code></a> function,
7065which opens all standard libraries.
7066Alternatively,
7067the host program can open them individually by using
7068<a href="#luaL_requiref"><code>luaL_requiref</code></a> to call
7069<a name="pdf-luaopen_base"><code>luaopen_base</code></a> (for the basic library),
7070<a name="pdf-luaopen_package"><code>luaopen_package</code></a> (for the package library),
7071<a name="pdf-luaopen_coroutine"><code>luaopen_coroutine</code></a> (for the coroutine library),
7072<a name="pdf-luaopen_string"><code>luaopen_string</code></a> (for the string library),
7073<a name="pdf-luaopen_utf8"><code>luaopen_utf8</code></a> (for the UTF8 library),
7074<a name="pdf-luaopen_table"><code>luaopen_table</code></a> (for the table library),
7075<a name="pdf-luaopen_math"><code>luaopen_math</code></a> (for the mathematical library),
7076<a name="pdf-luaopen_io"><code>luaopen_io</code></a> (for the I/O library),
7077<a name="pdf-luaopen_os"><code>luaopen_os</code></a> (for the operating system library),
7078and <a name="pdf-luaopen_debug"><code>luaopen_debug</code></a> (for the debug library).
7079These functions are declared in <a name="pdf-lualib.h"><code>lualib.h</code></a>.
7080
7081
7082
7083<h2>6.1 &ndash; <a name="6.1">Basic Functions</a></h2>
7084
7085<p>
7086The basic library provides core functions to Lua.
7087If you do not include this library in your application,
7088you should check carefully whether you need to provide
7089implementations for some of its facilities.
7090
7091
7092<p>
7093<hr><h3><a name="pdf-assert"><code>assert (v [, message])</code></a></h3>
7094
7095
7096<p>
7097Calls <a href="#pdf-error"><code>error</code></a> if
7098the value of its argument <code>v</code> is false (i.e., <b>nil</b> or <b>false</b>);
7099otherwise, returns all its arguments.
7100In case of error,
7101<code>message</code> is the error object;
7102when absent, it defaults to "<code>assertion failed!</code>"
7103
7104
7105
7106
7107<p>
7108<hr><h3><a name="pdf-collectgarbage"><code>collectgarbage ([opt [, arg]])</code></a></h3>
7109
7110
7111<p>
7112This function is a generic interface to the garbage collector.
7113It performs different functions according to its first argument, <code>opt</code>:
7114
7115<ul>
7116
7117<li><b>"<code>collect</code>": </b>
7118performs a full garbage-collection cycle.
7119This is the default option.
7120</li>
7121
7122<li><b>"<code>stop</code>": </b>
7123stops automatic execution of the garbage collector.
7124The collector will run only when explicitly invoked,
7125until a call to restart it.
7126</li>
7127
7128<li><b>"<code>restart</code>": </b>
7129restarts automatic execution of the garbage collector.
7130</li>
7131
7132<li><b>"<code>count</code>": </b>
7133returns the total memory in use by Lua in Kbytes.
7134The value has a fractional part,
7135so that it multiplied by 1024
7136gives the exact number of bytes in use by Lua
7137(except for overflows).
7138</li>
7139
7140<li><b>"<code>step</code>": </b>
7141performs a garbage-collection step.
7142The step "size" is controlled by <code>arg</code>.
7143With a zero value,
7144the collector will perform one basic (indivisible) step.
7145For non-zero values,
7146the collector will perform as if that amount of memory
7147(in KBytes) had been allocated by Lua.
7148Returns <b>true</b> if the step finished a collection cycle.
7149</li>
7150
7151<li><b>"<code>setpause</code>": </b>
7152sets <code>arg</code> as the new value for the <em>pause</em> of
7153the collector (see <a href="#2.5">&sect;2.5</a>).
7154Returns the previous value for <em>pause</em>.
7155</li>
7156
7157<li><b>"<code>setstepmul</code>": </b>
7158sets <code>arg</code> as the new value for the <em>step multiplier</em> of
7159the collector (see <a href="#2.5">&sect;2.5</a>).
7160Returns the previous value for <em>step</em>.
7161</li>
7162
7163<li><b>"<code>isrunning</code>": </b>
7164returns a boolean that tells whether the collector is running
7165(i.e., not stopped).
7166</li>
7167
7168</ul>
7169
7170
7171
7172<p>
7173<hr><h3><a name="pdf-dofile"><code>dofile ([filename])</code></a></h3>
7174Opens the named file and executes its contents as a Lua chunk.
7175When called without arguments,
7176<code>dofile</code> executes the contents of the standard input (<code>stdin</code>).
7177Returns all values returned by the chunk.
7178In case of errors, <code>dofile</code> propagates the error
7179to its caller (that is, <code>dofile</code> does not run in protected mode).
7180
7181
7182
7183
7184<p>
7185<hr><h3><a name="pdf-error"><code>error (message [, level])</code></a></h3>
7186Terminates the last protected function called
7187and returns <code>message</code> as the error object.
7188Function <code>error</code> never returns.
7189
7190
7191<p>
7192Usually, <code>error</code> adds some information about the error position
7193at the beginning of the message, if the message is a string.
7194The <code>level</code> argument specifies how to get the error position.
7195With level&nbsp;1 (the default), the error position is where the
7196<code>error</code> function was called.
7197Level&nbsp;2 points the error to where the function
7198that called <code>error</code> was called; and so on.
7199Passing a level&nbsp;0 avoids the addition of error position information
7200to the message.
7201
7202
7203
7204
7205<p>
7206<hr><h3><a name="pdf-_G"><code>_G</code></a></h3>
7207A global variable (not a function) that
7208holds the global environment (see <a href="#2.2">&sect;2.2</a>).
7209Lua itself does not use this variable;
7210changing its value does not affect any environment,
7211nor vice versa.
7212
7213
7214
7215
7216<p>
7217<hr><h3><a name="pdf-getmetatable"><code>getmetatable (object)</code></a></h3>
7218
7219
7220<p>
7221If <code>object</code> does not have a metatable, returns <b>nil</b>.
7222Otherwise,
7223if the object's metatable has a <code>"__metatable"</code> field,
7224returns the associated value.
7225Otherwise, returns the metatable of the given object.
7226
7227
7228
7229
7230<p>
7231<hr><h3><a name="pdf-ipairs"><code>ipairs (t)</code></a></h3>
7232
7233
7234<p>
7235Returns three values (an iterator function, the table <code>t</code>, and 0)
7236so that the construction
7237
7238<pre>
7239     for i,v in ipairs(t) do <em>body</em> end
7240</pre><p>
7241will iterate over the key&ndash;value pairs
7242(<code>1,t[1]</code>), (<code>2,t[2]</code>), ...,
7243up to the first nil value.
7244
7245
7246
7247
7248<p>
7249<hr><h3><a name="pdf-load"><code>load (chunk [, chunkname [, mode [, env]]])</code></a></h3>
7250
7251
7252<p>
7253Loads a chunk.
7254
7255
7256<p>
7257If <code>chunk</code> is a string, the chunk is this string.
7258If <code>chunk</code> is a function,
7259<code>load</code> calls it repeatedly to get the chunk pieces.
7260Each call to <code>chunk</code> must return a string that concatenates
7261with previous results.
7262A return of an empty string, <b>nil</b>, or no value signals the end of the chunk.
7263
7264
7265<p>
7266If there are no syntactic errors,
7267returns the compiled chunk as a function;
7268otherwise, returns <b>nil</b> plus the error message.
7269
7270
7271<p>
7272If the resulting function has upvalues,
7273the first upvalue is set to the value of <code>env</code>,
7274if that parameter is given,
7275or to the value of the global environment.
7276Other upvalues are initialized with <b>nil</b>.
7277(When you load a main chunk,
7278the resulting function will always have exactly one upvalue,
7279the <code>_ENV</code> variable (see <a href="#2.2">&sect;2.2</a>).
7280However,
7281when you load a binary chunk created from a function (see <a href="#pdf-string.dump"><code>string.dump</code></a>),
7282the resulting function can have an arbitrary number of upvalues.)
7283All upvalues are fresh, that is,
7284they are not shared with any other function.
7285
7286
7287<p>
7288<code>chunkname</code> is used as the name of the chunk for error messages
7289and debug information (see <a href="#4.9">&sect;4.9</a>).
7290When absent,
7291it defaults to <code>chunk</code>, if <code>chunk</code> is a string,
7292or to "<code>=(load)</code>" otherwise.
7293
7294
7295<p>
7296The string <code>mode</code> controls whether the chunk can be text or binary
7297(that is, a precompiled chunk).
7298It may be the string "<code>b</code>" (only binary chunks),
7299"<code>t</code>" (only text chunks),
7300or "<code>bt</code>" (both binary and text).
7301The default is "<code>bt</code>".
7302
7303
7304<p>
7305Lua does not check the consistency of binary chunks.
7306Maliciously crafted binary chunks can crash
7307the interpreter.
7308
7309
7310
7311
7312<p>
7313<hr><h3><a name="pdf-loadfile"><code>loadfile ([filename [, mode [, env]]])</code></a></h3>
7314
7315
7316<p>
7317Similar to <a href="#pdf-load"><code>load</code></a>,
7318but gets the chunk from file <code>filename</code>
7319or from the standard input,
7320if no file name is given.
7321
7322
7323
7324
7325<p>
7326<hr><h3><a name="pdf-next"><code>next (table [, index])</code></a></h3>
7327
7328
7329<p>
7330Allows a program to traverse all fields of a table.
7331Its first argument is a table and its second argument
7332is an index in this table.
7333<code>next</code> returns the next index of the table
7334and its associated value.
7335When called with <b>nil</b> as its second argument,
7336<code>next</code> returns an initial index
7337and its associated value.
7338When called with the last index,
7339or with <b>nil</b> in an empty table,
7340<code>next</code> returns <b>nil</b>.
7341If the second argument is absent, then it is interpreted as <b>nil</b>.
7342In particular,
7343you can use <code>next(t)</code> to check whether a table is empty.
7344
7345
7346<p>
7347The order in which the indices are enumerated is not specified,
7348<em>even for numeric indices</em>.
7349(To traverse a table in numerical order,
7350use a numerical <b>for</b>.)
7351
7352
7353<p>
7354The behavior of <code>next</code> is undefined if,
7355during the traversal,
7356you assign any value to a non-existent field in the table.
7357You may however modify existing fields.
7358In particular, you may clear existing fields.
7359
7360
7361
7362
7363<p>
7364<hr><h3><a name="pdf-pairs"><code>pairs (t)</code></a></h3>
7365
7366
7367<p>
7368If <code>t</code> has a metamethod <code>__pairs</code>,
7369calls it with <code>t</code> as argument and returns the first three
7370results from the call.
7371
7372
7373<p>
7374Otherwise,
7375returns three values: the <a href="#pdf-next"><code>next</code></a> function, the table <code>t</code>, and <b>nil</b>,
7376so that the construction
7377
7378<pre>
7379     for k,v in pairs(t) do <em>body</em> end
7380</pre><p>
7381will iterate over all key&ndash;value pairs of table <code>t</code>.
7382
7383
7384<p>
7385See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying
7386the table during its traversal.
7387
7388
7389
7390
7391<p>
7392<hr><h3><a name="pdf-pcall"><code>pcall (f [, arg1, &middot;&middot;&middot;])</code></a></h3>
7393
7394
7395<p>
7396Calls function <code>f</code> with
7397the given arguments in <em>protected mode</em>.
7398This means that any error inside&nbsp;<code>f</code> is not propagated;
7399instead, <code>pcall</code> catches the error
7400and returns a status code.
7401Its first result is the status code (a boolean),
7402which is true if the call succeeds without errors.
7403In such case, <code>pcall</code> also returns all results from the call,
7404after this first result.
7405In case of any error, <code>pcall</code> returns <b>false</b> plus the error message.
7406
7407
7408
7409
7410<p>
7411<hr><h3><a name="pdf-print"><code>print (&middot;&middot;&middot;)</code></a></h3>
7412Receives any number of arguments
7413and prints their values to <code>stdout</code>,
7414using the <a href="#pdf-tostring"><code>tostring</code></a> function to convert each argument to a string.
7415<code>print</code> is not intended for formatted output,
7416but only as a quick way to show a value,
7417for instance for debugging.
7418For complete control over the output,
7419use <a href="#pdf-string.format"><code>string.format</code></a> and <a href="#pdf-io.write"><code>io.write</code></a>.
7420
7421
7422
7423
7424<p>
7425<hr><h3><a name="pdf-rawequal"><code>rawequal (v1, v2)</code></a></h3>
7426Checks whether <code>v1</code> is equal to <code>v2</code>,
7427without invoking any metamethod.
7428Returns a boolean.
7429
7430
7431
7432
7433<p>
7434<hr><h3><a name="pdf-rawget"><code>rawget (table, index)</code></a></h3>
7435Gets the real value of <code>table[index]</code>,
7436without invoking any metamethod.
7437<code>table</code> must be a table;
7438<code>index</code> may be any value.
7439
7440
7441
7442
7443<p>
7444<hr><h3><a name="pdf-rawlen"><code>rawlen (v)</code></a></h3>
7445Returns the length of the object <code>v</code>,
7446which must be a table or a string,
7447without invoking any metamethod.
7448Returns an integer.
7449
7450
7451
7452
7453<p>
7454<hr><h3><a name="pdf-rawset"><code>rawset (table, index, value)</code></a></h3>
7455Sets the real value of <code>table[index]</code> to <code>value</code>,
7456without invoking any metamethod.
7457<code>table</code> must be a table,
7458<code>index</code> any value different from <b>nil</b> and NaN,
7459and <code>value</code> any Lua value.
7460
7461
7462<p>
7463This function returns <code>table</code>.
7464
7465
7466
7467
7468<p>
7469<hr><h3><a name="pdf-select"><code>select (index, &middot;&middot;&middot;)</code></a></h3>
7470
7471
7472<p>
7473If <code>index</code> is a number,
7474returns all arguments after argument number <code>index</code>;
7475a negative number indexes from the end (-1 is the last argument).
7476Otherwise, <code>index</code> must be the string <code>"#"</code>,
7477and <code>select</code> returns the total number of extra arguments it received.
7478
7479
7480
7481
7482<p>
7483<hr><h3><a name="pdf-setmetatable"><code>setmetatable (table, metatable)</code></a></h3>
7484
7485
7486<p>
7487Sets the metatable for the given table.
7488(To change the metatable of other types from Lua code,
7489you must use the debug library (<a href="#6.10">&sect;6.10</a>).)
7490If <code>metatable</code> is <b>nil</b>,
7491removes the metatable of the given table.
7492If the original metatable has a <code>"__metatable"</code> field,
7493raises an error.
7494
7495
7496<p>
7497This function returns <code>table</code>.
7498
7499
7500
7501
7502<p>
7503<hr><h3><a name="pdf-tonumber"><code>tonumber (e [, base])</code></a></h3>
7504
7505
7506<p>
7507When called with no <code>base</code>,
7508<code>tonumber</code> tries to convert its argument to a number.
7509If the argument is already a number or
7510a string convertible to a number,
7511then <code>tonumber</code> returns this number;
7512otherwise, it returns <b>nil</b>.
7513
7514
7515<p>
7516The conversion of strings can result in integers or floats,
7517according to the lexical conventions of Lua (see <a href="#3.1">&sect;3.1</a>).
7518(The string may have leading and trailing spaces and a sign.)
7519
7520
7521<p>
7522When called with <code>base</code>,
7523then <code>e</code> must be a string to be interpreted as
7524an integer numeral in that base.
7525The base may be any integer between 2 and 36, inclusive.
7526In bases above&nbsp;10, the letter '<code>A</code>' (in either upper or lower case)
7527represents&nbsp;10, '<code>B</code>' represents&nbsp;11, and so forth,
7528with '<code>Z</code>' representing 35.
7529If the string <code>e</code> is not a valid numeral in the given base,
7530the function returns <b>nil</b>.
7531
7532
7533
7534
7535<p>
7536<hr><h3><a name="pdf-tostring"><code>tostring (v)</code></a></h3>
7537Receives a value of any type and
7538converts it to a string in a human-readable format.
7539(For complete control of how numbers are converted,
7540use <a href="#pdf-string.format"><code>string.format</code></a>.)
7541
7542
7543<p>
7544If the metatable of <code>v</code> has a <code>"__tostring"</code> field,
7545then <code>tostring</code> calls the corresponding value
7546with <code>v</code> as argument,
7547and uses the result of the call as its result.
7548
7549
7550
7551
7552<p>
7553<hr><h3><a name="pdf-type"><code>type (v)</code></a></h3>
7554Returns the type of its only argument, coded as a string.
7555The possible results of this function are
7556"<code>nil</code>" (a string, not the value <b>nil</b>),
7557"<code>number</code>",
7558"<code>string</code>",
7559"<code>boolean</code>",
7560"<code>table</code>",
7561"<code>function</code>",
7562"<code>thread</code>",
7563and "<code>userdata</code>".
7564
7565
7566
7567
7568<p>
7569<hr><h3><a name="pdf-_VERSION"><code>_VERSION</code></a></h3>
7570
7571
7572<p>
7573A global variable (not a function) that
7574holds a string containing the running Lua version.
7575The current value of this variable is "<code>Lua 5.3</code>".
7576
7577
7578
7579
7580<p>
7581<hr><h3><a name="pdf-xpcall"><code>xpcall (f, msgh [, arg1, &middot;&middot;&middot;])</code></a></h3>
7582
7583
7584<p>
7585This function is similar to <a href="#pdf-pcall"><code>pcall</code></a>,
7586except that it sets a new message handler <code>msgh</code>.
7587
7588
7589
7590
7591
7592
7593
7594<h2>6.2 &ndash; <a name="6.2">Coroutine Manipulation</a></h2>
7595
7596<p>
7597This library comprises the operations to manipulate coroutines,
7598which come inside the table <a name="pdf-coroutine"><code>coroutine</code></a>.
7599See <a href="#2.6">&sect;2.6</a> for a general description of coroutines.
7600
7601
7602<p>
7603<hr><h3><a name="pdf-coroutine.create"><code>coroutine.create (f)</code></a></h3>
7604
7605
7606<p>
7607Creates a new coroutine, with body <code>f</code>.
7608<code>f</code> must be a function.
7609Returns this new coroutine,
7610an object with type <code>"thread"</code>.
7611
7612
7613
7614
7615<p>
7616<hr><h3><a name="pdf-coroutine.isyieldable"><code>coroutine.isyieldable ()</code></a></h3>
7617
7618
7619<p>
7620Returns true when the running coroutine can yield.
7621
7622
7623<p>
7624A running coroutine is yieldable if it is not the main thread and
7625it is not inside a non-yieldable C function.
7626
7627
7628
7629
7630<p>
7631<hr><h3><a name="pdf-coroutine.resume"><code>coroutine.resume (co [, val1, &middot;&middot;&middot;])</code></a></h3>
7632
7633
7634<p>
7635Starts or continues the execution of coroutine <code>co</code>.
7636The first time you resume a coroutine,
7637it starts running its body.
7638The values <code>val1</code>, ... are passed
7639as the arguments to the body function.
7640If the coroutine has yielded,
7641<code>resume</code> restarts it;
7642the values <code>val1</code>, ... are passed
7643as the results from the yield.
7644
7645
7646<p>
7647If the coroutine runs without any errors,
7648<code>resume</code> returns <b>true</b> plus any values passed to <code>yield</code>
7649(when the coroutine yields) or any values returned by the body function
7650(when the coroutine terminates).
7651If there is any error,
7652<code>resume</code> returns <b>false</b> plus the error message.
7653
7654
7655
7656
7657<p>
7658<hr><h3><a name="pdf-coroutine.running"><code>coroutine.running ()</code></a></h3>
7659
7660
7661<p>
7662Returns the running coroutine plus a boolean,
7663true when the running coroutine is the main one.
7664
7665
7666
7667
7668<p>
7669<hr><h3><a name="pdf-coroutine.status"><code>coroutine.status (co)</code></a></h3>
7670
7671
7672<p>
7673Returns the status of coroutine <code>co</code>, as a string:
7674<code>"running"</code>,
7675if the coroutine is running (that is, it called <code>status</code>);
7676<code>"suspended"</code>, if the coroutine is suspended in a call to <code>yield</code>,
7677or if it has not started running yet;
7678<code>"normal"</code> if the coroutine is active but not running
7679(that is, it has resumed another coroutine);
7680and <code>"dead"</code> if the coroutine has finished its body function,
7681or if it has stopped with an error.
7682
7683
7684
7685
7686<p>
7687<hr><h3><a name="pdf-coroutine.wrap"><code>coroutine.wrap (f)</code></a></h3>
7688
7689
7690<p>
7691Creates a new coroutine, with body <code>f</code>.
7692<code>f</code> must be a function.
7693Returns a function that resumes the coroutine each time it is called.
7694Any arguments passed to the function behave as the
7695extra arguments to <code>resume</code>.
7696Returns the same values returned by <code>resume</code>,
7697except the first boolean.
7698In case of error, propagates the error.
7699
7700
7701
7702
7703<p>
7704<hr><h3><a name="pdf-coroutine.yield"><code>coroutine.yield (&middot;&middot;&middot;)</code></a></h3>
7705
7706
7707<p>
7708Suspends the execution of the calling coroutine.
7709Any arguments to <code>yield</code> are passed as extra results to <code>resume</code>.
7710
7711
7712
7713
7714
7715
7716
7717<h2>6.3 &ndash; <a name="6.3">Modules</a></h2>
7718
7719<p>
7720The package library provides basic
7721facilities for loading modules in Lua.
7722It exports one function directly in the global environment:
7723<a href="#pdf-require"><code>require</code></a>.
7724Everything else is exported in a table <a name="pdf-package"><code>package</code></a>.
7725
7726
7727<p>
7728<hr><h3><a name="pdf-require"><code>require (modname)</code></a></h3>
7729
7730
7731<p>
7732Loads the given module.
7733The function starts by looking into the <a href="#pdf-package.loaded"><code>package.loaded</code></a> table
7734to determine whether <code>modname</code> is already loaded.
7735If it is, then <code>require</code> returns the value stored
7736at <code>package.loaded[modname]</code>.
7737Otherwise, it tries to find a <em>loader</em> for the module.
7738
7739
7740<p>
7741To find a loader,
7742<code>require</code> is guided by the <a href="#pdf-package.searchers"><code>package.searchers</code></a> sequence.
7743By changing this sequence,
7744we can change how <code>require</code> looks for a module.
7745The following explanation is based on the default configuration
7746for <a href="#pdf-package.searchers"><code>package.searchers</code></a>.
7747
7748
7749<p>
7750First <code>require</code> queries <code>package.preload[modname]</code>.
7751If it has a value,
7752this value (which must be a function) is the loader.
7753Otherwise <code>require</code> searches for a Lua loader using the
7754path stored in <a href="#pdf-package.path"><code>package.path</code></a>.
7755If that also fails, it searches for a C&nbsp;loader using the
7756path stored in <a href="#pdf-package.cpath"><code>package.cpath</code></a>.
7757If that also fails,
7758it tries an <em>all-in-one</em> loader (see <a href="#pdf-package.searchers"><code>package.searchers</code></a>).
7759
7760
7761<p>
7762Once a loader is found,
7763<code>require</code> calls the loader with two arguments:
7764<code>modname</code> and an extra value dependent on how it got the loader.
7765(If the loader came from a file,
7766this extra value is the file name.)
7767If the loader returns any non-nil value,
7768<code>require</code> assigns the returned value to <code>package.loaded[modname]</code>.
7769If the loader does not return a non-nil value and
7770has not assigned any value to <code>package.loaded[modname]</code>,
7771then <code>require</code> assigns <b>true</b> to this entry.
7772In any case, <code>require</code> returns the
7773final value of <code>package.loaded[modname]</code>.
7774
7775
7776<p>
7777If there is any error loading or running the module,
7778or if it cannot find any loader for the module,
7779then <code>require</code> raises an error.
7780
7781
7782
7783
7784<p>
7785<hr><h3><a name="pdf-package.config"><code>package.config</code></a></h3>
7786
7787
7788<p>
7789A string describing some compile-time configurations for packages.
7790This string is a sequence of lines:
7791
7792<ul>
7793
7794<li>The first line is the directory separator string.
7795Default is '<code>\</code>' for Windows and '<code>/</code>' for all other systems.</li>
7796
7797<li>The second line is the character that separates templates in a path.
7798Default is '<code>;</code>'.</li>
7799
7800<li>The third line is the string that marks the
7801substitution points in a template.
7802Default is '<code>?</code>'.</li>
7803
7804<li>The fourth line is a string that, in a path in Windows,
7805is replaced by the executable's directory.
7806Default is '<code>!</code>'.</li>
7807
7808<li>The fifth line is a mark to ignore all text after it
7809when building the <code>luaopen_</code> function name.
7810Default is '<code>-</code>'.</li>
7811
7812</ul>
7813
7814
7815
7816<p>
7817<hr><h3><a name="pdf-package.cpath"><code>package.cpath</code></a></h3>
7818
7819
7820<p>
7821The path used by <a href="#pdf-require"><code>require</code></a> to search for a C&nbsp;loader.
7822
7823
7824<p>
7825Lua initializes the C&nbsp;path <a href="#pdf-package.cpath"><code>package.cpath</code></a> in the same way
7826it initializes the Lua path <a href="#pdf-package.path"><code>package.path</code></a>,
7827using the environment variable <a name="pdf-LUA_CPATH_5_3"><code>LUA_CPATH_5_3</code></a>
7828or the environment variable <a name="pdf-LUA_CPATH"><code>LUA_CPATH</code></a>
7829or a default path defined in <code>luaconf.h</code>.
7830
7831
7832
7833
7834<p>
7835<hr><h3><a name="pdf-package.loaded"><code>package.loaded</code></a></h3>
7836
7837
7838<p>
7839A table used by <a href="#pdf-require"><code>require</code></a> to control which
7840modules are already loaded.
7841When you require a module <code>modname</code> and
7842<code>package.loaded[modname]</code> is not false,
7843<a href="#pdf-require"><code>require</code></a> simply returns the value stored there.
7844
7845
7846<p>
7847This variable is only a reference to the real table;
7848assignments to this variable do not change the
7849table used by <a href="#pdf-require"><code>require</code></a>.
7850
7851
7852
7853
7854<p>
7855<hr><h3><a name="pdf-package.loadlib"><code>package.loadlib (libname, funcname)</code></a></h3>
7856
7857
7858<p>
7859Dynamically links the host program with the C&nbsp;library <code>libname</code>.
7860
7861
7862<p>
7863If <code>funcname</code> is "<code>*</code>",
7864then it only links with the library,
7865making the symbols exported by the library
7866available to other dynamically linked libraries.
7867Otherwise,
7868it looks for a function <code>funcname</code> inside the library
7869and returns this function as a C&nbsp;function.
7870So, <code>funcname</code> must follow the <a href="#lua_CFunction"><code>lua_CFunction</code></a> prototype
7871(see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
7872
7873
7874<p>
7875This is a low-level function.
7876It completely bypasses the package and module system.
7877Unlike <a href="#pdf-require"><code>require</code></a>,
7878it does not perform any path searching and
7879does not automatically adds extensions.
7880<code>libname</code> must be the complete file name of the C&nbsp;library,
7881including if necessary a path and an extension.
7882<code>funcname</code> must be the exact name exported by the C&nbsp;library
7883(which may depend on the C&nbsp;compiler and linker used).
7884
7885
7886<p>
7887This function is not supported by Standard&nbsp;C.
7888As such, it is only available on some platforms
7889(Windows, Linux, Mac OS X, Solaris, BSD,
7890plus other Unix systems that support the <code>dlfcn</code> standard).
7891
7892
7893
7894
7895<p>
7896<hr><h3><a name="pdf-package.path"><code>package.path</code></a></h3>
7897
7898
7899<p>
7900The path used by <a href="#pdf-require"><code>require</code></a> to search for a Lua loader.
7901
7902
7903<p>
7904At start-up, Lua initializes this variable with
7905the value of the environment variable <a name="pdf-LUA_PATH_5_3"><code>LUA_PATH_5_3</code></a> or
7906the environment variable <a name="pdf-LUA_PATH"><code>LUA_PATH</code></a> or
7907with a default path defined in <code>luaconf.h</code>,
7908if those environment variables are not defined.
7909Any "<code>;;</code>" in the value of the environment variable
7910is replaced by the default path.
7911
7912
7913
7914
7915<p>
7916<hr><h3><a name="pdf-package.preload"><code>package.preload</code></a></h3>
7917
7918
7919<p>
7920A table to store loaders for specific modules
7921(see <a href="#pdf-require"><code>require</code></a>).
7922
7923
7924<p>
7925This variable is only a reference to the real table;
7926assignments to this variable do not change the
7927table used by <a href="#pdf-require"><code>require</code></a>.
7928
7929
7930
7931
7932<p>
7933<hr><h3><a name="pdf-package.searchers"><code>package.searchers</code></a></h3>
7934
7935
7936<p>
7937A table used by <a href="#pdf-require"><code>require</code></a> to control how to load modules.
7938
7939
7940<p>
7941Each entry in this table is a <em>searcher function</em>.
7942When looking for a module,
7943<a href="#pdf-require"><code>require</code></a> calls each of these searchers in ascending order,
7944with the module name (the argument given to <a href="#pdf-require"><code>require</code></a>) as its
7945sole parameter.
7946The function can return another function (the module <em>loader</em>)
7947plus an extra value that will be passed to that loader,
7948or a string explaining why it did not find that module
7949(or <b>nil</b> if it has nothing to say).
7950
7951
7952<p>
7953Lua initializes this table with four searcher functions.
7954
7955
7956<p>
7957The first searcher simply looks for a loader in the
7958<a href="#pdf-package.preload"><code>package.preload</code></a> table.
7959
7960
7961<p>
7962The second searcher looks for a loader as a Lua library,
7963using the path stored at <a href="#pdf-package.path"><code>package.path</code></a>.
7964The search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
7965
7966
7967<p>
7968The third searcher looks for a loader as a C&nbsp;library,
7969using the path given by the variable <a href="#pdf-package.cpath"><code>package.cpath</code></a>.
7970Again,
7971the search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
7972For instance,
7973if the C&nbsp;path is the string
7974
7975<pre>
7976     "./?.so;./?.dll;/usr/local/?/init.so"
7977</pre><p>
7978the searcher for module <code>foo</code>
7979will try to open the files <code>./foo.so</code>, <code>./foo.dll</code>,
7980and <code>/usr/local/foo/init.so</code>, in that order.
7981Once it finds a C&nbsp;library,
7982this searcher first uses a dynamic link facility to link the
7983application with the library.
7984Then it tries to find a C&nbsp;function inside the library to
7985be used as the loader.
7986The name of this C&nbsp;function is the string "<code>luaopen_</code>"
7987concatenated with a copy of the module name where each dot
7988is replaced by an underscore.
7989Moreover, if the module name has a hyphen,
7990its suffix after (and including) the first hyphen is removed.
7991For instance, if the module name is <code>a.b.c-v2.1</code>,
7992the function name will be <code>luaopen_a_b_c</code>.
7993
7994
7995<p>
7996The fourth searcher tries an <em>all-in-one loader</em>.
7997It searches the C&nbsp;path for a library for
7998the root name of the given module.
7999For instance, when requiring <code>a.b.c</code>,
8000it will search for a C&nbsp;library for <code>a</code>.
8001If found, it looks into it for an open function for
8002the submodule;
8003in our example, that would be <code>luaopen_a_b_c</code>.
8004With this facility, a package can pack several C&nbsp;submodules
8005into one single library,
8006with each submodule keeping its original open function.
8007
8008
8009<p>
8010All searchers except the first one (preload) return as the extra value
8011the file name where the module was found,
8012as returned by <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
8013The first searcher returns no extra value.
8014
8015
8016
8017
8018<p>
8019<hr><h3><a name="pdf-package.searchpath"><code>package.searchpath (name, path [, sep [, rep]])</code></a></h3>
8020
8021
8022<p>
8023Searches for the given <code>name</code> in the given <code>path</code>.
8024
8025
8026<p>
8027A path is a string containing a sequence of
8028<em>templates</em> separated by semicolons.
8029For each template,
8030the function replaces each interrogation mark (if any)
8031in the template with a copy of <code>name</code>
8032wherein all occurrences of <code>sep</code>
8033(a dot, by default)
8034were replaced by <code>rep</code>
8035(the system's directory separator, by default),
8036and then tries to open the resulting file name.
8037
8038
8039<p>
8040For instance, if the path is the string
8041
8042<pre>
8043     "./?.lua;./?.lc;/usr/local/?/init.lua"
8044</pre><p>
8045the search for the name <code>foo.a</code>
8046will try to open the files
8047<code>./foo/a.lua</code>, <code>./foo/a.lc</code>, and
8048<code>/usr/local/foo/a/init.lua</code>, in that order.
8049
8050
8051<p>
8052Returns the resulting name of the first file that it can
8053open in read mode (after closing the file),
8054or <b>nil</b> plus an error message if none succeeds.
8055(This error message lists all file names it tried to open.)
8056
8057
8058
8059
8060
8061
8062
8063<h2>6.4 &ndash; <a name="6.4">String Manipulation</a></h2>
8064
8065<p>
8066This library provides generic functions for string manipulation,
8067such as finding and extracting substrings, and pattern matching.
8068When indexing a string in Lua, the first character is at position&nbsp;1
8069(not at&nbsp;0, as in C).
8070Indices are allowed to be negative and are interpreted as indexing backwards,
8071from the end of the string.
8072Thus, the last character is at position -1, and so on.
8073
8074
8075<p>
8076The string library provides all its functions inside the table
8077<a name="pdf-string"><code>string</code></a>.
8078It also sets a metatable for strings
8079where the <code>__index</code> field points to the <code>string</code> table.
8080Therefore, you can use the string functions in object-oriented style.
8081For instance, <code>string.byte(s,i)</code>
8082can be written as <code>s:byte(i)</code>.
8083
8084
8085<p>
8086The string library assumes one-byte character encodings.
8087
8088
8089<p>
8090<hr><h3><a name="pdf-string.byte"><code>string.byte (s [, i [, j]])</code></a></h3>
8091Returns the internal numeric codes of the characters <code>s[i]</code>,
8092<code>s[i+1]</code>, ..., <code>s[j]</code>.
8093The default value for <code>i</code> is&nbsp;1;
8094the default value for <code>j</code> is&nbsp;<code>i</code>.
8095These indices are corrected
8096following the same rules of function <a href="#pdf-string.sub"><code>string.sub</code></a>.
8097
8098
8099<p>
8100Numeric codes are not necessarily portable across platforms.
8101
8102
8103
8104
8105<p>
8106<hr><h3><a name="pdf-string.char"><code>string.char (&middot;&middot;&middot;)</code></a></h3>
8107Receives zero or more integers.
8108Returns a string with length equal to the number of arguments,
8109in which each character has the internal numeric code equal
8110to its corresponding argument.
8111
8112
8113<p>
8114Numeric codes are not necessarily portable across platforms.
8115
8116
8117
8118
8119<p>
8120<hr><h3><a name="pdf-string.dump"><code>string.dump (function [, strip])</code></a></h3>
8121
8122
8123<p>
8124Returns a string containing a binary representation
8125(a <em>binary chunk</em>)
8126of the given function,
8127so that a later <a href="#pdf-load"><code>load</code></a> on this string returns
8128a copy of the function (but with new upvalues).
8129If <code>strip</code> is a true value,
8130the binary representation may not include all debug information
8131about the function,
8132to save space.
8133
8134
8135<p>
8136Functions with upvalues have only their number of upvalues saved.
8137When (re)loaded,
8138those upvalues receive fresh instances containing <b>nil</b>.
8139(You can use the debug library to serialize
8140and reload the upvalues of a function
8141in a way adequate to your needs.)
8142
8143
8144
8145
8146<p>
8147<hr><h3><a name="pdf-string.find"><code>string.find (s, pattern [, init [, plain]])</code></a></h3>
8148
8149
8150<p>
8151Looks for the first match of
8152<code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) in the string <code>s</code>.
8153If it finds a match, then <code>find</code> returns the indices of&nbsp;<code>s</code>
8154where this occurrence starts and ends;
8155otherwise, it returns <b>nil</b>.
8156A third, optional numeric argument <code>init</code> specifies
8157where to start the search;
8158its default value is&nbsp;1 and can be negative.
8159A value of <b>true</b> as a fourth, optional argument <code>plain</code>
8160turns off the pattern matching facilities,
8161so the function does a plain "find substring" operation,
8162with no characters in <code>pattern</code> being considered magic.
8163Note that if <code>plain</code> is given, then <code>init</code> must be given as well.
8164
8165
8166<p>
8167If the pattern has captures,
8168then in a successful match
8169the captured values are also returned,
8170after the two indices.
8171
8172
8173
8174
8175<p>
8176<hr><h3><a name="pdf-string.format"><code>string.format (formatstring, &middot;&middot;&middot;)</code></a></h3>
8177
8178
8179<p>
8180Returns a formatted version of its variable number of arguments
8181following the description given in its first argument (which must be a string).
8182The format string follows the same rules as the ISO&nbsp;C function <code>sprintf</code>.
8183The only differences are that the options/modifiers
8184<code>*</code>, <code>h</code>, <code>L</code>, <code>l</code>, <code>n</code>,
8185and <code>p</code> are not supported
8186and that there is an extra option, <code>q</code>.
8187The <code>q</code> option formats a string between double quotes,
8188using escape sequences when necessary to ensure that
8189it can safely be read back by the Lua interpreter.
8190For instance, the call
8191
8192<pre>
8193     string.format('%q', 'a string with "quotes" and \n new line')
8194</pre><p>
8195may produce the string:
8196
8197<pre>
8198     "a string with \"quotes\" and \
8199      new line"
8200</pre>
8201
8202<p>
8203Options
8204<code>A</code>, <code>a</code>, <code>E</code>, <code>e</code>, <code>f</code>,
8205<code>G</code>, and <code>g</code> all expect a number as argument.
8206Options <code>c</code>, <code>d</code>,
8207<code>i</code>, <code>o</code>, <code>u</code>, <code>X</code>, and <code>x</code>
8208expect an integer.
8209Option <code>q</code> expects a string.
8210Option <code>s</code> expects a string;
8211if its argument is not a string,
8212it is converted to one following the same rules of <a href="#pdf-tostring"><code>tostring</code></a>.
8213If the option has any modifier (flags, width, length),
8214the string argument should not contain embedded zeros.
8215
8216
8217<p>
8218When Lua is compiled with a non-C99 compiler,
8219options <code>A</code> and <code>a</code> (hexadecimal floats)
8220do not support any modifier (flags, width, length).
8221
8222
8223
8224
8225<p>
8226<hr><h3><a name="pdf-string.gmatch"><code>string.gmatch (s, pattern)</code></a></h3>
8227Returns an iterator function that,
8228each time it is called,
8229returns the next captures from <code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>)
8230over the string <code>s</code>.
8231If <code>pattern</code> specifies no captures,
8232then the whole match is produced in each call.
8233
8234
8235<p>
8236As an example, the following loop
8237will iterate over all the words from string <code>s</code>,
8238printing one per line:
8239
8240<pre>
8241     s = "hello world from Lua"
8242     for w in string.gmatch(s, "%a+") do
8243       print(w)
8244     end
8245</pre><p>
8246The next example collects all pairs <code>key=value</code> from the
8247given string into a table:
8248
8249<pre>
8250     t = {}
8251     s = "from=world, to=Lua"
8252     for k, v in string.gmatch(s, "(%w+)=(%w+)") do
8253       t[k] = v
8254     end
8255</pre>
8256
8257<p>
8258For this function, a caret '<code>^</code>' at the start of a pattern does not
8259work as an anchor, as this would prevent the iteration.
8260
8261
8262
8263
8264<p>
8265<hr><h3><a name="pdf-string.gsub"><code>string.gsub (s, pattern, repl [, n])</code></a></h3>
8266Returns a copy of <code>s</code>
8267in which all (or the first <code>n</code>, if given)
8268occurrences of the <code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) have been
8269replaced by a replacement string specified by <code>repl</code>,
8270which can be a string, a table, or a function.
8271<code>gsub</code> also returns, as its second value,
8272the total number of matches that occurred.
8273The name <code>gsub</code> comes from <em>Global SUBstitution</em>.
8274
8275
8276<p>
8277If <code>repl</code> is a string, then its value is used for replacement.
8278The character&nbsp;<code>%</code> works as an escape character:
8279any sequence in <code>repl</code> of the form <code>%<em>d</em></code>,
8280with <em>d</em> between 1 and 9,
8281stands for the value of the <em>d</em>-th captured substring.
8282The sequence <code>%0</code> stands for the whole match.
8283The sequence <code>%%</code> stands for a single&nbsp;<code>%</code>.
8284
8285
8286<p>
8287If <code>repl</code> is a table, then the table is queried for every match,
8288using the first capture as the key.
8289
8290
8291<p>
8292If <code>repl</code> is a function, then this function is called every time a
8293match occurs, with all captured substrings passed as arguments,
8294in order.
8295
8296
8297<p>
8298In any case,
8299if the pattern specifies no captures,
8300then it behaves as if the whole pattern was inside a capture.
8301
8302
8303<p>
8304If the value returned by the table query or by the function call
8305is a string or a number,
8306then it is used as the replacement string;
8307otherwise, if it is <b>false</b> or <b>nil</b>,
8308then there is no replacement
8309(that is, the original match is kept in the string).
8310
8311
8312<p>
8313Here are some examples:
8314
8315<pre>
8316     x = string.gsub("hello world", "(%w+)", "%1 %1")
8317     --&gt; x="hello hello world world"
8318
8319     x = string.gsub("hello world", "%w+", "%0 %0", 1)
8320     --&gt; x="hello hello world"
8321
8322     x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")
8323     --&gt; x="world hello Lua from"
8324
8325     x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)
8326     --&gt; x="home = /home/roberto, user = roberto"
8327
8328     x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)
8329           return load(s)()
8330         end)
8331     --&gt; x="4+5 = 9"
8332
8333     local t = {name="lua", version="5.3"}
8334     x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t)
8335     --&gt; x="lua-5.3.tar.gz"
8336</pre>
8337
8338
8339
8340<p>
8341<hr><h3><a name="pdf-string.len"><code>string.len (s)</code></a></h3>
8342Receives a string and returns its length.
8343The empty string <code>""</code> has length 0.
8344Embedded zeros are counted,
8345so <code>"a\000bc\000"</code> has length 5.
8346
8347
8348
8349
8350<p>
8351<hr><h3><a name="pdf-string.lower"><code>string.lower (s)</code></a></h3>
8352Receives a string and returns a copy of this string with all
8353uppercase letters changed to lowercase.
8354All other characters are left unchanged.
8355The definition of what an uppercase letter is depends on the current locale.
8356
8357
8358
8359
8360<p>
8361<hr><h3><a name="pdf-string.match"><code>string.match (s, pattern [, init])</code></a></h3>
8362Looks for the first <em>match</em> of
8363<code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) in the string <code>s</code>.
8364If it finds one, then <code>match</code> returns
8365the captures from the pattern;
8366otherwise it returns <b>nil</b>.
8367If <code>pattern</code> specifies no captures,
8368then the whole match is returned.
8369A third, optional numeric argument <code>init</code> specifies
8370where to start the search;
8371its default value is&nbsp;1 and can be negative.
8372
8373
8374
8375
8376<p>
8377<hr><h3><a name="pdf-string.pack"><code>string.pack (fmt, v1, v2, &middot;&middot;&middot;)</code></a></h3>
8378
8379
8380<p>
8381Returns a binary string containing the values <code>v1</code>, <code>v2</code>, etc.
8382packed (that is, serialized in binary form)
8383according to the format string <code>fmt</code> (see <a href="#6.4.2">&sect;6.4.2</a>).
8384
8385
8386
8387
8388<p>
8389<hr><h3><a name="pdf-string.packsize"><code>string.packsize (fmt)</code></a></h3>
8390
8391
8392<p>
8393Returns the size of a string resulting from <a href="#pdf-string.pack"><code>string.pack</code></a>
8394with the given format.
8395The format string cannot have the variable-length options
8396'<code>s</code>' or '<code>z</code>' (see <a href="#6.4.2">&sect;6.4.2</a>).
8397
8398
8399
8400
8401<p>
8402<hr><h3><a name="pdf-string.rep"><code>string.rep (s, n [, sep])</code></a></h3>
8403Returns a string that is the concatenation of <code>n</code> copies of
8404the string <code>s</code> separated by the string <code>sep</code>.
8405The default value for <code>sep</code> is the empty string
8406(that is, no separator).
8407Returns the empty string if <code>n</code> is not positive.
8408
8409
8410<p>
8411(Note that it is very easy to exhaust the memory of your machine
8412with a single call to this function.)
8413
8414
8415
8416
8417<p>
8418<hr><h3><a name="pdf-string.reverse"><code>string.reverse (s)</code></a></h3>
8419Returns a string that is the string <code>s</code> reversed.
8420
8421
8422
8423
8424<p>
8425<hr><h3><a name="pdf-string.sub"><code>string.sub (s, i [, j])</code></a></h3>
8426Returns the substring of <code>s</code> that
8427starts at <code>i</code>  and continues until <code>j</code>;
8428<code>i</code> and <code>j</code> can be negative.
8429If <code>j</code> is absent, then it is assumed to be equal to -1
8430(which is the same as the string length).
8431In particular,
8432the call <code>string.sub(s,1,j)</code> returns a prefix of <code>s</code>
8433with length <code>j</code>,
8434and <code>string.sub(s, -i)</code> returns a suffix of <code>s</code>
8435with length <code>i</code>.
8436
8437
8438<p>
8439If, after the translation of negative indices,
8440<code>i</code> is less than 1,
8441it is corrected to 1.
8442If <code>j</code> is greater than the string length,
8443it is corrected to that length.
8444If, after these corrections,
8445<code>i</code> is greater than <code>j</code>,
8446the function returns the empty string.
8447
8448
8449
8450
8451<p>
8452<hr><h3><a name="pdf-string.unpack"><code>string.unpack (fmt, s [, pos])</code></a></h3>
8453
8454
8455<p>
8456Returns the values packed in string <code>s</code> (see <a href="#pdf-string.pack"><code>string.pack</code></a>)
8457according to the format string <code>fmt</code> (see <a href="#6.4.2">&sect;6.4.2</a>).
8458An optional <code>pos</code> marks where
8459to start reading in <code>s</code> (default is 1).
8460After the read values,
8461this function also returns the index of the first unread byte in <code>s</code>.
8462
8463
8464
8465
8466<p>
8467<hr><h3><a name="pdf-string.upper"><code>string.upper (s)</code></a></h3>
8468Receives a string and returns a copy of this string with all
8469lowercase letters changed to uppercase.
8470All other characters are left unchanged.
8471The definition of what a lowercase letter is depends on the current locale.
8472
8473
8474
8475
8476
8477<h3>6.4.1 &ndash; <a name="6.4.1">Patterns</a></h3>
8478
8479<p>
8480Patterns in Lua are described by regular strings,
8481which are interpreted as patterns by the pattern-matching functions
8482<a href="#pdf-string.find"><code>string.find</code></a>,
8483<a href="#pdf-string.gmatch"><code>string.gmatch</code></a>,
8484<a href="#pdf-string.gsub"><code>string.gsub</code></a>,
8485and <a href="#pdf-string.match"><code>string.match</code></a>.
8486This section describes the syntax and the meaning
8487(that is, what they match) of these strings.
8488
8489
8490
8491<h4>Character Class:</h4><p>
8492A <em>character class</em> is used to represent a set of characters.
8493The following combinations are allowed in describing a character class:
8494
8495<ul>
8496
8497<li><b><em>x</em>: </b>
8498(where <em>x</em> is not one of the <em>magic characters</em>
8499<code>^$()%.[]*+-?</code>)
8500represents the character <em>x</em> itself.
8501</li>
8502
8503<li><b><code>.</code>: </b> (a dot) represents all characters.</li>
8504
8505<li><b><code>%a</code>: </b> represents all letters.</li>
8506
8507<li><b><code>%c</code>: </b> represents all control characters.</li>
8508
8509<li><b><code>%d</code>: </b> represents all digits.</li>
8510
8511<li><b><code>%g</code>: </b> represents all printable characters except space.</li>
8512
8513<li><b><code>%l</code>: </b> represents all lowercase letters.</li>
8514
8515<li><b><code>%p</code>: </b> represents all punctuation characters.</li>
8516
8517<li><b><code>%s</code>: </b> represents all space characters.</li>
8518
8519<li><b><code>%u</code>: </b> represents all uppercase letters.</li>
8520
8521<li><b><code>%w</code>: </b> represents all alphanumeric characters.</li>
8522
8523<li><b><code>%x</code>: </b> represents all hexadecimal digits.</li>
8524
8525<li><b><code>%<em>x</em></code>: </b> (where <em>x</em> is any non-alphanumeric character)
8526represents the character <em>x</em>.
8527This is the standard way to escape the magic characters.
8528Any non-alphanumeric character
8529(including all punctuation characters, even the non-magical)
8530can be preceded by a '<code>%</code>'
8531when used to represent itself in a pattern.
8532</li>
8533
8534<li><b><code>[<em>set</em>]</code>: </b>
8535represents the class which is the union of all
8536characters in <em>set</em>.
8537A range of characters can be specified by
8538separating the end characters of the range,
8539in ascending order, with a '<code>-</code>'.
8540All classes <code>%</code><em>x</em> described above can also be used as
8541components in <em>set</em>.
8542All other characters in <em>set</em> represent themselves.
8543For example, <code>[%w_]</code> (or <code>[_%w]</code>)
8544represents all alphanumeric characters plus the underscore,
8545<code>[0-7]</code> represents the octal digits,
8546and <code>[0-7%l%-]</code> represents the octal digits plus
8547the lowercase letters plus the '<code>-</code>' character.
8548
8549
8550<p>
8551The interaction between ranges and classes is not defined.
8552Therefore, patterns like <code>[%a-z]</code> or <code>[a-%%]</code>
8553have no meaning.
8554</li>
8555
8556<li><b><code>[^<em>set</em>]</code>: </b>
8557represents the complement of <em>set</em>,
8558where <em>set</em> is interpreted as above.
8559</li>
8560
8561</ul><p>
8562For all classes represented by single letters (<code>%a</code>, <code>%c</code>, etc.),
8563the corresponding uppercase letter represents the complement of the class.
8564For instance, <code>%S</code> represents all non-space characters.
8565
8566
8567<p>
8568The definitions of letter, space, and other character groups
8569depend on the current locale.
8570In particular, the class <code>[a-z]</code> may not be equivalent to <code>%l</code>.
8571
8572
8573
8574
8575
8576<h4>Pattern Item:</h4><p>
8577A <em>pattern item</em> can be
8578
8579<ul>
8580
8581<li>
8582a single character class,
8583which matches any single character in the class;
8584</li>
8585
8586<li>
8587a single character class followed by '<code>*</code>',
8588which matches zero or more repetitions of characters in the class.
8589These repetition items will always match the longest possible sequence;
8590</li>
8591
8592<li>
8593a single character class followed by '<code>+</code>',
8594which matches one or more repetitions of characters in the class.
8595These repetition items will always match the longest possible sequence;
8596</li>
8597
8598<li>
8599a single character class followed by '<code>-</code>',
8600which also matches zero or more repetitions of characters in the class.
8601Unlike '<code>*</code>',
8602these repetition items will always match the shortest possible sequence;
8603</li>
8604
8605<li>
8606a single character class followed by '<code>?</code>',
8607which matches zero or one occurrence of a character in the class.
8608It always matches one occurrence if possible;
8609</li>
8610
8611<li>
8612<code>%<em>n</em></code>, for <em>n</em> between 1 and 9;
8613such item matches a substring equal to the <em>n</em>-th captured string
8614(see below);
8615</li>
8616
8617<li>
8618<code>%b<em>xy</em></code>, where <em>x</em> and <em>y</em> are two distinct characters;
8619such item matches strings that start with&nbsp;<em>x</em>, end with&nbsp;<em>y</em>,
8620and where the <em>x</em> and <em>y</em> are <em>balanced</em>.
8621This means that, if one reads the string from left to right,
8622counting <em>+1</em> for an <em>x</em> and <em>-1</em> for a <em>y</em>,
8623the ending <em>y</em> is the first <em>y</em> where the count reaches 0.
8624For instance, the item <code>%b()</code> matches expressions with
8625balanced parentheses.
8626</li>
8627
8628<li>
8629<code>%f[<em>set</em>]</code>, a <em>frontier pattern</em>;
8630such item matches an empty string at any position such that
8631the next character belongs to <em>set</em>
8632and the previous character does not belong to <em>set</em>.
8633The set <em>set</em> is interpreted as previously described.
8634The beginning and the end of the subject are handled as if
8635they were the character '<code>\0</code>'.
8636</li>
8637
8638</ul>
8639
8640
8641
8642
8643<h4>Pattern:</h4><p>
8644A <em>pattern</em> is a sequence of pattern items.
8645A caret '<code>^</code>' at the beginning of a pattern anchors the match at the
8646beginning of the subject string.
8647A '<code>$</code>' at the end of a pattern anchors the match at the
8648end of the subject string.
8649At other positions,
8650'<code>^</code>' and '<code>$</code>' have no special meaning and represent themselves.
8651
8652
8653
8654
8655
8656<h4>Captures:</h4><p>
8657A pattern can contain sub-patterns enclosed in parentheses;
8658they describe <em>captures</em>.
8659When a match succeeds, the substrings of the subject string
8660that match captures are stored (<em>captured</em>) for future use.
8661Captures are numbered according to their left parentheses.
8662For instance, in the pattern <code>"(a*(.)%w(%s*))"</code>,
8663the part of the string matching <code>"a*(.)%w(%s*)"</code> is
8664stored as the first capture (and therefore has number&nbsp;1);
8665the character matching "<code>.</code>" is captured with number&nbsp;2,
8666and the part matching "<code>%s*</code>" has number&nbsp;3.
8667
8668
8669<p>
8670As a special case, the empty capture <code>()</code> captures
8671the current string position (a number).
8672For instance, if we apply the pattern <code>"()aa()"</code> on the
8673string <code>"flaaap"</code>, there will be two captures: 3&nbsp;and&nbsp;5.
8674
8675
8676
8677
8678
8679
8680
8681<h3>6.4.2 &ndash; <a name="6.4.2">Format Strings for Pack and Unpack</a></h3>
8682
8683<p>
8684The first argument to <a href="#pdf-string.pack"><code>string.pack</code></a>,
8685<a href="#pdf-string.packsize"><code>string.packsize</code></a>, and <a href="#pdf-string.unpack"><code>string.unpack</code></a>
8686is a format string,
8687which describes the layout of the structure being created or read.
8688
8689
8690<p>
8691A format string is a sequence of conversion options.
8692The conversion options are as follows:
8693
8694<ul>
8695<li><b><code>&lt;</code>: </b>sets little endian</li>
8696<li><b><code>&gt;</code>: </b>sets big endian</li>
8697<li><b><code>=</code>: </b>sets native endian</li>
8698<li><b><code>![<em>n</em>]</code>: </b>sets maximum alignment to <code>n</code>
8699(default is native alignment)</li>
8700<li><b><code>b</code>: </b>a signed byte (<code>char</code>)</li>
8701<li><b><code>B</code>: </b>an unsigned byte (<code>char</code>)</li>
8702<li><b><code>h</code>: </b>a signed <code>short</code> (native size)</li>
8703<li><b><code>H</code>: </b>an unsigned <code>short</code> (native size)</li>
8704<li><b><code>l</code>: </b>a signed <code>long</code> (native size)</li>
8705<li><b><code>L</code>: </b>an unsigned <code>long</code> (native size)</li>
8706<li><b><code>j</code>: </b>a <code>lua_Integer</code></li>
8707<li><b><code>J</code>: </b>a <code>lua_Unsigned</code></li>
8708<li><b><code>T</code>: </b>a <code>size_t</code> (native size)</li>
8709<li><b><code>i[<em>n</em>]</code>: </b>a signed <code>int</code> with <code>n</code> bytes
8710(default is native size)</li>
8711<li><b><code>I[<em>n</em>]</code>: </b>an unsigned <code>int</code> with <code>n</code> bytes
8712(default is native size)</li>
8713<li><b><code>f</code>: </b>a <code>float</code> (native size)</li>
8714<li><b><code>d</code>: </b>a <code>double</code> (native size)</li>
8715<li><b><code>n</code>: </b>a <code>lua_Number</code></li>
8716<li><b><code>c<em>n</em></code>: </b>a fixed-sized string with <code>n</code> bytes</li>
8717<li><b><code>z</code>: </b>a zero-terminated string</li>
8718<li><b><code>s[<em>n</em>]</code>: </b>a string preceded by its length
8719coded as an unsigned integer with <code>n</code> bytes
8720(default is a <code>size_t</code>)</li>
8721<li><b><code>x</code>: </b>one byte of padding</li>
8722<li><b><code>X<em>op</em></code>: </b>an empty item that aligns
8723according to option <code>op</code>
8724(which is otherwise ignored)</li>
8725<li><b>'<code> </code>': </b>(empty space) ignored</li>
8726</ul><p>
8727(A "<code>[<em>n</em>]</code>" means an optional integral numeral.)
8728Except for padding, spaces, and configurations
8729(options "<code>xX &lt;=&gt;!</code>"),
8730each option corresponds to an argument (in <a href="#pdf-string.pack"><code>string.pack</code></a>)
8731or a result (in <a href="#pdf-string.unpack"><code>string.unpack</code></a>).
8732
8733
8734<p>
8735For options "<code>!<em>n</em></code>", "<code>s<em>n</em></code>", "<code>i<em>n</em></code>", and "<code>I<em>n</em></code>",
8736<code>n</code> can be any integer between 1 and 16.
8737All integral options check overflows;
8738<a href="#pdf-string.pack"><code>string.pack</code></a> checks whether the given value fits in the given size;
8739<a href="#pdf-string.unpack"><code>string.unpack</code></a> checks whether the read value fits in a Lua integer.
8740
8741
8742<p>
8743Any format string starts as if prefixed by "<code>!1=</code>",
8744that is,
8745with maximum alignment of 1 (no alignment)
8746and native endianness.
8747
8748
8749<p>
8750Alignment works as follows:
8751For each option,
8752the format gets extra padding until the data starts
8753at an offset that is a multiple of the minimum between the
8754option size and the maximum alignment;
8755this minimum must be a power of 2.
8756Options "<code>c</code>" and "<code>z</code>" are not aligned;
8757option "<code>s</code>" follows the alignment of its starting integer.
8758
8759
8760<p>
8761All padding is filled with zeros by <a href="#pdf-string.pack"><code>string.pack</code></a>
8762(and ignored by <a href="#pdf-string.unpack"><code>string.unpack</code></a>).
8763
8764
8765
8766
8767
8768
8769
8770<h2>6.5 &ndash; <a name="6.5">UTF-8 Support</a></h2>
8771
8772<p>
8773This library provides basic support for UTF-8 encoding.
8774It provides all its functions inside the table <a name="pdf-utf8"><code>utf8</code></a>.
8775This library does not provide any support for Unicode other
8776than the handling of the encoding.
8777Any operation that needs the meaning of a character,
8778such as character classification, is outside its scope.
8779
8780
8781<p>
8782Unless stated otherwise,
8783all functions that expect a byte position as a parameter
8784assume that the given position is either the start of a byte sequence
8785or one plus the length of the subject string.
8786As in the string library,
8787negative indices count from the end of the string.
8788
8789
8790<p>
8791<hr><h3><a name="pdf-utf8.char"><code>utf8.char (&middot;&middot;&middot;)</code></a></h3>
8792Receives zero or more integers,
8793converts each one to its corresponding UTF-8 byte sequence
8794and returns a string with the concatenation of all these sequences.
8795
8796
8797
8798
8799<p>
8800<hr><h3><a name="pdf-utf8.charpattern"><code>utf8.charpattern</code></a></h3>
8801The pattern (a string, not a function) "<code>[\0-\x7F\xC2-\xF4][\x80-\xBF]*</code>"
8802(see <a href="#6.4.1">&sect;6.4.1</a>),
8803which matches exactly one UTF-8 byte sequence,
8804assuming that the subject is a valid UTF-8 string.
8805
8806
8807
8808
8809<p>
8810<hr><h3><a name="pdf-utf8.codes"><code>utf8.codes (s)</code></a></h3>
8811
8812
8813<p>
8814Returns values so that the construction
8815
8816<pre>
8817     for p, c in utf8.codes(s) do <em>body</em> end
8818</pre><p>
8819will iterate over all characters in string <code>s</code>,
8820with <code>p</code> being the position (in bytes) and <code>c</code> the code point
8821of each character.
8822It raises an error if it meets any invalid byte sequence.
8823
8824
8825
8826
8827<p>
8828<hr><h3><a name="pdf-utf8.codepoint"><code>utf8.codepoint (s [, i [, j]])</code></a></h3>
8829Returns the codepoints (as integers) from all characters in <code>s</code>
8830that start between byte position <code>i</code> and <code>j</code> (both included).
8831The default for <code>i</code> is 1 and for <code>j</code> is <code>i</code>.
8832It raises an error if it meets any invalid byte sequence.
8833
8834
8835
8836
8837<p>
8838<hr><h3><a name="pdf-utf8.len"><code>utf8.len (s [, i [, j]])</code></a></h3>
8839Returns the number of UTF-8 characters in string <code>s</code>
8840that start between positions <code>i</code> and <code>j</code> (both inclusive).
8841The default for <code>i</code> is 1 and for <code>j</code> is -1.
8842If it finds any invalid byte sequence,
8843returns a false value plus the position of the first invalid byte.
8844
8845
8846
8847
8848<p>
8849<hr><h3><a name="pdf-utf8.offset"><code>utf8.offset (s, n [, i])</code></a></h3>
8850Returns the position (in bytes) where the encoding of the
8851<code>n</code>-th character of <code>s</code>
8852(counting from position <code>i</code>) starts.
8853A negative <code>n</code> gets characters before position <code>i</code>.
8854The default for <code>i</code> is 1 when <code>n</code> is non-negative
8855and <code>#s + 1</code> otherwise,
8856so that <code>utf8.offset(s, -n)</code> gets the offset of the
8857<code>n</code>-th character from the end of the string.
8858If the specified character is neither in the subject
8859nor right after its end,
8860the function returns <b>nil</b>.
8861
8862
8863<p>
8864As a special case,
8865when <code>n</code> is 0 the function returns the start of the encoding
8866of the character that contains the <code>i</code>-th byte of <code>s</code>.
8867
8868
8869<p>
8870This function assumes that <code>s</code> is a valid UTF-8 string.
8871
8872
8873
8874
8875
8876
8877
8878<h2>6.6 &ndash; <a name="6.6">Table Manipulation</a></h2>
8879
8880<p>
8881This library provides generic functions for table manipulation.
8882It provides all its functions inside the table <a name="pdf-table"><code>table</code></a>.
8883
8884
8885<p>
8886Remember that, whenever an operation needs the length of a table,
8887the table must be a proper sequence
8888or have a <code>__len</code> metamethod (see <a href="#3.4.7">&sect;3.4.7</a>).
8889All functions ignore non-numeric keys
8890in the tables given as arguments.
8891
8892
8893<p>
8894<hr><h3><a name="pdf-table.concat"><code>table.concat (list [, sep [, i [, j]]])</code></a></h3>
8895
8896
8897<p>
8898Given a list where all elements are strings or numbers,
8899returns the string <code>list[i]..sep..list[i+1] &middot;&middot;&middot; sep..list[j]</code>.
8900The default value for <code>sep</code> is the empty string,
8901the default for <code>i</code> is 1,
8902and the default for <code>j</code> is <code>#list</code>.
8903If <code>i</code> is greater than <code>j</code>, returns the empty string.
8904
8905
8906
8907
8908<p>
8909<hr><h3><a name="pdf-table.insert"><code>table.insert (list, [pos,] value)</code></a></h3>
8910
8911
8912<p>
8913Inserts element <code>value</code> at position <code>pos</code> in <code>list</code>,
8914shifting up the elements
8915<code>list[pos], list[pos+1], &middot;&middot;&middot;, list[#list]</code>.
8916The default value for <code>pos</code> is <code>#list+1</code>,
8917so that a call <code>table.insert(t,x)</code> inserts <code>x</code> at the end
8918of list <code>t</code>.
8919
8920
8921
8922
8923<p>
8924<hr><h3><a name="pdf-table.move"><code>table.move (a1, f, e, t [,a2])</code></a></h3>
8925
8926
8927<p>
8928Moves elements from table <code>a1</code> to table <code>a2</code>.
8929This function performs the equivalent to the following
8930multiple assignment:
8931<code>a2[t],&middot;&middot;&middot; = a1[f],&middot;&middot;&middot;,a1[e]</code>.
8932The default for <code>a2</code> is <code>a1</code>.
8933The destination range can overlap with the source range.
8934The number of elements to be moved must fit in a Lua integer.
8935
8936
8937
8938
8939<p>
8940<hr><h3><a name="pdf-table.pack"><code>table.pack (&middot;&middot;&middot;)</code></a></h3>
8941
8942
8943<p>
8944Returns a new table with all parameters stored into keys 1, 2, etc.
8945and with a field "<code>n</code>" with the total number of parameters.
8946Note that the resulting table may not be a sequence.
8947
8948
8949
8950
8951<p>
8952<hr><h3><a name="pdf-table.remove"><code>table.remove (list [, pos])</code></a></h3>
8953
8954
8955<p>
8956Removes from <code>list</code> the element at position <code>pos</code>,
8957returning the value of the removed element.
8958When <code>pos</code> is an integer between 1 and <code>#list</code>,
8959it shifts down the elements
8960<code>list[pos+1], list[pos+2], &middot;&middot;&middot;, list[#list]</code>
8961and erases element <code>list[#list]</code>;
8962The index <code>pos</code> can also be 0 when <code>#list</code> is 0,
8963or <code>#list + 1</code>;
8964in those cases, the function erases the element <code>list[pos]</code>.
8965
8966
8967<p>
8968The default value for <code>pos</code> is <code>#list</code>,
8969so that a call <code>table.remove(l)</code> removes the last element
8970of list <code>l</code>.
8971
8972
8973
8974
8975<p>
8976<hr><h3><a name="pdf-table.sort"><code>table.sort (list [, comp])</code></a></h3>
8977
8978
8979<p>
8980Sorts list elements in a given order, <em>in-place</em>,
8981from <code>list[1]</code> to <code>list[#list]</code>.
8982If <code>comp</code> is given,
8983then it must be a function that receives two list elements
8984and returns true when the first element must come
8985before the second in the final order
8986(so that, after the sort,
8987<code>i &lt; j</code> implies <code>not comp(list[j],list[i])</code>).
8988If <code>comp</code> is not given,
8989then the standard Lua operator <code>&lt;</code> is used instead.
8990
8991
8992<p>
8993Note that the <code>comp</code> function must define
8994a strict partial order over the elements in the list;
8995that is, it must be asymmetric and transitive.
8996Otherwise, no valid sort may be possible.
8997
8998
8999<p>
9000The sort algorithm is not stable;
9001that is, elements not comparable by the given order
9002(e.g., equal elements)
9003may have their relative positions changed by the sort.
9004
9005
9006
9007
9008<p>
9009<hr><h3><a name="pdf-table.unpack"><code>table.unpack (list [, i [, j]])</code></a></h3>
9010
9011
9012<p>
9013Returns the elements from the given list.
9014This function is equivalent to
9015
9016<pre>
9017     return list[i], list[i+1], &middot;&middot;&middot;, list[j]
9018</pre><p>
9019By default, <code>i</code> is&nbsp;1 and <code>j</code> is <code>#list</code>.
9020
9021
9022
9023
9024
9025
9026
9027<h2>6.7 &ndash; <a name="6.7">Mathematical Functions</a></h2>
9028
9029<p>
9030This library provides basic mathematical functions.
9031It provides all its functions and constants inside the table <a name="pdf-math"><code>math</code></a>.
9032Functions with the annotation "<code>integer/float</code>" give
9033integer results for integer arguments
9034and float results for float (or mixed) arguments.
9035Rounding functions
9036(<a href="#pdf-math.ceil"><code>math.ceil</code></a>, <a href="#pdf-math.floor"><code>math.floor</code></a>, and <a href="#pdf-math.modf"><code>math.modf</code></a>)
9037return an integer when the result fits in the range of an integer,
9038or a float otherwise.
9039
9040
9041<p>
9042<hr><h3><a name="pdf-math.abs"><code>math.abs (x)</code></a></h3>
9043
9044
9045<p>
9046Returns the absolute value of <code>x</code>. (integer/float)
9047
9048
9049
9050
9051<p>
9052<hr><h3><a name="pdf-math.acos"><code>math.acos (x)</code></a></h3>
9053
9054
9055<p>
9056Returns the arc cosine of <code>x</code> (in radians).
9057
9058
9059
9060
9061<p>
9062<hr><h3><a name="pdf-math.asin"><code>math.asin (x)</code></a></h3>
9063
9064
9065<p>
9066Returns the arc sine of <code>x</code> (in radians).
9067
9068
9069
9070
9071<p>
9072<hr><h3><a name="pdf-math.atan"><code>math.atan (y [, x])</code></a></h3>
9073
9074
9075<p>
9076
9077Returns the arc tangent of <code>y/x</code> (in radians),
9078but uses the signs of both parameters to find the
9079quadrant of the result.
9080(It also handles correctly the case of <code>x</code> being zero.)
9081
9082
9083<p>
9084The default value for <code>x</code> is 1,
9085so that the call <code>math.atan(y)</code>
9086returns the arc tangent of <code>y</code>.
9087
9088
9089
9090
9091<p>
9092<hr><h3><a name="pdf-math.ceil"><code>math.ceil (x)</code></a></h3>
9093
9094
9095<p>
9096Returns the smallest integral value larger than or equal to <code>x</code>.
9097
9098
9099
9100
9101<p>
9102<hr><h3><a name="pdf-math.cos"><code>math.cos (x)</code></a></h3>
9103
9104
9105<p>
9106Returns the cosine of <code>x</code> (assumed to be in radians).
9107
9108
9109
9110
9111<p>
9112<hr><h3><a name="pdf-math.deg"><code>math.deg (x)</code></a></h3>
9113
9114
9115<p>
9116Converts the angle <code>x</code> from radians to degrees.
9117
9118
9119
9120
9121<p>
9122<hr><h3><a name="pdf-math.exp"><code>math.exp (x)</code></a></h3>
9123
9124
9125<p>
9126Returns the value <em>e<sup>x</sup></em>
9127(where <code>e</code> is the base of natural logarithms).
9128
9129
9130
9131
9132<p>
9133<hr><h3><a name="pdf-math.floor"><code>math.floor (x)</code></a></h3>
9134
9135
9136<p>
9137Returns the largest integral value smaller than or equal to <code>x</code>.
9138
9139
9140
9141
9142<p>
9143<hr><h3><a name="pdf-math.fmod"><code>math.fmod (x, y)</code></a></h3>
9144
9145
9146<p>
9147Returns the remainder of the division of <code>x</code> by <code>y</code>
9148that rounds the quotient towards zero. (integer/float)
9149
9150
9151
9152
9153<p>
9154<hr><h3><a name="pdf-math.huge"><code>math.huge</code></a></h3>
9155
9156
9157<p>
9158The float value <code>HUGE_VAL</code>,
9159a value larger than any other numeric value.
9160
9161
9162
9163
9164<p>
9165<hr><h3><a name="pdf-math.log"><code>math.log (x [, base])</code></a></h3>
9166
9167
9168<p>
9169Returns the logarithm of <code>x</code> in the given base.
9170The default for <code>base</code> is <em>e</em>
9171(so that the function returns the natural logarithm of <code>x</code>).
9172
9173
9174
9175
9176<p>
9177<hr><h3><a name="pdf-math.max"><code>math.max (x, &middot;&middot;&middot;)</code></a></h3>
9178
9179
9180<p>
9181Returns the argument with the maximum value,
9182according to the Lua operator <code>&lt;</code>. (integer/float)
9183
9184
9185
9186
9187<p>
9188<hr><h3><a name="pdf-math.maxinteger"><code>math.maxinteger</code></a></h3>
9189An integer with the maximum value for an integer.
9190
9191
9192
9193
9194<p>
9195<hr><h3><a name="pdf-math.min"><code>math.min (x, &middot;&middot;&middot;)</code></a></h3>
9196
9197
9198<p>
9199Returns the argument with the minimum value,
9200according to the Lua operator <code>&lt;</code>. (integer/float)
9201
9202
9203
9204
9205<p>
9206<hr><h3><a name="pdf-math.mininteger"><code>math.mininteger</code></a></h3>
9207An integer with the minimum value for an integer.
9208
9209
9210
9211
9212<p>
9213<hr><h3><a name="pdf-math.modf"><code>math.modf (x)</code></a></h3>
9214
9215
9216<p>
9217Returns the integral part of <code>x</code> and the fractional part of <code>x</code>.
9218Its second result is always a float.
9219
9220
9221
9222
9223<p>
9224<hr><h3><a name="pdf-math.pi"><code>math.pi</code></a></h3>
9225
9226
9227<p>
9228The value of <em>&pi;</em>.
9229
9230
9231
9232
9233<p>
9234<hr><h3><a name="pdf-math.rad"><code>math.rad (x)</code></a></h3>
9235
9236
9237<p>
9238Converts the angle <code>x</code> from degrees to radians.
9239
9240
9241
9242
9243<p>
9244<hr><h3><a name="pdf-math.random"><code>math.random ([m [, n]])</code></a></h3>
9245
9246
9247<p>
9248When called without arguments,
9249returns a pseudo-random float with uniform distribution
9250in the range  <em>[0,1)</em>.
9251When called with two integers <code>m</code> and <code>n</code>,
9252<code>math.random</code> returns a pseudo-random integer
9253with uniform distribution in the range <em>[m, n]</em>.
9254(The value <em>n-m</em> cannot be negative and must fit in a Lua integer.)
9255The call <code>math.random(n)</code> is equivalent to <code>math.random(1,n)</code>.
9256
9257
9258<p>
9259This function is an interface to the underling
9260pseudo-random generator function provided by C.
9261
9262
9263
9264
9265<p>
9266<hr><h3><a name="pdf-math.randomseed"><code>math.randomseed (x)</code></a></h3>
9267
9268
9269<p>
9270Sets <code>x</code> as the "seed"
9271for the pseudo-random generator:
9272equal seeds produce equal sequences of numbers.
9273
9274
9275
9276
9277<p>
9278<hr><h3><a name="pdf-math.sin"><code>math.sin (x)</code></a></h3>
9279
9280
9281<p>
9282Returns the sine of <code>x</code> (assumed to be in radians).
9283
9284
9285
9286
9287<p>
9288<hr><h3><a name="pdf-math.sqrt"><code>math.sqrt (x)</code></a></h3>
9289
9290
9291<p>
9292Returns the square root of <code>x</code>.
9293(You can also use the expression <code>x^0.5</code> to compute this value.)
9294
9295
9296
9297
9298<p>
9299<hr><h3><a name="pdf-math.tan"><code>math.tan (x)</code></a></h3>
9300
9301
9302<p>
9303Returns the tangent of <code>x</code> (assumed to be in radians).
9304
9305
9306
9307
9308<p>
9309<hr><h3><a name="pdf-math.tointeger"><code>math.tointeger (x)</code></a></h3>
9310
9311
9312<p>
9313If the value <code>x</code> is convertible to an integer,
9314returns that integer.
9315Otherwise, returns <b>nil</b>.
9316
9317
9318
9319
9320<p>
9321<hr><h3><a name="pdf-math.type"><code>math.type (x)</code></a></h3>
9322
9323
9324<p>
9325Returns "<code>integer</code>" if <code>x</code> is an integer,
9326"<code>float</code>" if it is a float,
9327or <b>nil</b> if <code>x</code> is not a number.
9328
9329
9330
9331
9332<p>
9333<hr><h3><a name="pdf-math.ult"><code>math.ult (m, n)</code></a></h3>
9334
9335
9336<p>
9337Returns a boolean,
9338true if integer <code>m</code> is below integer <code>n</code> when
9339they are compared as unsigned integers.
9340
9341
9342
9343
9344
9345
9346
9347<h2>6.8 &ndash; <a name="6.8">Input and Output Facilities</a></h2>
9348
9349<p>
9350The I/O library provides two different styles for file manipulation.
9351The first one uses implicit file handles;
9352that is, there are operations to set a default input file and a
9353default output file,
9354and all input/output operations are over these default files.
9355The second style uses explicit file handles.
9356
9357
9358<p>
9359When using implicit file handles,
9360all operations are supplied by table <a name="pdf-io"><code>io</code></a>.
9361When using explicit file handles,
9362the operation <a href="#pdf-io.open"><code>io.open</code></a> returns a file handle
9363and then all operations are supplied as methods of the file handle.
9364
9365
9366<p>
9367The table <code>io</code> also provides
9368three predefined file handles with their usual meanings from C:
9369<a name="pdf-io.stdin"><code>io.stdin</code></a>, <a name="pdf-io.stdout"><code>io.stdout</code></a>, and <a name="pdf-io.stderr"><code>io.stderr</code></a>.
9370The I/O library never closes these files.
9371
9372
9373<p>
9374Unless otherwise stated,
9375all I/O functions return <b>nil</b> on failure
9376(plus an error message as a second result and
9377a system-dependent error code as a third result)
9378and some value different from <b>nil</b> on success.
9379On non-POSIX systems,
9380the computation of the error message and error code
9381in case of errors
9382may be not thread safe,
9383because they rely on the global C variable <code>errno</code>.
9384
9385
9386<p>
9387<hr><h3><a name="pdf-io.close"><code>io.close ([file])</code></a></h3>
9388
9389
9390<p>
9391Equivalent to <code>file:close()</code>.
9392Without a <code>file</code>, closes the default output file.
9393
9394
9395
9396
9397<p>
9398<hr><h3><a name="pdf-io.flush"><code>io.flush ()</code></a></h3>
9399
9400
9401<p>
9402Equivalent to <code>io.output():flush()</code>.
9403
9404
9405
9406
9407<p>
9408<hr><h3><a name="pdf-io.input"><code>io.input ([file])</code></a></h3>
9409
9410
9411<p>
9412When called with a file name, it opens the named file (in text mode),
9413and sets its handle as the default input file.
9414When called with a file handle,
9415it simply sets this file handle as the default input file.
9416When called without parameters,
9417it returns the current default input file.
9418
9419
9420<p>
9421In case of errors this function raises the error,
9422instead of returning an error code.
9423
9424
9425
9426
9427<p>
9428<hr><h3><a name="pdf-io.lines"><code>io.lines ([filename, &middot;&middot;&middot;])</code></a></h3>
9429
9430
9431<p>
9432Opens the given file name in read mode
9433and returns an iterator function that
9434works like <code>file:lines(&middot;&middot;&middot;)</code> over the opened file.
9435When the iterator function detects the end of file,
9436it returns no values (to finish the loop) and automatically closes the file.
9437
9438
9439<p>
9440The call <code>io.lines()</code> (with no file name) is equivalent
9441to <code>io.input():lines("*l")</code>;
9442that is, it iterates over the lines of the default input file.
9443In this case it does not close the file when the loop ends.
9444
9445
9446<p>
9447In case of errors this function raises the error,
9448instead of returning an error code.
9449
9450
9451
9452
9453<p>
9454<hr><h3><a name="pdf-io.open"><code>io.open (filename [, mode])</code></a></h3>
9455
9456
9457<p>
9458This function opens a file,
9459in the mode specified in the string <code>mode</code>.
9460It returns a new file handle,
9461or, in case of errors, <b>nil</b> plus an error message.
9462
9463
9464<p>
9465The <code>mode</code> string can be any of the following:
9466
9467<ul>
9468<li><b>"<code>r</code>": </b> read mode (the default);</li>
9469<li><b>"<code>w</code>": </b> write mode;</li>
9470<li><b>"<code>a</code>": </b> append mode;</li>
9471<li><b>"<code>r+</code>": </b> update mode, all previous data is preserved;</li>
9472<li><b>"<code>w+</code>": </b> update mode, all previous data is erased;</li>
9473<li><b>"<code>a+</code>": </b> append update mode, previous data is preserved,
9474  writing is only allowed at the end of file.</li>
9475</ul><p>
9476The <code>mode</code> string can also have a '<code>b</code>' at the end,
9477which is needed in some systems to open the file in binary mode.
9478
9479
9480
9481
9482<p>
9483<hr><h3><a name="pdf-io.output"><code>io.output ([file])</code></a></h3>
9484
9485
9486<p>
9487Similar to <a href="#pdf-io.input"><code>io.input</code></a>, but operates over the default output file.
9488
9489
9490
9491
9492<p>
9493<hr><h3><a name="pdf-io.popen"><code>io.popen (prog [, mode])</code></a></h3>
9494
9495
9496<p>
9497This function is system dependent and is not available
9498on all platforms.
9499
9500
9501<p>
9502Starts program <code>prog</code> in a separated process and returns
9503a file handle that you can use to read data from this program
9504(if <code>mode</code> is <code>"r"</code>, the default)
9505or to write data to this program
9506(if <code>mode</code> is <code>"w"</code>).
9507
9508
9509
9510
9511<p>
9512<hr><h3><a name="pdf-io.read"><code>io.read (&middot;&middot;&middot;)</code></a></h3>
9513
9514
9515<p>
9516Equivalent to <code>io.input():read(&middot;&middot;&middot;)</code>.
9517
9518
9519
9520
9521<p>
9522<hr><h3><a name="pdf-io.tmpfile"><code>io.tmpfile ()</code></a></h3>
9523
9524
9525<p>
9526Returns a handle for a temporary file.
9527This file is opened in update mode
9528and it is automatically removed when the program ends.
9529
9530
9531
9532
9533<p>
9534<hr><h3><a name="pdf-io.type"><code>io.type (obj)</code></a></h3>
9535
9536
9537<p>
9538Checks whether <code>obj</code> is a valid file handle.
9539Returns the string <code>"file"</code> if <code>obj</code> is an open file handle,
9540<code>"closed file"</code> if <code>obj</code> is a closed file handle,
9541or <b>nil</b> if <code>obj</code> is not a file handle.
9542
9543
9544
9545
9546<p>
9547<hr><h3><a name="pdf-io.write"><code>io.write (&middot;&middot;&middot;)</code></a></h3>
9548
9549
9550<p>
9551Equivalent to <code>io.output():write(&middot;&middot;&middot;)</code>.
9552
9553
9554
9555
9556<p>
9557<hr><h3><a name="pdf-file:close"><code>file:close ()</code></a></h3>
9558
9559
9560<p>
9561Closes <code>file</code>.
9562Note that files are automatically closed when
9563their handles are garbage collected,
9564but that takes an unpredictable amount of time to happen.
9565
9566
9567<p>
9568When closing a file handle created with <a href="#pdf-io.popen"><code>io.popen</code></a>,
9569<a href="#pdf-file:close"><code>file:close</code></a> returns the same values
9570returned by <a href="#pdf-os.execute"><code>os.execute</code></a>.
9571
9572
9573
9574
9575<p>
9576<hr><h3><a name="pdf-file:flush"><code>file:flush ()</code></a></h3>
9577
9578
9579<p>
9580Saves any written data to <code>file</code>.
9581
9582
9583
9584
9585<p>
9586<hr><h3><a name="pdf-file:lines"><code>file:lines (&middot;&middot;&middot;)</code></a></h3>
9587
9588
9589<p>
9590Returns an iterator function that,
9591each time it is called,
9592reads the file according to the given formats.
9593When no format is given,
9594uses "<code>l</code>" as a default.
9595As an example, the construction
9596
9597<pre>
9598     for c in file:lines(1) do <em>body</em> end
9599</pre><p>
9600will iterate over all characters of the file,
9601starting at the current position.
9602Unlike <a href="#pdf-io.lines"><code>io.lines</code></a>, this function does not close the file
9603when the loop ends.
9604
9605
9606<p>
9607In case of errors this function raises the error,
9608instead of returning an error code.
9609
9610
9611
9612
9613<p>
9614<hr><h3><a name="pdf-file:read"><code>file:read (&middot;&middot;&middot;)</code></a></h3>
9615
9616
9617<p>
9618Reads the file <code>file</code>,
9619according to the given formats, which specify what to read.
9620For each format,
9621the function returns a string or a number with the characters read,
9622or <b>nil</b> if it cannot read data with the specified format.
9623(In this latter case,
9624the function does not read subsequent formats.)
9625When called without formats,
9626it uses a default format that reads the next line
9627(see below).
9628
9629
9630<p>
9631The available formats are
9632
9633<ul>
9634
9635<li><b>"<code>n</code>": </b>
9636reads a numeral and returns it as a float or an integer,
9637following the lexical conventions of Lua.
9638(The numeral may have leading spaces and a sign.)
9639This format always reads the longest input sequence that
9640is a valid prefix for a numeral;
9641if that prefix does not form a valid numeral
9642(e.g., an empty string, "<code>0x</code>", or "<code>3.4e-</code>"),
9643it is discarded and the function returns <b>nil</b>.
9644</li>
9645
9646<li><b>"<code>a</code>": </b>
9647reads the whole file, starting at the current position.
9648On end of file, it returns the empty string.
9649</li>
9650
9651<li><b>"<code>l</code>": </b>
9652reads the next line skipping the end of line,
9653returning <b>nil</b> on end of file.
9654This is the default format.
9655</li>
9656
9657<li><b>"<code>L</code>": </b>
9658reads the next line keeping the end-of-line character (if present),
9659returning <b>nil</b> on end of file.
9660</li>
9661
9662<li><b><em>number</em>: </b>
9663reads a string with up to this number of bytes,
9664returning <b>nil</b> on end of file.
9665If <code>number</code> is zero,
9666it reads nothing and returns an empty string,
9667or <b>nil</b> on end of file.
9668</li>
9669
9670</ul><p>
9671The formats "<code>l</code>" and "<code>L</code>" should be used only for text files.
9672
9673
9674
9675
9676<p>
9677<hr><h3><a name="pdf-file:seek"><code>file:seek ([whence [, offset]])</code></a></h3>
9678
9679
9680<p>
9681Sets and gets the file position,
9682measured from the beginning of the file,
9683to the position given by <code>offset</code> plus a base
9684specified by the string <code>whence</code>, as follows:
9685
9686<ul>
9687<li><b>"<code>set</code>": </b> base is position 0 (beginning of the file);</li>
9688<li><b>"<code>cur</code>": </b> base is current position;</li>
9689<li><b>"<code>end</code>": </b> base is end of file;</li>
9690</ul><p>
9691In case of success, <code>seek</code> returns the final file position,
9692measured in bytes from the beginning of the file.
9693If <code>seek</code> fails, it returns <b>nil</b>,
9694plus a string describing the error.
9695
9696
9697<p>
9698The default value for <code>whence</code> is <code>"cur"</code>,
9699and for <code>offset</code> is 0.
9700Therefore, the call <code>file:seek()</code> returns the current
9701file position, without changing it;
9702the call <code>file:seek("set")</code> sets the position to the
9703beginning of the file (and returns 0);
9704and the call <code>file:seek("end")</code> sets the position to the
9705end of the file, and returns its size.
9706
9707
9708
9709
9710<p>
9711<hr><h3><a name="pdf-file:setvbuf"><code>file:setvbuf (mode [, size])</code></a></h3>
9712
9713
9714<p>
9715Sets the buffering mode for an output file.
9716There are three available modes:
9717
9718<ul>
9719
9720<li><b>"<code>no</code>": </b>
9721no buffering; the result of any output operation appears immediately.
9722</li>
9723
9724<li><b>"<code>full</code>": </b>
9725full buffering; output operation is performed only
9726when the buffer is full or when
9727you explicitly <code>flush</code> the file (see <a href="#pdf-io.flush"><code>io.flush</code></a>).
9728</li>
9729
9730<li><b>"<code>line</code>": </b>
9731line buffering; output is buffered until a newline is output
9732or there is any input from some special files
9733(such as a terminal device).
9734</li>
9735
9736</ul><p>
9737For the last two cases, <code>size</code>
9738specifies the size of the buffer, in bytes.
9739The default is an appropriate size.
9740
9741
9742
9743
9744<p>
9745<hr><h3><a name="pdf-file:write"><code>file:write (&middot;&middot;&middot;)</code></a></h3>
9746
9747
9748<p>
9749Writes the value of each of its arguments to <code>file</code>.
9750The arguments must be strings or numbers.
9751
9752
9753<p>
9754In case of success, this function returns <code>file</code>.
9755Otherwise it returns <b>nil</b> plus a string describing the error.
9756
9757
9758
9759
9760
9761
9762
9763<h2>6.9 &ndash; <a name="6.9">Operating System Facilities</a></h2>
9764
9765<p>
9766This library is implemented through table <a name="pdf-os"><code>os</code></a>.
9767
9768
9769<p>
9770<hr><h3><a name="pdf-os.clock"><code>os.clock ()</code></a></h3>
9771
9772
9773<p>
9774Returns an approximation of the amount in seconds of CPU time
9775used by the program.
9776
9777
9778
9779
9780<p>
9781<hr><h3><a name="pdf-os.date"><code>os.date ([format [, time]])</code></a></h3>
9782
9783
9784<p>
9785Returns a string or a table containing date and time,
9786formatted according to the given string <code>format</code>.
9787
9788
9789<p>
9790If the <code>time</code> argument is present,
9791this is the time to be formatted
9792(see the <a href="#pdf-os.time"><code>os.time</code></a> function for a description of this value).
9793Otherwise, <code>date</code> formats the current time.
9794
9795
9796<p>
9797If <code>format</code> starts with '<code>!</code>',
9798then the date is formatted in Coordinated Universal Time.
9799After this optional character,
9800if <code>format</code> is the string "<code>*t</code>",
9801then <code>date</code> returns a table with the following fields:
9802<code>year</code>, <code>month</code> (1&ndash;12), <code>day</code> (1&ndash;31),
9803<code>hour</code> (0&ndash;23), <code>min</code> (0&ndash;59), <code>sec</code> (0&ndash;61),
9804<code>wday</code> (weekday, Sunday is&nbsp;1),
9805<code>yday</code> (day of the year),
9806and <code>isdst</code> (daylight saving flag, a boolean).
9807This last field may be absent
9808if the information is not available.
9809
9810
9811<p>
9812If <code>format</code> is not "<code>*t</code>",
9813then <code>date</code> returns the date as a string,
9814formatted according to the same rules as the ISO&nbsp;C function <code>strftime</code>.
9815
9816
9817<p>
9818When called without arguments,
9819<code>date</code> returns a reasonable date and time representation that depends on
9820the host system and on the current locale.
9821(More specifically, <code>os.date()</code> is equivalent to <code>os.date("%c")</code>.)
9822
9823
9824<p>
9825On non-POSIX systems,
9826this function may be not thread safe
9827because of its reliance on C&nbsp;function <code>gmtime</code> and C&nbsp;function <code>localtime</code>.
9828
9829
9830
9831
9832<p>
9833<hr><h3><a name="pdf-os.difftime"><code>os.difftime (t2, t1)</code></a></h3>
9834
9835
9836<p>
9837Returns the difference, in seconds,
9838from time <code>t1</code> to time <code>t2</code>
9839(where the times are values returned by <a href="#pdf-os.time"><code>os.time</code></a>).
9840In POSIX, Windows, and some other systems,
9841this value is exactly <code>t2</code><em>-</em><code>t1</code>.
9842
9843
9844
9845
9846<p>
9847<hr><h3><a name="pdf-os.execute"><code>os.execute ([command])</code></a></h3>
9848
9849
9850<p>
9851This function is equivalent to the ISO&nbsp;C function <code>system</code>.
9852It passes <code>command</code> to be executed by an operating system shell.
9853Its first result is <b>true</b>
9854if the command terminated successfully,
9855or <b>nil</b> otherwise.
9856After this first result
9857the function returns a string plus a number,
9858as follows:
9859
9860<ul>
9861
9862<li><b>"<code>exit</code>": </b>
9863the command terminated normally;
9864the following number is the exit status of the command.
9865</li>
9866
9867<li><b>"<code>signal</code>": </b>
9868the command was terminated by a signal;
9869the following number is the signal that terminated the command.
9870</li>
9871
9872</ul>
9873
9874<p>
9875When called without a <code>command</code>,
9876<code>os.execute</code> returns a boolean that is true if a shell is available.
9877
9878
9879
9880
9881<p>
9882<hr><h3><a name="pdf-os.exit"><code>os.exit ([code [, close]])</code></a></h3>
9883
9884
9885<p>
9886Calls the ISO&nbsp;C function <code>exit</code> to terminate the host program.
9887If <code>code</code> is <b>true</b>,
9888the returned status is <code>EXIT_SUCCESS</code>;
9889if <code>code</code> is <b>false</b>,
9890the returned status is <code>EXIT_FAILURE</code>;
9891if <code>code</code> is a number,
9892the returned status is this number.
9893The default value for <code>code</code> is <b>true</b>.
9894
9895
9896<p>
9897If the optional second argument <code>close</code> is true,
9898closes the Lua state before exiting.
9899
9900
9901
9902
9903<p>
9904<hr><h3><a name="pdf-os.getenv"><code>os.getenv (varname)</code></a></h3>
9905
9906
9907<p>
9908Returns the value of the process environment variable <code>varname</code>,
9909or <b>nil</b> if the variable is not defined.
9910
9911
9912
9913
9914<p>
9915<hr><h3><a name="pdf-os.remove"><code>os.remove (filename)</code></a></h3>
9916
9917
9918<p>
9919Deletes the file (or empty directory, on POSIX systems)
9920with the given name.
9921If this function fails, it returns <b>nil</b>,
9922plus a string describing the error and the error code.
9923
9924
9925
9926
9927<p>
9928<hr><h3><a name="pdf-os.rename"><code>os.rename (oldname, newname)</code></a></h3>
9929
9930
9931<p>
9932Renames file or directory named <code>oldname</code> to <code>newname</code>.
9933If this function fails, it returns <b>nil</b>,
9934plus a string describing the error and the error code.
9935
9936
9937
9938
9939<p>
9940<hr><h3><a name="pdf-os.setlocale"><code>os.setlocale (locale [, category])</code></a></h3>
9941
9942
9943<p>
9944Sets the current locale of the program.
9945<code>locale</code> is a system-dependent string specifying a locale;
9946<code>category</code> is an optional string describing which category to change:
9947<code>"all"</code>, <code>"collate"</code>, <code>"ctype"</code>,
9948<code>"monetary"</code>, <code>"numeric"</code>, or <code>"time"</code>;
9949the default category is <code>"all"</code>.
9950The function returns the name of the new locale,
9951or <b>nil</b> if the request cannot be honored.
9952
9953
9954<p>
9955If <code>locale</code> is the empty string,
9956the current locale is set to an implementation-defined native locale.
9957If <code>locale</code> is the string "<code>C</code>",
9958the current locale is set to the standard C locale.
9959
9960
9961<p>
9962When called with <b>nil</b> as the first argument,
9963this function only returns the name of the current locale
9964for the given category.
9965
9966
9967<p>
9968This function may be not thread safe
9969because of its reliance on C&nbsp;function <code>setlocale</code>.
9970
9971
9972
9973
9974<p>
9975<hr><h3><a name="pdf-os.time"><code>os.time ([table])</code></a></h3>
9976
9977
9978<p>
9979Returns the current time when called without arguments,
9980or a time representing the local date and time specified by the given table.
9981This table must have fields <code>year</code>, <code>month</code>, and <code>day</code>,
9982and may have fields
9983<code>hour</code> (default is 12),
9984<code>min</code> (default is 0),
9985<code>sec</code> (default is 0),
9986and <code>isdst</code> (default is <b>nil</b>).
9987Other fields are ignored.
9988For a description of these fields, see the <a href="#pdf-os.date"><code>os.date</code></a> function.
9989
9990
9991<p>
9992The values in these fields do not need to be inside their valid ranges.
9993For instance, if <code>sec</code> is -10,
9994it means -10 seconds from the time specified by the other fields;
9995if <code>hour</code> is 1000,
9996it means +1000 hours from the time specified by the other fields.
9997
9998
9999<p>
10000The returned value is a number, whose meaning depends on your system.
10001In POSIX, Windows, and some other systems,
10002this number counts the number
10003of seconds since some given start time (the "epoch").
10004In other systems, the meaning is not specified,
10005and the number returned by <code>time</code> can be used only as an argument to
10006<a href="#pdf-os.date"><code>os.date</code></a> and <a href="#pdf-os.difftime"><code>os.difftime</code></a>.
10007
10008
10009
10010
10011<p>
10012<hr><h3><a name="pdf-os.tmpname"><code>os.tmpname ()</code></a></h3>
10013
10014
10015<p>
10016Returns a string with a file name that can
10017be used for a temporary file.
10018The file must be explicitly opened before its use
10019and explicitly removed when no longer needed.
10020
10021
10022<p>
10023On POSIX systems,
10024this function also creates a file with that name,
10025to avoid security risks.
10026(Someone else might create the file with wrong permissions
10027in the time between getting the name and creating the file.)
10028You still have to open the file to use it
10029and to remove it (even if you do not use it).
10030
10031
10032<p>
10033When possible,
10034you may prefer to use <a href="#pdf-io.tmpfile"><code>io.tmpfile</code></a>,
10035which automatically removes the file when the program ends.
10036
10037
10038
10039
10040
10041
10042
10043<h2>6.10 &ndash; <a name="6.10">The Debug Library</a></h2>
10044
10045<p>
10046This library provides
10047the functionality of the debug interface (<a href="#4.9">&sect;4.9</a>) to Lua programs.
10048You should exert care when using this library.
10049Several of its functions
10050violate basic assumptions about Lua code
10051(e.g., that variables local to a function
10052cannot be accessed from outside;
10053that userdata metatables cannot be changed by Lua code;
10054that Lua programs do not crash)
10055and therefore can compromise otherwise secure code.
10056Moreover, some functions in this library may be slow.
10057
10058
10059<p>
10060All functions in this library are provided
10061inside the <a name="pdf-debug"><code>debug</code></a> table.
10062All functions that operate over a thread
10063have an optional first argument which is the
10064thread to operate over.
10065The default is always the current thread.
10066
10067
10068<p>
10069<hr><h3><a name="pdf-debug.debug"><code>debug.debug ()</code></a></h3>
10070
10071
10072<p>
10073Enters an interactive mode with the user,
10074running each string that the user enters.
10075Using simple commands and other debug facilities,
10076the user can inspect global and local variables,
10077change their values, evaluate expressions, and so on.
10078A line containing only the word <code>cont</code> finishes this function,
10079so that the caller continues its execution.
10080
10081
10082<p>
10083Note that commands for <code>debug.debug</code> are not lexically nested
10084within any function and so have no direct access to local variables.
10085
10086
10087
10088
10089<p>
10090<hr><h3><a name="pdf-debug.gethook"><code>debug.gethook ([thread])</code></a></h3>
10091
10092
10093<p>
10094Returns the current hook settings of the thread, as three values:
10095the current hook function, the current hook mask,
10096and the current hook count
10097(as set by the <a href="#pdf-debug.sethook"><code>debug.sethook</code></a> function).
10098
10099
10100
10101
10102<p>
10103<hr><h3><a name="pdf-debug.getinfo"><code>debug.getinfo ([thread,] f [, what])</code></a></h3>
10104
10105
10106<p>
10107Returns a table with information about a function.
10108You can give the function directly
10109or you can give a number as the value of <code>f</code>,
10110which means the function running at level <code>f</code> of the call stack
10111of the given thread:
10112level&nbsp;0 is the current function (<code>getinfo</code> itself);
10113level&nbsp;1 is the function that called <code>getinfo</code>
10114(except for tail calls, which do not count on the stack);
10115and so on.
10116If <code>f</code> is a number larger than the number of active functions,
10117then <code>getinfo</code> returns <b>nil</b>.
10118
10119
10120<p>
10121The returned table can contain all the fields returned by <a href="#lua_getinfo"><code>lua_getinfo</code></a>,
10122with the string <code>what</code> describing which fields to fill in.
10123The default for <code>what</code> is to get all information available,
10124except the table of valid lines.
10125If present,
10126the option '<code>f</code>'
10127adds a field named <code>func</code> with the function itself.
10128If present,
10129the option '<code>L</code>'
10130adds a field named <code>activelines</code> with the table of
10131valid lines.
10132
10133
10134<p>
10135For instance, the expression <code>debug.getinfo(1,"n").name</code> returns
10136a name for the current function,
10137if a reasonable name can be found,
10138and the expression <code>debug.getinfo(print)</code>
10139returns a table with all available information
10140about the <a href="#pdf-print"><code>print</code></a> function.
10141
10142
10143
10144
10145<p>
10146<hr><h3><a name="pdf-debug.getlocal"><code>debug.getlocal ([thread,] f, local)</code></a></h3>
10147
10148
10149<p>
10150This function returns the name and the value of the local variable
10151with index <code>local</code> of the function at level <code>f</code> of the stack.
10152This function accesses not only explicit local variables,
10153but also parameters, temporaries, etc.
10154
10155
10156<p>
10157The first parameter or local variable has index&nbsp;1, and so on,
10158following the order that they are declared in the code,
10159counting only the variables that are active
10160in the current scope of the function.
10161Negative indices refer to vararg parameters;
10162-1 is the first vararg parameter.
10163The function returns <b>nil</b> if there is no variable with the given index,
10164and raises an error when called with a level out of range.
10165(You can call <a href="#pdf-debug.getinfo"><code>debug.getinfo</code></a> to check whether the level is valid.)
10166
10167
10168<p>
10169Variable names starting with '<code>(</code>' (open parenthesis)
10170represent variables with no known names
10171(internal variables such as loop control variables,
10172and variables from chunks saved without debug information).
10173
10174
10175<p>
10176The parameter <code>f</code> may also be a function.
10177In that case, <code>getlocal</code> returns only the name of function parameters.
10178
10179
10180
10181
10182<p>
10183<hr><h3><a name="pdf-debug.getmetatable"><code>debug.getmetatable (value)</code></a></h3>
10184
10185
10186<p>
10187Returns the metatable of the given <code>value</code>
10188or <b>nil</b> if it does not have a metatable.
10189
10190
10191
10192
10193<p>
10194<hr><h3><a name="pdf-debug.getregistry"><code>debug.getregistry ()</code></a></h3>
10195
10196
10197<p>
10198Returns the registry table (see <a href="#4.5">&sect;4.5</a>).
10199
10200
10201
10202
10203<p>
10204<hr><h3><a name="pdf-debug.getupvalue"><code>debug.getupvalue (f, up)</code></a></h3>
10205
10206
10207<p>
10208This function returns the name and the value of the upvalue
10209with index <code>up</code> of the function <code>f</code>.
10210The function returns <b>nil</b> if there is no upvalue with the given index.
10211
10212
10213<p>
10214Variable names starting with '<code>(</code>' (open parenthesis)
10215represent variables with no known names
10216(variables from chunks saved without debug information).
10217
10218
10219
10220
10221<p>
10222<hr><h3><a name="pdf-debug.getuservalue"><code>debug.getuservalue (u)</code></a></h3>
10223
10224
10225<p>
10226Returns the Lua value associated to <code>u</code>.
10227If <code>u</code> is not a userdata,
10228returns <b>nil</b>.
10229
10230
10231
10232
10233<p>
10234<hr><h3><a name="pdf-debug.sethook"><code>debug.sethook ([thread,] hook, mask [, count])</code></a></h3>
10235
10236
10237<p>
10238Sets the given function as a hook.
10239The string <code>mask</code> and the number <code>count</code> describe
10240when the hook will be called.
10241The string mask may have any combination of the following characters,
10242with the given meaning:
10243
10244<ul>
10245<li><b>'<code>c</code>': </b> the hook is called every time Lua calls a function;</li>
10246<li><b>'<code>r</code>': </b> the hook is called every time Lua returns from a function;</li>
10247<li><b>'<code>l</code>': </b> the hook is called every time Lua enters a new line of code.</li>
10248</ul><p>
10249Moreover,
10250with a <code>count</code> different from zero,
10251the hook is called also after every <code>count</code> instructions.
10252
10253
10254<p>
10255When called without arguments,
10256<a href="#pdf-debug.sethook"><code>debug.sethook</code></a> turns off the hook.
10257
10258
10259<p>
10260When the hook is called, its first parameter is a string
10261describing the event that has triggered its call:
10262<code>"call"</code> (or <code>"tail call"</code>),
10263<code>"return"</code>,
10264<code>"line"</code>, and <code>"count"</code>.
10265For line events,
10266the hook also gets the new line number as its second parameter.
10267Inside a hook,
10268you can call <code>getinfo</code> with level&nbsp;2 to get more information about
10269the running function
10270(level&nbsp;0 is the <code>getinfo</code> function,
10271and level&nbsp;1 is the hook function).
10272
10273
10274
10275
10276<p>
10277<hr><h3><a name="pdf-debug.setlocal"><code>debug.setlocal ([thread,] level, local, value)</code></a></h3>
10278
10279
10280<p>
10281This function assigns the value <code>value</code> to the local variable
10282with index <code>local</code> of the function at level <code>level</code> of the stack.
10283The function returns <b>nil</b> if there is no local
10284variable with the given index,
10285and raises an error when called with a <code>level</code> out of range.
10286(You can call <code>getinfo</code> to check whether the level is valid.)
10287Otherwise, it returns the name of the local variable.
10288
10289
10290<p>
10291See <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for more information about
10292variable indices and names.
10293
10294
10295
10296
10297<p>
10298<hr><h3><a name="pdf-debug.setmetatable"><code>debug.setmetatable (value, table)</code></a></h3>
10299
10300
10301<p>
10302Sets the metatable for the given <code>value</code> to the given <code>table</code>
10303(which can be <b>nil</b>).
10304Returns <code>value</code>.
10305
10306
10307
10308
10309<p>
10310<hr><h3><a name="pdf-debug.setupvalue"><code>debug.setupvalue (f, up, value)</code></a></h3>
10311
10312
10313<p>
10314This function assigns the value <code>value</code> to the upvalue
10315with index <code>up</code> of the function <code>f</code>.
10316The function returns <b>nil</b> if there is no upvalue
10317with the given index.
10318Otherwise, it returns the name of the upvalue.
10319
10320
10321
10322
10323<p>
10324<hr><h3><a name="pdf-debug.setuservalue"><code>debug.setuservalue (udata, value)</code></a></h3>
10325
10326
10327<p>
10328Sets the given <code>value</code> as
10329the Lua value associated to the given <code>udata</code>.
10330<code>udata</code> must be a full userdata.
10331
10332
10333<p>
10334Returns <code>udata</code>.
10335
10336
10337
10338
10339<p>
10340<hr><h3><a name="pdf-debug.traceback"><code>debug.traceback ([thread,] [message [, level]])</code></a></h3>
10341
10342
10343<p>
10344If <code>message</code> is present but is neither a string nor <b>nil</b>,
10345this function returns <code>message</code> without further processing.
10346Otherwise,
10347it returns a string with a traceback of the call stack.
10348The optional <code>message</code> string is appended
10349at the beginning of the traceback.
10350An optional <code>level</code> number tells at which level
10351to start the traceback
10352(default is 1, the function calling <code>traceback</code>).
10353
10354
10355
10356
10357<p>
10358<hr><h3><a name="pdf-debug.upvalueid"><code>debug.upvalueid (f, n)</code></a></h3>
10359
10360
10361<p>
10362Returns a unique identifier (as a light userdata)
10363for the upvalue numbered <code>n</code>
10364from the given function.
10365
10366
10367<p>
10368These unique identifiers allow a program to check whether different
10369closures share upvalues.
10370Lua closures that share an upvalue
10371(that is, that access a same external local variable)
10372will return identical ids for those upvalue indices.
10373
10374
10375
10376
10377<p>
10378<hr><h3><a name="pdf-debug.upvaluejoin"><code>debug.upvaluejoin (f1, n1, f2, n2)</code></a></h3>
10379
10380
10381<p>
10382Make the <code>n1</code>-th upvalue of the Lua closure <code>f1</code>
10383refer to the <code>n2</code>-th upvalue of the Lua closure <code>f2</code>.
10384
10385
10386
10387
10388
10389
10390
10391<h1>7 &ndash; <a name="7">Lua Standalone</a></h1>
10392
10393<p>
10394Although Lua has been designed as an extension language,
10395to be embedded in a host C&nbsp;program,
10396it is also frequently used as a standalone language.
10397An interpreter for Lua as a standalone language,
10398called simply <code>lua</code>,
10399is provided with the standard distribution.
10400The standalone interpreter includes
10401all standard libraries, including the debug library.
10402Its usage is:
10403
10404<pre>
10405     lua [options] [script [args]]
10406</pre><p>
10407The options are:
10408
10409<ul>
10410<li><b><code>-e <em>stat</em></code>: </b> executes string <em>stat</em>;</li>
10411<li><b><code>-l <em>mod</em></code>: </b> "requires" <em>mod</em>;</li>
10412<li><b><code>-i</code>: </b> enters interactive mode after running <em>script</em>;</li>
10413<li><b><code>-v</code>: </b> prints version information;</li>
10414<li><b><code>-E</code>: </b> ignores environment variables;</li>
10415<li><b><code>--</code>: </b> stops handling options;</li>
10416<li><b><code>-</code>: </b> executes <code>stdin</code> as a file and stops handling options.</li>
10417</ul><p>
10418After handling its options, <code>lua</code> runs the given <em>script</em>.
10419When called without arguments,
10420<code>lua</code> behaves as <code>lua -v -i</code>
10421when the standard input (<code>stdin</code>) is a terminal,
10422and as <code>lua -</code> otherwise.
10423
10424
10425<p>
10426When called without option <code>-E</code>,
10427the interpreter checks for an environment variable <a name="pdf-LUA_INIT_5_3"><code>LUA_INIT_5_3</code></a>
10428(or <a name="pdf-LUA_INIT"><code>LUA_INIT</code></a> if the versioned name is not defined)
10429before running any argument.
10430If the variable content has the format <code>@<em>filename</em></code>,
10431then <code>lua</code> executes the file.
10432Otherwise, <code>lua</code> executes the string itself.
10433
10434
10435<p>
10436When called with option <code>-E</code>,
10437besides ignoring <code>LUA_INIT</code>,
10438Lua also ignores
10439the values of <code>LUA_PATH</code> and <code>LUA_CPATH</code>,
10440setting the values of
10441<a href="#pdf-package.path"><code>package.path</code></a> and <a href="#pdf-package.cpath"><code>package.cpath</code></a>
10442with the default paths defined in <code>luaconf.h</code>.
10443
10444
10445<p>
10446All options are handled in order, except <code>-i</code> and <code>-E</code>.
10447For instance, an invocation like
10448
10449<pre>
10450     $ lua -e'a=1' -e 'print(a)' script.lua
10451</pre><p>
10452will first set <code>a</code> to 1, then print the value of <code>a</code>,
10453and finally run the file <code>script.lua</code> with no arguments.
10454(Here <code>$</code> is the shell prompt. Your prompt may be different.)
10455
10456
10457<p>
10458Before running any code,
10459<code>lua</code> collects all command-line arguments
10460in a global table called <code>arg</code>.
10461The script name goes to index 0,
10462the first argument after the script name goes to index 1,
10463and so on.
10464Any arguments before the script name
10465(that is, the interpreter name plus its options)
10466go to negative indices.
10467For instance, in the call
10468
10469<pre>
10470     $ lua -la b.lua t1 t2
10471</pre><p>
10472the table is like this:
10473
10474<pre>
10475     arg = { [-2] = "lua", [-1] = "-la",
10476             [0] = "b.lua",
10477             [1] = "t1", [2] = "t2" }
10478</pre><p>
10479If there is no script in the call,
10480the interpreter name goes to index 0,
10481followed by the other arguments.
10482For instance, the call
10483
10484<pre>
10485     $ lua -e "print(arg[1])"
10486</pre><p>
10487will print "<code>-e</code>".
10488If there is a script,
10489the script is called with parameters
10490<code>arg[1]</code>, &middot;&middot;&middot;, <code>arg[#arg]</code>.
10491(Like all chunks in Lua,
10492the script is compiled as a vararg function.)
10493
10494
10495<p>
10496In interactive mode,
10497Lua repeatedly prompts and waits for a line.
10498After reading a line,
10499Lua first try to interpret the line as an expression.
10500If it succeeds, it prints its value.
10501Otherwise, it interprets the line as a statement.
10502If you write an incomplete statement,
10503the interpreter waits for its completion
10504by issuing a different prompt.
10505
10506
10507<p>
10508In case of unprotected errors in the script,
10509the interpreter reports the error to the standard error stream.
10510If the error object is not a string but
10511has a metamethod <code>__tostring</code>,
10512the interpreter calls this metamethod to produce the final message.
10513Otherwise, the interpreter converts the error object to a string
10514and adds a stack traceback to it.
10515
10516
10517<p>
10518When finishing normally,
10519the interpreter closes its main Lua state
10520(see <a href="#lua_close"><code>lua_close</code></a>).
10521The script can avoid this step by
10522calling <a href="#pdf-os.exit"><code>os.exit</code></a> to terminate.
10523
10524
10525<p>
10526To allow the use of Lua as a
10527script interpreter in Unix systems,
10528the standalone interpreter skips
10529the first line of a chunk if it starts with <code>#</code>.
10530Therefore, Lua scripts can be made into executable programs
10531by using <code>chmod +x</code> and the&nbsp;<code>#!</code> form,
10532as in
10533
10534<pre>
10535     #!/usr/local/bin/lua
10536</pre><p>
10537(Of course,
10538the location of the Lua interpreter may be different in your machine.
10539If <code>lua</code> is in your <code>PATH</code>,
10540then
10541
10542<pre>
10543     #!/usr/bin/env lua
10544</pre><p>
10545is a more portable solution.)
10546
10547
10548
10549<h1>8 &ndash; <a name="8">Incompatibilities with the Previous Version</a></h1>
10550
10551<p>
10552Here we list the incompatibilities that you may find when moving a program
10553from Lua&nbsp;5.2 to Lua&nbsp;5.3.
10554You can avoid some incompatibilities by compiling Lua with
10555appropriate options (see file <code>luaconf.h</code>).
10556However,
10557all these compatibility options will be removed in the future.
10558
10559
10560<p>
10561Lua versions can always change the C API in ways that
10562do not imply source-code changes in a program,
10563such as the numeric values for constants
10564or the implementation of functions as macros.
10565Therefore,
10566you should not assume that binaries are compatible between
10567different Lua versions.
10568Always recompile clients of the Lua API when
10569using a new version.
10570
10571
10572<p>
10573Similarly, Lua versions can always change the internal representation
10574of precompiled chunks;
10575precompiled chunks are not compatible between different Lua versions.
10576
10577
10578<p>
10579The standard paths in the official distribution may
10580change between versions.
10581
10582
10583
10584<h2>8.1 &ndash; <a name="8.1">Changes in the Language</a></h2>
10585<ul>
10586
10587<li>
10588The main difference between Lua&nbsp;5.2 and Lua&nbsp;5.3 is the
10589introduction of an integer subtype for numbers.
10590Although this change should not affect "normal" computations,
10591some computations
10592(mainly those that involve some kind of overflow)
10593can give different results.
10594
10595
10596<p>
10597You can fix these differences by forcing a number to be a float
10598(in Lua&nbsp;5.2 all numbers were float),
10599in particular writing constants with an ending <code>.0</code>
10600or using <code>x = x + 0.0</code> to convert a variable.
10601(This recommendation is only for a quick fix
10602for an occasional incompatibility;
10603it is not a general guideline for good programming.
10604For good programming,
10605use floats where you need floats
10606and integers where you need integers.)
10607</li>
10608
10609<li>
10610The conversion of a float to a string now adds a <code>.0</code> suffix
10611to the result if it looks like an integer.
10612(For instance, the float 2.0 will be printed as <code>2.0</code>,
10613not as <code>2</code>.)
10614You should always use an explicit format
10615when you need a specific format for numbers.
10616
10617
10618<p>
10619(Formally this is not an incompatibility,
10620because Lua does not specify how numbers are formatted as strings,
10621but some programs assumed a specific format.)
10622</li>
10623
10624<li>
10625The generational mode for the garbage collector was removed.
10626(It was an experimental feature in Lua&nbsp;5.2.)
10627</li>
10628
10629</ul>
10630
10631
10632
10633
10634<h2>8.2 &ndash; <a name="8.2">Changes in the Libraries</a></h2>
10635<ul>
10636
10637<li>
10638The <code>bit32</code> library has been deprecated.
10639It is easy to require a compatible external library or,
10640better yet, to replace its functions with appropriate bitwise operations.
10641(Keep in mind that <code>bit32</code> operates on 32-bit integers,
10642while the bitwise operators in Lua&nbsp;5.3 operate on Lua integers,
10643which by default have 64&nbsp;bits.)
10644</li>
10645
10646<li>
10647The Table library now respects metamethods
10648for setting and getting elements.
10649</li>
10650
10651<li>
10652The <a href="#pdf-ipairs"><code>ipairs</code></a> iterator now respects metamethods and
10653its <code>__ipairs</code> metamethod has been deprecated.
10654</li>
10655
10656<li>
10657Option names in <a href="#pdf-io.read"><code>io.read</code></a> do not have a starting '<code>*</code>' anymore.
10658For compatibility, Lua will continue to accept (and ignore) this character.
10659</li>
10660
10661<li>
10662The following functions were deprecated in the mathematical library:
10663<code>atan2</code>, <code>cosh</code>, <code>sinh</code>, <code>tanh</code>, <code>pow</code>,
10664<code>frexp</code>, and <code>ldexp</code>.
10665You can replace <code>math.pow(x,y)</code> with <code>x^y</code>;
10666you can replace <code>math.atan2</code> with <code>math.atan</code>,
10667which now accepts one or two parameters;
10668you can replace <code>math.ldexp(x,exp)</code> with <code>x * 2.0^exp</code>.
10669For the other operations,
10670you can either use an external library or
10671implement them in Lua.
10672</li>
10673
10674<li>
10675The searcher for C loaders used by <a href="#pdf-require"><code>require</code></a>
10676changed the way it handles versioned names.
10677Now, the version should come after the module name
10678(as is usual in most other tools).
10679For compatibility, that searcher still tries the old format
10680if it cannot find an open function according to the new style.
10681(Lua&nbsp;5.2 already worked that way,
10682but it did not document the change.)
10683</li>
10684
10685<li>
10686The call <code>collectgarbage("count")</code> now returns only one result.
10687(You can compute that second result from the fractional part
10688of the first result.)
10689</li>
10690
10691</ul>
10692
10693
10694
10695
10696<h2>8.3 &ndash; <a name="8.3">Changes in the API</a></h2>
10697
10698
10699<ul>
10700
10701<li>
10702Continuation functions now receive as parameters what they needed
10703to get through <code>lua_getctx</code>,
10704so <code>lua_getctx</code> has been removed.
10705Adapt your code accordingly.
10706</li>
10707
10708<li>
10709Function <a href="#lua_dump"><code>lua_dump</code></a> has an extra parameter, <code>strip</code>.
10710Use 0 as the value of this parameter to get the old behavior.
10711</li>
10712
10713<li>
10714Functions to inject/project unsigned integers
10715(<code>lua_pushunsigned</code>, <code>lua_tounsigned</code>, <code>lua_tounsignedx</code>,
10716<code>luaL_checkunsigned</code>, <code>luaL_optunsigned</code>)
10717were deprecated.
10718Use their signed equivalents with a type cast.
10719</li>
10720
10721<li>
10722Macros to project non-default integer types
10723(<code>luaL_checkint</code>, <code>luaL_optint</code>, <code>luaL_checklong</code>, <code>luaL_optlong</code>)
10724were deprecated.
10725Use their equivalent over <a href="#lua_Integer"><code>lua_Integer</code></a> with a type cast
10726(or, when possible, use <a href="#lua_Integer"><code>lua_Integer</code></a> in your code).
10727</li>
10728
10729</ul>
10730
10731
10732
10733
10734<h1>9 &ndash; <a name="9">The Complete Syntax of Lua</a></h1>
10735
10736<p>
10737Here is the complete syntax of Lua in extended BNF.
10738As usual in extended BNF,
10739{A} means 0 or more As,
10740and [A] means an optional A.
10741(For operator precedences, see <a href="#3.4.8">&sect;3.4.8</a>;
10742for a description of the terminals
10743Name, Numeral,
10744and LiteralString, see <a href="#3.1">&sect;3.1</a>.)
10745
10746
10747
10748
10749<pre>
10750
10751	chunk ::= block
10752
10753	block ::= {stat} [retstat]
10754
10755	stat ::=  &lsquo;<b>;</b>&rsquo; |
10756		 varlist &lsquo;<b>=</b>&rsquo; explist |
10757		 functioncall |
10758		 label |
10759		 <b>break</b> |
10760		 <b>goto</b> Name |
10761		 <b>do</b> block <b>end</b> |
10762		 <b>while</b> exp <b>do</b> block <b>end</b> |
10763		 <b>repeat</b> block <b>until</b> exp |
10764		 <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> |
10765		 <b>for</b> Name &lsquo;<b>=</b>&rsquo; exp &lsquo;<b>,</b>&rsquo; exp [&lsquo;<b>,</b>&rsquo; exp] <b>do</b> block <b>end</b> |
10766		 <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b> |
10767		 <b>function</b> funcname funcbody |
10768		 <b>local</b> <b>function</b> Name funcbody |
10769		 <b>local</b> namelist [&lsquo;<b>=</b>&rsquo; explist]
10770
10771	retstat ::= <b>return</b> [explist] [&lsquo;<b>;</b>&rsquo;]
10772
10773	label ::= &lsquo;<b>::</b>&rsquo; Name &lsquo;<b>::</b>&rsquo;
10774
10775	funcname ::= Name {&lsquo;<b>.</b>&rsquo; Name} [&lsquo;<b>:</b>&rsquo; Name]
10776
10777	varlist ::= var {&lsquo;<b>,</b>&rsquo; var}
10778
10779	var ::=  Name | prefixexp &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; | prefixexp &lsquo;<b>.</b>&rsquo; Name
10780
10781	namelist ::= Name {&lsquo;<b>,</b>&rsquo; Name}
10782
10783	explist ::= exp {&lsquo;<b>,</b>&rsquo; exp}
10784
10785	exp ::=  <b>nil</b> | <b>false</b> | <b>true</b> | Numeral | LiteralString | &lsquo;<b>...</b>&rsquo; | functiondef |
10786		 prefixexp | tableconstructor | exp binop exp | unop exp
10787
10788	prefixexp ::= var | functioncall | &lsquo;<b>(</b>&rsquo; exp &lsquo;<b>)</b>&rsquo;
10789
10790	functioncall ::=  prefixexp args | prefixexp &lsquo;<b>:</b>&rsquo; Name args
10791
10792	args ::=  &lsquo;<b>(</b>&rsquo; [explist] &lsquo;<b>)</b>&rsquo; | tableconstructor | LiteralString
10793
10794	functiondef ::= <b>function</b> funcbody
10795
10796	funcbody ::= &lsquo;<b>(</b>&rsquo; [parlist] &lsquo;<b>)</b>&rsquo; block <b>end</b>
10797
10798	parlist ::= namelist [&lsquo;<b>,</b>&rsquo; &lsquo;<b>...</b>&rsquo;] | &lsquo;<b>...</b>&rsquo;
10799
10800	tableconstructor ::= &lsquo;<b>{</b>&rsquo; [fieldlist] &lsquo;<b>}</b>&rsquo;
10801
10802	fieldlist ::= field {fieldsep field} [fieldsep]
10803
10804	field ::= &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; &lsquo;<b>=</b>&rsquo; exp | Name &lsquo;<b>=</b>&rsquo; exp | exp
10805
10806	fieldsep ::= &lsquo;<b>,</b>&rsquo; | &lsquo;<b>;</b>&rsquo;
10807
10808	binop ::=  &lsquo;<b>+</b>&rsquo; | &lsquo;<b>-</b>&rsquo; | &lsquo;<b>*</b>&rsquo; | &lsquo;<b>/</b>&rsquo; | &lsquo;<b>//</b>&rsquo; | &lsquo;<b>^</b>&rsquo; | &lsquo;<b>%</b>&rsquo; |
10809		 &lsquo;<b>&amp;</b>&rsquo; | &lsquo;<b>~</b>&rsquo; | &lsquo;<b>|</b>&rsquo; | &lsquo;<b>&gt;&gt;</b>&rsquo; | &lsquo;<b>&lt;&lt;</b>&rsquo; | &lsquo;<b>..</b>&rsquo; |
10810		 &lsquo;<b>&lt;</b>&rsquo; | &lsquo;<b>&lt;=</b>&rsquo; | &lsquo;<b>&gt;</b>&rsquo; | &lsquo;<b>&gt;=</b>&rsquo; | &lsquo;<b>==</b>&rsquo; | &lsquo;<b>~=</b>&rsquo; |
10811		 <b>and</b> | <b>or</b>
10812
10813	unop ::= &lsquo;<b>-</b>&rsquo; | <b>not</b> | &lsquo;<b>#</b>&rsquo; | &lsquo;<b>~</b>&rsquo;
10814
10815</pre>
10816
10817<p>
10818
10819
10820
10821
10822
10823
10824
10825
10826<P CLASS="footer">
10827Last update:
10828Wed Nov 25 15:19:10 BRST 2015
10829</P>
10830<!--
10831Last change: revised for Lua 5.3.2
10832-->
10833
10834</body></html>
10835
10836