1*39f28e1eSmrg /* mpc_rootofunity -- primitive root of unity.
2*39f28e1eSmrg
3*39f28e1eSmrg Copyright (C) 2012, 2016 INRIA
4*39f28e1eSmrg
5*39f28e1eSmrg This file is part of GNU MPC.
6*39f28e1eSmrg
7*39f28e1eSmrg GNU MPC is free software; you can redistribute it and/or modify it under
8*39f28e1eSmrg the terms of the GNU Lesser General Public License as published by the
9*39f28e1eSmrg Free Software Foundation; either version 3 of the License, or (at your
10*39f28e1eSmrg option) any later version.
11*39f28e1eSmrg
12*39f28e1eSmrg GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
13*39f28e1eSmrg WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14*39f28e1eSmrg FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15*39f28e1eSmrg more details.
16*39f28e1eSmrg
17*39f28e1eSmrg You should have received a copy of the GNU Lesser General Public License
18*39f28e1eSmrg along with this program. If not, see http://www.gnu.org/licenses/ .
19*39f28e1eSmrg */
20*39f28e1eSmrg
21*39f28e1eSmrg #include <stdio.h> /* for MPC_ASSERT */
22*39f28e1eSmrg #include "mpc-impl.h"
23*39f28e1eSmrg
24*39f28e1eSmrg static unsigned long
gcd(unsigned long a,unsigned long b)25*39f28e1eSmrg gcd (unsigned long a, unsigned long b)
26*39f28e1eSmrg {
27*39f28e1eSmrg if (b == 0)
28*39f28e1eSmrg return a;
29*39f28e1eSmrg else return gcd (b, a % b);
30*39f28e1eSmrg }
31*39f28e1eSmrg
32*39f28e1eSmrg /* put in rop the value of exp(2*i*pi*k/n) rounded according to rnd */
33*39f28e1eSmrg int
mpc_rootofunity(mpc_ptr rop,unsigned long n,unsigned long k,mpc_rnd_t rnd)34*39f28e1eSmrg mpc_rootofunity (mpc_ptr rop, unsigned long n, unsigned long k, mpc_rnd_t rnd)
35*39f28e1eSmrg {
36*39f28e1eSmrg unsigned long g;
37*39f28e1eSmrg mpq_t kn;
38*39f28e1eSmrg mpfr_t t, s, c;
39*39f28e1eSmrg mpfr_prec_t prec;
40*39f28e1eSmrg int inex_re, inex_im;
41*39f28e1eSmrg mpfr_rnd_t rnd_re, rnd_im;
42*39f28e1eSmrg
43*39f28e1eSmrg if (n == 0) {
44*39f28e1eSmrg /* Compute exp (0 + i*inf). */
45*39f28e1eSmrg mpfr_set_nan (mpc_realref (rop));
46*39f28e1eSmrg mpfr_set_nan (mpc_imagref (rop));
47*39f28e1eSmrg return MPC_INEX (0, 0);
48*39f28e1eSmrg }
49*39f28e1eSmrg
50*39f28e1eSmrg /* Eliminate common denominator. */
51*39f28e1eSmrg k %= n;
52*39f28e1eSmrg g = gcd (k, n);
53*39f28e1eSmrg k /= g;
54*39f28e1eSmrg n /= g;
55*39f28e1eSmrg
56*39f28e1eSmrg /* Now 0 <= k < n and gcd(k,n)=1. */
57*39f28e1eSmrg
58*39f28e1eSmrg /* We assume that only n=1, 2, 3, 4, 6 and 12 may yield exact results
59*39f28e1eSmrg and treat them separately; n=8 is also treated here for efficiency
60*39f28e1eSmrg reasons. */
61*39f28e1eSmrg if (n == 1)
62*39f28e1eSmrg {
63*39f28e1eSmrg /* necessarily k=0 thus we want exp(0)=1 */
64*39f28e1eSmrg MPC_ASSERT (k == 0);
65*39f28e1eSmrg return mpc_set_ui_ui (rop, 1, 0, rnd);
66*39f28e1eSmrg }
67*39f28e1eSmrg else if (n == 2)
68*39f28e1eSmrg {
69*39f28e1eSmrg /* since gcd(k,n)=1, necessarily k=1, thus we want exp(i*pi)=-1 */
70*39f28e1eSmrg MPC_ASSERT (k == 1);
71*39f28e1eSmrg return mpc_set_si_si (rop, -1, 0, rnd);
72*39f28e1eSmrg }
73*39f28e1eSmrg else if (n == 4)
74*39f28e1eSmrg {
75*39f28e1eSmrg /* since gcd(k,n)=1, necessarily k=1 or k=3, thus we want
76*39f28e1eSmrg exp(2*i*pi/4)=i or exp(2*i*pi*3/4)=-i */
77*39f28e1eSmrg MPC_ASSERT (k == 1 || k == 3);
78*39f28e1eSmrg if (k == 1)
79*39f28e1eSmrg return mpc_set_ui_ui (rop, 0, 1, rnd);
80*39f28e1eSmrg else
81*39f28e1eSmrg return mpc_set_si_si (rop, 0, -1, rnd);
82*39f28e1eSmrg }
83*39f28e1eSmrg else if (n == 3 || n == 6)
84*39f28e1eSmrg {
85*39f28e1eSmrg MPC_ASSERT ((n == 3 && (k == 1 || k == 2)) ||
86*39f28e1eSmrg (n == 6 && (k == 1 || k == 5)));
87*39f28e1eSmrg /* for n=3, necessarily k=1 or k=2: -1/2+/-1/2*sqrt(3)*i;
88*39f28e1eSmrg for n=6, necessarily k=1 or k=5: 1/2+/-1/2*sqrt(3)*i */
89*39f28e1eSmrg inex_re = mpfr_set_si (mpc_realref (rop), (n == 3 ? -1 : 1),
90*39f28e1eSmrg MPC_RND_RE (rnd));
91*39f28e1eSmrg /* inverse the rounding mode for -sqrt(3)/2 for zeta_3^2 and zeta_6^5 */
92*39f28e1eSmrg rnd_im = MPC_RND_IM (rnd);
93*39f28e1eSmrg if (k != 1)
94*39f28e1eSmrg rnd_im = INV_RND (rnd_im);
95*39f28e1eSmrg inex_im = mpfr_sqrt_ui (mpc_imagref (rop), 3, rnd_im);
96*39f28e1eSmrg mpc_div_2ui (rop, rop, 1, MPC_RNDNN);
97*39f28e1eSmrg if (k != 1)
98*39f28e1eSmrg {
99*39f28e1eSmrg mpfr_neg (mpc_imagref (rop), mpc_imagref (rop), MPFR_RNDN);
100*39f28e1eSmrg inex_im = -inex_im;
101*39f28e1eSmrg }
102*39f28e1eSmrg return MPC_INEX (inex_re, inex_im);
103*39f28e1eSmrg }
104*39f28e1eSmrg else if (n == 12)
105*39f28e1eSmrg {
106*39f28e1eSmrg /* necessarily k=1, 5, 7, 11:
107*39f28e1eSmrg k=1: 1/2*sqrt(3) + 1/2*I
108*39f28e1eSmrg k=5: -1/2*sqrt(3) + 1/2*I
109*39f28e1eSmrg k=7: -1/2*sqrt(3) - 1/2*I
110*39f28e1eSmrg k=11: 1/2*sqrt(3) - 1/2*I */
111*39f28e1eSmrg MPC_ASSERT (k == 1 || k == 5 || k == 7 || k == 11);
112*39f28e1eSmrg /* inverse the rounding mode for -sqrt(3)/2 for zeta_12^5 and zeta_12^7 */
113*39f28e1eSmrg rnd_re = MPC_RND_RE (rnd);
114*39f28e1eSmrg if (k == 5 || k == 7)
115*39f28e1eSmrg rnd_re = INV_RND (rnd_re);
116*39f28e1eSmrg inex_re = mpfr_sqrt_ui (mpc_realref (rop), 3, rnd_re);
117*39f28e1eSmrg inex_im = mpfr_set_si (mpc_imagref (rop), k < 6 ? 1 : -1,
118*39f28e1eSmrg MPC_RND_IM (rnd));
119*39f28e1eSmrg mpc_div_2ui (rop, rop, 1, MPC_RNDNN);
120*39f28e1eSmrg if (k == 5 || k == 7)
121*39f28e1eSmrg {
122*39f28e1eSmrg mpfr_neg (mpc_realref (rop), mpc_realref (rop), MPFR_RNDN);
123*39f28e1eSmrg inex_re = -inex_re;
124*39f28e1eSmrg }
125*39f28e1eSmrg return MPC_INEX (inex_re, inex_im);
126*39f28e1eSmrg }
127*39f28e1eSmrg else if (n == 8)
128*39f28e1eSmrg {
129*39f28e1eSmrg /* k=1, 3, 5 or 7:
130*39f28e1eSmrg k=1: (1/2*I + 1/2)*sqrt(2)
131*39f28e1eSmrg k=3: (1/2*I - 1/2)*sqrt(2)
132*39f28e1eSmrg k=5: -(1/2*I + 1/2)*sqrt(2)
133*39f28e1eSmrg k=7: -(1/2*I - 1/2)*sqrt(2) */
134*39f28e1eSmrg MPC_ASSERT (k == 1 || k == 3 || k == 5 || k == 7);
135*39f28e1eSmrg rnd_re = MPC_RND_RE (rnd);
136*39f28e1eSmrg if (k == 3 || k == 5)
137*39f28e1eSmrg rnd_re = INV_RND (rnd_re);
138*39f28e1eSmrg rnd_im = MPC_RND_IM (rnd);
139*39f28e1eSmrg if (k > 4)
140*39f28e1eSmrg rnd_im = INV_RND (rnd_im);
141*39f28e1eSmrg inex_re = mpfr_sqrt_ui (mpc_realref (rop), 2, rnd_re);
142*39f28e1eSmrg inex_im = mpfr_sqrt_ui (mpc_imagref (rop), 2, rnd_im);
143*39f28e1eSmrg mpc_div_2ui (rop, rop, 1, MPC_RNDNN);
144*39f28e1eSmrg if (k == 3 || k == 5)
145*39f28e1eSmrg {
146*39f28e1eSmrg mpfr_neg (mpc_realref (rop), mpc_realref (rop), MPFR_RNDN);
147*39f28e1eSmrg inex_re = -inex_re;
148*39f28e1eSmrg }
149*39f28e1eSmrg if (k > 4)
150*39f28e1eSmrg {
151*39f28e1eSmrg mpfr_neg (mpc_imagref (rop), mpc_imagref (rop), MPFR_RNDN);
152*39f28e1eSmrg inex_im = -inex_im;
153*39f28e1eSmrg }
154*39f28e1eSmrg return MPC_INEX (inex_re, inex_im);
155*39f28e1eSmrg }
156*39f28e1eSmrg
157*39f28e1eSmrg prec = MPC_MAX_PREC(rop);
158*39f28e1eSmrg
159*39f28e1eSmrg /* For the error analysis justifying the following algorithm,
160*39f28e1eSmrg see algorithms.tex. */
161*39f28e1eSmrg mpfr_init2 (t, 67);
162*39f28e1eSmrg mpfr_init2 (s, 67);
163*39f28e1eSmrg mpfr_init2 (c, 67);
164*39f28e1eSmrg mpq_init (kn);
165*39f28e1eSmrg mpq_set_ui (kn, k, n);
166*39f28e1eSmrg mpq_mul_2exp (kn, kn, 1); /* kn=2*k/n < 2 */
167*39f28e1eSmrg
168*39f28e1eSmrg do {
169*39f28e1eSmrg prec += mpc_ceil_log2 (prec) + 5; /* prec >= 6 */
170*39f28e1eSmrg
171*39f28e1eSmrg mpfr_set_prec (t, prec);
172*39f28e1eSmrg mpfr_set_prec (s, prec);
173*39f28e1eSmrg mpfr_set_prec (c, prec);
174*39f28e1eSmrg
175*39f28e1eSmrg mpfr_const_pi (t, MPFR_RNDN);
176*39f28e1eSmrg mpfr_mul_q (t, t, kn, MPFR_RNDN);
177*39f28e1eSmrg mpfr_sin_cos (s, c, t, MPFR_RNDN);
178*39f28e1eSmrg }
179*39f28e1eSmrg while ( !mpfr_can_round (c, prec - (4 - mpfr_get_exp (c)),
180*39f28e1eSmrg MPFR_RNDN, MPFR_RNDZ,
181*39f28e1eSmrg MPC_PREC_RE(rop) + (MPC_RND_RE(rnd) == MPFR_RNDN))
182*39f28e1eSmrg || !mpfr_can_round (s, prec - (4 - mpfr_get_exp (s)),
183*39f28e1eSmrg MPFR_RNDN, MPFR_RNDZ,
184*39f28e1eSmrg MPC_PREC_IM(rop) + (MPC_RND_IM(rnd) == MPFR_RNDN)));
185*39f28e1eSmrg
186*39f28e1eSmrg inex_re = mpfr_set (mpc_realref(rop), c, MPC_RND_RE(rnd));
187*39f28e1eSmrg inex_im = mpfr_set (mpc_imagref(rop), s, MPC_RND_IM(rnd));
188*39f28e1eSmrg
189*39f28e1eSmrg mpfr_clear (t);
190*39f28e1eSmrg mpfr_clear (s);
191*39f28e1eSmrg mpfr_clear (c);
192*39f28e1eSmrg mpq_clear (kn);
193*39f28e1eSmrg
194*39f28e1eSmrg return MPC_INEX(inex_re, inex_im);
195*39f28e1eSmrg }
196