xref: /netbsd-src/external/lgpl3/gmp/dist/tests/mpn/t-sqrmod_bnm1.c (revision 75f6d617e282811cb173c2ccfbf5df0dd71f7045)
1 /* Test for sqrmod_bnm1 function.
2 
3    Contributed to the GNU project by Marco Bodrato.
4 
5 Copyright 2009 Free Software Foundation, Inc.
6 
7 This file is part of the GNU MP Library test suite.
8 
9 The GNU MP Library test suite is free software; you can redistribute it
10 and/or modify it under the terms of the GNU General Public License as
11 published by the Free Software Foundation; either version 3 of the License,
12 or (at your option) any later version.
13 
14 The GNU MP Library test suite is distributed in the hope that it will be
15 useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
17 Public License for more details.
18 
19 You should have received a copy of the GNU General Public License along with
20 the GNU MP Library test suite.  If not, see http://www.gnu.org/licenses/.  */
21 
22 
23 #include <stdlib.h>
24 #include <stdio.h>
25 
26 #include "gmp.h"
27 #include "gmp-impl.h"
28 #include "tests.h"
29 
30 /* Sizes are up to 2^SIZE_LOG limbs */
31 #ifndef SIZE_LOG
32 #define SIZE_LOG 12
33 #endif
34 
35 #ifndef COUNT
36 #define COUNT 3000
37 #endif
38 
39 #define MAX_N (1L << SIZE_LOG)
40 #define MIN_N 1
41 
42 /*
43   Reference function for squaring modulo B^rn-1.
44 
45   The result is expected to be ZERO if and only if one of the operand
46   already is. Otherwise the class [0] Mod(B^rn-1) is represented by
47   B^rn-1. This should not be a problem if sqrmod_bnm1 is used to
48   combine results and obtain a natural number when one knows in
49   advance that the final value is less than (B^rn-1).
50 */
51 
52 static void
53 ref_sqrmod_bnm1 (mp_ptr rp, mp_size_t rn, mp_srcptr ap, mp_size_t an)
54 {
55   mp_limb_t cy;
56 
57   ASSERT (0 < an && an <= rn);
58 
59   refmpn_mul (rp, ap, an, ap, an);
60   an *= 2;
61   if (an > rn) {
62     cy = mpn_add (rp, rp, rn, rp + rn, an - rn);
63     /* If cy == 1, then the value of rp is at most B^rn - 2, so there can
64      * be no overflow when adding in the carry. */
65     MPN_INCR_U (rp, rn, cy);
66   }
67 }
68 
69 /*
70   Compare the result of the mpn_sqrmod_bnm1 function in the library
71   with the reference function above.
72 */
73 
74 int
75 main (int argc, char **argv)
76 {
77   mp_ptr ap, refp, pp, scratch;
78   int count = COUNT;
79   int test;
80   gmp_randstate_ptr rands;
81   TMP_DECL;
82   TMP_MARK;
83 
84   if (argc > 1)
85     {
86       char *end;
87       count = strtol (argv[1], &end, 0);
88       if (*end || count <= 0)
89 	{
90 	  fprintf (stderr, "Invalid test count: %s.\n", argv[1]);
91 	  return 1;
92 	}
93     }
94 
95   tests_start ();
96   rands = RANDS;
97 
98   ASSERT_ALWAYS (mpn_sqrmod_bnm1_next_size (MAX_N) == MAX_N);
99 
100   ap = TMP_ALLOC_LIMBS (MAX_N);
101   refp = TMP_ALLOC_LIMBS (MAX_N * 4);
102   pp = 1+TMP_ALLOC_LIMBS (MAX_N + 2);
103   scratch
104     = 1+TMP_ALLOC_LIMBS (mpn_sqrmod_bnm1_itch (MAX_N, MAX_N) + 2);
105 
106   for (test = 0; test < count; test++)
107     {
108       unsigned size_min;
109       unsigned size_range;
110       mp_size_t an,rn,n;
111       mp_size_t itch;
112       mp_limb_t p_before, p_after, s_before, s_after;
113 
114       for (size_min = 1; (1L << size_min) < MIN_N; size_min++)
115 	;
116 
117       /* We generate an in the MIN_N <= n <= (1 << size_range). */
118       size_range = size_min
119 	+ gmp_urandomm_ui (rands, SIZE_LOG + 1 - size_min);
120 
121       n = MIN_N
122 	+ gmp_urandomm_ui (rands, (1L << size_range) + 1 - MIN_N);
123       n = mpn_sqrmod_bnm1_next_size (n);
124 
125       if (n == 1)
126 	an = 1;
127       else
128 	an = ((n+1) >> 1) + gmp_urandomm_ui (rands, (n+1) >> 1);
129 
130       mpn_random2 (ap, an);
131 
132       /* Sometime trigger the borderline conditions
133 	 A = -1,0,+1 Mod(B^{n/2}+1).
134 	 This only makes sense if there is at least a split, i.e. n is even. */
135       if ((test & 0x1f) == 1 && (n & 1) == 0) {
136 	mp_size_t x;
137 	MPN_COPY (ap, ap + (n >> 1), an - (n >> 1));
138 	MPN_ZERO (ap + an - (n >> 1) , n - an);
139 	x = (n == an) ? 0 : gmp_urandomm_ui (rands, n - an);
140 	ap[x] += gmp_urandomm_ui (rands, 3) - 1;
141       }
142       rn = MIN(n, 2*an);
143       mpn_random2 (pp-1, rn + 2);
144       p_before = pp[-1];
145       p_after = pp[rn];
146 
147       itch = mpn_sqrmod_bnm1_itch (n, an);
148       ASSERT_ALWAYS (itch <= mpn_sqrmod_bnm1_itch (MAX_N, MAX_N));
149       mpn_random2 (scratch-1, itch+2);
150       s_before = scratch[-1];
151       s_after = scratch[itch];
152 
153       mpn_sqrmod_bnm1 (  pp, n, ap, an, scratch);
154       ref_sqrmod_bnm1 (refp, n, ap, an);
155       if (pp[-1] != p_before || pp[rn] != p_after
156 	  || scratch[-1] != s_before || scratch[itch] != s_after
157 	  || mpn_cmp (refp, pp, rn) != 0)
158 	{
159 	  printf ("ERROR in test %d, an = %d, n = %d\n",
160 		  test, (int) an, (int) n);
161 	  if (pp[-1] != p_before)
162 	    {
163 	      printf ("before pp:"); mpn_dump (pp -1, 1);
164 	      printf ("keep:   "); mpn_dump (&p_before, 1);
165 	    }
166 	  if (pp[rn] != p_after)
167 	    {
168 	      printf ("after pp:"); mpn_dump (pp + rn, 1);
169 	      printf ("keep:   "); mpn_dump (&p_after, 1);
170 	    }
171 	  if (scratch[-1] != s_before)
172 	    {
173 	      printf ("before scratch:"); mpn_dump (scratch-1, 1);
174 	      printf ("keep:   "); mpn_dump (&s_before, 1);
175 	    }
176 	  if (scratch[itch] != s_after)
177 	    {
178 	      printf ("after scratch:"); mpn_dump (scratch + itch, 1);
179 	      printf ("keep:   "); mpn_dump (&s_after, 1);
180 	    }
181 	  mpn_dump (ap, an);
182 	  mpn_dump (pp, rn);
183 	  mpn_dump (refp, rn);
184 
185 	  abort();
186 	}
187     }
188   TMP_FREE;
189   tests_end ();
190   return 0;
191 }
192