1 /* $NetBSD: tls_client.c,v 1.10 2017/02/14 01:16:48 christos Exp $ */ 2 3 /*++ 4 /* NAME 5 /* tls_client 6 /* SUMMARY 7 /* client-side TLS engine 8 /* SYNOPSIS 9 /* #include <tls.h> 10 /* 11 /* TLS_APPL_STATE *tls_client_init(init_props) 12 /* const TLS_CLIENT_INIT_PROPS *init_props; 13 /* 14 /* TLS_SESS_STATE *tls_client_start(start_props) 15 /* const TLS_CLIENT_START_PROPS *start_props; 16 /* 17 /* void tls_client_stop(app_ctx, stream, failure, TLScontext) 18 /* TLS_APPL_STATE *app_ctx; 19 /* VSTREAM *stream; 20 /* int failure; 21 /* TLS_SESS_STATE *TLScontext; 22 /* DESCRIPTION 23 /* This module is the interface between Postfix TLS clients, 24 /* the OpenSSL library and the TLS entropy and cache manager. 25 /* 26 /* The SMTP client will attempt to verify the server hostname 27 /* against the names listed in the server certificate. When 28 /* a hostname match is required, the verification fails 29 /* on certificate verification or hostname mis-match errors. 30 /* When no hostname match is required, hostname verification 31 /* failures are logged but they do not affect the TLS handshake 32 /* or the SMTP session. 33 /* 34 /* The rules for peer name wild-card matching differ between 35 /* RFC 2818 (HTTP over TLS) and RFC 2830 (LDAP over TLS), while 36 /* RFC RFC3207 (SMTP over TLS) does not specify a rule at all. 37 /* Postfix uses a restrictive match algorithm. One asterisk 38 /* ('*') is allowed as the left-most component of a wild-card 39 /* certificate name; it matches the left-most component of 40 /* the peer hostname. 41 /* 42 /* Another area where RFCs aren't always explicit is the 43 /* handling of dNSNames in peer certificates. RFC 3207 (SMTP 44 /* over TLS) does not mention dNSNames. Postfix follows the 45 /* strict rules in RFC 2818 (HTTP over TLS), section 3.1: The 46 /* Subject Alternative Name/dNSName has precedence over 47 /* CommonName. If at least one dNSName is provided, Postfix 48 /* verifies those against the peer hostname and ignores the 49 /* CommonName, otherwise Postfix verifies the CommonName 50 /* against the peer hostname. 51 /* 52 /* tls_client_init() is called once when the SMTP client 53 /* initializes. 54 /* Certificate details are also decided during this phase, 55 /* so peer-specific certificate selection is not possible. 56 /* 57 /* tls_client_start() activates the TLS session over an established 58 /* stream. We expect that network buffers are flushed and 59 /* the TLS handshake can begin immediately. 60 /* 61 /* tls_client_stop() sends the "close notify" alert via 62 /* SSL_shutdown() to the peer and resets all connection specific 63 /* TLS data. As RFC2487 does not specify a separate shutdown, it 64 /* is assumed that the underlying TCP connection is shut down 65 /* immediately afterwards. Any further writes to the channel will 66 /* be discarded, and any further reads will report end-of-file. 67 /* If the failure flag is set, no SSL_shutdown() handshake is performed. 68 /* 69 /* Once the TLS connection is initiated, information about the TLS 70 /* state is available via the TLScontext structure: 71 /* .IP TLScontext->protocol 72 /* the protocol name (SSLv2, SSLv3, TLSv1), 73 /* .IP TLScontext->cipher_name 74 /* the cipher name (e.g. RC4/MD5), 75 /* .IP TLScontext->cipher_usebits 76 /* the number of bits actually used (e.g. 40), 77 /* .IP TLScontext->cipher_algbits 78 /* the number of bits the algorithm is based on (e.g. 128). 79 /* .PP 80 /* The last two values may differ from each other when export-strength 81 /* encryption is used. 82 /* 83 /* If the peer offered a certificate, part of the certificate data are 84 /* available as: 85 /* .IP TLScontext->peer_status 86 /* A bitmask field that records the status of the peer certificate 87 /* verification. This consists of one or more of 88 /* TLS_CERT_FLAG_PRESENT, TLS_CERT_FLAG_ALTNAME, TLS_CERT_FLAG_TRUSTED, 89 /* TLS_CERT_FLAG_MATCHED and TLS_CERT_FLAG_SECURED. 90 /* .IP TLScontext->peer_CN 91 /* Extracted CommonName of the peer, or zero-length string if the 92 /* information could not be extracted. 93 /* .IP TLScontext->issuer_CN 94 /* Extracted CommonName of the issuer, or zero-length string if the 95 /* information could not be extracted. 96 /* .IP TLScontext->peer_cert_fprint 97 /* At the fingerprint security level, if the peer presented a certificate 98 /* the fingerprint of the certificate. 99 /* .PP 100 /* If no peer certificate is presented the peer_status is set to 0. 101 /* LICENSE 102 /* .ad 103 /* .fi 104 /* This software is free. You can do with it whatever you want. 105 /* The original author kindly requests that you acknowledge 106 /* the use of his software. 107 /* AUTHOR(S) 108 /* Originally written by: 109 /* Lutz Jaenicke 110 /* BTU Cottbus 111 /* Allgemeine Elektrotechnik 112 /* Universitaetsplatz 3-4 113 /* D-03044 Cottbus, Germany 114 /* 115 /* Updated by: 116 /* Wietse Venema 117 /* IBM T.J. Watson Research 118 /* P.O. Box 704 119 /* Yorktown Heights, NY 10598, USA 120 /* 121 /* Victor Duchovni 122 /* Morgan Stanley 123 /*--*/ 124 125 /* System library. */ 126 127 #include <sys_defs.h> 128 129 #ifdef USE_TLS 130 #include <string.h> 131 132 #ifdef STRCASECMP_IN_STRINGS_H 133 #include <strings.h> 134 #endif 135 136 /* Utility library. */ 137 138 #include <argv.h> 139 #include <mymalloc.h> 140 #include <vstring.h> 141 #include <vstream.h> 142 #include <stringops.h> 143 #include <msg.h> 144 #include <iostuff.h> /* non-blocking */ 145 #include <midna_domain.h> 146 147 /* Global library. */ 148 149 #include <mail_params.h> 150 151 /* TLS library. */ 152 153 #include <tls_mgr.h> 154 #define TLS_INTERNAL 155 #include <tls.h> 156 157 /* Application-specific. */ 158 159 #define STR vstring_str 160 #define LEN VSTRING_LEN 161 162 /* load_clnt_session - load session from client cache (non-callback) */ 163 164 static SSL_SESSION *load_clnt_session(TLS_SESS_STATE *TLScontext) 165 { 166 const char *myname = "load_clnt_session"; 167 SSL_SESSION *session = 0; 168 VSTRING *session_data = vstring_alloc(2048); 169 170 /* 171 * Prepare the query. 172 */ 173 if (TLScontext->log_mask & TLS_LOG_CACHE) 174 /* serverid contains transport:addr:port information */ 175 msg_info("looking for session %s in %s cache", 176 TLScontext->serverid, TLScontext->cache_type); 177 178 /* 179 * We only get here if the cache_type is not empty. This code is not 180 * called unless caching is enabled and the cache_type is stored in the 181 * server SSL context. 182 */ 183 if (TLScontext->cache_type == 0) 184 msg_panic("%s: null client session cache type in session lookup", 185 myname); 186 187 /* 188 * Look up and activate the SSL_SESSION object. Errors are non-fatal, 189 * since caching is only an optimization. 190 */ 191 if (tls_mgr_lookup(TLScontext->cache_type, TLScontext->serverid, 192 session_data) == TLS_MGR_STAT_OK) { 193 session = tls_session_activate(STR(session_data), LEN(session_data)); 194 if (session) { 195 if (TLScontext->log_mask & TLS_LOG_CACHE) 196 /* serverid contains transport:addr:port information */ 197 msg_info("reloaded session %s from %s cache", 198 TLScontext->serverid, TLScontext->cache_type); 199 } 200 } 201 202 /* 203 * Clean up. 204 */ 205 vstring_free(session_data); 206 207 return (session); 208 } 209 210 /* new_client_session_cb - name new session and save it to client cache */ 211 212 static int new_client_session_cb(SSL *ssl, SSL_SESSION *session) 213 { 214 const char *myname = "new_client_session_cb"; 215 TLS_SESS_STATE *TLScontext; 216 VSTRING *session_data; 217 218 /* 219 * The cache name (if caching is enabled in tlsmgr(8)) and the cache ID 220 * string for this session are stored in the TLScontext. It cannot be 221 * null at this point. 222 */ 223 if ((TLScontext = SSL_get_ex_data(ssl, TLScontext_index)) == 0) 224 msg_panic("%s: null TLScontext in new session callback", myname); 225 226 /* 227 * We only get here if the cache_type is not empty. This callback is not 228 * set unless caching is enabled and the cache_type is stored in the 229 * server SSL context. 230 */ 231 if (TLScontext->cache_type == 0) 232 msg_panic("%s: null session cache type in new session callback", 233 myname); 234 235 if (TLScontext->log_mask & TLS_LOG_CACHE) 236 /* serverid contains transport:addr:port information */ 237 msg_info("save session %s to %s cache", 238 TLScontext->serverid, TLScontext->cache_type); 239 240 /* 241 * Passivate and save the session object. Errors are non-fatal, since 242 * caching is only an optimization. 243 */ 244 if ((session_data = tls_session_passivate(session)) != 0) { 245 tls_mgr_update(TLScontext->cache_type, TLScontext->serverid, 246 STR(session_data), LEN(session_data)); 247 vstring_free(session_data); 248 } 249 250 /* 251 * Clean up. 252 */ 253 SSL_SESSION_free(session); /* 200502 */ 254 255 return (1); 256 } 257 258 /* uncache_session - remove session from the external cache */ 259 260 static void uncache_session(SSL_CTX *ctx, TLS_SESS_STATE *TLScontext) 261 { 262 SSL_SESSION *session = SSL_get_session(TLScontext->con); 263 264 SSL_CTX_remove_session(ctx, session); 265 if (TLScontext->cache_type == 0 || TLScontext->serverid == 0) 266 return; 267 268 if (TLScontext->log_mask & TLS_LOG_CACHE) 269 /* serverid contains transport:addr:port information */ 270 msg_info("remove session %s from client cache", TLScontext->serverid); 271 272 tls_mgr_delete(TLScontext->cache_type, TLScontext->serverid); 273 } 274 275 /* tls_client_init - initialize client-side TLS engine */ 276 277 TLS_APPL_STATE *tls_client_init(const TLS_CLIENT_INIT_PROPS *props) 278 { 279 long off = 0; 280 int cachable; 281 int scache_timeout; 282 SSL_CTX *client_ctx; 283 TLS_APPL_STATE *app_ctx; 284 int log_mask; 285 286 /* 287 * Convert user loglevel to internal logmask. 288 */ 289 log_mask = tls_log_mask(props->log_param, props->log_level); 290 291 if (log_mask & TLS_LOG_VERBOSE) 292 msg_info("initializing the client-side TLS engine"); 293 294 /* 295 * Load (mostly cipher related) TLS-library internal main.cf parameters. 296 */ 297 tls_param_init(); 298 299 /* 300 * Detect mismatch between compile-time headers and run-time library. 301 */ 302 tls_check_version(); 303 304 #if OPENSSL_VERSION_NUMBER < 0x10100000L 305 306 /* 307 * Initialize the OpenSSL library by the book! To start with, we must 308 * initialize the algorithms. We want cleartext error messages instead of 309 * just error codes, so we load the error_strings. 310 */ 311 SSL_load_error_strings(); 312 OpenSSL_add_ssl_algorithms(); 313 #endif 314 315 /* 316 * Create an application data index for SSL objects, so that we can 317 * attach TLScontext information; this information is needed inside 318 * tls_verify_certificate_callback(). 319 */ 320 if (TLScontext_index < 0) { 321 if ((TLScontext_index = SSL_get_ex_new_index(0, 0, 0, 0, 0)) < 0) { 322 msg_warn("Cannot allocate SSL application data index: " 323 "disabling TLS support"); 324 return (0); 325 } 326 } 327 328 /* 329 * If the administrator specifies an unsupported digest algorithm, fail 330 * now, rather than in the middle of a TLS handshake. 331 */ 332 if (!tls_validate_digest(props->mdalg)) { 333 msg_warn("disabling TLS support"); 334 return (0); 335 } 336 337 /* 338 * Initialize the PRNG (Pseudo Random Number Generator) with some seed 339 * from external and internal sources. Don't enable TLS without some real 340 * entropy. 341 */ 342 if (tls_ext_seed(var_tls_daemon_rand_bytes) < 0) { 343 msg_warn("no entropy for TLS key generation: disabling TLS support"); 344 return (0); 345 } 346 tls_int_seed(); 347 348 /* 349 * The SSL/TLS specifications require the client to send a message in the 350 * oldest specification it understands with the highest level it 351 * understands in the message. RFC2487 is only specified for TLSv1, but 352 * we want to be as compatible as possible, so we will start off with a 353 * SSLv2 greeting allowing the best we can offer: TLSv1. We can restrict 354 * this with the options setting later, anyhow. 355 * 356 * OpenSSL 1.1.0-dev deprecates SSLv23_client_method() in favour of 357 * TLS_client_method(), with the change in question signalled via a new 358 * TLS_ANY_VERSION macro. 359 */ 360 ERR_clear_error(); 361 #if OPENSSL_VERSION_NUMBER >= 0x10100000L && defined(TLS_ANY_VERSION) 362 client_ctx = SSL_CTX_new(TLS_client_method()); 363 #else 364 client_ctx = SSL_CTX_new(SSLv23_client_method()); 365 #endif 366 if (client_ctx == 0) { 367 msg_warn("cannot allocate client SSL_CTX: disabling TLS support"); 368 tls_print_errors(); 369 return (0); 370 } 371 #ifdef SSL_SECOP_PEER 372 /* Backwards compatible security as a base for opportunistic TLS. */ 373 SSL_CTX_set_security_level(client_ctx, 0); 374 #endif 375 376 /* 377 * See the verify callback in tls_verify.c 378 */ 379 SSL_CTX_set_verify_depth(client_ctx, props->verifydepth + 1); 380 381 /* 382 * Protocol selection is destination dependent, so we delay the protocol 383 * selection options to the per-session SSL object. 384 */ 385 off |= tls_bug_bits(); 386 SSL_CTX_set_options(client_ctx, off); 387 388 /* 389 * Set the call-back routine for verbose logging. 390 */ 391 if (log_mask & TLS_LOG_DEBUG) 392 SSL_CTX_set_info_callback(client_ctx, tls_info_callback); 393 394 /* 395 * Load the CA public key certificates for both the client cert and for 396 * the verification of server certificates. As provided by OpenSSL we 397 * support two types of CA certificate handling: One possibility is to 398 * add all CA certificates to one large CAfile, the other possibility is 399 * a directory pointed to by CApath, containing separate files for each 400 * CA with softlinks named after the hash values of the certificate. The 401 * first alternative has the advantage that the file is opened and read 402 * at startup time, so that you don't have the hassle to maintain another 403 * copy of the CApath directory for chroot-jail. 404 */ 405 if (tls_set_ca_certificate_info(client_ctx, 406 props->CAfile, props->CApath) < 0) { 407 /* tls_set_ca_certificate_info() already logs a warning. */ 408 SSL_CTX_free(client_ctx); /* 200411 */ 409 return (0); 410 } 411 412 /* 413 * We do not need a client certificate, so the certificates are only 414 * loaded (and checked) if supplied. A clever client would handle 415 * multiple client certificates and decide based on the list of 416 * acceptable CAs, sent by the server, which certificate to submit. 417 * OpenSSL does however not do this and also has no call-back hooks to 418 * easily implement it. 419 * 420 * Load the client public key certificate and private key from file and 421 * check whether the cert matches the key. We can use RSA certificates 422 * ("cert") DSA certificates ("dcert") or ECDSA certificates ("eccert"). 423 * All three can be made available at the same time. The CA certificates 424 * for all three are handled in the same setup already finished. Which 425 * one is used depends on the cipher negotiated (that is: the first 426 * cipher listed by the client which does match the server). The client 427 * certificate is presented after the server chooses the session cipher, 428 * so we will just present the right cert for the chosen cipher (if it 429 * uses certificates). 430 */ 431 if (tls_set_my_certificate_key_info(client_ctx, 432 props->cert_file, 433 props->key_file, 434 props->dcert_file, 435 props->dkey_file, 436 props->eccert_file, 437 props->eckey_file) < 0) { 438 /* tls_set_my_certificate_key_info() already logs a warning. */ 439 SSL_CTX_free(client_ctx); /* 200411 */ 440 return (0); 441 } 442 443 /* 444 * 2015-12-05: Ephemeral RSA removed from OpenSSL 1.1.0-dev 445 */ 446 #if OPENSSL_VERSION_NUMBER < 0x10100000L 447 448 /* 449 * According to the OpenSSL documentation, temporary RSA key is needed 450 * export ciphers are in use. We have to provide one, so well, we just do 451 * it. 452 */ 453 SSL_CTX_set_tmp_rsa_callback(client_ctx, tls_tmp_rsa_cb); 454 #endif 455 456 /* 457 * Finally, the setup for the server certificate checking, done "by the 458 * book". 459 */ 460 SSL_CTX_set_verify(client_ctx, SSL_VERIFY_NONE, 461 tls_verify_certificate_callback); 462 463 /* 464 * Initialize the session cache. 465 * 466 * Since the client does not search an internal cache, we simply disable it. 467 * It is only useful for expiring old sessions, but we do that in the 468 * tlsmgr(8). 469 * 470 * This makes SSL_CTX_remove_session() not useful for flushing broken 471 * sessions from the external cache, so we must delete them directly (not 472 * via a callback). 473 */ 474 if (tls_mgr_policy(props->cache_type, &cachable, 475 &scache_timeout) != TLS_MGR_STAT_OK) 476 scache_timeout = 0; 477 if (scache_timeout <= 0) 478 cachable = 0; 479 480 /* 481 * Allocate an application context, and populate with mandatory protocol 482 * and cipher data. 483 */ 484 app_ctx = tls_alloc_app_context(client_ctx, log_mask); 485 486 /* 487 * The external session cache is implemented by the tlsmgr(8) process. 488 */ 489 if (cachable) { 490 491 app_ctx->cache_type = mystrdup(props->cache_type); 492 493 /* 494 * OpenSSL does not use callbacks to load sessions from a client 495 * cache, so we must invoke that function directly. Apparently, 496 * OpenSSL does not provide a way to pass session names from here to 497 * call-back routines that do session lookup. 498 * 499 * OpenSSL can, however, automatically save newly created sessions for 500 * us by callback (we create the session name in the call-back 501 * function). 502 * 503 * XXX gcc 2.95 can't compile #ifdef .. #endif in the expansion of 504 * SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_NO_INTERNAL_STORE | 505 * SSL_SESS_CACHE_NO_AUTO_CLEAR. 506 */ 507 #ifndef SSL_SESS_CACHE_NO_INTERNAL_STORE 508 #define SSL_SESS_CACHE_NO_INTERNAL_STORE 0 509 #endif 510 511 SSL_CTX_set_session_cache_mode(client_ctx, 512 SSL_SESS_CACHE_CLIENT | 513 SSL_SESS_CACHE_NO_INTERNAL_STORE | 514 SSL_SESS_CACHE_NO_AUTO_CLEAR); 515 SSL_CTX_sess_set_new_cb(client_ctx, new_client_session_cb); 516 517 /* 518 * OpenSSL ignores timed-out sessions. We need to set the internal 519 * cache timeout at least as high as the external cache timeout. This 520 * applies even if no internal cache is used. We set the session to 521 * twice the cache lifetime. This way a session always lasts longer 522 * than its lifetime in the cache. 523 */ 524 SSL_CTX_set_timeout(client_ctx, 2 * scache_timeout); 525 } 526 return (app_ctx); 527 } 528 529 /* match_servername - match servername against pattern */ 530 531 static int match_servername(const char *certid, 532 const TLS_CLIENT_START_PROPS *props) 533 { 534 const ARGV *cmatch_argv; 535 const char *nexthop = props->nexthop; 536 const char *hname = props->host; 537 const char *domain; 538 const char *parent; 539 const char *aname; 540 int match_subdomain; 541 int i; 542 int idlen; 543 int domlen; 544 545 if ((cmatch_argv = props->matchargv) == 0) 546 return 0; 547 548 #ifndef NO_EAI 549 550 /* 551 * DNS subjectAltNames are required to be ASCII. 552 * 553 * Per RFC 6125 Section 6.4.4 Matching the CN-ID, follows the same rules 554 * (6.4.1, 6.4.2 and 6.4.3) that apply to subjectAltNames. In 555 * particular, 6.4.2 says that the reference identifier is coerced to 556 * ASCII, but no conversion is stated or implied for the CN-ID, so it 557 * seems it only matches if it is all ASCII. Otherwise, it is some other 558 * sort of name. 559 */ 560 if (!allascii(certid)) 561 return (0); 562 if (!allascii(nexthop) && (aname = midna_domain_to_ascii(nexthop)) != 0) { 563 if (msg_verbose) 564 msg_info("%s asciified to %s", nexthop, aname); 565 nexthop = aname; 566 } 567 #endif 568 569 /* 570 * Match the certid against each pattern until we find a match. 571 */ 572 for (i = 0; i < cmatch_argv->argc; ++i) { 573 match_subdomain = 0; 574 if (!strcasecmp(cmatch_argv->argv[i], "nexthop")) 575 domain = nexthop; 576 else if (!strcasecmp(cmatch_argv->argv[i], "hostname")) 577 domain = hname; 578 else if (!strcasecmp(cmatch_argv->argv[i], "dot-nexthop")) { 579 domain = nexthop; 580 match_subdomain = 1; 581 } else { 582 domain = cmatch_argv->argv[i]; 583 if (*domain == '.') { 584 if (domain[1]) { 585 ++domain; 586 match_subdomain = 1; 587 } 588 } 589 #ifndef NO_EAI 590 591 /* 592 * Besides U+002E (full stop) IDNA2003 allows labels to be 593 * separated by any of the Unicode variants U+3002 (ideographic 594 * full stop), U+FF0E (fullwidth full stop), and U+FF61 595 * (halfwidth ideographic full stop). Their respective UTF-8 596 * encodings are: E38082, EFBC8E and EFBDA1. 597 * 598 * IDNA2008 does not permit (upper) case and other variant 599 * differences in U-labels. The midna_domain_to_ascii() function, 600 * based on UTS46, normalizes such differences away. 601 * 602 * The IDNA to_ASCII conversion does not allow empty leading labels, 603 * so we handle these explicitly here. 604 */ 605 else { 606 unsigned char *cp = (unsigned char *) domain; 607 608 if ((cp[0] == 0xe3 && cp[1] == 0x80 && cp[2] == 0x82) 609 || (cp[0] == 0xef && cp[1] == 0xbc && cp[2] == 0x8e) 610 || (cp[0] == 0xef && cp[1] == 0xbd && cp[2] == 0xa1)) { 611 if (domain[3]) { 612 domain = domain + 3; 613 match_subdomain = 1; 614 } 615 } 616 } 617 if (!allascii(domain) 618 && (aname = midna_domain_to_ascii(domain)) != 0) { 619 if (msg_verbose) 620 msg_info("%s asciified to %s", domain, aname); 621 domain = aname; 622 } 623 #endif 624 } 625 626 /* 627 * Sub-domain match: certid is any sub-domain of hostname. 628 */ 629 if (match_subdomain) { 630 if ((idlen = strlen(certid)) > (domlen = strlen(domain)) + 1 631 && certid[idlen - domlen - 1] == '.' 632 && !strcasecmp(certid + (idlen - domlen), domain)) 633 return (1); 634 else 635 continue; 636 } 637 638 /* 639 * Exact match and initial "*" match. The initial "*" in a certid 640 * matches one (if var_tls_multi_label is false) or more hostname 641 * components under the condition that the certid contains multiple 642 * hostname components. 643 */ 644 if (!strcasecmp(certid, domain) 645 || (certid[0] == '*' && certid[1] == '.' && certid[2] != 0 646 && (parent = strchr(domain, '.')) != 0 647 && (idlen = strlen(certid + 1)) <= (domlen = strlen(parent)) 648 && strcasecmp(var_tls_multi_wildcard == 0 ? parent : 649 parent + domlen - idlen, 650 certid + 1) == 0)) 651 return (1); 652 } 653 return (0); 654 } 655 656 /* verify_extract_name - verify peer name and extract peer information */ 657 658 static void verify_extract_name(TLS_SESS_STATE *TLScontext, X509 *peercert, 659 const TLS_CLIENT_START_PROPS *props) 660 { 661 int i; 662 int r; 663 int matched = 0; 664 int dnsname_match; 665 int verify_peername = 0; 666 int log_certmatch; 667 int verbose; 668 const char *dnsname; 669 const GENERAL_NAME *gn; 670 general_name_stack_t *gens; 671 672 /* 673 * On exit both peer_CN and issuer_CN should be set. 674 */ 675 TLScontext->issuer_CN = tls_issuer_CN(peercert, TLScontext); 676 677 /* 678 * Is the certificate trust chain valid and trusted? 679 */ 680 if (SSL_get_verify_result(TLScontext->con) == X509_V_OK) 681 TLScontext->peer_status |= TLS_CERT_FLAG_TRUSTED; 682 683 /* 684 * With fingerprint or dane we may already be done. Otherwise, verify the 685 * peername if using traditional PKI or DANE with trust-anchors. 686 */ 687 if (!TLS_CERT_IS_MATCHED(TLScontext) 688 && TLS_CERT_IS_TRUSTED(TLScontext) 689 && TLS_MUST_TRUST(props->tls_level)) 690 verify_peername = 1; 691 692 /* Force cert processing so we can log the data? */ 693 log_certmatch = TLScontext->log_mask & TLS_LOG_CERTMATCH; 694 695 /* Log cert details when processing? */ 696 verbose = log_certmatch || (TLScontext->log_mask & TLS_LOG_VERBOSE); 697 698 if (verify_peername || log_certmatch) { 699 700 /* 701 * Verify the dNSName(s) in the peer certificate against the nexthop 702 * and hostname. 703 * 704 * If DNS names are present, we use the first matching (or else simply 705 * the first) DNS name as the subject CN. The CommonName in the 706 * issuer DN is obsolete when SubjectAltName is available. This 707 * yields much less surprising logs, because we log the name we 708 * verified or a name we checked and failed to match. 709 * 710 * XXX: The nexthop and host name may both be the same network address 711 * rather than a DNS name. In this case we really should be looking 712 * for GEN_IPADD entries, not GEN_DNS entries. 713 * 714 * XXX: In ideal world the caller who used the address to build the 715 * connection would tell us that the nexthop is the connection 716 * address, but if that is not practical, we can parse the nexthop 717 * again here. 718 */ 719 gens = X509_get_ext_d2i(peercert, NID_subject_alt_name, 0, 0); 720 if (gens) { 721 r = sk_GENERAL_NAME_num(gens); 722 for (i = 0; i < r; ++i) { 723 gn = sk_GENERAL_NAME_value(gens, i); 724 if (gn->type != GEN_DNS) 725 continue; 726 727 /* 728 * Even if we have an invalid DNS name, we still ultimately 729 * ignore the CommonName, because subjectAltName:DNS is 730 * present (though malformed). Replace any previous peer_CN 731 * if empty or we get a match. 732 * 733 * We always set at least an empty peer_CN if the ALTNAME cert 734 * flag is set. If not, we set peer_CN from the cert 735 * CommonName below, so peer_CN is always non-null on return. 736 */ 737 TLScontext->peer_status |= TLS_CERT_FLAG_ALTNAME; 738 dnsname = tls_dns_name(gn, TLScontext); 739 if (dnsname && *dnsname) { 740 if ((dnsname_match = match_servername(dnsname, props)) != 0) 741 matched++; 742 /* Keep the first matched name. */ 743 if (TLScontext->peer_CN 744 && ((dnsname_match && matched == 1) 745 || *TLScontext->peer_CN == 0)) { 746 myfree(TLScontext->peer_CN); 747 TLScontext->peer_CN = 0; 748 } 749 if (verbose) 750 msg_info("%s: %ssubjectAltName: %s", props->namaddr, 751 dnsname_match ? "Matched " : "", dnsname); 752 } 753 if (TLScontext->peer_CN == 0) 754 TLScontext->peer_CN = mystrdup(dnsname ? dnsname : ""); 755 if (matched && !log_certmatch) 756 break; 757 } 758 if (verify_peername && matched) 759 TLScontext->peer_status |= TLS_CERT_FLAG_MATCHED; 760 761 /* 762 * (Sam Rushing, Ironport) Free stack *and* member GENERAL_NAME 763 * objects 764 */ 765 sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free); 766 } 767 768 /* 769 * No subjectAltNames, peer_CN is taken from CommonName. 770 */ 771 if (TLScontext->peer_CN == 0) { 772 TLScontext->peer_CN = tls_peer_CN(peercert, TLScontext); 773 if (*TLScontext->peer_CN) 774 matched = match_servername(TLScontext->peer_CN, props); 775 if (verify_peername && matched) 776 TLScontext->peer_status |= TLS_CERT_FLAG_MATCHED; 777 if (verbose) 778 msg_info("%s %sCommonName %s", props->namaddr, 779 matched ? "Matched " : "", TLScontext->peer_CN); 780 } else if (verbose) { 781 char *tmpcn = tls_peer_CN(peercert, TLScontext); 782 783 /* 784 * Though the CommonName was superceded by a subjectAltName, log 785 * it when certificate match debugging was requested. 786 */ 787 msg_info("%s CommonName %s", TLScontext->namaddr, tmpcn); 788 myfree(tmpcn); 789 } 790 } else 791 TLScontext->peer_CN = tls_peer_CN(peercert, TLScontext); 792 793 /* 794 * Give them a clue. Problems with trust chain verification are logged 795 * when the session is first negotiated, before the session is stored 796 * into the cache. We don't want mystery failures, so log the fact the 797 * real problem is to be found in the past. 798 */ 799 if (!TLS_CERT_IS_TRUSTED(TLScontext) 800 && (TLScontext->log_mask & TLS_LOG_UNTRUSTED)) { 801 if (TLScontext->session_reused == 0) 802 tls_log_verify_error(TLScontext); 803 else 804 msg_info("%s: re-using session with untrusted certificate, " 805 "look for details earlier in the log", props->namaddr); 806 } 807 } 808 809 /* verify_extract_print - extract and verify peer fingerprint */ 810 811 static void verify_extract_print(TLS_SESS_STATE *TLScontext, X509 *peercert, 812 const TLS_CLIENT_START_PROPS *props) 813 { 814 TLScontext->peer_cert_fprint = tls_cert_fprint(peercert, props->mdalg); 815 TLScontext->peer_pkey_fprint = tls_pkey_fprint(peercert, props->mdalg); 816 817 /* 818 * Whether the level is "dane" or "fingerprint" when the peer certificate 819 * is matched without resorting to a separate CA, we set both the trusted 820 * and matched bits. This simplifies logic in smtp_proto.c where "dane" 821 * must be trusted and matched, since some "dane" TLSA RRsets do use CAs. 822 * 823 * This also suppresses spurious logging of the peer certificate as 824 * untrusted in verify_extract_name(). 825 */ 826 if (TLS_DANE_HASEE(props->dane) 827 && tls_dane_match(TLScontext, TLS_DANE_EE, peercert, 0)) 828 TLScontext->peer_status |= 829 TLS_CERT_FLAG_TRUSTED | TLS_CERT_FLAG_MATCHED; 830 } 831 832 /* 833 * This is the actual startup routine for the connection. We expect that the 834 * buffers are flushed and the "220 Ready to start TLS" was received by us, 835 * so that we can immediately start the TLS handshake process. 836 */ 837 TLS_SESS_STATE *tls_client_start(const TLS_CLIENT_START_PROPS *props) 838 { 839 int sts; 840 int protomask; 841 const char *cipher_list; 842 SSL_SESSION *session = 0; 843 SSL_CIPHER_const SSL_CIPHER *cipher; 844 X509 *peercert; 845 TLS_SESS_STATE *TLScontext; 846 TLS_APPL_STATE *app_ctx = props->ctx; 847 char *myserverid; 848 int log_mask = app_ctx->log_mask; 849 850 /* 851 * When certificate verification is required, log trust chain validation 852 * errors even when disabled by default for opportunistic sessions. For 853 * DANE this only applies when using trust-anchor associations. 854 */ 855 if (TLS_MUST_TRUST(props->tls_level) 856 && (!TLS_DANE_BASED(props->tls_level) || TLS_DANE_HASTA(props->dane))) 857 log_mask |= TLS_LOG_UNTRUSTED; 858 859 if (log_mask & TLS_LOG_VERBOSE) 860 msg_info("setting up TLS connection to %s", props->namaddr); 861 862 /* 863 * First make sure we have valid protocol and cipher parameters 864 * 865 * Per-session protocol restrictions must be applied to the SSL connection, 866 * as restrictions in the global context cannot be cleared. 867 */ 868 protomask = tls_protocol_mask(props->protocols); 869 if (protomask == TLS_PROTOCOL_INVALID) { 870 /* tls_protocol_mask() logs no warning. */ 871 msg_warn("%s: Invalid TLS protocol list \"%s\": aborting TLS session", 872 props->namaddr, props->protocols); 873 return (0); 874 } 875 /* DANE requires SSLv3 or later, not SSLv2. */ 876 if (TLS_DANE_BASED(props->tls_level)) 877 protomask |= TLS_PROTOCOL_SSLv2; 878 879 /* 880 * Per session cipher selection for sessions with mandatory encryption 881 * 882 * The cipherlist is applied to the global SSL context, since it is likely 883 * to stay the same between connections, so we make use of a 1-element 884 * cache to return the same result for identical inputs. 885 */ 886 cipher_list = tls_set_ciphers(app_ctx, "TLS", props->cipher_grade, 887 props->cipher_exclusions); 888 if (cipher_list == 0) { 889 msg_warn("%s: %s: aborting TLS session", 890 props->namaddr, vstring_str(app_ctx->why)); 891 return (0); 892 } 893 if (log_mask & TLS_LOG_VERBOSE) 894 msg_info("%s: TLS cipher list \"%s\"", props->namaddr, cipher_list); 895 896 /* 897 * OpenSSL will ignore cached sessions that use the wrong protocol. So we 898 * do not need to filter out cached sessions with the "wrong" protocol, 899 * rather OpenSSL will simply negotiate a new session. 900 * 901 * We salt the session lookup key with the protocol list, so that sessions 902 * found in the cache are plausibly acceptable. 903 * 904 * By the time a TLS client is negotiating ciphers it has already offered to 905 * re-use a session, it is too late to renege on the offer. So we must 906 * not attempt to re-use sessions whose ciphers are too weak. We salt the 907 * session lookup key with the cipher list, so that sessions found in the 908 * cache are always acceptable. 909 * 910 * With DANE, (more generally any TLScontext where we specified explicit 911 * trust-anchor or end-entity certificates) the verification status of 912 * the SSL session depends on the specified list. Since we verify the 913 * certificate only during the initial handshake, we must segregate 914 * sessions with different TA lists. Note, that TA re-verification is 915 * not possible with cached sessions, since these don't hold the complete 916 * peer trust chain. Therefore, we compute a digest of the sorted TA 917 * parameters and append it to the serverid. 918 */ 919 myserverid = tls_serverid_digest(props, protomask, cipher_list); 920 921 /* 922 * Allocate a new TLScontext for the new connection and get an SSL 923 * structure. Add the location of TLScontext to the SSL to later retrieve 924 * the information inside the tls_verify_certificate_callback(). 925 * 926 * If session caching was enabled when TLS was initialized, the cache type 927 * is stored in the client SSL context. 928 */ 929 TLScontext = tls_alloc_sess_context(log_mask, props->namaddr); 930 TLScontext->cache_type = app_ctx->cache_type; 931 932 TLScontext->serverid = myserverid; 933 TLScontext->stream = props->stream; 934 TLScontext->mdalg = props->mdalg; 935 936 /* Alias DANE digest info from props */ 937 TLScontext->dane = props->dane; 938 939 if ((TLScontext->con = SSL_new(app_ctx->ssl_ctx)) == NULL) { 940 msg_warn("Could not allocate 'TLScontext->con' with SSL_new()"); 941 tls_print_errors(); 942 tls_free_context(TLScontext); 943 return (0); 944 } 945 if (!SSL_set_ex_data(TLScontext->con, TLScontext_index, TLScontext)) { 946 msg_warn("Could not set application data for 'TLScontext->con'"); 947 tls_print_errors(); 948 tls_free_context(TLScontext); 949 return (0); 950 } 951 952 /* 953 * Apply session protocol restrictions. 954 */ 955 if (protomask != 0) 956 SSL_set_options(TLScontext->con, TLS_SSL_OP_PROTOMASK(protomask)); 957 958 #ifdef SSL_SECOP_PEER 959 /* When authenticating the peer, use 80-bit plus OpenSSL security level */ 960 if (TLS_MUST_MATCH(props->tls_level)) 961 SSL_set_security_level(TLScontext->con, 1); 962 #endif 963 964 /* 965 * XXX To avoid memory leaks we must always call SSL_SESSION_free() after 966 * calling SSL_set_session(), regardless of whether or not the session 967 * will be reused. 968 */ 969 if (TLScontext->cache_type) { 970 session = load_clnt_session(TLScontext); 971 if (session) { 972 SSL_set_session(TLScontext->con, session); 973 SSL_SESSION_free(session); /* 200411 */ 974 } 975 } 976 #ifdef TLSEXT_MAXLEN_host_name 977 if (TLS_DANE_BASED(props->tls_level) 978 && strlen(props->host) <= TLSEXT_MAXLEN_host_name) { 979 980 /* 981 * With DANE sessions, send an SNI hint. We don't care whether the 982 * server reports finding a matching certificate or not, so no 983 * callback is required to process the server response. Our use of 984 * SNI is limited to giving servers that are (mis)configured to use 985 * SNI the best opportunity to find the certificate they promised via 986 * the associated TLSA RRs. (Generally, server administrators should 987 * avoid SNI, and there are no plans to support SNI in the Postfix 988 * SMTP server). 989 * 990 * Since the hostname is DNSSEC-validated, it must be a DNS FQDN and 991 * thererefore valid for use with SNI. Failure to set a valid SNI 992 * hostname is a memory allocation error, and thus transient. Since 993 * we must not cache the session if we failed to send the SNI name, 994 * we have little choice but to abort. 995 */ 996 if (!SSL_set_tlsext_host_name(TLScontext->con, props->host)) { 997 msg_warn("%s: error setting SNI hostname to: %s", props->namaddr, 998 props->host); 999 tls_free_context(TLScontext); 1000 return (0); 1001 } 1002 if (log_mask & TLS_LOG_DEBUG) 1003 msg_info("%s: SNI hostname: %s", props->namaddr, props->host); 1004 } 1005 #endif 1006 1007 /* 1008 * Before really starting anything, try to seed the PRNG a little bit 1009 * more. 1010 */ 1011 tls_int_seed(); 1012 (void) tls_ext_seed(var_tls_daemon_rand_bytes); 1013 1014 /* 1015 * Initialize the SSL connection to connect state. This should not be 1016 * necessary anymore since 0.9.3, but the call is still in the library 1017 * and maintaining compatibility never hurts. 1018 */ 1019 SSL_set_connect_state(TLScontext->con); 1020 1021 /* 1022 * Connect the SSL connection with the network socket. 1023 */ 1024 if (SSL_set_fd(TLScontext->con, vstream_fileno(props->stream)) != 1) { 1025 msg_info("SSL_set_fd error to %s", props->namaddr); 1026 tls_print_errors(); 1027 uncache_session(app_ctx->ssl_ctx, TLScontext); 1028 tls_free_context(TLScontext); 1029 return (0); 1030 } 1031 1032 /* 1033 * Turn on non-blocking I/O so that we can enforce timeouts on network 1034 * I/O. 1035 */ 1036 non_blocking(vstream_fileno(props->stream), NON_BLOCKING); 1037 1038 /* 1039 * If the debug level selected is high enough, all of the data is dumped: 1040 * TLS_LOG_TLSPKTS will dump the SSL negotiation, TLS_LOG_ALLPKTS will 1041 * dump everything. 1042 * 1043 * We do have an SSL_set_fd() and now suddenly a BIO_ routine is called? 1044 * Well there is a BIO below the SSL routines that is automatically 1045 * created for us, so we can use it for debugging purposes. 1046 */ 1047 if (log_mask & TLS_LOG_TLSPKTS) 1048 BIO_set_callback(SSL_get_rbio(TLScontext->con), tls_bio_dump_cb); 1049 1050 tls_dane_set_callback(app_ctx->ssl_ctx, TLScontext); 1051 1052 /* 1053 * Start TLS negotiations. This process is a black box that invokes our 1054 * call-backs for certificate verification. 1055 * 1056 * Error handling: If the SSL handhake fails, we print out an error message 1057 * and remove all TLS state concerning this session. 1058 */ 1059 sts = tls_bio_connect(vstream_fileno(props->stream), props->timeout, 1060 TLScontext); 1061 if (sts <= 0) { 1062 if (ERR_peek_error() != 0) { 1063 msg_info("SSL_connect error to %s: %d", props->namaddr, sts); 1064 tls_print_errors(); 1065 } else if (errno != 0) { 1066 msg_info("SSL_connect error to %s: %m", props->namaddr); 1067 } else { 1068 msg_info("SSL_connect error to %s: lost connection", 1069 props->namaddr); 1070 } 1071 uncache_session(app_ctx->ssl_ctx, TLScontext); 1072 tls_free_context(TLScontext); 1073 return (0); 1074 } 1075 /* Turn off packet dump if only dumping the handshake */ 1076 if ((log_mask & TLS_LOG_ALLPKTS) == 0) 1077 BIO_set_callback(SSL_get_rbio(TLScontext->con), 0); 1078 1079 /* 1080 * The caller may want to know if this session was reused or if a new 1081 * session was negotiated. 1082 */ 1083 TLScontext->session_reused = SSL_session_reused(TLScontext->con); 1084 if ((log_mask & TLS_LOG_CACHE) && TLScontext->session_reused) 1085 msg_info("%s: Reusing old session", TLScontext->namaddr); 1086 1087 /* 1088 * Do peername verification if requested and extract useful information 1089 * from the certificate for later use. 1090 */ 1091 if ((peercert = SSL_get_peer_certificate(TLScontext->con)) != 0) { 1092 TLScontext->peer_status |= TLS_CERT_FLAG_PRESENT; 1093 1094 /* 1095 * Peer name or fingerprint verification as requested. 1096 * Unconditionally set peer_CN, issuer_CN and peer_cert_fprint. Check 1097 * fingerprint first, and avoid logging verified as untrusted in the 1098 * call to verify_extract_name(). 1099 */ 1100 verify_extract_print(TLScontext, peercert, props); 1101 verify_extract_name(TLScontext, peercert, props); 1102 1103 if (TLScontext->log_mask & 1104 (TLS_LOG_CERTMATCH | TLS_LOG_VERBOSE | TLS_LOG_PEERCERT)) 1105 msg_info("%s: subject_CN=%s, issuer_CN=%s, " 1106 "fingerprint=%s, pkey_fingerprint=%s", props->namaddr, 1107 TLScontext->peer_CN, TLScontext->issuer_CN, 1108 TLScontext->peer_cert_fprint, 1109 TLScontext->peer_pkey_fprint); 1110 X509_free(peercert); 1111 } else { 1112 TLScontext->issuer_CN = mystrdup(""); 1113 TLScontext->peer_CN = mystrdup(""); 1114 TLScontext->peer_cert_fprint = mystrdup(""); 1115 TLScontext->peer_pkey_fprint = mystrdup(""); 1116 } 1117 1118 /* 1119 * Finally, collect information about protocol and cipher for logging 1120 */ 1121 TLScontext->protocol = SSL_get_version(TLScontext->con); 1122 cipher = SSL_get_current_cipher(TLScontext->con); 1123 TLScontext->cipher_name = SSL_CIPHER_get_name(cipher); 1124 TLScontext->cipher_usebits = SSL_CIPHER_get_bits(cipher, 1125 &(TLScontext->cipher_algbits)); 1126 1127 /* 1128 * The TLS engine is active. Switch to the tls_timed_read/write() 1129 * functions and make the TLScontext available to those functions. 1130 */ 1131 tls_stream_start(props->stream, TLScontext); 1132 1133 /* 1134 * Fully secured only if trusted, matched and not insecure like halfdane. 1135 * Should perhaps also exclude "verify" (as opposed to "secure") here, 1136 * because that can be subject to insecure MX indirection, but that's 1137 * rather incompatible. Users have been warned. 1138 */ 1139 if (TLS_CERT_IS_PRESENT(TLScontext) 1140 && TLS_CERT_IS_TRUSTED(TLScontext) 1141 && TLS_CERT_IS_MATCHED(TLScontext) 1142 && !TLS_NEVER_SECURED(props->tls_level)) 1143 TLScontext->peer_status |= TLS_CERT_FLAG_SECURED; 1144 1145 /* 1146 * All the key facts in a single log entry. 1147 */ 1148 if (log_mask & TLS_LOG_SUMMARY) 1149 msg_info("%s TLS connection established to %s: %s with cipher %s " 1150 "(%d/%d bits)", 1151 !TLS_CERT_IS_PRESENT(TLScontext) ? "Anonymous" : 1152 TLS_CERT_IS_SECURED(TLScontext) ? "Verified" : 1153 TLS_CERT_IS_TRUSTED(TLScontext) ? "Trusted" : "Untrusted", 1154 props->namaddr, TLScontext->protocol, TLScontext->cipher_name, 1155 TLScontext->cipher_usebits, TLScontext->cipher_algbits); 1156 1157 tls_int_seed(); 1158 1159 return (TLScontext); 1160 } 1161 1162 #endif /* USE_TLS */ 1163