1 /* mpz_lucas_mod -- Helper function for the strong Lucas 2 primality test. 3 4 THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST 5 CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN 6 FUTURE GNU MP RELEASES. 7 8 Copyright 2018 Free Software Foundation, Inc. 9 10 Contributed by Marco Bodrato. 11 12 This file is part of the GNU MP Library. 13 14 The GNU MP Library is free software; you can redistribute it and/or modify 15 it under the terms of either: 16 17 * the GNU Lesser General Public License as published by the Free 18 Software Foundation; either version 3 of the License, or (at your 19 option) any later version. 20 21 or 22 23 * the GNU General Public License as published by the Free Software 24 Foundation; either version 2 of the License, or (at your option) any 25 later version. 26 27 or both in parallel, as here. 28 29 The GNU MP Library is distributed in the hope that it will be useful, but 30 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 31 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 32 for more details. 33 34 You should have received copies of the GNU General Public License and the 35 GNU Lesser General Public License along with the GNU MP Library. If not, 36 see https://www.gnu.org/licenses/. */ 37 38 #include "gmp-impl.h" 39 40 /* Computes V_{k+1}, Q^{k+1} (mod n) for the Lucas' sequence */ 41 /* with P=1, Q=Q; k = n>>b0. */ 42 /* Requires n > 4; b0 > 0; -2*Q must not overflow a long. */ 43 /* If U_{k+1}==0 (mod n) or V_{k+1}==0 (mod n), it returns 1, */ 44 /* otherwise it returns 0 and sets V=V_{k+1} and Qk=Q^{k+1}. */ 45 /* V will never grow beyond SIZ(n), Qk not beyond 2*SIZ(n). */ 46 int 47 mpz_lucas_mod (mpz_ptr V, mpz_ptr Qk, long Q, 48 mp_bitcnt_t b0, mpz_srcptr n, mpz_ptr T1, mpz_ptr T2) 49 { 50 mp_bitcnt_t bs; 51 int res; 52 53 ASSERT (b0 > 0); 54 ASSERT (SIZ (n) > 1 || SIZ (n) > 0 && PTR (n) [0] > 4); 55 56 mpz_set_ui (V, 1); /* U1 = 1 */ 57 bs = mpz_sizeinbase (n, 2) - 2; 58 if (UNLIKELY (bs < b0)) 59 { 60 /* n = 2^b0 - 1, should we use Lucas-Lehmer instead? */ 61 ASSERT (bs == b0 - 2); 62 mpz_set_si (Qk, Q); 63 return 0; 64 } 65 mpz_set_ui (Qk, 1); /* U2 = 1 */ 66 67 do 68 { 69 /* We use the iteration suggested in "Elementary Number Theory" */ 70 /* by Peter Hackman (November 1, 2009), section "L.XVII Scalar */ 71 /* Formulas", from http://hackmat.se/kurser/TATM54/booktot.pdf */ 72 /* U_{2k} = 2*U_{k+1}*U_k - P*U_k^2 */ 73 /* U_{2k+1} = U_{k+1}^2 - Q*U_k^2 */ 74 /* U_{2k+2} = P*U_{k+1}^2 - 2*Q*U_{k+1}*U_k */ 75 /* We note that U_{2k+2} = P*U_{2k+1} - Q*U_{2k} */ 76 /* The formulas are specialized for P=1, and only squares: */ 77 /* U_{2k} = U_{k+1}^2 - |U_{k+1} - U_k|^2 */ 78 /* U_{2k+1} = U_{k+1}^2 - Q*U_k^2 */ 79 /* U_{2k+2} = U_{2k+1} - Q*U_{2k} */ 80 mpz_mul (T1, Qk, Qk); /* U_{k+1}^2 */ 81 mpz_sub (Qk, V, Qk); /* |U_{k+1} - U_k| */ 82 mpz_mul (T2, Qk, Qk); /* |U_{k+1} - U_k|^2 */ 83 mpz_mul (Qk, V, V); /* U_k^2 */ 84 mpz_sub (T2, T1, T2); /* U_{k+1}^2 - (U_{k+1} - U_k)^2 */ 85 if (Q > 0) /* U_{k+1}^2 - Q U_k^2 = U_{2k+1} */ 86 mpz_submul_ui (T1, Qk, Q); 87 else 88 mpz_addmul_ui (T1, Qk, NEG_CAST (unsigned long, Q)); 89 90 /* A step k->k+1 is performed if the bit in $n$ is 1 */ 91 if (mpz_tstbit (n, bs)) 92 { 93 /* U_{2k+2} = U_{2k+1} - Q*U_{2k} */ 94 mpz_mul_si (T2, T2, Q); 95 mpz_sub (T2, T1, T2); 96 mpz_swap (T1, T2); 97 } 98 mpz_tdiv_r (Qk, T1, n); 99 mpz_tdiv_r (V, T2, n); 100 } while (--bs >= b0); 101 102 res = SIZ (Qk) == 0; 103 if (!res) { 104 mpz_mul_si (T1, V, -2*Q); 105 mpz_add (T1, Qk, T1); /* V_k = U_k - 2Q*U_{k-1} */ 106 mpz_tdiv_r (V, T1, n); 107 res = SIZ (V) == 0; 108 if (!res && b0 > 1) { 109 /* V_k and Q^k will be needed for further check, compute them. */ 110 /* FIXME: Here we compute V_k^2 and store V_k, but the former */ 111 /* will be recomputed by the calling function, shoul we store */ 112 /* that instead? */ 113 mpz_mul (T2, T1, T1); /* V_k^2 */ 114 mpz_mul (T1, Qk, Qk); /* P^2 U_k^2 = U_k^2 */ 115 mpz_sub (T2, T2, T1); 116 ASSERT (SIZ (T2) == 0 || PTR (T2) [0] % 4 == 0); 117 mpz_tdiv_q_2exp (T2, T2, 2); /* (V_k^2 - P^2 U_k^2) / 4 */ 118 if (Q > 0) /* (V_k^2 - (P^2 -4Q) U_k^2) / 4 = Q^k */ 119 mpz_addmul_ui (T2, T1, Q); 120 else 121 mpz_submul_ui (T2, T1, NEG_CAST (unsigned long, Q)); 122 mpz_tdiv_r (Qk, T2, n); 123 } 124 } 125 126 return res; 127 } 128