xref: /netbsd-src/external/lgpl3/gmp/dist/bootstrap.c (revision 0a3071956a3a9fdebdbf7f338cf2d439b45fc728)
1 /* Functions needed for bootstrapping the gmp build, based on mini-gmp.
2 
3 Copyright 2001, 2002, 2004, 2011, 2012, 2015 Free Software Foundation, Inc.
4 
5 This file is part of the GNU MP Library.
6 
7 The GNU MP Library is free software; you can redistribute it and/or modify
8 it under the terms of either:
9 
10   * the GNU Lesser General Public License as published by the Free
11     Software Foundation; either version 3 of the License, or (at your
12     option) any later version.
13 
14 or
15 
16   * the GNU General Public License as published by the Free Software
17     Foundation; either version 2 of the License, or (at your option) any
18     later version.
19 
20 or both in parallel, as here.
21 
22 The GNU MP Library is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
24 or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
25 for more details.
26 
27 You should have received copies of the GNU General Public License and the
28 GNU Lesser General Public License along with the GNU MP Library.  If not,
29 see https://www.gnu.org/licenses/.  */
30 
31 
32 #define MINI_GMP_DONT_USE_FLOAT_H 1
33 #include "mini-gmp/mini-gmp.c"
34 
35 #define MIN(l,o) ((l) < (o) ? (l) : (o))
36 #define PTR(x)   ((x)->_mp_d)
37 #define SIZ(x)   ((x)->_mp_size)
38 
39 #define xmalloc gmp_default_alloc
40 
41 int
42 isprime (unsigned long int t)
43 {
44   unsigned long int q, r, d;
45 
46   if (t < 32)
47     return (0xa08a28acUL >> t) & 1;
48   if ((t & 1) == 0)
49     return 0;
50 
51   if (t % 3 == 0)
52     return 0;
53   if (t % 5 == 0)
54     return 0;
55   if (t % 7 == 0)
56     return 0;
57 
58   for (d = 11;;)
59     {
60       q = t / d;
61       r = t - q * d;
62       if (q < d)
63 	return 1;
64       if (r == 0)
65 	break;
66       d += 2;
67       q = t / d;
68       r = t - q * d;
69       if (q < d)
70 	return 1;
71       if (r == 0)
72 	break;
73       d += 4;
74     }
75   return 0;
76 }
77 
78 int
79 log2_ceil (int n)
80 {
81   int  e;
82   assert (n >= 1);
83   for (e = 0; ; e++)
84     if ((1 << e) >= n)
85       break;
86   return e;
87 }
88 
89 /* Set inv to the inverse of d, in the style of invert_limb, ie. for
90    udiv_qrnnd_preinv.  */
91 void
92 mpz_preinv_invert (mpz_t inv, const mpz_t d, int numb_bits)
93 {
94   mpz_t  t;
95   int    norm;
96   assert (SIZ(d) > 0);
97 
98   norm = numb_bits - mpz_sizeinbase (d, 2);
99   assert (norm >= 0);
100   mpz_init (t);
101   mpz_setbit (t, 2*numb_bits - norm);
102   mpz_tdiv_q (inv, t, d);
103   mpz_clrbit (inv, numb_bits);
104 
105   mpz_clear (t);
106 }
107 
108 /* Calculate r satisfying r*d == 1 mod 2^n. */
109 void
110 mpz_invert_2exp (mpz_t r, const mpz_t a, unsigned long n)
111 {
112   unsigned long  i;
113   mpz_t  inv, prod;
114 
115   assert (mpz_odd_p (a));
116 
117   mpz_init_set_ui (inv, 1L);
118   mpz_init (prod);
119 
120   for (i = 1; i < n; i++)
121     {
122       mpz_mul (prod, inv, a);
123       if (mpz_tstbit (prod, i) != 0)
124 	mpz_setbit (inv, i);
125     }
126 
127   mpz_mul (prod, inv, a);
128   mpz_tdiv_r_2exp (prod, prod, n);
129   assert (mpz_cmp_ui (prod, 1L) == 0);
130 
131   mpz_set (r, inv);
132 
133   mpz_clear (inv);
134   mpz_clear (prod);
135 }
136 
137 /* Calculate inv satisfying r*a == 1 mod 2^n. */
138 void
139 mpz_invert_ui_2exp (mpz_t r, unsigned long a, unsigned long n)
140 {
141   mpz_t  az;
142 
143   mpz_init_set_ui (az, a);
144   mpz_invert_2exp (r, az, n);
145   mpz_clear (az);
146 }
147