1 #include <isl_ctx_private.h> 2 #include <isl/val.h> 3 #include <isl_constraint_private.h> 4 #include <isl/set.h> 5 #include <isl_polynomial_private.h> 6 #include <isl_morph.h> 7 #include <isl_range.h> 8 9 struct range_data { 10 struct isl_bound *bound; 11 int *signs; 12 int sign; 13 int test_monotonicity; 14 int monotonicity; 15 int tight; 16 isl_qpolynomial *poly; 17 isl_pw_qpolynomial_fold *pwf; 18 isl_pw_qpolynomial_fold *pwf_tight; 19 }; 20 21 static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset, 22 __isl_take isl_qpolynomial *poly, struct range_data *data); 23 24 /* Check whether the polynomial "poly" has sign "sign" over "bset", 25 * i.e., if sign == 1, check that the lower bound on the polynomial 26 * is non-negative and if sign == -1, check that the upper bound on 27 * the polynomial is non-positive. 28 */ 29 static isl_bool has_sign(__isl_keep isl_basic_set *bset, 30 __isl_keep isl_qpolynomial *poly, int sign, int *signs) 31 { 32 struct range_data data_m; 33 isl_size nparam; 34 isl_space *space; 35 isl_val *opt; 36 isl_bool r; 37 enum isl_fold type; 38 39 nparam = isl_basic_set_dim(bset, isl_dim_param); 40 if (nparam < 0) 41 return isl_bool_error; 42 43 bset = isl_basic_set_copy(bset); 44 poly = isl_qpolynomial_copy(poly); 45 46 bset = isl_basic_set_move_dims(bset, isl_dim_set, 0, 47 isl_dim_param, 0, nparam); 48 poly = isl_qpolynomial_move_dims(poly, isl_dim_in, 0, 49 isl_dim_param, 0, nparam); 50 51 space = isl_qpolynomial_get_space(poly); 52 space = isl_space_params(space); 53 space = isl_space_from_domain(space); 54 space = isl_space_add_dims(space, isl_dim_out, 1); 55 56 data_m.test_monotonicity = 0; 57 data_m.signs = signs; 58 data_m.sign = -sign; 59 type = data_m.sign < 0 ? isl_fold_min : isl_fold_max; 60 data_m.pwf = isl_pw_qpolynomial_fold_zero(space, type); 61 data_m.tight = 0; 62 data_m.pwf_tight = NULL; 63 64 if (propagate_on_domain(bset, poly, &data_m) < 0) 65 goto error; 66 67 if (sign > 0) 68 opt = isl_pw_qpolynomial_fold_min(data_m.pwf); 69 else 70 opt = isl_pw_qpolynomial_fold_max(data_m.pwf); 71 72 if (!opt) 73 r = isl_bool_error; 74 else if (isl_val_is_nan(opt) || 75 isl_val_is_infty(opt) || 76 isl_val_is_neginfty(opt)) 77 r = isl_bool_false; 78 else 79 r = isl_bool_ok(sign * isl_val_sgn(opt) >= 0); 80 81 isl_val_free(opt); 82 83 return r; 84 error: 85 isl_pw_qpolynomial_fold_free(data_m.pwf); 86 return isl_bool_error; 87 } 88 89 /* Return 1 if poly is monotonically increasing in the last set variable, 90 * -1 if poly is monotonically decreasing in the last set variable, 91 * 0 if no conclusion, 92 * -2 on error. 93 * 94 * We simply check the sign of p(x+1)-p(x) 95 */ 96 static int monotonicity(__isl_keep isl_basic_set *bset, 97 __isl_keep isl_qpolynomial *poly, struct range_data *data) 98 { 99 isl_ctx *ctx; 100 isl_space *space; 101 isl_qpolynomial *sub = NULL; 102 isl_qpolynomial *diff = NULL; 103 int result = 0; 104 isl_bool s; 105 isl_size nvar; 106 107 nvar = isl_basic_set_dim(bset, isl_dim_set); 108 if (nvar < 0) 109 return -2; 110 111 ctx = isl_qpolynomial_get_ctx(poly); 112 space = isl_qpolynomial_get_domain_space(poly); 113 114 sub = isl_qpolynomial_var_on_domain(isl_space_copy(space), 115 isl_dim_set, nvar - 1); 116 sub = isl_qpolynomial_add(sub, 117 isl_qpolynomial_rat_cst_on_domain(space, ctx->one, ctx->one)); 118 119 diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly), 120 isl_dim_in, nvar - 1, 1, &sub); 121 diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly)); 122 123 s = has_sign(bset, diff, 1, data->signs); 124 if (s < 0) 125 goto error; 126 if (s) 127 result = 1; 128 else { 129 s = has_sign(bset, diff, -1, data->signs); 130 if (s < 0) 131 goto error; 132 if (s) 133 result = -1; 134 } 135 136 isl_qpolynomial_free(diff); 137 isl_qpolynomial_free(sub); 138 139 return result; 140 error: 141 isl_qpolynomial_free(diff); 142 isl_qpolynomial_free(sub); 143 return -2; 144 } 145 146 /* Return a positive ("sign" > 0) or negative ("sign" < 0) infinite polynomial 147 * with domain space "space". 148 */ 149 static __isl_give isl_qpolynomial *signed_infty(__isl_take isl_space *space, 150 int sign) 151 { 152 if (sign > 0) 153 return isl_qpolynomial_infty_on_domain(space); 154 else 155 return isl_qpolynomial_neginfty_on_domain(space); 156 } 157 158 static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound, 159 __isl_take isl_space *space, unsigned pos, int sign) 160 { 161 if (!bound) 162 return signed_infty(space, sign); 163 isl_space_free(space); 164 return isl_qpolynomial_from_constraint(bound, isl_dim_set, pos); 165 } 166 167 static int bound_is_integer(__isl_keep isl_constraint *bound, unsigned pos) 168 { 169 isl_int c; 170 int is_int; 171 172 if (!bound) 173 return 1; 174 175 isl_int_init(c); 176 isl_constraint_get_coefficient(bound, isl_dim_set, pos, &c); 177 is_int = isl_int_is_one(c) || isl_int_is_negone(c); 178 isl_int_clear(c); 179 180 return is_int; 181 } 182 183 struct isl_fixed_sign_data { 184 int *signs; 185 int sign; 186 isl_qpolynomial *poly; 187 }; 188 189 /* Add term "term" to data->poly if it has sign data->sign. 190 * The sign is determined based on the signs of the parameters 191 * and variables in data->signs. The integer divisions, if 192 * any, are assumed to be non-negative. 193 */ 194 static isl_stat collect_fixed_sign_terms(__isl_take isl_term *term, void *user) 195 { 196 struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user; 197 isl_int n; 198 int i; 199 int sign; 200 isl_size nparam; 201 isl_size nvar; 202 isl_size exp; 203 204 nparam = isl_term_dim(term, isl_dim_param); 205 nvar = isl_term_dim(term, isl_dim_set); 206 if (nparam < 0 || nvar < 0) 207 return isl_stat_error; 208 209 isl_int_init(n); 210 isl_term_get_num(term, &n); 211 sign = isl_int_sgn(n); 212 isl_int_clear(n); 213 214 for (i = 0; i < nparam; ++i) { 215 if (data->signs[i] > 0) 216 continue; 217 exp = isl_term_get_exp(term, isl_dim_param, i); 218 if (exp < 0) 219 return isl_stat_error; 220 if (exp % 2) 221 sign = -sign; 222 } 223 for (i = 0; i < nvar; ++i) { 224 if (data->signs[nparam + i] > 0) 225 continue; 226 exp = isl_term_get_exp(term, isl_dim_set, i); 227 if (exp < 0) 228 return isl_stat_error; 229 if (exp % 2) 230 sign = -sign; 231 } 232 233 if (sign == data->sign) { 234 isl_qpolynomial *t = isl_qpolynomial_from_term(term); 235 236 data->poly = isl_qpolynomial_add(data->poly, t); 237 } else 238 isl_term_free(term); 239 240 return isl_stat_ok; 241 } 242 243 /* Construct and return a polynomial that consists of the terms 244 * in "poly" that have sign "sign". The integer divisions, if 245 * any, are assumed to be non-negative. 246 */ 247 __isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign( 248 __isl_keep isl_qpolynomial *poly, int *signs, int sign) 249 { 250 isl_space *space; 251 struct isl_fixed_sign_data data = { signs, sign }; 252 253 space = isl_qpolynomial_get_domain_space(poly); 254 data.poly = isl_qpolynomial_zero_on_domain(space); 255 256 if (isl_qpolynomial_foreach_term(poly, collect_fixed_sign_terms, &data) < 0) 257 goto error; 258 259 return data.poly; 260 error: 261 isl_qpolynomial_free(data.poly); 262 return NULL; 263 } 264 265 /* Helper function to add a guarded polynomial to either pwf_tight or pwf, 266 * depending on whether the result has been determined to be tight. 267 */ 268 static isl_stat add_guarded_poly(__isl_take isl_basic_set *bset, 269 __isl_take isl_qpolynomial *poly, struct range_data *data) 270 { 271 enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max; 272 isl_set *set; 273 isl_qpolynomial_fold *fold; 274 isl_pw_qpolynomial_fold *pwf; 275 276 bset = isl_basic_set_params(bset); 277 poly = isl_qpolynomial_project_domain_on_params(poly); 278 279 fold = isl_qpolynomial_fold_alloc(type, poly); 280 set = isl_set_from_basic_set(bset); 281 pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold); 282 if (data->tight) 283 data->pwf_tight = isl_pw_qpolynomial_fold_fold( 284 data->pwf_tight, pwf); 285 else 286 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf); 287 288 return isl_stat_ok; 289 } 290 291 /* Plug in "sub" for the variable at position "pos" in "poly". 292 * 293 * If "sub" is an infinite polynomial and if the variable actually 294 * appears in "poly", then calling isl_qpolynomial_substitute 295 * to perform the substitution may result in a NaN result. 296 * In such cases, return positive or negative infinity instead, 297 * depending on whether an upper bound or a lower bound is being computed, 298 * and mark the result as not being tight. 299 */ 300 static __isl_give isl_qpolynomial *plug_in_at_pos( 301 __isl_take isl_qpolynomial *poly, int pos, 302 __isl_take isl_qpolynomial *sub, struct range_data *data) 303 { 304 isl_bool involves, infty; 305 306 involves = isl_qpolynomial_involves_dims(poly, isl_dim_in, pos, 1); 307 if (involves < 0) 308 goto error; 309 if (!involves) { 310 isl_qpolynomial_free(sub); 311 return poly; 312 } 313 314 infty = isl_qpolynomial_is_infty(sub); 315 if (infty >= 0 && !infty) 316 infty = isl_qpolynomial_is_neginfty(sub); 317 if (infty < 0) 318 goto error; 319 if (infty) { 320 isl_space *space = isl_qpolynomial_get_domain_space(poly); 321 data->tight = 0; 322 isl_qpolynomial_free(poly); 323 isl_qpolynomial_free(sub); 324 return signed_infty(space, data->sign); 325 } 326 327 poly = isl_qpolynomial_substitute(poly, isl_dim_in, pos, 1, &sub); 328 isl_qpolynomial_free(sub); 329 330 return poly; 331 error: 332 isl_qpolynomial_free(poly); 333 isl_qpolynomial_free(sub); 334 return NULL; 335 } 336 337 /* Given a lower and upper bound on the final variable and constraints 338 * on the remaining variables where these bounds are active, 339 * eliminate the variable from data->poly based on these bounds. 340 * If the polynomial has been determined to be monotonic 341 * in the variable, then simply plug in the appropriate bound. 342 * If the current polynomial is tight and if this bound is integer, 343 * then the result is still tight. In all other cases, the results 344 * may not be tight. 345 * Otherwise, plug in the largest bound (in absolute value) in 346 * the positive terms (if an upper bound is wanted) or the negative terms 347 * (if a lower bounded is wanted) and the other bound in the other terms. 348 * 349 * If all variables have been eliminated, then record the result. 350 * Ohterwise, recurse on the next variable. 351 */ 352 static isl_stat propagate_on_bound_pair(__isl_take isl_constraint *lower, 353 __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset, 354 void *user) 355 { 356 struct range_data *data = (struct range_data *)user; 357 int save_tight = data->tight; 358 isl_qpolynomial *poly; 359 isl_stat r; 360 isl_size nvar, nparam; 361 362 nvar = isl_basic_set_dim(bset, isl_dim_set); 363 nparam = isl_basic_set_dim(bset, isl_dim_param); 364 if (nvar < 0 || nparam < 0) 365 goto error; 366 367 if (data->monotonicity) { 368 isl_qpolynomial *sub; 369 isl_space *space = isl_qpolynomial_get_domain_space(data->poly); 370 if (data->monotonicity * data->sign > 0) { 371 if (data->tight) 372 data->tight = bound_is_integer(upper, nvar); 373 sub = bound2poly(upper, space, nvar, 1); 374 isl_constraint_free(lower); 375 } else { 376 if (data->tight) 377 data->tight = bound_is_integer(lower, nvar); 378 sub = bound2poly(lower, space, nvar, -1); 379 isl_constraint_free(upper); 380 } 381 poly = isl_qpolynomial_copy(data->poly); 382 poly = plug_in_at_pos(poly, nvar, sub, data); 383 poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1); 384 } else { 385 isl_qpolynomial *l, *u; 386 isl_qpolynomial *pos, *neg; 387 isl_space *space = isl_qpolynomial_get_domain_space(data->poly); 388 int sign = data->sign * data->signs[nparam + nvar]; 389 390 data->tight = 0; 391 392 u = bound2poly(upper, isl_space_copy(space), nvar, 1); 393 l = bound2poly(lower, space, nvar, -1); 394 395 pos = isl_qpolynomial_terms_of_sign(data->poly, data->signs, sign); 396 neg = isl_qpolynomial_terms_of_sign(data->poly, data->signs, -sign); 397 398 pos = plug_in_at_pos(pos, nvar, u, data); 399 neg = plug_in_at_pos(neg, nvar, l, data); 400 401 poly = isl_qpolynomial_add(pos, neg); 402 poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1); 403 } 404 405 if (nvar == 0) 406 r = add_guarded_poly(bset, poly, data); 407 else 408 r = propagate_on_domain(bset, poly, data); 409 410 data->tight = save_tight; 411 412 return r; 413 error: 414 isl_constraint_free(lower); 415 isl_constraint_free(upper); 416 isl_basic_set_free(bset); 417 return isl_stat_error; 418 } 419 420 /* Recursively perform range propagation on the polynomial "poly" 421 * defined over the basic set "bset" and collect the results in "data". 422 */ 423 static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset, 424 __isl_take isl_qpolynomial *poly, struct range_data *data) 425 { 426 isl_bool is_cst; 427 isl_ctx *ctx; 428 isl_qpolynomial *save_poly = data->poly; 429 int save_monotonicity = data->monotonicity; 430 isl_size d; 431 432 d = isl_basic_set_dim(bset, isl_dim_set); 433 is_cst = isl_qpolynomial_is_cst(poly, NULL, NULL); 434 if (d < 0 || is_cst < 0) 435 goto error; 436 437 ctx = isl_basic_set_get_ctx(bset); 438 isl_assert(ctx, d >= 1, goto error); 439 440 if (is_cst) { 441 bset = isl_basic_set_project_out(bset, isl_dim_set, 0, d); 442 poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, d); 443 return add_guarded_poly(bset, poly, data); 444 } 445 446 if (data->test_monotonicity) 447 data->monotonicity = monotonicity(bset, poly, data); 448 else 449 data->monotonicity = 0; 450 if (data->monotonicity < -1) 451 goto error; 452 453 data->poly = poly; 454 if (isl_basic_set_foreach_bound_pair(bset, isl_dim_set, d - 1, 455 &propagate_on_bound_pair, data) < 0) 456 goto error; 457 458 isl_basic_set_free(bset); 459 isl_qpolynomial_free(poly); 460 data->monotonicity = save_monotonicity; 461 data->poly = save_poly; 462 463 return isl_stat_ok; 464 error: 465 isl_basic_set_free(bset); 466 isl_qpolynomial_free(poly); 467 data->monotonicity = save_monotonicity; 468 data->poly = save_poly; 469 return isl_stat_error; 470 } 471 472 static isl_stat basic_guarded_poly_bound(__isl_take isl_basic_set *bset, 473 void *user) 474 { 475 struct range_data *data = (struct range_data *)user; 476 isl_ctx *ctx; 477 isl_size nparam = isl_basic_set_dim(bset, isl_dim_param); 478 isl_size dim = isl_basic_set_dim(bset, isl_dim_set); 479 isl_size total = isl_basic_set_dim(bset, isl_dim_all); 480 isl_stat r; 481 482 data->signs = NULL; 483 484 if (nparam < 0 || dim < 0 || total < 0) 485 goto error; 486 487 ctx = isl_basic_set_get_ctx(bset); 488 data->signs = isl_alloc_array(ctx, int, total); 489 490 if (isl_basic_set_dims_get_sign(bset, isl_dim_set, 0, dim, 491 data->signs + nparam) < 0) 492 goto error; 493 if (isl_basic_set_dims_get_sign(bset, isl_dim_param, 0, nparam, 494 data->signs) < 0) 495 goto error; 496 497 r = propagate_on_domain(bset, isl_qpolynomial_copy(data->poly), data); 498 499 free(data->signs); 500 501 return r; 502 error: 503 free(data->signs); 504 isl_basic_set_free(bset); 505 return isl_stat_error; 506 } 507 508 static isl_stat qpolynomial_bound_on_domain_range( 509 __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, 510 struct range_data *data) 511 { 512 isl_size nparam = isl_basic_set_dim(bset, isl_dim_param); 513 isl_size nvar = isl_basic_set_dim(bset, isl_dim_set); 514 isl_set *set = NULL; 515 516 if (nparam < 0 || nvar < 0) 517 goto error; 518 519 if (nvar == 0) 520 return add_guarded_poly(bset, poly, data); 521 522 set = isl_set_from_basic_set(bset); 523 set = isl_set_split_dims(set, isl_dim_param, 0, nparam); 524 set = isl_set_split_dims(set, isl_dim_set, 0, nvar); 525 526 data->poly = poly; 527 528 data->test_monotonicity = 1; 529 if (isl_set_foreach_basic_set(set, &basic_guarded_poly_bound, data) < 0) 530 goto error; 531 532 isl_set_free(set); 533 isl_qpolynomial_free(poly); 534 535 return isl_stat_ok; 536 error: 537 isl_set_free(set); 538 isl_qpolynomial_free(poly); 539 return isl_stat_error; 540 } 541 542 isl_stat isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset, 543 __isl_take isl_qpolynomial *poly, struct isl_bound *bound) 544 { 545 struct range_data data; 546 isl_stat r; 547 548 data.pwf = bound->pwf; 549 data.pwf_tight = bound->pwf_tight; 550 data.tight = bound->check_tight; 551 if (bound->type == isl_fold_min) 552 data.sign = -1; 553 else 554 data.sign = 1; 555 556 r = qpolynomial_bound_on_domain_range(bset, poly, &data); 557 558 bound->pwf = data.pwf; 559 bound->pwf_tight = data.pwf_tight; 560 561 return r; 562 } 563