xref: /netbsd-src/external/lgpl3/gmp/dist/mpn/generic/toom52_mul.c (revision eceb233b9bd0dfebb902ed73b531ae6964fa3f9b)
1 /* mpn_toom52_mul -- Multiply {ap,an} and {bp,bn} where an is nominally 4/3
2    times as large as bn.  Or more accurately, bn < an < 2 bn.
3 
4    Contributed to the GNU project by Marco Bodrato.
5 
6    The idea of applying toom to unbalanced multiplication is due to Marco
7    Bodrato and Alberto Zanoni.
8 
9    THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.  IT IS ONLY
10    SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
11    GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
12 
13 Copyright 2009 Free Software Foundation, Inc.
14 
15 This file is part of the GNU MP Library.
16 
17 The GNU MP Library is free software; you can redistribute it and/or modify
18 it under the terms of either:
19 
20   * the GNU Lesser General Public License as published by the Free
21     Software Foundation; either version 3 of the License, or (at your
22     option) any later version.
23 
24 or
25 
26   * the GNU General Public License as published by the Free Software
27     Foundation; either version 2 of the License, or (at your option) any
28     later version.
29 
30 or both in parallel, as here.
31 
32 The GNU MP Library is distributed in the hope that it will be useful, but
33 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34 or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
35 for more details.
36 
37 You should have received copies of the GNU General Public License and the
38 GNU Lesser General Public License along with the GNU MP Library.  If not,
39 see https://www.gnu.org/licenses/.  */
40 
41 
42 #include "gmp.h"
43 #include "gmp-impl.h"
44 
45 /* Evaluate in: -2, -1, 0, +1, +2, +inf
46 
47   <-s-><--n--><--n--><--n--><--n-->
48    ___ ______ ______ ______ ______
49   |a4_|___a3_|___a2_|___a1_|___a0_|
50 			|b1|___b0_|
51 			<t-><--n-->
52 
53   v0  =  a0                  * b0      #   A(0)*B(0)
54   v1  = (a0+ a1+ a2+ a3+  a4)*(b0+ b1) #   A(1)*B(1)      ah  <= 4   bh <= 1
55   vm1 = (a0- a1+ a2- a3+  a4)*(b0- b1) #  A(-1)*B(-1)    |ah| <= 2   bh  = 0
56   v2  = (a0+2a1+4a2+8a3+16a4)*(b0+2b1) #   A(2)*B(2)      ah  <= 30  bh <= 2
57   vm2 = (a0-2a1+4a2-8a3+16a4)*(b0-2b1) #  A(-2)*B(-2)    |ah| <= 20 |bh|<= 1
58   vinf=                   a4 *     b1  # A(inf)*B(inf)
59 
60   Some slight optimization in evaluation are taken from the paper:
61   "Towards Optimal Toom-Cook Multiplication for Univariate and
62   Multivariate Polynomials in Characteristic 2 and 0."
63 */
64 
65 void
66 mpn_toom52_mul (mp_ptr pp,
67 		mp_srcptr ap, mp_size_t an,
68 		mp_srcptr bp, mp_size_t bn, mp_ptr scratch)
69 {
70   mp_size_t n, s, t;
71   enum toom6_flags flags;
72 
73 #define a0  ap
74 #define a1  (ap + n)
75 #define a2  (ap + 2 * n)
76 #define a3  (ap + 3 * n)
77 #define a4  (ap + 4 * n)
78 #define b0  bp
79 #define b1  (bp + n)
80 
81   n = 1 + (2 * an >= 5 * bn ? (an - 1) / (size_t) 5 : (bn - 1) >> 1);
82 
83   s = an - 4 * n;
84   t = bn - n;
85 
86   ASSERT (0 < s && s <= n);
87   ASSERT (0 < t && t <= n);
88 
89   /* Ensures that 5 values of n+1 limbs each fits in the product area.
90      Borderline cases are an = 32, bn = 8, n = 7, and an = 36, bn = 9,
91      n = 8. */
92   ASSERT (s+t >= 5);
93 
94 #define v0    pp				/* 2n */
95 #define vm1   (scratch)				/* 2n+1 */
96 #define v1    (pp + 2 * n)			/* 2n+1 */
97 #define vm2   (scratch + 2 * n + 1)		/* 2n+1 */
98 #define v2    (scratch + 4 * n + 2)		/* 2n+1 */
99 #define vinf  (pp + 5 * n)			/* s+t */
100 #define bs1    pp				/* n+1 */
101 #define bsm1  (scratch + 2 * n + 2)		/* n   */
102 #define asm1  (scratch + 3 * n + 3)		/* n+1 */
103 #define asm2  (scratch + 4 * n + 4)		/* n+1 */
104 #define bsm2  (pp + n + 1)			/* n+1 */
105 #define bs2   (pp + 2 * n + 2)			/* n+1 */
106 #define as2   (pp + 3 * n + 3)			/* n+1 */
107 #define as1   (pp + 4 * n + 4)			/* n+1 */
108 
109   /* Scratch need is 6 * n + 3 + 1. We need one extra limb, because
110      products will overwrite 2n+2 limbs. */
111 
112 #define a0a2  scratch
113 #define a1a3  asm1
114 
115   /* Compute as2 and asm2.  */
116   flags = (enum toom6_flags) (toom6_vm2_neg & mpn_toom_eval_pm2 (as2, asm2, 4, ap, n, s, a1a3));
117 
118   /* Compute bs1 and bsm1.  */
119   if (t == n)
120     {
121 #if HAVE_NATIVE_mpn_add_n_sub_n
122       mp_limb_t cy;
123 
124       if (mpn_cmp (b0, b1, n) < 0)
125 	{
126 	  cy = mpn_add_n_sub_n (bs1, bsm1, b1, b0, n);
127 	  flags = (enum toom6_flags) (flags ^ toom6_vm1_neg);
128 	}
129       else
130 	{
131 	  cy = mpn_add_n_sub_n (bs1, bsm1, b0, b1, n);
132 	}
133       bs1[n] = cy >> 1;
134 #else
135       bs1[n] = mpn_add_n (bs1, b0, b1, n);
136       if (mpn_cmp (b0, b1, n) < 0)
137 	{
138 	  mpn_sub_n (bsm1, b1, b0, n);
139 	  flags = (enum toom6_flags) (flags ^ toom6_vm1_neg);
140 	}
141       else
142 	{
143 	  mpn_sub_n (bsm1, b0, b1, n);
144 	}
145 #endif
146     }
147   else
148     {
149       bs1[n] = mpn_add (bs1, b0, n, b1, t);
150       if (mpn_zero_p (b0 + t, n - t) && mpn_cmp (b0, b1, t) < 0)
151 	{
152 	  mpn_sub_n (bsm1, b1, b0, t);
153 	  MPN_ZERO (bsm1 + t, n - t);
154 	  flags = (enum toom6_flags) (flags ^ toom6_vm1_neg);
155 	}
156       else
157 	{
158 	  mpn_sub (bsm1, b0, n, b1, t);
159 	}
160     }
161 
162   /* Compute bs2 and bsm2, recycling bs1 and bsm1. bs2=bs1+b1; bsm2=bsm1-b1  */
163   mpn_add (bs2, bs1, n+1, b1, t);
164   if (flags & toom6_vm1_neg )
165     {
166       bsm2[n] = mpn_add (bsm2, bsm1, n, b1, t);
167       flags = (enum toom6_flags) (flags ^ toom6_vm2_neg);
168     }
169   else
170     {
171       bsm2[n] = 0;
172       if (t == n)
173 	{
174 	  if (mpn_cmp (bsm1, b1, n) < 0)
175 	    {
176 	      mpn_sub_n (bsm2, b1, bsm1, n);
177 	      flags = (enum toom6_flags) (flags ^ toom6_vm2_neg);
178 	    }
179 	  else
180 	    {
181 	      mpn_sub_n (bsm2, bsm1, b1, n);
182 	    }
183 	}
184       else
185 	{
186 	  if (mpn_zero_p (bsm1 + t, n - t) && mpn_cmp (bsm1, b1, t) < 0)
187 	    {
188 	      mpn_sub_n (bsm2, b1, bsm1, t);
189 	      MPN_ZERO (bsm2 + t, n - t);
190 	      flags = (enum toom6_flags) (flags ^ toom6_vm2_neg);
191 	    }
192 	  else
193 	    {
194 	      mpn_sub (bsm2, bsm1, n, b1, t);
195 	    }
196 	}
197     }
198 
199   /* Compute as1 and asm1.  */
200   flags = (enum toom6_flags) (flags ^ (toom6_vm1_neg & mpn_toom_eval_pm1 (as1, asm1, 4, ap, n, s, a0a2)));
201 
202   ASSERT (as1[n] <= 4);
203   ASSERT (bs1[n] <= 1);
204   ASSERT (asm1[n] <= 2);
205 /*   ASSERT (bsm1[n] <= 1); */
206   ASSERT (as2[n] <=30);
207   ASSERT (bs2[n] <= 2);
208   ASSERT (asm2[n] <= 20);
209   ASSERT (bsm2[n] <= 1);
210 
211   /* vm1, 2n+1 limbs */
212   mpn_mul (vm1, asm1, n+1, bsm1, n);  /* W4 */
213 
214   /* vm2, 2n+1 limbs */
215   mpn_mul_n (vm2, asm2, bsm2, n+1);  /* W2 */
216 
217   /* v2, 2n+1 limbs */
218   mpn_mul_n (v2, as2, bs2, n+1);  /* W1 */
219 
220   /* v1, 2n+1 limbs */
221   mpn_mul_n (v1, as1, bs1, n+1);  /* W3 */
222 
223   /* vinf, s+t limbs */   /* W0 */
224   if (s > t)  mpn_mul (vinf, a4, s, b1, t);
225   else        mpn_mul (vinf, b1, t, a4, s);
226 
227   /* v0, 2n limbs */
228   mpn_mul_n (v0, ap, bp, n);  /* W5 */
229 
230   mpn_toom_interpolate_6pts (pp, n, flags, vm1, vm2, v2, t + s);
231 
232 #undef v0
233 #undef vm1
234 #undef v1
235 #undef vm2
236 #undef v2
237 #undef vinf
238 #undef bs1
239 #undef bs2
240 #undef bsm1
241 #undef bsm2
242 #undef asm1
243 #undef asm2
244 #undef as1
245 #undef as2
246 #undef a0a2
247 #undef b0b2
248 #undef a1a3
249 #undef a0
250 #undef a1
251 #undef a2
252 #undef a3
253 #undef b0
254 #undef b1
255 #undef b2
256 
257 }
258