xref: /netbsd-src/external/lgpl3/mpfr/dist/TODO (revision 1897181a7231d5fc7ab48994d1447fcbc4e13a49)
1Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
2Contributed by the Arenaire and Cacao projects, INRIA.
3
4This file is part of the GNU MPFR Library.
5
6The GNU MPFR Library is free software; you can redistribute it and/or modify
7it under the terms of the GNU Lesser General Public License as published by
8the Free Software Foundation; either version 3 of the License, or (at your
9option) any later version.
10
11The GNU MPFR Library is distributed in the hope that it will be useful, but
12WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
14License for more details.
15
16You should have received a copy of the GNU Lesser General Public License
17along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
18http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
1951 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
20
21Table of contents:
221. Documentation
232. Installation
243. Changes in existing functions
254. New functions to implement
265. Efficiency
276. Miscellaneous
287. Portability
29
30##############################################################################
311. Documentation
32##############################################################################
33
34- add a description of the algorithms used + proof of correctness
35
36##############################################################################
372. Installation
38##############################################################################
39
40- if we want to distinguish GMP and MPIR, we can check at configure time
41  the following symbols which are only defined in MPIR:
42
43  #define __MPIR_VERSION 0
44  #define __MPIR_VERSION_MINOR 9
45  #define __MPIR_VERSION_PATCHLEVEL 0
46
47  There is also a library symbol mpir_version, which should match VERSION, set
48  by configure, for example 0.9.0.
49
50##############################################################################
513. Changes in existing functions
52##############################################################################
53
54- many functions currently taking into account the precision of the *input*
55  variable to set the initial working precison (acosh, asinh, cosh, ...).
56  This is nonsense since the "average" working precision should only depend
57  on the precision of the *output* variable (and maybe on the *value* of
58  the input in case of cancellation).
59  -> remove those dependencies from the input precision.
60
61- mpfr_get_str should support base up to 62 too.
62
63- mpfr_can_round:
64   change the meaning of the 2nd argument (err). Currently the error is
65   at most 2^(MPFR_EXP(b)-err), i.e. err is the relative shift wrt the
66   most significant bit of the approximation. I propose that the error
67   is now at most 2^err ulps of the approximation, i.e.
68   2^(MPFR_EXP(b)-MPFR_PREC(b)+err).
69
70- mpfr_set_q first tries to convert the numerator and the denominator
71  to mpfr_t. But this convertion may fail even if the correctly rounded
72  result is representable. New way to implement:
73  Function q = a/b.  nq = PREC(q) na = PREC(a) nb = PREC(b)
74    If na < nb
75       a <- a*2^(nb-na)
76    n <- na-nb+ (HIGH(a,nb) >= b)
77    if (n >= nq)
78       bb <- b*2^(n-nq)
79       a  = q*bb+r     --> q has exactly n bits.
80    else
81       aa <- a*2^(nq-n)
82       aa = q*b+r      --> q has exaclty n bits.
83  If RNDN, takes nq+1 bits. (See also the new division function).
84
85
86##############################################################################
874. New functions to implement
88##############################################################################
89
90- implement mpfr_z_sub, mpfr_q_sub, mpfr_z_div, mpfr_q_div?
91- implement functions for random distributions, see for example
92  http://websympa.loria.fr/wwsympa/arc/mpfr/2010-01/msg00034.html
93  (suggested by Charles Karney <ckarney@Sarnoff.com>, 18 Jan 2010):
94   * a Bernoulli distribution with prob p/q (exact)
95   * a general discrete distribution (i with prob w[i]/sum(w[i]) (Walker
96     algorithm, but make it exact)
97   * a uniform distribution in (a,b)
98   * exponential distribution (mean lambda) (von Neumann's method?)
99   * normal distribution (mean m, s.d. sigma) (ratio method?)
100- wanted for Magma [John Cannon <john@maths.usyd.edu.au>, Tue, 19 Apr 2005]:
101  HypergeometricU(a,b,s) = 1/gamma(a)*int(exp(-su)*u^(a-1)*(1+u)^(b-a-1),
102                                    u=0..infinity)
103  JacobiThetaNullK
104  PolylogP, PolylogD, PolylogDold: see http://arxiv.org/abs/math.CA/0702243
105    and the references herein.
106  JBessel(n, x) = BesselJ(n+1/2, x)
107  IncompleteGamma [also wanted by <keith.briggs@bt.com> 4 Feb 2008: Gamma(a,x),
108    gamma(a,x), P(a,x), Q(a,x); see A&S 6.5, ref. [Smith01] in algorithms.bib]
109  KBessel, KBessel2 [2nd kind]
110  JacobiTheta
111  LogIntegral
112  ExponentialIntegralE1
113    E1(z) = int(exp(-t)/t, t=z..infinity), |arg z| < Pi
114    mpfr_eint1: implement E1(x) for x > 0, and Ei(-x) for x < 0
115    E1(NaN)  = NaN
116    E1(+Inf) = +0
117    E1(-Inf) = -Inf
118    E1(+0)   = +Inf
119    E1(-0)   = -Inf
120  DawsonIntegral
121  GammaD(x) = Gamma(x+1/2)
122- functions defined in the LIA-2 standard
123  + minimum and maximum (5.2.2): max, min, max_seq, min_seq, mmax_seq
124    and mmin_seq (mpfr_min and mpfr_max correspond to mmin and mmax);
125  + rounding_rest, floor_rest, ceiling_rest (5.2.4);
126  + remr (5.2.5): x - round(x/y) y;
127  + error functions from 5.2.7 (if useful in MPFR);
128  + power1pm1 (5.3.6.7): (1 + x)^y - 1;
129  + logbase (5.3.6.12): \log_x(y);
130  + logbase1p1p (5.3.6.13): \log_{1+x}(1+y);
131  + rad (5.3.9.1): x - round(x / (2 pi)) 2 pi = remr(x, 2 pi);
132  + axis_rad (5.3.9.1) if useful in MPFR;
133  + cycle (5.3.10.1): rad(2 pi x / u) u / (2 pi) = remr(x, u);
134  + axis_cycle (5.3.10.1) if useful in MPFR;
135  + sinu, cosu, tanu, cotu, secu, cscu, cossinu, arcsinu, arccosu,
136    arctanu, arccotu, arcsecu, arccscu (5.3.10.{2..14}):
137    sin(x 2 pi / u), etc.;
138    [from which sinpi(x) = sin(Pi*x), ... are trivial to implement, with u=2.]
139  + arcu (5.3.10.15): arctan2(y,x) u / (2 pi);
140  + rad_to_cycle, cycle_to_rad, cycle_to_cycle (5.3.11.{1..3}).
141- From GSL, missing special functions (if useful in MPFR):
142  (cf http://www.gnu.org/software/gsl/manual/gsl-ref.html#Special-Functions)
143  + The Airy functions Ai(x) and Bi(x) defined by the integral representations:
144   * Ai(x) = (1/\pi) \int_0^\infty \cos((1/3) t^3 + xt) dt
145   * Bi(x) = (1/\pi) \int_0^\infty (e^(-(1/3) t^3) + \sin((1/3) t^3 + xt)) dt
146   * Derivatives of Airy Functions
147  + The Bessel functions for n integer and n fractional:
148   * Regular Modified Cylindrical Bessel Functions I_n
149   * Irregular Modified Cylindrical Bessel Functions K_n
150   * Regular Spherical Bessel Functions j_n: j_0(x) = \sin(x)/x,
151     j_1(x)= (\sin(x)/x-\cos(x))/x & j_2(x)= ((3/x^2-1)\sin(x)-3\cos(x)/x)/x
152     Note: the "spherical" Bessel functions are solutions of
153     x^2 y'' + 2 x y' + [x^2 - n (n+1)] y = 0 and satisfy
154     j_n(x) = sqrt(Pi/(2x)) J_{n+1/2}(x). They should not be mixed with the
155     classical Bessel Functions, also noted j0, j1, jn, y0, y1, yn in C99
156     and mpfr.
157     Cf http://en.wikipedia.org/wiki/Bessel_function#Spherical_Bessel_functions
158   *Irregular Spherical Bessel Functions y_n: y_0(x) = -\cos(x)/x,
159     y_1(x)= -(\cos(x)/x+\sin(x))/x &
160     y_2(x)= (-3/x^3+1/x)\cos(x)-(3/x^2)\sin(x)
161   * Regular Modified Spherical Bessel Functions i_n:
162     i_l(x) = \sqrt{\pi/(2x)} I_{l+1/2}(x)
163   * Irregular Modified Spherical Bessel Functions:
164     k_l(x) = \sqrt{\pi/(2x)} K_{l+1/2}(x).
165  + Clausen Function:
166     Cl_2(x) = - \int_0^x dt \log(2 \sin(t/2))
167     Cl_2(\theta) = \Im Li_2(\exp(i \theta)) (dilogarithm).
168  + Dawson Function: \exp(-x^2) \int_0^x dt \exp(t^2).
169  + Debye Functions: D_n(x) = n/x^n \int_0^x dt (t^n/(e^t - 1))
170  + Elliptic Integrals:
171   * Definition of Legendre Forms:
172    F(\phi,k) = \int_0^\phi dt 1/\sqrt((1 - k^2 \sin^2(t)))
173    E(\phi,k) = \int_0^\phi dt   \sqrt((1 - k^2 \sin^2(t)))
174    P(\phi,k,n) = \int_0^\phi dt 1/((1 + n \sin^2(t))\sqrt(1 - k^2 \sin^2(t)))
175   * Complete Legendre forms are denoted by
176    K(k) = F(\pi/2, k)
177    E(k) = E(\pi/2, k)
178   * Definition of Carlson Forms
179    RC(x,y) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1)
180    RD(x,y,z) = 3/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2)
181    RF(x,y,z) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2)
182    RJ(x,y,z,p) = 3/2 \int_0^\infty dt
183                          (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1)
184  + Elliptic Functions (Jacobi)
185  + N-relative exponential:
186     exprel_N(x) = N!/x^N (\exp(x) - \sum_{k=0}^{N-1} x^k/k!)
187  + exponential integral:
188     E_2(x) := \Re \int_1^\infty dt \exp(-xt)/t^2.
189     Ei_3(x) = \int_0^x dt \exp(-t^3) for x >= 0.
190     Ei(x) := - PV(\int_{-x}^\infty dt \exp(-t)/t)
191  + Hyperbolic/Trigonometric Integrals
192     Shi(x) = \int_0^x dt \sinh(t)/t
193     Chi(x) := Re[ \gamma_E + \log(x) + \int_0^x dt (\cosh[t]-1)/t]
194     Si(x) = \int_0^x dt \sin(t)/t
195     Ci(x) = -\int_x^\infty dt \cos(t)/t for x > 0
196     AtanInt(x) = \int_0^x dt \arctan(t)/t
197     [ \gamma_E is the Euler constant ]
198  + Fermi-Dirac Function:
199     F_j(x)   := (1/r\Gamma(j+1)) \int_0^\infty dt (t^j / (\exp(t-x) + 1))
200  + Pochhammer symbol (a)_x := \Gamma(a + x)/\Gamma(a) : see [Smith01] in
201          algorithms.bib
202    logarithm of the Pochhammer symbol
203  + Gegenbauer Functions
204  + Laguerre Functions
205  + Eta Function: \eta(s) = (1-2^{1-s}) \zeta(s)
206    Hurwitz zeta function: \zeta(s,q) = \sum_0^\infty (k+q)^{-s}.
207  + Lambert W Functions, W(x) are defined to be solutions of the equation:
208     W(x) \exp(W(x)) = x.
209    This function has multiple branches for x < 0 (2 funcs W0(x) and Wm1(x))
210  + Trigamma Function psi'(x).
211    and Polygamma Function: psi^{(m)}(x) for m >= 0, x > 0.
212
213- from gnumeric (www.gnome.org/projects/gnumeric/doc/function-reference.html):
214  - beta
215  - betaln
216  - degrees
217  - radians
218  - sqrtpi
219
220- mpfr_frexp(mpfr_t rop, mpfr_exp_t *n, mpfr_t op, mpfr_rnd_t rnd) suggested
221  by Steve Kargl <sgk@troutmask.apl.washington.edu> Sun, 7 Aug 2005
222- mpfr_inp_raw, mpfr_out_raw (cf mail "Serialization of mpfr_t" from Alexey
223  and answer from Granlund on mpfr list, May 2007)
224- [maybe useful for SAGE] implement companion frac_* functions to the rint_*
225  functions. For example mpfr_frac_floor(x) = x - floor(x). (The current
226  mpfr_frac function corresponds to mpfr_rint_trunc.)
227- scaled erfc (http://websympa.loria.fr/wwsympa/arc/mpfr/2009-05/msg00054.html)
228- asec, acsc, acot, asech, acsch and acoth (mail from Bj�rn Terelius on mpfr
229  list, 18 June 2009)
230
231##############################################################################
2325. Efficiency
233##############################################################################
234
235- compute exp by using the series for cosh or sinh, which has half the terms
236  (see Exercise 4.11 from Modern Computer Arithmetic, version 0.3)
237  The same method can be used for log, using the series for atanh, i.e.,
238  atanh(x) = 1/2*log((1+x)/(1-x)).
239- improve mpfr_gamma (see http://code.google.com/p/fastfunlib/). A possible
240  idea is to implement a fast algorithm for the argument reconstruction
241  gamma(x+k). One could also use the series for 1/gamma(x), see for example
242  http://dlmf.nist.gov/5/7/ or formula (36) from
243  http://mathworld.wolfram.com/GammaFunction.html
244- fix regression with mpfr_mpz_root (from Keith Briggs, 5 July 2006), for
245   example on 3Ghz P4 with gmp-4.2, x=12.345:
246   prec=50000    k=2   k=3   k=10  k=100
247   mpz_root      0.036 0.072 0.476 7.628
248   mpfr_mpz_root 0.004 0.004 0.036 12.20
249   See also mail from Carl Witty on mpfr list, 09 Oct 2007.
250- implement Mulders algorithm for squaring and division
251- for sparse input (say x=1 with 2 bits), mpfr_exp is not faster than for
252        full precision when precision <= MPFR_EXP_THRESHOLD. The reason is
253        that argument reduction kills sparsity. Maybe avoid argument reduction
254        for sparse input?
255- speed up const_euler for large precision [for x=1.1, prec=16610, it takes
256        75% of the total time of eint(x)!]
257- speed up mpfr_atan for large arguments (to speed up mpc_log)
258        [from Mark Watkins on Fri, 18 Mar 2005]
259  Also mpfr_atan(x) seems slower (by a factor of 2) for x near from 1.
260  Example on a Athlon for 10^5 bits: x=1.1 takes 3s, whereas 2.1 takes 1.8s.
261  The current implementation does not give monotonous timing for the following:
262  mpfr_random (x); for (i = 0; i < k; i++) mpfr_atan (y, x, MPFR_RNDN);
263  for precision 300 and k=1000, we get 1070ms, and 500ms only for p=400!
264- improve mpfr_sin on values like ~pi (do not compute sin from cos, because
265  of the cancellation). For instance, reduce the input modulo pi/2 in
266  [-pi/4,pi/4], and define auxiliary functions for which the argument is
267  assumed to be already reduced (so that the sin function can avoid
268  unnecessary computations by calling the auxiliary cos function instead of
269  the full cos function). This will require a native code for sin, for
270  example using the reduction sin(3x)=3sin(x)-4sin(x)^3.
271  See http://websympa.loria.fr/wwsympa/arc/mpfr/2007-08/msg00001.html and
272  the following messages.
273- improve generic.c to work for number of terms <> 2^k
274- rewrite mpfr_greater_p... as native code.
275- inline mpfr_neg? Problems with NAN flags:
276   #define mpfr_neg(_d,_x,_r)                          \
277    (__builtin_constant_p ((_d)==(_x)) && (_d)==(_x) ? \
278     ((_d)->_mpfr_sign = -(_d)->_mpfr_sign, 0)       : \
279      mpfr_neg ((_d), (_x), (_r)))  */
280
281- mpf_t uses a scheme where the number of limbs actually present can
282  be less than the selected precision, thereby allowing low precision
283  values (for instance small integers) to be stored and manipulated in
284  an mpf_t efficiently.
285
286  Perhaps mpfr should get something similar, especially if looking to
287  replace mpf with mpfr, though it'd be a major change.  Alternately
288  perhaps those mpfr routines like mpfr_mul where optimizations are
289  possible through stripping low zero bits or limbs could check for
290  that (this would be less efficient but easier).
291
292- try the idea of the paper "Reduced Cancellation in the Evaluation of Entire
293  Functions and Applications to the Error Function" by W. Gawronski, J. Mueller
294  and M. Reinhard, to be published in SIAM Journal on Numerical Analysis: to
295  avoid cancellation in say erfc(x) for x large, they compute the Taylor
296  expansion of erfc(x)*exp(x^2/2) instead (which has less cancellation),
297  and then divide by exp(x^2/2) (which is simpler to compute).
298
299- replace the *_THRESHOLD macros by global (TLS) variables that can be
300  changed at run time (via a function, like other variables)? One benefit
301  is that users could use a single MPFR binary on several machines (e.g.,
302  a library provided by binary packages or shared via NFS) with different
303  thresholds. On the default values, this would be a bit less efficient
304  than the current code, but this isn't probably noticeable (this should
305  be tested). Something like:
306    long *mpfr_tune_get(void) to get the current values (the first value
307      is the size of the array).
308    int mpfr_tune_set(long *array) to set the tune values.
309    int mpfr_tune_run(long level) to find the best values (the support
310      for this feature is optional, this can also be done with an
311      external function).
312
313- better distinguish different processors (for example Opteron and Core 2)
314  and use corresponding default tuning parameters (as in GMP). This could be
315  done in configure.in to avoid hacking config.guess, for example define
316  MPFR_HAVE_CORE2.
317  Note (VL): the effect on cross-compilation (that can be a processor
318  with the same architecture, e.g. compilation on a Core 2 for an
319  Opteron) is not clear. The choice should be consistent with the
320  build target (e.g. -march or -mtune value with gcc).
321  Also choose better default values. For instance, the default value of
322  MPFR_MUL_THRESHOLD is 40, while the best values that have been found
323  are between 11 and 19 for 32 bits and between 4 and 10 for 64 bits!
324
325- during the Many Digits competition, we noticed that (our implantation of)
326  Mulders short product was slower than a full product for large sizes.
327  This should be precisely analyzed and fixed if needed.
328
329##############################################################################
3306. Miscellaneous
331##############################################################################
332
333- Once the double inclusion of mpfr.h is fully supported, add tstdint
334  to check_PROGRAMS in the tests/Makefile.am file.
335
336- [suggested by Tobias Burnus <burnus(at)net-b.de> and
337   Asher Langton <langton(at)gcc.gnu.org>, Wed, 01 Aug 2007]
338  support quiet and signaling NaNs in mpfr:
339  * functions to set/test a quiet/signaling NaN: mpfr_set_snan, mpfr_snan_p,
340    mpfr_set_qnan, mpfr_qnan_p
341  * correctly convert to/from double (if encoding of s/qNaN is fixed in 754R)
342
343- check again coverage: on July 27, Patrick Pelissier reports that the
344  following files are not tested at 100%: add1.c, atan.c, atan2.c,
345  cache.c, cmp2.c, const_catalan.c, const_euler.c, const_log2.c, cos.c,
346  gen_inverse.h, div_ui.c, eint.c, exp3.c, exp_2.c, expm1.c, fma.c, fms.c,
347  lngamma.c, gamma.c, get_d.c, get_f.c, get_ld.c, get_str.c, get_z.c,
348  inp_str.c, jn.c, jyn_asympt.c, lngamma.c, mpfr-gmp.c, mul.c, mul_ui.c,
349  mulders.c, out_str.c, pow.c, print_raw.c, rint.c, root.c, round_near_x.c,
350  round_raw_generic.c, set_d.c, set_ld.c, set_q.c, set_uj.c, set_z.c, sin.c,
351  sin_cos.c, sinh.c, sqr.c, stack_interface.c, sub1.c, sub1sp.c, subnormal.c,
352  uceil_exp2.c, uceil_log2.c, ui_pow_ui.c, urandomb.c, yn.c, zeta.c, zeta_ui.c.
353
354- check the constants mpfr_set_emin (-16382-63) and mpfr_set_emax (16383) in
355  get_ld.c and the other constants, and provide a testcase for large and
356  small numbers.
357
358- from Kevin Ryde <user42@zip.com.au>:
359   Also for pi.c, a pre-calculated compiled-in pi to a few thousand
360   digits would be good value I think.  After all, say 10000 bits using
361   1250 bytes would still be small compared to the code size!
362   Store pi in round to zero mode (to recover other modes).
363
364- add a new rounding mode: round to nearest, with ties away from zero
365  (this is roundTiesToAway in 754-2008, could be used by mpfr_round)
366- add a new roundind mode: round to odd. If the result is not exactly
367        representable, then round to the odd mantissa. This rounding
368        has the nice property that for k > 1, if:
369        y = round(x, p+k, TO_ODD)
370        z = round(y, p, TO_NEAREST_EVEN), then
371        z = round(x, p, TO_NEAREST_EVEN)
372  so it avoids the double-rounding problem.
373
374- add tests of the ternary value for constants
375
376- When doing Extensive Check (--enable-assert=full), since all the
377  functions use a similar use of MACROS (ZivLoop, ROUND_P), it should
378  be possible to do such a scheme:
379    For the first call to ROUND_P when we can round.
380    Mark it as such and save the approximated rounding value in
381    a temporary variable.
382    Then after, if the mark is set, check if:
383      - we still can round.
384      - The rounded value is the same.
385  It should be a complement to tgeneric tests.
386
387- add a new exception "division by zero" (IEEE-754 terminology) / "infinitary"
388  (LIA-2 terminology). In IEEE 754R (2006 February 14 8:00):
389    "The division by zero exception shall be signaled iff an exact
390    infinite result is defined for an operation on finite operands.
391    [such as a pole or logarithmic singularity.] In particular, the
392    division by zero exception shall be signaled if the divisor is
393    zero and the dividend is a finite nonzero number."
394
395- in div.c, try to find a case for which cy != 0 after the line
396        cy = mpn_sub_1 (sp + k, sp + k, qsize, cy);
397  (which should be added to the tests), e.g. by having {vp, k} = 0, or
398  prove that this cannot happen.
399
400- add a configure test for --enable-logging to ignore the option if
401  it cannot be supported. Modify the "configure --help" description
402  to say "on systems that support it".
403
404- allow generic tests to run with a restricted exponent range.
405
406- add generic bad cases for functions that don't have an inverse
407  function that is implemented (use a single Newton iteration).
408
409- add bad cases for the internal error bound (by using a dichotomy
410  between a bad case for the correct rounding and some input value
411  with fewer Ziv iterations?).
412
413- add an option to use a 32-bit exponent type (int) on LP64 machines,
414  mainly for developers, in order to be able to test the case where the
415  extended exponent range is the same as the default exponent range, on
416  such platforms.
417
418- test underflow/overflow detection of various functions (in particular
419  mpfr_exp) in reduced exponent ranges, including ranges that do not
420  contain 0.
421
422
423##############################################################################
4247. Portability
425##############################################################################
426
427- support the decimal64 function without requiring --with-gmp-build
428
429- [Kevin about texp.c long strings]
430  For strings longer than c99 guarantees, it might be cleaner to
431  introduce a "tests_strdupcat" or something to concatenate literal
432  strings into newly allocated memory.  I thought I'd done that in a
433  couple of places already.  Arrays of chars are not much fun.
434
435- use http://gcc.gnu.org/viewcvs/trunk/config/stdint.m4 for mpfr-gmp.h
436
437- rename configure.in to configure.ac
438