1 /* $NetBSD: tls_client.c,v 1.9 2014/07/06 19:45:50 tron Exp $ */ 2 3 /*++ 4 /* NAME 5 /* tls_client 6 /* SUMMARY 7 /* client-side TLS engine 8 /* SYNOPSIS 9 /* #include <tls.h> 10 /* 11 /* TLS_APPL_STATE *tls_client_init(init_props) 12 /* const TLS_CLIENT_INIT_PROPS *init_props; 13 /* 14 /* TLS_SESS_STATE *tls_client_start(start_props) 15 /* const TLS_CLIENT_START_PROPS *start_props; 16 /* 17 /* void tls_client_stop(app_ctx, stream, failure, TLScontext) 18 /* TLS_APPL_STATE *app_ctx; 19 /* VSTREAM *stream; 20 /* int failure; 21 /* TLS_SESS_STATE *TLScontext; 22 /* DESCRIPTION 23 /* This module is the interface between Postfix TLS clients, 24 /* the OpenSSL library and the TLS entropy and cache manager. 25 /* 26 /* The SMTP client will attempt to verify the server hostname 27 /* against the names listed in the server certificate. When 28 /* a hostname match is required, the verification fails 29 /* on certificate verification or hostname mis-match errors. 30 /* When no hostname match is required, hostname verification 31 /* failures are logged but they do not affect the TLS handshake 32 /* or the SMTP session. 33 /* 34 /* The rules for peer name wild-card matching differ between 35 /* RFC 2818 (HTTP over TLS) and RFC 2830 (LDAP over TLS), while 36 /* RFC RFC3207 (SMTP over TLS) does not specify a rule at all. 37 /* Postfix uses a restrictive match algorithm. One asterisk 38 /* ('*') is allowed as the left-most component of a wild-card 39 /* certificate name; it matches the left-most component of 40 /* the peer hostname. 41 /* 42 /* Another area where RFCs aren't always explicit is the 43 /* handling of dNSNames in peer certificates. RFC 3207 (SMTP 44 /* over TLS) does not mention dNSNames. Postfix follows the 45 /* strict rules in RFC 2818 (HTTP over TLS), section 3.1: The 46 /* Subject Alternative Name/dNSName has precedence over 47 /* CommonName. If at least one dNSName is provided, Postfix 48 /* verifies those against the peer hostname and ignores the 49 /* CommonName, otherwise Postfix verifies the CommonName 50 /* against the peer hostname. 51 /* 52 /* tls_client_init() is called once when the SMTP client 53 /* initializes. 54 /* Certificate details are also decided during this phase, 55 /* so peer-specific certificate selection is not possible. 56 /* 57 /* tls_client_start() activates the TLS session over an established 58 /* stream. We expect that network buffers are flushed and 59 /* the TLS handshake can begin immediately. 60 /* 61 /* tls_client_stop() sends the "close notify" alert via 62 /* SSL_shutdown() to the peer and resets all connection specific 63 /* TLS data. As RFC2487 does not specify a separate shutdown, it 64 /* is assumed that the underlying TCP connection is shut down 65 /* immediately afterwards. Any further writes to the channel will 66 /* be discarded, and any further reads will report end-of-file. 67 /* If the failure flag is set, no SSL_shutdown() handshake is performed. 68 /* 69 /* Once the TLS connection is initiated, information about the TLS 70 /* state is available via the TLScontext structure: 71 /* .IP TLScontext->protocol 72 /* the protocol name (SSLv2, SSLv3, TLSv1), 73 /* .IP TLScontext->cipher_name 74 /* the cipher name (e.g. RC4/MD5), 75 /* .IP TLScontext->cipher_usebits 76 /* the number of bits actually used (e.g. 40), 77 /* .IP TLScontext->cipher_algbits 78 /* the number of bits the algorithm is based on (e.g. 128). 79 /* .PP 80 /* The last two values may differ from each other when export-strength 81 /* encryption is used. 82 /* 83 /* If the peer offered a certificate, part of the certificate data are 84 /* available as: 85 /* .IP TLScontext->peer_status 86 /* A bitmask field that records the status of the peer certificate 87 /* verification. This consists of one or more of 88 /* TLS_CERT_FLAG_PRESENT, TLS_CERT_FLAG_ALTNAME, TLS_CERT_FLAG_TRUSTED 89 /* and TLS_CERT_FLAG_MATCHED. 90 /* .IP TLScontext->peer_CN 91 /* Extracted CommonName of the peer, or zero-length string if the 92 /* information could not be extracted. 93 /* .IP TLScontext->issuer_CN 94 /* Extracted CommonName of the issuer, or zero-length string if the 95 /* information could not be extracted. 96 /* .IP TLScontext->peer_cert_fprint 97 /* At the fingerprint security level, if the peer presented a certificate 98 /* the fingerprint of the certificate. 99 /* .PP 100 /* If no peer certificate is presented the peer_status is set to 0. 101 /* LICENSE 102 /* .ad 103 /* .fi 104 /* This software is free. You can do with it whatever you want. 105 /* The original author kindly requests that you acknowledge 106 /* the use of his software. 107 /* AUTHOR(S) 108 /* Originally written by: 109 /* Lutz Jaenicke 110 /* BTU Cottbus 111 /* Allgemeine Elektrotechnik 112 /* Universitaetsplatz 3-4 113 /* D-03044 Cottbus, Germany 114 /* 115 /* Updated by: 116 /* Wietse Venema 117 /* IBM T.J. Watson Research 118 /* P.O. Box 704 119 /* Yorktown Heights, NY 10598, USA 120 /* 121 /* Victor Duchovni 122 /* Morgan Stanley 123 /*--*/ 124 125 /* System library. */ 126 127 #include <sys_defs.h> 128 129 #ifdef USE_TLS 130 #include <string.h> 131 132 #ifdef STRCASECMP_IN_STRINGS_H 133 #include <strings.h> 134 #endif 135 136 /* Utility library. */ 137 138 #include <argv.h> 139 #include <mymalloc.h> 140 #include <vstring.h> 141 #include <vstream.h> 142 #include <stringops.h> 143 #include <msg.h> 144 #include <iostuff.h> /* non-blocking */ 145 146 /* Global library. */ 147 148 #include <mail_params.h> 149 150 /* TLS library. */ 151 152 #include <tls_mgr.h> 153 #define TLS_INTERNAL 154 #include <tls.h> 155 156 /* Application-specific. */ 157 158 #define STR vstring_str 159 #define LEN VSTRING_LEN 160 161 /* load_clnt_session - load session from client cache (non-callback) */ 162 163 static SSL_SESSION *load_clnt_session(TLS_SESS_STATE *TLScontext) 164 { 165 const char *myname = "load_clnt_session"; 166 SSL_SESSION *session = 0; 167 VSTRING *session_data = vstring_alloc(2048); 168 169 /* 170 * Prepare the query. 171 */ 172 if (TLScontext->log_mask & TLS_LOG_CACHE) 173 /* serverid contains transport:addr:port information */ 174 msg_info("looking for session %s in %s cache", 175 TLScontext->serverid, TLScontext->cache_type); 176 177 /* 178 * We only get here if the cache_type is not empty. This code is not 179 * called unless caching is enabled and the cache_type is stored in the 180 * server SSL context. 181 */ 182 if (TLScontext->cache_type == 0) 183 msg_panic("%s: null client session cache type in session lookup", 184 myname); 185 186 /* 187 * Look up and activate the SSL_SESSION object. Errors are non-fatal, 188 * since caching is only an optimization. 189 */ 190 if (tls_mgr_lookup(TLScontext->cache_type, TLScontext->serverid, 191 session_data) == TLS_MGR_STAT_OK) { 192 session = tls_session_activate(STR(session_data), LEN(session_data)); 193 if (session) { 194 if (TLScontext->log_mask & TLS_LOG_CACHE) 195 /* serverid contains transport:addr:port information */ 196 msg_info("reloaded session %s from %s cache", 197 TLScontext->serverid, TLScontext->cache_type); 198 } 199 } 200 201 /* 202 * Clean up. 203 */ 204 vstring_free(session_data); 205 206 return (session); 207 } 208 209 /* new_client_session_cb - name new session and save it to client cache */ 210 211 static int new_client_session_cb(SSL *ssl, SSL_SESSION *session) 212 { 213 const char *myname = "new_client_session_cb"; 214 TLS_SESS_STATE *TLScontext; 215 VSTRING *session_data; 216 217 /* 218 * The cache name (if caching is enabled in tlsmgr(8)) and the cache ID 219 * string for this session are stored in the TLScontext. It cannot be 220 * null at this point. 221 */ 222 if ((TLScontext = SSL_get_ex_data(ssl, TLScontext_index)) == 0) 223 msg_panic("%s: null TLScontext in new session callback", myname); 224 225 /* 226 * We only get here if the cache_type is not empty. This callback is not 227 * set unless caching is enabled and the cache_type is stored in the 228 * server SSL context. 229 */ 230 if (TLScontext->cache_type == 0) 231 msg_panic("%s: null session cache type in new session callback", 232 myname); 233 234 if (TLScontext->log_mask & TLS_LOG_CACHE) 235 /* serverid contains transport:addr:port information */ 236 msg_info("save session %s to %s cache", 237 TLScontext->serverid, TLScontext->cache_type); 238 239 /* 240 * Passivate and save the session object. Errors are non-fatal, since 241 * caching is only an optimization. 242 */ 243 if ((session_data = tls_session_passivate(session)) != 0) { 244 tls_mgr_update(TLScontext->cache_type, TLScontext->serverid, 245 STR(session_data), LEN(session_data)); 246 vstring_free(session_data); 247 } 248 249 /* 250 * Clean up. 251 */ 252 SSL_SESSION_free(session); /* 200502 */ 253 254 return (1); 255 } 256 257 /* uncache_session - remove session from the external cache */ 258 259 static void uncache_session(SSL_CTX *ctx, TLS_SESS_STATE *TLScontext) 260 { 261 SSL_SESSION *session = SSL_get_session(TLScontext->con); 262 263 SSL_CTX_remove_session(ctx, session); 264 if (TLScontext->cache_type == 0 || TLScontext->serverid == 0) 265 return; 266 267 if (TLScontext->log_mask & TLS_LOG_CACHE) 268 /* serverid contains transport:addr:port information */ 269 msg_info("remove session %s from client cache", TLScontext->serverid); 270 271 tls_mgr_delete(TLScontext->cache_type, TLScontext->serverid); 272 } 273 274 /* tls_client_init - initialize client-side TLS engine */ 275 276 TLS_APPL_STATE *tls_client_init(const TLS_CLIENT_INIT_PROPS *props) 277 { 278 long off = 0; 279 int cachable; 280 int scache_timeout; 281 SSL_CTX *client_ctx; 282 TLS_APPL_STATE *app_ctx; 283 int log_mask; 284 285 /* 286 * Convert user loglevel to internal logmask. 287 */ 288 log_mask = tls_log_mask(props->log_param, props->log_level); 289 290 if (log_mask & TLS_LOG_VERBOSE) 291 msg_info("initializing the client-side TLS engine"); 292 293 /* 294 * Load (mostly cipher related) TLS-library internal main.cf parameters. 295 */ 296 tls_param_init(); 297 298 /* 299 * Detect mismatch between compile-time headers and run-time library. 300 */ 301 tls_check_version(); 302 303 /* 304 * Initialize the OpenSSL library by the book! To start with, we must 305 * initialize the algorithms. We want cleartext error messages instead of 306 * just error codes, so we load the error_strings. 307 */ 308 SSL_load_error_strings(); 309 OpenSSL_add_ssl_algorithms(); 310 311 /* 312 * Create an application data index for SSL objects, so that we can 313 * attach TLScontext information; this information is needed inside 314 * tls_verify_certificate_callback(). 315 */ 316 if (TLScontext_index < 0) { 317 if ((TLScontext_index = SSL_get_ex_new_index(0, 0, 0, 0, 0)) < 0) { 318 msg_warn("Cannot allocate SSL application data index: " 319 "disabling TLS support"); 320 return (0); 321 } 322 } 323 324 /* 325 * If the administrator specifies an unsupported digest algorithm, fail 326 * now, rather than in the middle of a TLS handshake. 327 */ 328 if (!tls_validate_digest(props->mdalg)) { 329 msg_warn("disabling TLS support"); 330 return (0); 331 } 332 333 /* 334 * Initialize the PRNG (Pseudo Random Number Generator) with some seed 335 * from external and internal sources. Don't enable TLS without some real 336 * entropy. 337 */ 338 if (tls_ext_seed(var_tls_daemon_rand_bytes) < 0) { 339 msg_warn("no entropy for TLS key generation: disabling TLS support"); 340 return (0); 341 } 342 tls_int_seed(); 343 344 /* 345 * The SSL/TLS specifications require the client to send a message in the 346 * oldest specification it understands with the highest level it 347 * understands in the message. RFC2487 is only specified for TLSv1, but 348 * we want to be as compatible as possible, so we will start off with a 349 * SSLv2 greeting allowing the best we can offer: TLSv1. We can restrict 350 * this with the options setting later, anyhow. 351 */ 352 ERR_clear_error(); 353 if ((client_ctx = SSL_CTX_new(SSLv23_client_method())) == 0) { 354 msg_warn("cannot allocate client SSL_CTX: disabling TLS support"); 355 tls_print_errors(); 356 return (0); 357 } 358 359 /* 360 * See the verify callback in tls_verify.c 361 */ 362 SSL_CTX_set_verify_depth(client_ctx, props->verifydepth + 1); 363 364 /* 365 * Protocol selection is destination dependent, so we delay the protocol 366 * selection options to the per-session SSL object. 367 */ 368 off |= tls_bug_bits(); 369 SSL_CTX_set_options(client_ctx, off); 370 371 /* 372 * Set the call-back routine for verbose logging. 373 */ 374 if (log_mask & TLS_LOG_DEBUG) 375 SSL_CTX_set_info_callback(client_ctx, tls_info_callback); 376 377 /* 378 * Load the CA public key certificates for both the client cert and for 379 * the verification of server certificates. As provided by OpenSSL we 380 * support two types of CA certificate handling: One possibility is to 381 * add all CA certificates to one large CAfile, the other possibility is 382 * a directory pointed to by CApath, containing separate files for each 383 * CA with softlinks named after the hash values of the certificate. The 384 * first alternative has the advantage that the file is opened and read 385 * at startup time, so that you don't have the hassle to maintain another 386 * copy of the CApath directory for chroot-jail. 387 */ 388 if (tls_set_ca_certificate_info(client_ctx, 389 props->CAfile, props->CApath) < 0) { 390 /* tls_set_ca_certificate_info() already logs a warning. */ 391 SSL_CTX_free(client_ctx); /* 200411 */ 392 return (0); 393 } 394 395 /* 396 * We do not need a client certificate, so the certificates are only 397 * loaded (and checked) if supplied. A clever client would handle 398 * multiple client certificates and decide based on the list of 399 * acceptable CAs, sent by the server, which certificate to submit. 400 * OpenSSL does however not do this and also has no call-back hooks to 401 * easily implement it. 402 * 403 * Load the client public key certificate and private key from file and 404 * check whether the cert matches the key. We can use RSA certificates 405 * ("cert") DSA certificates ("dcert") or ECDSA certificates ("eccert"). 406 * All three can be made available at the same time. The CA certificates 407 * for all three are handled in the same setup already finished. Which 408 * one is used depends on the cipher negotiated (that is: the first 409 * cipher listed by the client which does match the server). The client 410 * certificate is presented after the server chooses the session cipher, 411 * so we will just present the right cert for the chosen cipher (if it 412 * uses certificates). 413 */ 414 if (tls_set_my_certificate_key_info(client_ctx, 415 props->cert_file, 416 props->key_file, 417 props->dcert_file, 418 props->dkey_file, 419 props->eccert_file, 420 props->eckey_file) < 0) { 421 /* tls_set_my_certificate_key_info() already logs a warning. */ 422 SSL_CTX_free(client_ctx); /* 200411 */ 423 return (0); 424 } 425 426 /* 427 * According to the OpenSSL documentation, temporary RSA key is needed 428 * export ciphers are in use. We have to provide one, so well, we just do 429 * it. 430 */ 431 SSL_CTX_set_tmp_rsa_callback(client_ctx, tls_tmp_rsa_cb); 432 433 /* 434 * Finally, the setup for the server certificate checking, done "by the 435 * book". 436 */ 437 SSL_CTX_set_verify(client_ctx, SSL_VERIFY_NONE, 438 tls_verify_certificate_callback); 439 440 /* 441 * Initialize the session cache. 442 * 443 * Since the client does not search an internal cache, we simply disable it. 444 * It is only useful for expiring old sessions, but we do that in the 445 * tlsmgr(8). 446 * 447 * This makes SSL_CTX_remove_session() not useful for flushing broken 448 * sessions from the external cache, so we must delete them directly (not 449 * via a callback). 450 */ 451 if (tls_mgr_policy(props->cache_type, &cachable, 452 &scache_timeout) != TLS_MGR_STAT_OK) 453 scache_timeout = 0; 454 if (scache_timeout <= 0) 455 cachable = 0; 456 457 /* 458 * Allocate an application context, and populate with mandatory protocol 459 * and cipher data. 460 */ 461 app_ctx = tls_alloc_app_context(client_ctx, log_mask); 462 463 /* 464 * The external session cache is implemented by the tlsmgr(8) process. 465 */ 466 if (cachable) { 467 468 app_ctx->cache_type = mystrdup(props->cache_type); 469 470 /* 471 * OpenSSL does not use callbacks to load sessions from a client 472 * cache, so we must invoke that function directly. Apparently, 473 * OpenSSL does not provide a way to pass session names from here to 474 * call-back routines that do session lookup. 475 * 476 * OpenSSL can, however, automatically save newly created sessions for 477 * us by callback (we create the session name in the call-back 478 * function). 479 * 480 * XXX gcc 2.95 can't compile #ifdef .. #endif in the expansion of 481 * SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_NO_INTERNAL_STORE | 482 * SSL_SESS_CACHE_NO_AUTO_CLEAR. 483 */ 484 #ifndef SSL_SESS_CACHE_NO_INTERNAL_STORE 485 #define SSL_SESS_CACHE_NO_INTERNAL_STORE 0 486 #endif 487 488 SSL_CTX_set_session_cache_mode(client_ctx, 489 SSL_SESS_CACHE_CLIENT | 490 SSL_SESS_CACHE_NO_INTERNAL_STORE | 491 SSL_SESS_CACHE_NO_AUTO_CLEAR); 492 SSL_CTX_sess_set_new_cb(client_ctx, new_client_session_cb); 493 494 /* 495 * OpenSSL ignores timed-out sessions. We need to set the internal 496 * cache timeout at least as high as the external cache timeout. This 497 * applies even if no internal cache is used. We set the session to 498 * twice the cache lifetime. This way a session always lasts longer 499 * than its lifetime in the cache. 500 */ 501 SSL_CTX_set_timeout(client_ctx, 2 * scache_timeout); 502 } 503 return (app_ctx); 504 } 505 506 /* match_servername - match servername against pattern */ 507 508 static int match_servername(const char *certid, 509 const TLS_CLIENT_START_PROPS *props) 510 { 511 const ARGV *cmatch_argv; 512 const char *nexthop = props->nexthop; 513 const char *hname = props->host; 514 const char *domain; 515 const char *parent; 516 int match_subdomain; 517 int i; 518 int idlen; 519 int domlen; 520 521 if ((cmatch_argv = props->matchargv) == 0) 522 return 0; 523 524 /* 525 * Match the certid against each pattern until we find a match. 526 */ 527 for (i = 0; i < cmatch_argv->argc; ++i) { 528 match_subdomain = 0; 529 if (!strcasecmp(cmatch_argv->argv[i], "nexthop")) 530 domain = nexthop; 531 else if (!strcasecmp(cmatch_argv->argv[i], "hostname")) 532 domain = hname; 533 else if (!strcasecmp(cmatch_argv->argv[i], "dot-nexthop")) { 534 domain = nexthop; 535 match_subdomain = 1; 536 } else { 537 domain = cmatch_argv->argv[i]; 538 if (*domain == '.' && domain[1] != '\0') { 539 ++domain; 540 match_subdomain = 1; 541 } 542 } 543 544 /* 545 * Sub-domain match: certid is any sub-domain of hostname. 546 */ 547 if (match_subdomain) { 548 if ((idlen = strlen(certid)) > (domlen = strlen(domain)) + 1 549 && certid[idlen - domlen - 1] == '.' 550 && !strcasecmp(certid + (idlen - domlen), domain)) 551 return (1); 552 else 553 continue; 554 } 555 556 /* 557 * Exact match and initial "*" match. The initial "*" in a certid 558 * matches one (if var_tls_multi_label is false) or more hostname 559 * components under the condition that the certid contains multiple 560 * hostname components. 561 */ 562 if (!strcasecmp(certid, domain) 563 || (certid[0] == '*' && certid[1] == '.' && certid[2] != 0 564 && (parent = strchr(domain, '.')) != 0 565 && (idlen = strlen(certid + 1)) <= (domlen = strlen(parent)) 566 && strcasecmp(var_tls_multi_wildcard == 0 ? parent : 567 parent + domlen - idlen, 568 certid + 1) == 0)) 569 return (1); 570 } 571 return (0); 572 } 573 574 /* verify_extract_name - verify peer name and extract peer information */ 575 576 static void verify_extract_name(TLS_SESS_STATE *TLScontext, X509 *peercert, 577 const TLS_CLIENT_START_PROPS *props) 578 { 579 int i; 580 int r; 581 int matched = 0; 582 int dnsname_match; 583 int verify_peername = 0; 584 int log_certmatch; 585 int verbose; 586 const char *dnsname; 587 const GENERAL_NAME *gn; 588 general_name_stack_t *gens; 589 590 /* 591 * On exit both peer_CN and issuer_CN should be set. 592 */ 593 TLScontext->issuer_CN = tls_issuer_CN(peercert, TLScontext); 594 595 /* 596 * Is the certificate trust chain valid and trusted? 597 */ 598 if (SSL_get_verify_result(TLScontext->con) == X509_V_OK) 599 TLScontext->peer_status |= TLS_CERT_FLAG_TRUSTED; 600 601 /* 602 * With fingerprint or dane we may already be done. Otherwise, verify the 603 * peername if using traditional PKI or DANE with trust-anchors. 604 */ 605 if (!TLS_CERT_IS_MATCHED(TLScontext) 606 && TLS_CERT_IS_TRUSTED(TLScontext) 607 && TLS_MUST_TRUST(props->tls_level)) 608 verify_peername = 1; 609 610 /* Force cert processing so we can log the data? */ 611 log_certmatch = TLScontext->log_mask & TLS_LOG_CERTMATCH; 612 613 /* Log cert details when processing? */ 614 verbose = log_certmatch || (TLScontext->log_mask & TLS_LOG_VERBOSE); 615 616 if (verify_peername || log_certmatch) { 617 618 /* 619 * Verify the dNSName(s) in the peer certificate against the nexthop 620 * and hostname. 621 * 622 * If DNS names are present, we use the first matching (or else simply 623 * the first) DNS name as the subject CN. The CommonName in the 624 * issuer DN is obsolete when SubjectAltName is available. This 625 * yields much less surprising logs, because we log the name we 626 * verified or a name we checked and failed to match. 627 * 628 * XXX: The nexthop and host name may both be the same network address 629 * rather than a DNS name. In this case we really should be looking 630 * for GEN_IPADD entries, not GEN_DNS entries. 631 * 632 * XXX: In ideal world the caller who used the address to build the 633 * connection would tell us that the nexthop is the connection 634 * address, but if that is not practical, we can parse the nexthop 635 * again here. 636 */ 637 gens = X509_get_ext_d2i(peercert, NID_subject_alt_name, 0, 0); 638 if (gens) { 639 r = sk_GENERAL_NAME_num(gens); 640 for (i = 0; i < r; ++i) { 641 gn = sk_GENERAL_NAME_value(gens, i); 642 if (gn->type != GEN_DNS) 643 continue; 644 645 /* 646 * Even if we have an invalid DNS name, we still ultimately 647 * ignore the CommonName, because subjectAltName:DNS is 648 * present (though malformed). Replace any previous peer_CN 649 * if empty or we get a match. 650 * 651 * We always set at least an empty peer_CN if the ALTNAME cert 652 * flag is set. If not, we set peer_CN from the cert 653 * CommonName below, so peer_CN is always non-null on return. 654 */ 655 TLScontext->peer_status |= TLS_CERT_FLAG_ALTNAME; 656 dnsname = tls_dns_name(gn, TLScontext); 657 if (dnsname && *dnsname) { 658 if ((dnsname_match = match_servername(dnsname, props)) != 0) 659 matched++; 660 /* Keep the first matched name. */ 661 if (TLScontext->peer_CN 662 && ((dnsname_match && matched == 1) 663 || *TLScontext->peer_CN == 0)) { 664 myfree(TLScontext->peer_CN); 665 TLScontext->peer_CN = 0; 666 } 667 if (verbose) 668 msg_info("%s: %ssubjectAltName: %s", props->namaddr, 669 dnsname_match ? "Matched " : "", dnsname); 670 } 671 if (TLScontext->peer_CN == 0) 672 TLScontext->peer_CN = mystrdup(dnsname ? dnsname : ""); 673 if (matched && !log_certmatch) 674 break; 675 } 676 if (verify_peername && matched) 677 TLScontext->peer_status |= TLS_CERT_FLAG_MATCHED; 678 679 /* 680 * (Sam Rushing, Ironport) Free stack *and* member GENERAL_NAME 681 * objects 682 */ 683 sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free); 684 } 685 686 /* 687 * No subjectAltNames, peer_CN is taken from CommonName. 688 */ 689 if (TLScontext->peer_CN == 0) { 690 TLScontext->peer_CN = tls_peer_CN(peercert, TLScontext); 691 if (*TLScontext->peer_CN) 692 matched = match_servername(TLScontext->peer_CN, props); 693 if (verify_peername && matched) 694 TLScontext->peer_status |= TLS_CERT_FLAG_MATCHED; 695 if (verbose) 696 msg_info("%s %sCommonName %s", props->namaddr, 697 matched ? "Matched " : "", TLScontext->peer_CN); 698 } else if (verbose) { 699 char *tmpcn = tls_peer_CN(peercert, TLScontext); 700 701 /* 702 * Though the CommonName was superceded by a subjectAltName, log 703 * it when certificate match debugging was requested. 704 */ 705 msg_info("%s CommonName %s", TLScontext->namaddr, tmpcn); 706 myfree(tmpcn); 707 } 708 } else 709 TLScontext->peer_CN = tls_peer_CN(peercert, TLScontext); 710 711 /* 712 * Give them a clue. Problems with trust chain verification are logged 713 * when the session is first negotiated, before the session is stored 714 * into the cache. We don't want mystery failures, so log the fact the 715 * real problem is to be found in the past. 716 */ 717 if (!TLS_CERT_IS_TRUSTED(TLScontext) 718 && (TLScontext->log_mask & TLS_LOG_UNTRUSTED)) { 719 if (TLScontext->session_reused == 0) 720 tls_log_verify_error(TLScontext); 721 else 722 msg_info("%s: re-using session with untrusted certificate, " 723 "look for details earlier in the log", props->namaddr); 724 } 725 } 726 727 /* verify_extract_print - extract and verify peer fingerprint */ 728 729 static void verify_extract_print(TLS_SESS_STATE *TLScontext, X509 *peercert, 730 const TLS_CLIENT_START_PROPS *props) 731 { 732 TLScontext->peer_cert_fprint = tls_cert_fprint(peercert, props->mdalg); 733 TLScontext->peer_pkey_fprint = tls_pkey_fprint(peercert, props->mdalg); 734 735 /* 736 * Whether the level is "dane" or "fingerprint" when the peer certificate 737 * is matched without resorting to a separate CA, we set both the trusted 738 * and matched bits. This simplifies logic in smtp_proto.c where "dane" 739 * must be trusted and matched, since some "dane" TLSA RRsets do use CAs. 740 * 741 * This also suppresses spurious logging of the peer certificate as 742 * untrusted in verify_extract_name(). 743 */ 744 if (TLS_DANE_HASEE(props->dane) 745 && tls_dane_match(TLScontext, TLS_DANE_EE, peercert, 0)) 746 TLScontext->peer_status |= 747 TLS_CERT_FLAG_TRUSTED | TLS_CERT_FLAG_MATCHED; 748 } 749 750 /* 751 * This is the actual startup routine for the connection. We expect that the 752 * buffers are flushed and the "220 Ready to start TLS" was received by us, 753 * so that we can immediately start the TLS handshake process. 754 */ 755 TLS_SESS_STATE *tls_client_start(const TLS_CLIENT_START_PROPS *props) 756 { 757 int sts; 758 int protomask; 759 const char *cipher_list; 760 SSL_SESSION *session = 0; 761 SSL_CIPHER_const SSL_CIPHER *cipher; 762 X509 *peercert; 763 TLS_SESS_STATE *TLScontext; 764 TLS_APPL_STATE *app_ctx = props->ctx; 765 char *myserverid; 766 int log_mask = app_ctx->log_mask; 767 768 /* 769 * When certificate verification is required, log trust chain validation 770 * errors even when disabled by default for opportunistic sessions. For 771 * "dane" this only applies when using trust-anchor associations. 772 */ 773 if (TLS_MUST_TRUST(props->tls_level) 774 && (props->tls_level != TLS_LEV_DANE || TLS_DANE_HASTA(props->dane))) 775 log_mask |= TLS_LOG_UNTRUSTED; 776 777 if (log_mask & TLS_LOG_VERBOSE) 778 msg_info("setting up TLS connection to %s", props->namaddr); 779 780 /* 781 * First make sure we have valid protocol and cipher parameters 782 * 783 * Per-session protocol restrictions must be applied to the SSL connection, 784 * as restrictions in the global context cannot be cleared. 785 */ 786 protomask = tls_protocol_mask(props->protocols); 787 if (protomask == TLS_PROTOCOL_INVALID) { 788 /* tls_protocol_mask() logs no warning. */ 789 msg_warn("%s: Invalid TLS protocol list \"%s\": aborting TLS session", 790 props->namaddr, props->protocols); 791 return (0); 792 } 793 /* The DANE level requires SSLv3 or later, not SSLv2. */ 794 if (props->tls_level == TLS_LEV_DANE) 795 protomask |= TLS_PROTOCOL_SSLv2; 796 797 /* 798 * Per session cipher selection for sessions with mandatory encryption 799 * 800 * The cipherlist is applied to the global SSL context, since it is likely 801 * to stay the same between connections, so we make use of a 1-element 802 * cache to return the same result for identical inputs. 803 */ 804 cipher_list = tls_set_ciphers(app_ctx, "TLS", props->cipher_grade, 805 props->cipher_exclusions); 806 if (cipher_list == 0) { 807 msg_warn("%s: %s: aborting TLS session", 808 props->namaddr, vstring_str(app_ctx->why)); 809 return (0); 810 } 811 if (log_mask & TLS_LOG_VERBOSE) 812 msg_info("%s: TLS cipher list \"%s\"", props->namaddr, cipher_list); 813 814 /* 815 * OpenSSL will ignore cached sessions that use the wrong protocol. So we 816 * do not need to filter out cached sessions with the "wrong" protocol, 817 * rather OpenSSL will simply negotiate a new session. 818 * 819 * We salt the session lookup key with the protocol list, so that sessions 820 * found in the cache are plausibly acceptable. 821 * 822 * By the time a TLS client is negotiating ciphers it has already offered to 823 * re-use a session, it is too late to renege on the offer. So we must 824 * not attempt to re-use sessions whose ciphers are too weak. We salt the 825 * session lookup key with the cipher list, so that sessions found in the 826 * cache are always acceptable. 827 * 828 * With DANE, (more generally any TLScontext where we specified explicit 829 * trust-anchor or end-entity certificates) the verification status of 830 * the SSL session depends on the specified list. Since we verify the 831 * certificate only during the initial handshake, we must segregate 832 * sessions with different TA lists. Note, that TA re-verification is 833 * not possible with cached sessions, since these don't hold the complete 834 * peer trust chain. Therefore, we compute a digest of the sorted TA 835 * parameters and append it to the serverid. 836 */ 837 myserverid = tls_serverid_digest(props, protomask, cipher_list); 838 839 /* 840 * Allocate a new TLScontext for the new connection and get an SSL 841 * structure. Add the location of TLScontext to the SSL to later retrieve 842 * the information inside the tls_verify_certificate_callback(). 843 * 844 * If session caching was enabled when TLS was initialized, the cache type 845 * is stored in the client SSL context. 846 */ 847 TLScontext = tls_alloc_sess_context(log_mask, props->namaddr); 848 TLScontext->cache_type = app_ctx->cache_type; 849 850 TLScontext->serverid = myserverid; 851 TLScontext->stream = props->stream; 852 TLScontext->mdalg = props->mdalg; 853 854 /* Alias DANE digest info from props */ 855 TLScontext->dane = props->dane; 856 857 if ((TLScontext->con = SSL_new(app_ctx->ssl_ctx)) == NULL) { 858 msg_warn("Could not allocate 'TLScontext->con' with SSL_new()"); 859 tls_print_errors(); 860 tls_free_context(TLScontext); 861 return (0); 862 } 863 if (!SSL_set_ex_data(TLScontext->con, TLScontext_index, TLScontext)) { 864 msg_warn("Could not set application data for 'TLScontext->con'"); 865 tls_print_errors(); 866 tls_free_context(TLScontext); 867 return (0); 868 } 869 870 /* 871 * Apply session protocol restrictions. 872 */ 873 if (protomask != 0) 874 SSL_set_options(TLScontext->con, TLS_SSL_OP_PROTOMASK(protomask)); 875 876 /* 877 * XXX To avoid memory leaks we must always call SSL_SESSION_free() after 878 * calling SSL_set_session(), regardless of whether or not the session 879 * will be reused. 880 */ 881 if (TLScontext->cache_type) { 882 session = load_clnt_session(TLScontext); 883 if (session) { 884 SSL_set_session(TLScontext->con, session); 885 SSL_SESSION_free(session); /* 200411 */ 886 } 887 } 888 #ifdef TLSEXT_MAXLEN_host_name 889 if (props->tls_level == TLS_LEV_DANE 890 && strlen(props->host) <= TLSEXT_MAXLEN_host_name) { 891 892 /* 893 * With DANE sessions, send an SNI hint. We don't care whether the 894 * server reports finding a matching certificate or not, so no 895 * callback is required to process the server response. Our use of 896 * SNI is limited to giving servers that are (mis)configured to use 897 * SNI the best opportunity to find the certificate they promised via 898 * the associated TLSA RRs. (Generally, server administrators should 899 * avoid SNI, and there are no plans to support SNI in the Postfix 900 * SMTP server). 901 * 902 * Since the hostname is DNSSEC-validated, it must be a DNS FQDN and 903 * thererefore valid for use with SNI. Failure to set a valid SNI 904 * hostname is a memory allocation error, and thus transient. Since 905 * we must not cache the session if we failed to send the SNI name, 906 * we have little choice but to abort. 907 */ 908 if (!SSL_set_tlsext_host_name(TLScontext->con, props->host)) { 909 msg_warn("%s: error setting SNI hostname to: %s", props->namaddr, 910 props->host); 911 tls_free_context(TLScontext); 912 return (0); 913 } 914 if (log_mask & TLS_LOG_DEBUG) 915 msg_info("%s: SNI hostname: %s", props->namaddr, props->host); 916 } 917 #endif 918 919 /* 920 * Before really starting anything, try to seed the PRNG a little bit 921 * more. 922 */ 923 tls_int_seed(); 924 (void) tls_ext_seed(var_tls_daemon_rand_bytes); 925 926 /* 927 * Initialize the SSL connection to connect state. This should not be 928 * necessary anymore since 0.9.3, but the call is still in the library 929 * and maintaining compatibility never hurts. 930 */ 931 SSL_set_connect_state(TLScontext->con); 932 933 /* 934 * Connect the SSL connection with the network socket. 935 */ 936 if (SSL_set_fd(TLScontext->con, vstream_fileno(props->stream)) != 1) { 937 msg_info("SSL_set_fd error to %s", props->namaddr); 938 tls_print_errors(); 939 uncache_session(app_ctx->ssl_ctx, TLScontext); 940 tls_free_context(TLScontext); 941 return (0); 942 } 943 944 /* 945 * Turn on non-blocking I/O so that we can enforce timeouts on network 946 * I/O. 947 */ 948 non_blocking(vstream_fileno(props->stream), NON_BLOCKING); 949 950 /* 951 * If the debug level selected is high enough, all of the data is dumped: 952 * TLS_LOG_TLSPKTS will dump the SSL negotiation, TLS_LOG_ALLPKTS will 953 * dump everything. 954 * 955 * We do have an SSL_set_fd() and now suddenly a BIO_ routine is called? 956 * Well there is a BIO below the SSL routines that is automatically 957 * created for us, so we can use it for debugging purposes. 958 */ 959 if (log_mask & TLS_LOG_TLSPKTS) 960 BIO_set_callback(SSL_get_rbio(TLScontext->con), tls_bio_dump_cb); 961 962 tls_dane_set_callback(app_ctx->ssl_ctx, TLScontext); 963 964 /* 965 * Start TLS negotiations. This process is a black box that invokes our 966 * call-backs for certificate verification. 967 * 968 * Error handling: If the SSL handhake fails, we print out an error message 969 * and remove all TLS state concerning this session. 970 */ 971 sts = tls_bio_connect(vstream_fileno(props->stream), props->timeout, 972 TLScontext); 973 if (sts <= 0) { 974 if (ERR_peek_error() != 0) { 975 msg_info("SSL_connect error to %s: %d", props->namaddr, sts); 976 tls_print_errors(); 977 } else if (errno != 0) { 978 msg_info("SSL_connect error to %s: %m", props->namaddr); 979 } else { 980 msg_info("SSL_connect error to %s: lost connection", 981 props->namaddr); 982 } 983 uncache_session(app_ctx->ssl_ctx, TLScontext); 984 tls_free_context(TLScontext); 985 return (0); 986 } 987 /* Turn off packet dump if only dumping the handshake */ 988 if ((log_mask & TLS_LOG_ALLPKTS) == 0) 989 BIO_set_callback(SSL_get_rbio(TLScontext->con), 0); 990 991 /* 992 * The caller may want to know if this session was reused or if a new 993 * session was negotiated. 994 */ 995 TLScontext->session_reused = SSL_session_reused(TLScontext->con); 996 if ((log_mask & TLS_LOG_CACHE) && TLScontext->session_reused) 997 msg_info("%s: Reusing old session", TLScontext->namaddr); 998 999 /* 1000 * Do peername verification if requested and extract useful information 1001 * from the certificate for later use. 1002 */ 1003 if ((peercert = SSL_get_peer_certificate(TLScontext->con)) != 0) { 1004 TLScontext->peer_status |= TLS_CERT_FLAG_PRESENT; 1005 1006 /* 1007 * Peer name or fingerprint verification as requested. 1008 * Unconditionally set peer_CN, issuer_CN and peer_cert_fprint. Check 1009 * fingerprint first, and avoid logging verified as untrusted in the 1010 * call to verify_extract_name(). 1011 */ 1012 verify_extract_print(TLScontext, peercert, props); 1013 verify_extract_name(TLScontext, peercert, props); 1014 1015 if (TLScontext->log_mask & 1016 (TLS_LOG_CERTMATCH | TLS_LOG_VERBOSE | TLS_LOG_PEERCERT)) 1017 msg_info("%s: subject_CN=%s, issuer_CN=%s, " 1018 "fingerprint=%s, pkey_fingerprint=%s", props->namaddr, 1019 TLScontext->peer_CN, TLScontext->issuer_CN, 1020 TLScontext->peer_cert_fprint, 1021 TLScontext->peer_pkey_fprint); 1022 X509_free(peercert); 1023 } else { 1024 TLScontext->issuer_CN = mystrdup(""); 1025 TLScontext->peer_CN = mystrdup(""); 1026 TLScontext->peer_cert_fprint = mystrdup(""); 1027 TLScontext->peer_pkey_fprint = mystrdup(""); 1028 } 1029 1030 /* 1031 * Finally, collect information about protocol and cipher for logging 1032 */ 1033 TLScontext->protocol = SSL_get_version(TLScontext->con); 1034 cipher = SSL_get_current_cipher(TLScontext->con); 1035 TLScontext->cipher_name = SSL_CIPHER_get_name(cipher); 1036 TLScontext->cipher_usebits = SSL_CIPHER_get_bits(cipher, 1037 &(TLScontext->cipher_algbits)); 1038 1039 /* 1040 * The TLS engine is active. Switch to the tls_timed_read/write() 1041 * functions and make the TLScontext available to those functions. 1042 */ 1043 tls_stream_start(props->stream, TLScontext); 1044 1045 /* 1046 * All the key facts in a single log entry. 1047 */ 1048 if (log_mask & TLS_LOG_SUMMARY) 1049 msg_info("%s TLS connection established to %s: %s with cipher %s " 1050 "(%d/%d bits)", 1051 !TLS_CERT_IS_PRESENT(TLScontext) ? "Anonymous" : 1052 TLS_CERT_IS_MATCHED(TLScontext) ? "Verified" : 1053 TLS_CERT_IS_TRUSTED(TLScontext) ? "Trusted" : "Untrusted", 1054 props->namaddr, TLScontext->protocol, TLScontext->cipher_name, 1055 TLScontext->cipher_usebits, TLScontext->cipher_algbits); 1056 1057 tls_int_seed(); 1058 1059 return (TLScontext); 1060 } 1061 1062 #endif /* USE_TLS */ 1063