1 /* $NetBSD: tls_server.c,v 1.11 2022/10/08 16:12:50 christos Exp $ */ 2 3 /*++ 4 /* NAME 5 /* tls_server 3 6 /* SUMMARY 7 /* server-side TLS engine 8 /* SYNOPSIS 9 /* #include <tls.h> 10 /* 11 /* TLS_APPL_STATE *tls_server_init(props) 12 /* const TLS_SERVER_INIT_PROPS *props; 13 /* 14 /* TLS_SESS_STATE *tls_server_start(props) 15 /* const TLS_SERVER_START_PROPS *props; 16 /* 17 /* TLS_SESS_STATE *tls_server_post_accept(TLScontext) 18 /* TLS_SESS_STATE *TLScontext; 19 /* 20 /* void tls_server_stop(app_ctx, stream, failure, TLScontext) 21 /* TLS_APPL_STATE *app_ctx; 22 /* VSTREAM *stream; 23 /* int failure; 24 /* TLS_SESS_STATE *TLScontext; 25 /* DESCRIPTION 26 /* This module is the interface between Postfix TLS servers, 27 /* the OpenSSL library, and the TLS entropy and cache manager. 28 /* 29 /* See "EVENT_DRIVEN APPLICATIONS" below for using this code 30 /* in event-driven programs. 31 /* 32 /* tls_server_init() is called once when the SMTP server 33 /* initializes. 34 /* Certificate details are also decided during this phase, 35 /* so that peer-specific behavior is not possible. 36 /* 37 /* tls_server_start() activates the TLS feature for the VSTREAM 38 /* passed as argument. We assume that network buffers are flushed 39 /* and the TLS handshake can begin immediately. 40 /* 41 /* tls_server_stop() sends the "close notify" alert via 42 /* SSL_shutdown() to the peer and resets all connection specific 43 /* TLS data. As RFC2487 does not specify a separate shutdown, it 44 /* is assumed that the underlying TCP connection is shut down 45 /* immediately afterwards. Any further writes to the channel will 46 /* be discarded, and any further reads will report end-of-file. 47 /* If the failure flag is set, no SSL_shutdown() handshake is performed. 48 /* 49 /* Once the TLS connection is initiated, information about the TLS 50 /* state is available via the TLScontext structure: 51 /* .IP TLScontext->protocol 52 /* the protocol name (SSLv2, SSLv3, TLSv1), 53 /* .IP TLScontext->cipher_name 54 /* the cipher name (e.g. RC4/MD5), 55 /* .IP TLScontext->cipher_usebits 56 /* the number of bits actually used (e.g. 40), 57 /* .IP TLScontext->cipher_algbits 58 /* the number of bits the algorithm is based on (e.g. 128). 59 /* .PP 60 /* The last two values may differ from each other when export-strength 61 /* encryption is used. 62 /* 63 /* If the peer offered a certificate, part of the certificate data are 64 /* available as: 65 /* .IP TLScontext->peer_status 66 /* A bitmask field that records the status of the peer certificate 67 /* verification. One or more of TLS_CERT_FLAG_PRESENT and 68 /* TLS_CERT_FLAG_TRUSTED. 69 /* .IP TLScontext->peer_CN 70 /* Extracted CommonName of the peer, or zero-length string 71 /* when information could not be extracted. 72 /* .IP TLScontext->issuer_CN 73 /* Extracted CommonName of the issuer, or zero-length string 74 /* when information could not be extracted. 75 /* .IP TLScontext->peer_cert_fprint 76 /* Fingerprint of the certificate, or zero-length string when no peer 77 /* certificate is available. 78 /* .PP 79 /* If no peer certificate is presented the peer_status is set to 0. 80 /* EVENT_DRIVEN APPLICATIONS 81 /* .ad 82 /* .fi 83 /* Event-driven programs manage multiple I/O channels. Such 84 /* programs cannot use the synchronous VSTREAM-over-TLS 85 /* implementation that the current TLS library provides, 86 /* including tls_server_stop() and the underlying tls_stream(3) 87 /* and tls_bio_ops(3) routines. 88 /* 89 /* With the current TLS library implementation, this means 90 /* that the application is responsible for calling and retrying 91 /* SSL_accept(), SSL_read(), SSL_write() and SSL_shutdown(). 92 /* 93 /* To maintain control over TLS I/O, an event-driven server 94 /* invokes tls_server_start() with a null VSTREAM argument and 95 /* with an fd argument that specifies the I/O file descriptor. 96 /* Then, tls_server_start() performs all the necessary 97 /* preparations before the TLS handshake and returns a partially 98 /* populated TLS context. The event-driven application is then 99 /* responsible for invoking SSL_accept(), and if successful, 100 /* for invoking tls_server_post_accept() to finish the work 101 /* that was started by tls_server_start(). In case of unrecoverable 102 /* failure, tls_server_post_accept() destroys the TLS context 103 /* and returns a null pointer value. 104 /* LICENSE 105 /* .ad 106 /* .fi 107 /* This software is free. You can do with it whatever you want. 108 /* The original author kindly requests that you acknowledge 109 /* the use of his software. 110 /* AUTHOR(S) 111 /* Originally written by: 112 /* Lutz Jaenicke 113 /* BTU Cottbus 114 /* Allgemeine Elektrotechnik 115 /* Universitaetsplatz 3-4 116 /* D-03044 Cottbus, Germany 117 /* 118 /* Updated by: 119 /* Wietse Venema 120 /* IBM T.J. Watson Research 121 /* P.O. Box 704 122 /* Yorktown Heights, NY 10598, USA 123 /* 124 /* Victor Duchovni 125 /* Morgan Stanley 126 /*--*/ 127 128 /* System library. */ 129 130 #include <sys_defs.h> 131 132 #ifdef USE_TLS 133 #include <unistd.h> 134 #include <string.h> 135 136 /* Utility library. */ 137 138 #include <mymalloc.h> 139 #include <vstring.h> 140 #include <vstream.h> 141 #include <dict.h> 142 #include <stringops.h> 143 #include <msg.h> 144 #include <hex_code.h> 145 #include <iostuff.h> /* non-blocking */ 146 147 /* Global library. */ 148 149 #include <mail_params.h> 150 151 /* TLS library. */ 152 153 #include <tls_mgr.h> 154 #define TLS_INTERNAL 155 #include <tls.h> 156 #if OPENSSL_VERSION_PREREQ(3,0) 157 #include <openssl/core_names.h> /* EVP_MAC parameters */ 158 #endif 159 160 #define STR(x) vstring_str(x) 161 #define LEN(x) VSTRING_LEN(x) 162 163 /* Application-specific. */ 164 165 /* 166 * The session_id_context identifies the service that created a session. 167 * This information is used to distinguish between multiple TLS-based 168 * servers running on the same server. We use the name of the mail system. 169 */ 170 static const char server_session_id_context[] = "Postfix/TLS"; 171 172 #define GET_SID(s, v, lptr) ((v) = SSL_SESSION_get_id((s), (lptr))) 173 174 typedef const unsigned char *session_id_t; 175 176 /* get_server_session_cb - callback to retrieve session from server cache */ 177 178 static SSL_SESSION *get_server_session_cb(SSL *ssl, session_id_t session_id, 179 int session_id_length, 180 int *unused_copy) 181 { 182 const char *myname = "get_server_session_cb"; 183 TLS_SESS_STATE *TLScontext; 184 VSTRING *cache_id; 185 VSTRING *session_data = vstring_alloc(2048); 186 SSL_SESSION *session = 0; 187 188 if ((TLScontext = SSL_get_ex_data(ssl, TLScontext_index)) == 0) 189 msg_panic("%s: null TLScontext in session lookup callback", myname); 190 191 #define GEN_CACHE_ID(buf, id, len, service) \ 192 do { \ 193 buf = vstring_alloc(2 * (len + strlen(service))); \ 194 hex_encode(buf, (char *) (id), (len)); \ 195 vstring_sprintf_append(buf, "&s=%s", (service)); \ 196 vstring_sprintf_append(buf, "&l=%ld", (long) OpenSSL_version_num()); \ 197 } while (0) 198 199 200 GEN_CACHE_ID(cache_id, session_id, session_id_length, TLScontext->serverid); 201 202 if (TLScontext->log_mask & TLS_LOG_CACHE) 203 msg_info("%s: looking up session %s in %s cache", TLScontext->namaddr, 204 STR(cache_id), TLScontext->cache_type); 205 206 /* 207 * Load the session from cache and decode it. 208 */ 209 if (tls_mgr_lookup(TLScontext->cache_type, STR(cache_id), 210 session_data) == TLS_MGR_STAT_OK) { 211 session = tls_session_activate(STR(session_data), LEN(session_data)); 212 if (session && (TLScontext->log_mask & TLS_LOG_CACHE)) 213 msg_info("%s: reloaded session %s from %s cache", 214 TLScontext->namaddr, STR(cache_id), 215 TLScontext->cache_type); 216 } 217 218 /* 219 * Clean up. 220 */ 221 vstring_free(cache_id); 222 vstring_free(session_data); 223 224 return (session); 225 } 226 227 /* uncache_session - remove session from internal & external cache */ 228 229 static void uncache_session(SSL_CTX *ctx, TLS_SESS_STATE *TLScontext) 230 { 231 VSTRING *cache_id; 232 SSL_SESSION *session = SSL_get_session(TLScontext->con); 233 const unsigned char *sid; 234 unsigned int sid_length; 235 236 SSL_CTX_remove_session(ctx, session); 237 238 if (TLScontext->cache_type == 0) 239 return; 240 241 GET_SID(session, sid, &sid_length); 242 GEN_CACHE_ID(cache_id, sid, sid_length, TLScontext->serverid); 243 244 if (TLScontext->log_mask & TLS_LOG_CACHE) 245 msg_info("%s: remove session %s from %s cache", TLScontext->namaddr, 246 STR(cache_id), TLScontext->cache_type); 247 248 tls_mgr_delete(TLScontext->cache_type, STR(cache_id)); 249 vstring_free(cache_id); 250 } 251 252 /* new_server_session_cb - callback to save session to server cache */ 253 254 static int new_server_session_cb(SSL *ssl, SSL_SESSION *session) 255 { 256 const char *myname = "new_server_session_cb"; 257 VSTRING *cache_id; 258 TLS_SESS_STATE *TLScontext; 259 VSTRING *session_data; 260 const unsigned char *sid; 261 unsigned int sid_length; 262 263 if ((TLScontext = SSL_get_ex_data(ssl, TLScontext_index)) == 0) 264 msg_panic("%s: null TLScontext in new session callback", myname); 265 266 GET_SID(session, sid, &sid_length); 267 GEN_CACHE_ID(cache_id, sid, sid_length, TLScontext->serverid); 268 269 if (TLScontext->log_mask & TLS_LOG_CACHE) 270 msg_info("%s: save session %s to %s cache", TLScontext->namaddr, 271 STR(cache_id), TLScontext->cache_type); 272 273 /* 274 * Passivate and save the session state. 275 */ 276 session_data = tls_session_passivate(session); 277 if (session_data) 278 tls_mgr_update(TLScontext->cache_type, STR(cache_id), 279 STR(session_data), LEN(session_data)); 280 281 /* 282 * Clean up. 283 */ 284 if (session_data) 285 vstring_free(session_data); 286 vstring_free(cache_id); 287 SSL_SESSION_free(session); /* 200502 */ 288 289 return (1); 290 } 291 292 #define NOENGINE ((ENGINE *) 0) 293 #define TLS_TKT_NOKEYS -1 /* No keys for encryption */ 294 #define TLS_TKT_STALE 0 /* No matching keys for decryption */ 295 #define TLS_TKT_ACCEPT 1 /* Ticket decryptable and re-usable */ 296 #define TLS_TKT_REISSUE 2 /* Ticket decryptable, not re-usable */ 297 298 #if defined(SSL_OP_NO_TICKET) && !defined(OPENSSL_NO_TLSEXT) 299 300 #if OPENSSL_VERSION_PREREQ(3,0) 301 302 /* ticket_cb - configure tls session ticket encrypt/decrypt context */ 303 304 static int ticket_cb(SSL *con, unsigned char name[], unsigned char iv[], 305 EVP_CIPHER_CTX *ctx, EVP_MAC_CTX *hctx, int create) 306 { 307 OSSL_PARAM params[3]; 308 static const EVP_CIPHER *ciph; 309 TLS_TICKET_KEY *key; 310 TLS_SESS_STATE *TLScontext = SSL_get_ex_data(con, TLScontext_index); 311 int timeout = ((int) SSL_CTX_get_timeout(SSL_get_SSL_CTX(con))) / 2; 312 313 if ((!ciph && (ciph = EVP_get_cipherbyname(var_tls_tkt_cipher)) == 0) 314 || (key = tls_mgr_key(create ? 0 : name, timeout)) == 0 315 || (create && RAND_bytes(iv, TLS_TICKET_IVLEN) <= 0)) 316 return (create ? TLS_TKT_NOKEYS : TLS_TKT_STALE); 317 318 params[0] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, 319 LN_sha256, 0); 320 params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, 321 (char *) key->hmac, 322 TLS_TICKET_MACLEN); 323 params[2] = OSSL_PARAM_construct_end(); 324 if (!EVP_MAC_CTX_set_params(hctx, params)) 325 return (create ? TLS_TKT_NOKEYS : TLS_TKT_STALE); 326 327 if (create) { 328 EVP_EncryptInit_ex(ctx, ciph, NOENGINE, key->bits, iv); 329 memcpy((void *) name, (void *) key->name, TLS_TICKET_NAMELEN); 330 if (TLScontext->log_mask & TLS_LOG_CACHE) 331 msg_info("%s: Issuing session ticket, key expiration: %ld", 332 TLScontext->namaddr, (long) key->tout); 333 } else { 334 EVP_DecryptInit_ex(ctx, ciph, NOENGINE, key->bits, iv); 335 if (TLScontext->log_mask & TLS_LOG_CACHE) 336 msg_info("%s: Decrypting session ticket, key expiration: %ld", 337 TLScontext->namaddr, (long) key->tout); 338 } 339 TLScontext->ticketed = 1; 340 return (TLS_TKT_ACCEPT); 341 } 342 343 #else /* OPENSSL_VERSION_PREREQ(3,0) */ 344 345 /* ticket_cb - configure tls session ticket encrypt/decrypt context */ 346 347 static int ticket_cb(SSL *con, unsigned char name[], unsigned char iv[], 348 EVP_CIPHER_CTX *ctx, HMAC_CTX *hctx, int create) 349 { 350 static const EVP_MD *sha256; 351 static const EVP_CIPHER *ciph; 352 TLS_TICKET_KEY *key; 353 TLS_SESS_STATE *TLScontext = SSL_get_ex_data(con, TLScontext_index); 354 int timeout = ((int) SSL_CTX_get_timeout(SSL_get_SSL_CTX(con))) / 2; 355 356 if ((!sha256 && (sha256 = EVP_sha256()) == 0) 357 || (!ciph && (ciph = EVP_get_cipherbyname(var_tls_tkt_cipher)) == 0) 358 || (key = tls_mgr_key(create ? 0 : name, timeout)) == 0 359 || (create && RAND_bytes(iv, TLS_TICKET_IVLEN) <= 0)) 360 return (create ? TLS_TKT_NOKEYS : TLS_TKT_STALE); 361 362 HMAC_Init_ex(hctx, key->hmac, TLS_TICKET_MACLEN, sha256, NOENGINE); 363 364 if (create) { 365 EVP_EncryptInit_ex(ctx, ciph, NOENGINE, key->bits, iv); 366 memcpy((void *) name, (void *) key->name, TLS_TICKET_NAMELEN); 367 if (TLScontext->log_mask & TLS_LOG_CACHE) 368 msg_info("%s: Issuing session ticket, key expiration: %ld", 369 TLScontext->namaddr, (long) key->tout); 370 } else { 371 EVP_DecryptInit_ex(ctx, ciph, NOENGINE, key->bits, iv); 372 if (TLScontext->log_mask & TLS_LOG_CACHE) 373 msg_info("%s: Decrypting session ticket, key expiration: %ld", 374 TLScontext->namaddr, (long) key->tout); 375 } 376 TLScontext->ticketed = 1; 377 return (TLS_TKT_ACCEPT); 378 } 379 380 #endif /* OPENSSL_VERSION_PREREQ(3,0) */ 381 382 #endif /* defined(SSL_OP_NO_TICKET) && 383 * !defined(OPENSSL_NO_TLSEXT) */ 384 385 /* tls_server_init - initialize the server-side TLS engine */ 386 387 TLS_APPL_STATE *tls_server_init(const TLS_SERVER_INIT_PROPS *props) 388 { 389 SSL_CTX *server_ctx; 390 SSL_CTX *sni_ctx; 391 X509_STORE *cert_store; 392 long off = 0; 393 int verify_flags = SSL_VERIFY_NONE; 394 int cachable; 395 int scache_timeout; 396 int ticketable = 0; 397 int protomask; 398 int min_proto; 399 int max_proto; 400 TLS_APPL_STATE *app_ctx; 401 int log_mask; 402 403 /* 404 * Convert user loglevel to internal logmask. 405 */ 406 log_mask = tls_log_mask(props->log_param, props->log_level); 407 408 if (log_mask & TLS_LOG_VERBOSE) 409 msg_info("initializing the server-side TLS engine"); 410 411 /* 412 * Load (mostly cipher related) TLS-library internal main.cf parameters. 413 */ 414 tls_param_init(); 415 416 /* 417 * Detect mismatch between compile-time headers and run-time library. 418 */ 419 tls_check_version(); 420 421 /* 422 * First validate the protocols. If these are invalid, we can't continue. 423 */ 424 protomask = tls_proto_mask_lims(props->protocols, &min_proto, &max_proto); 425 if (protomask == TLS_PROTOCOL_INVALID) { 426 /* tls_protocol_mask() logs no warning. */ 427 msg_warn("Invalid TLS protocol list \"%s\": disabling TLS support", 428 props->protocols); 429 return (0); 430 } 431 432 /* 433 * Create an application data index for SSL objects, so that we can 434 * attach TLScontext information; this information is needed inside 435 * tls_verify_certificate_callback(). 436 */ 437 if (TLScontext_index < 0) { 438 if ((TLScontext_index = SSL_get_ex_new_index(0, 0, 0, 0, 0)) < 0) { 439 msg_warn("Cannot allocate SSL application data index: " 440 "disabling TLS support"); 441 return (0); 442 } 443 } 444 445 /* 446 * If the administrator specifies an unsupported digest algorithm, fail 447 * now, rather than in the middle of a TLS handshake. 448 */ 449 if (!tls_validate_digest(props->mdalg)) { 450 msg_warn("disabling TLS support"); 451 return (0); 452 } 453 454 /* 455 * Initialize the PRNG (Pseudo Random Number Generator) with some seed 456 * from external and internal sources. Don't enable TLS without some real 457 * entropy. 458 */ 459 if (tls_ext_seed(var_tls_daemon_rand_bytes) < 0) { 460 msg_warn("no entropy for TLS key generation: disabling TLS support"); 461 return (0); 462 } 463 tls_int_seed(); 464 465 /* 466 * The SSL/TLS specifications require the client to send a message in the 467 * oldest specification it understands with the highest level it 468 * understands in the message. Netscape communicator can still 469 * communicate with SSLv2 servers, so it sends out a SSLv2 client hello. 470 * To deal with it, our server must be SSLv2 aware (even if we don't like 471 * SSLv2), so we need to have the SSLv23 server here. If we want to limit 472 * the protocol level, we can add an option to not use SSLv2/v3/TLSv1 473 * later. 474 */ 475 ERR_clear_error(); 476 server_ctx = SSL_CTX_new(TLS_server_method()); 477 if (server_ctx == 0) { 478 msg_warn("cannot allocate server SSL_CTX: disabling TLS support"); 479 tls_print_errors(); 480 return (0); 481 } 482 sni_ctx = SSL_CTX_new(TLS_server_method()); 483 if (sni_ctx == 0) { 484 SSL_CTX_free(server_ctx); 485 msg_warn("cannot allocate server SNI SSL_CTX: disabling TLS support"); 486 tls_print_errors(); 487 return (0); 488 } 489 #ifdef SSL_SECOP_PEER 490 /* Backwards compatible security as a base for opportunistic TLS. */ 491 SSL_CTX_set_security_level(server_ctx, 0); 492 SSL_CTX_set_security_level(sni_ctx, 0); 493 #endif 494 495 /* 496 * See the verify callback in tls_verify.c 497 */ 498 SSL_CTX_set_verify_depth(server_ctx, props->verifydepth + 1); 499 SSL_CTX_set_verify_depth(sni_ctx, props->verifydepth + 1); 500 501 /* 502 * The session cache is implemented by the tlsmgr(8) server. 503 * 504 * XXX 200502 Surprise: when OpenSSL purges an entry from the in-memory 505 * cache, it also attempts to purge the entry from the on-disk cache. 506 * This is undesirable, especially when we set the in-memory cache size 507 * to 1. For this reason we don't allow OpenSSL to purge on-disk cache 508 * entries, and leave it up to the tlsmgr process instead. Found by 509 * Victor Duchovni. 510 */ 511 if (tls_mgr_policy(props->cache_type, &cachable, 512 &scache_timeout) != TLS_MGR_STAT_OK) 513 scache_timeout = 0; 514 if (scache_timeout <= 0) 515 cachable = 0; 516 517 /* 518 * Protocol work-arounds, OpenSSL version dependent. 519 */ 520 off |= tls_bug_bits(); 521 522 /* 523 * Add SSL_OP_NO_TICKET when the timeout is zero or library support is 524 * incomplete. 525 */ 526 #ifdef SSL_OP_NO_TICKET 527 #ifndef OPENSSL_NO_TLSEXT 528 ticketable = (*var_tls_tkt_cipher && scache_timeout > 0 529 && !(off & SSL_OP_NO_TICKET)); 530 if (ticketable) { 531 const EVP_CIPHER *ciph; 532 533 if ((ciph = EVP_get_cipherbyname(var_tls_tkt_cipher)) == 0 534 || EVP_CIPHER_mode(ciph) != EVP_CIPH_CBC_MODE 535 || EVP_CIPHER_iv_length(ciph) != TLS_TICKET_IVLEN 536 || EVP_CIPHER_key_length(ciph) < TLS_TICKET_IVLEN 537 || EVP_CIPHER_key_length(ciph) > TLS_TICKET_KEYLEN) { 538 msg_warn("%s: invalid value: %s; session tickets disabled", 539 VAR_TLS_TKT_CIPHER, var_tls_tkt_cipher); 540 ticketable = 0; 541 } 542 } 543 if (ticketable) { 544 #if OPENSSL_VERSION_PREREQ(3,0) 545 SSL_CTX_set_tlsext_ticket_key_evp_cb(server_ctx, ticket_cb); 546 #else 547 SSL_CTX_set_tlsext_ticket_key_cb(server_ctx, ticket_cb); 548 #endif 549 550 /* 551 * OpenSSL 1.1.1 introduces support for TLS 1.3, which can issue more 552 * than one ticket per handshake. While this may be appropriate for 553 * communication between browsers and webservers, it is not terribly 554 * useful for MTAs, many of which other than Postfix don't do TLS 555 * session caching at all, and Postfix has no mechanism for storing 556 * multiple session tickets, if more than one sent, the second 557 * clobbers the first. OpenSSL 1.1.1 servers default to issuing two 558 * tickets for non-resumption handshakes, we reduce this to one. Our 559 * ticket decryption callback already (since 2.11) asks OpenSSL to 560 * avoid issuing new tickets when the presented ticket is re-usable. 561 */ 562 SSL_CTX_set_num_tickets(server_ctx, 1); 563 } 564 #endif 565 if (!ticketable) 566 off |= SSL_OP_NO_TICKET; 567 #endif 568 569 SSL_CTX_set_options(server_ctx, off); 570 571 /* 572 * Global protocol selection. 573 */ 574 if (protomask != 0) 575 SSL_CTX_set_options(server_ctx, TLS_SSL_OP_PROTOMASK(protomask)); 576 SSL_CTX_set_min_proto_version(server_ctx, min_proto); 577 SSL_CTX_set_max_proto_version(server_ctx, max_proto); 578 SSL_CTX_set_min_proto_version(sni_ctx, min_proto); 579 SSL_CTX_set_max_proto_version(sni_ctx, max_proto); 580 581 /* 582 * Some sites may want to give the client less rope. On the other hand, 583 * this could trigger inter-operability issues, the client should not 584 * offer ciphers it implements poorly, but this hasn't stopped some 585 * vendors from getting it wrong. 586 */ 587 if (var_tls_preempt_clist) 588 SSL_CTX_set_options(server_ctx, SSL_OP_CIPHER_SERVER_PREFERENCE); 589 590 /* Done with server_ctx options, clone to sni_ctx */ 591 SSL_CTX_clear_options(sni_ctx, ~0); 592 SSL_CTX_set_options(sni_ctx, SSL_CTX_get_options(server_ctx)); 593 594 /* 595 * Set the call-back routine to debug handshake progress. 596 */ 597 if (log_mask & TLS_LOG_DEBUG) { 598 SSL_CTX_set_info_callback(server_ctx, tls_info_callback); 599 SSL_CTX_set_info_callback(sni_ctx, tls_info_callback); 600 } 601 602 /* 603 * Load the CA public key certificates for both the server cert and for 604 * the verification of client certificates. As provided by OpenSSL we 605 * support two types of CA certificate handling: One possibility is to 606 * add all CA certificates to one large CAfile, the other possibility is 607 * a directory pointed to by CApath, containing separate files for each 608 * CA with softlinks named after the hash values of the certificate. The 609 * first alternative has the advantage that the file is opened and read 610 * at startup time, so that you don't have the hassle to maintain another 611 * copy of the CApath directory for chroot-jail. 612 */ 613 if (tls_set_ca_certificate_info(server_ctx, 614 props->CAfile, props->CApath) < 0) { 615 /* tls_set_ca_certificate_info() already logs a warning. */ 616 SSL_CTX_free(server_ctx); /* 200411 */ 617 SSL_CTX_free(sni_ctx); 618 return (0); 619 } 620 621 /* 622 * Upref and share the cert store. Sadly we can't yet use 623 * SSL_CTX_set1_cert_store(3) which was added in OpenSSL 1.1.0. 624 */ 625 cert_store = SSL_CTX_get_cert_store(server_ctx); 626 X509_STORE_up_ref(cert_store); 627 SSL_CTX_set_cert_store(sni_ctx, cert_store); 628 629 /* 630 * Load the server public key certificate and private key from file and 631 * check whether the cert matches the key. We can use RSA certificates 632 * ("cert") DSA certificates ("dcert") or ECDSA certificates ("eccert"). 633 * All three can be made available at the same time. The CA certificates 634 * for all three are handled in the same setup already finished. Which 635 * one is used depends on the cipher negotiated (that is: the first 636 * cipher listed by the client which does match the server). A client 637 * with RSA only (e.g. Netscape) will use the RSA certificate only. A 638 * client with openssl-library will use RSA first if not especially 639 * changed in the cipher setup. 640 */ 641 if (tls_set_my_certificate_key_info(server_ctx, 642 props->chain_files, 643 props->cert_file, 644 props->key_file, 645 props->dcert_file, 646 props->dkey_file, 647 props->eccert_file, 648 props->eckey_file) < 0) { 649 /* tls_set_my_certificate_key_info() already logs a warning. */ 650 SSL_CTX_free(server_ctx); /* 200411 */ 651 SSL_CTX_free(sni_ctx); 652 return (0); 653 } 654 655 /* 656 * Diffie-Hellman key generation parameters can either be loaded from 657 * files (preferred) or taken from compiled in values. First, set the 658 * callback that will select the values when requested, then load the 659 * (possibly) available DH parameters from files. We are generous with 660 * the error handling, since we do have default values compiled in, so we 661 * will not abort but just log the error message. 662 */ 663 if (*props->dh1024_param_file != 0) 664 tls_set_dh_from_file(props->dh1024_param_file); 665 tls_tmp_dh(server_ctx, 1); 666 tls_tmp_dh(sni_ctx, 1); 667 668 /* 669 * Enable EECDH if available, errors are not fatal, we just keep going 670 * with any remaining key-exchange algorithms. 671 */ 672 tls_auto_eecdh_curves(server_ctx, var_tls_eecdh_auto); 673 tls_auto_eecdh_curves(sni_ctx, var_tls_eecdh_auto); 674 675 /* 676 * If we want to check client certificates, we have to indicate it in 677 * advance. By now we only allow to decide on a global basis. If we want 678 * to allow certificate based relaying, we must ask the client to provide 679 * one with SSL_VERIFY_PEER. The client now can decide, whether it 680 * provides one or not. We can enforce a failure of the negotiation with 681 * SSL_VERIFY_FAIL_IF_NO_PEER_CERT, if we do not allow a connection 682 * without one. In the "server hello" following the initialization by the 683 * "client hello" the server must provide a list of CAs it is willing to 684 * accept. Some clever clients will then select one from the list of 685 * available certificates matching these CAs. Netscape Communicator will 686 * present the list of certificates for selecting the one to be sent, or 687 * it will issue a warning, if there is no certificate matching the 688 * available CAs. 689 * 690 * With regard to the purpose of the certificate for relaying, we might like 691 * a later negotiation, maybe relaying would already be allowed for other 692 * reasons, but this would involve severe changes in the internal postfix 693 * logic, so we have to live with it the way it is. 694 */ 695 if (props->ask_ccert) 696 verify_flags = SSL_VERIFY_PEER | SSL_VERIFY_CLIENT_ONCE; 697 SSL_CTX_set_verify(server_ctx, verify_flags, 698 tls_verify_certificate_callback); 699 SSL_CTX_set_verify(sni_ctx, verify_flags, 700 tls_verify_certificate_callback); 701 if (props->ask_ccert && *props->CAfile) { 702 STACK_OF(X509_NAME) *calist = SSL_load_client_CA_file(props->CAfile); 703 704 if (calist == 0) { 705 /* Not generally critical */ 706 msg_warn("error loading client CA names from: %s", 707 props->CAfile); 708 tls_print_errors(); 709 } 710 SSL_CTX_set_client_CA_list(server_ctx, calist); 711 712 if (calist != 0 && sk_X509_NAME_num(calist) > 0) { 713 calist = SSL_dup_CA_list(calist); 714 715 if (calist == 0) { 716 msg_warn("error duplicating client CA names for SNI"); 717 tls_print_errors(); 718 } else { 719 SSL_CTX_set_client_CA_list(sni_ctx, calist); 720 } 721 } 722 } 723 724 /* 725 * Initialize our own TLS server handle, before diving into the details 726 * of TLS session cache management. 727 */ 728 app_ctx = tls_alloc_app_context(server_ctx, sni_ctx, log_mask); 729 730 if (cachable || ticketable || props->set_sessid) { 731 732 /* 733 * Initialize the session cache. 734 * 735 * With a large number of concurrent smtpd(8) processes, it is not a 736 * good idea to cache multiple large session objects in each process. 737 * We set the internal cache size to 1, and don't register a 738 * "remove_cb" so as to avoid deleting good sessions from the 739 * external cache prematurely (when the internal cache is full, 740 * OpenSSL removes sessions from the external cache also)! 741 * 742 * This makes SSL_CTX_remove_session() not useful for flushing broken 743 * sessions from the external cache, so we must delete them directly 744 * (not via a callback). 745 * 746 * Set a session id context to identify to what type of server process 747 * created a session. In our case, the context is simply the name of 748 * the mail system: "Postfix/TLS". 749 */ 750 SSL_CTX_sess_set_cache_size(server_ctx, 1); 751 SSL_CTX_set_session_id_context(server_ctx, 752 (void *) &server_session_id_context, 753 sizeof(server_session_id_context)); 754 SSL_CTX_set_session_cache_mode(server_ctx, 755 SSL_SESS_CACHE_SERVER | 756 SSL_SESS_CACHE_NO_INTERNAL | 757 SSL_SESS_CACHE_NO_AUTO_CLEAR); 758 if (cachable) { 759 app_ctx->cache_type = mystrdup(props->cache_type); 760 761 SSL_CTX_sess_set_get_cb(server_ctx, get_server_session_cb); 762 SSL_CTX_sess_set_new_cb(server_ctx, new_server_session_cb); 763 } 764 765 /* 766 * OpenSSL ignores timed-out sessions. We need to set the internal 767 * cache timeout at least as high as the external cache timeout. This 768 * applies even if no internal cache is used. We set the session 769 * lifetime to twice the cache lifetime, which is also the issuing 770 * and retired key validation lifetime of session tickets keys. This 771 * way a session always lasts longer than the server's ability to 772 * decrypt its session ticket. Otherwise, a bug in OpenSSL may fail 773 * to re-issue tickets when sessions decrypt, but are expired. 774 */ 775 SSL_CTX_set_timeout(server_ctx, 2 * scache_timeout); 776 } else { 777 778 /* 779 * If we have no external cache, disable all caching. No use wasting 780 * server memory resources with sessions they are unlikely to be able 781 * to reuse. 782 */ 783 SSL_CTX_set_session_cache_mode(server_ctx, SSL_SESS_CACHE_OFF); 784 } 785 786 return (app_ctx); 787 } 788 789 /* 790 * This is the actual startup routine for a new connection. We expect that 791 * the SMTP buffers are flushed and the "220 Ready to start TLS" was sent to 792 * the client, so that we can immediately start the TLS handshake process. 793 */ 794 TLS_SESS_STATE *tls_server_start(const TLS_SERVER_START_PROPS *props) 795 { 796 int sts; 797 TLS_SESS_STATE *TLScontext; 798 const char *cipher_list; 799 TLS_APPL_STATE *app_ctx = props->ctx; 800 int log_mask = app_ctx->log_mask; 801 802 /* 803 * Implicitly enable logging of trust chain errors when verified certs 804 * are required. 805 */ 806 if (props->requirecert) 807 log_mask |= TLS_LOG_UNTRUSTED; 808 809 if (log_mask & TLS_LOG_VERBOSE) 810 msg_info("setting up TLS connection from %s", props->namaddr); 811 812 /* 813 * Allocate a new TLScontext for the new connection and get an SSL 814 * structure. Add the location of TLScontext to the SSL to later retrieve 815 * the information inside the tls_verify_certificate_callback(). 816 */ 817 TLScontext = tls_alloc_sess_context(log_mask, props->namaddr); 818 TLScontext->cache_type = app_ctx->cache_type; 819 820 ERR_clear_error(); 821 if ((TLScontext->con = (SSL *) SSL_new(app_ctx->ssl_ctx)) == 0) { 822 msg_warn("Could not allocate 'TLScontext->con' with SSL_new()"); 823 tls_print_errors(); 824 tls_free_context(TLScontext); 825 return (0); 826 } 827 cipher_list = tls_set_ciphers(TLScontext, props->cipher_grade, 828 props->cipher_exclusions); 829 if (cipher_list == 0) { 830 /* already warned */ 831 tls_free_context(TLScontext); 832 return (0); 833 } 834 if (log_mask & TLS_LOG_VERBOSE) 835 msg_info("%s: TLS cipher list \"%s\"", props->namaddr, cipher_list); 836 837 TLScontext->serverid = mystrdup(props->serverid); 838 TLScontext->am_server = 1; 839 TLScontext->stream = props->stream; 840 TLScontext->mdalg = props->mdalg; 841 842 if (!SSL_set_ex_data(TLScontext->con, TLScontext_index, TLScontext)) { 843 msg_warn("Could not set application data for 'TLScontext->con'"); 844 tls_print_errors(); 845 tls_free_context(TLScontext); 846 return (0); 847 } 848 #ifdef SSL_SECOP_PEER 849 /* When authenticating the peer, use 80-bit plus OpenSSL security level */ 850 if (props->requirecert) 851 SSL_set_security_level(TLScontext->con, 1); 852 #endif 853 854 /* 855 * Before really starting anything, try to seed the PRNG a little bit 856 * more. 857 */ 858 tls_int_seed(); 859 (void) tls_ext_seed(var_tls_daemon_rand_bytes); 860 861 /* 862 * Connect the SSL connection with the network socket. 863 */ 864 if (SSL_set_fd(TLScontext->con, props->stream == 0 ? props->fd : 865 vstream_fileno(props->stream)) != 1) { 866 msg_info("SSL_set_fd error to %s", props->namaddr); 867 tls_print_errors(); 868 uncache_session(app_ctx->ssl_ctx, TLScontext); 869 tls_free_context(TLScontext); 870 return (0); 871 } 872 873 /* 874 * If the debug level selected is high enough, all of the data is dumped: 875 * TLS_LOG_TLSPKTS will dump the SSL negotiation, TLS_LOG_ALLPKTS will 876 * dump everything. 877 * 878 * We do have an SSL_set_fd() and now suddenly a BIO_ routine is called? 879 * Well there is a BIO below the SSL routines that is automatically 880 * created for us, so we can use it for debugging purposes. 881 */ 882 if (log_mask & TLS_LOG_TLSPKTS) 883 tls_set_bio_callback(SSL_get_rbio(TLScontext->con), tls_bio_dump_cb); 884 885 /* 886 * If we don't trigger the handshake in the library, leave control over 887 * SSL_accept/read/write/etc with the application. 888 */ 889 if (props->stream == 0) 890 return (TLScontext); 891 892 /* 893 * Turn on non-blocking I/O so that we can enforce timeouts on network 894 * I/O. 895 */ 896 non_blocking(vstream_fileno(props->stream), NON_BLOCKING); 897 898 /* 899 * Start TLS negotiations. This process is a black box that invokes our 900 * call-backs for session caching and certificate verification. 901 * 902 * Error handling: If the SSL handshake fails, we print out an error message 903 * and remove all TLS state concerning this session. 904 */ 905 sts = tls_bio_accept(vstream_fileno(props->stream), props->timeout, 906 TLScontext); 907 if (sts <= 0) { 908 if (ERR_peek_error() != 0) { 909 msg_info("SSL_accept error from %s: %d", props->namaddr, sts); 910 tls_print_errors(); 911 } else if (errno != 0) { 912 msg_info("SSL_accept error from %s: %m", props->namaddr); 913 } else { 914 msg_info("SSL_accept error from %s: lost connection", 915 props->namaddr); 916 } 917 tls_free_context(TLScontext); 918 return (0); 919 } 920 return (tls_server_post_accept(TLScontext)); 921 } 922 923 /* tls_server_post_accept - post-handshake processing */ 924 925 TLS_SESS_STATE *tls_server_post_accept(TLS_SESS_STATE *TLScontext) 926 { 927 const SSL_CIPHER *cipher; 928 X509 *peer; 929 char buf[CCERT_BUFSIZ]; 930 931 /* Turn off packet dump if only dumping the handshake */ 932 if ((TLScontext->log_mask & TLS_LOG_ALLPKTS) == 0) 933 tls_set_bio_callback(SSL_get_rbio(TLScontext->con), 0); 934 935 /* 936 * The caller may want to know if this session was reused or if a new 937 * session was negotiated. 938 */ 939 TLScontext->session_reused = SSL_session_reused(TLScontext->con); 940 if ((TLScontext->log_mask & TLS_LOG_CACHE) && TLScontext->session_reused) 941 msg_info("%s: Reusing old session%s", TLScontext->namaddr, 942 TLScontext->ticketed ? " (RFC 5077 session ticket)" : ""); 943 944 /* 945 * Let's see whether a peer certificate is available and what is the 946 * actual information. We want to save it for later use. 947 */ 948 peer = TLS_PEEK_PEER_CERT(TLScontext->con); 949 if (peer != NULL) { 950 TLScontext->peer_status |= TLS_CERT_FLAG_PRESENT; 951 if (SSL_get_verify_result(TLScontext->con) == X509_V_OK) 952 TLScontext->peer_status |= TLS_CERT_FLAG_TRUSTED; 953 954 if (TLScontext->log_mask & TLS_LOG_VERBOSE) { 955 X509_NAME_oneline(X509_get_subject_name(peer), 956 buf, sizeof(buf)); 957 msg_info("subject=%s", printable(buf, '?')); 958 X509_NAME_oneline(X509_get_issuer_name(peer), 959 buf, sizeof(buf)); 960 msg_info("issuer=%s", printable(buf, '?')); 961 } 962 TLScontext->peer_CN = tls_peer_CN(peer, TLScontext); 963 TLScontext->issuer_CN = tls_issuer_CN(peer, TLScontext); 964 TLScontext->peer_cert_fprint = tls_cert_fprint(peer, TLScontext->mdalg); 965 TLScontext->peer_pkey_fprint = tls_pkey_fprint(peer, TLScontext->mdalg); 966 967 if (TLScontext->log_mask & (TLS_LOG_VERBOSE | TLS_LOG_PEERCERT)) { 968 msg_info("%s: subject_CN=%s, issuer=%s, fingerprint=%s" 969 ", pkey_fingerprint=%s", 970 TLScontext->namaddr, 971 TLScontext->peer_CN, TLScontext->issuer_CN, 972 TLScontext->peer_cert_fprint, 973 TLScontext->peer_pkey_fprint); 974 } 975 TLS_FREE_PEER_CERT(peer); 976 977 /* 978 * Give them a clue. Problems with trust chain verification are 979 * logged when the session is first negotiated, before the session is 980 * stored into the cache. We don't want mystery failures, so log the 981 * fact the real problem is to be found in the past. 982 */ 983 if (!TLS_CERT_IS_TRUSTED(TLScontext) 984 && (TLScontext->log_mask & TLS_LOG_UNTRUSTED)) { 985 if (TLScontext->session_reused == 0) 986 tls_log_verify_error(TLScontext); 987 else 988 msg_info("%s: re-using session with untrusted certificate, " 989 "look for details earlier in the log", 990 TLScontext->namaddr); 991 } 992 } else { 993 TLScontext->peer_CN = mystrdup(""); 994 TLScontext->issuer_CN = mystrdup(""); 995 TLScontext->peer_cert_fprint = mystrdup(""); 996 TLScontext->peer_pkey_fprint = mystrdup(""); 997 } 998 999 /* 1000 * Finally, collect information about protocol and cipher for logging 1001 */ 1002 TLScontext->protocol = SSL_get_version(TLScontext->con); 1003 cipher = SSL_get_current_cipher(TLScontext->con); 1004 TLScontext->cipher_name = SSL_CIPHER_get_name(cipher); 1005 TLScontext->cipher_usebits = SSL_CIPHER_get_bits(cipher, 1006 &(TLScontext->cipher_algbits)); 1007 1008 /* 1009 * If the library triggered the SSL handshake, switch to the 1010 * tls_timed_read/write() functions and make the TLScontext available to 1011 * those functions. Otherwise, leave control over SSL_read/write/etc. 1012 * with the application. 1013 */ 1014 if (TLScontext->stream != 0) 1015 tls_stream_start(TLScontext->stream, TLScontext); 1016 1017 /* 1018 * With the handshake done, extract TLS 1.3 signature metadata. 1019 */ 1020 tls_get_signature_params(TLScontext); 1021 1022 /* 1023 * All the key facts in a single log entry. 1024 */ 1025 if (TLScontext->log_mask & TLS_LOG_SUMMARY) 1026 tls_log_summary(TLS_ROLE_SERVER, TLS_USAGE_NEW, TLScontext); 1027 1028 tls_int_seed(); 1029 1030 return (TLScontext); 1031 } 1032 1033 #endif /* USE_TLS */ 1034