xref: /netbsd-src/external/ibm-public/postfix/dist/src/tls/tls_client.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /*	$NetBSD: tls_client.c,v 1.11 2020/03/18 19:05:21 christos Exp $	*/
2 
3 /*++
4 /* NAME
5 /*	tls_client
6 /* SUMMARY
7 /*	client-side TLS engine
8 /* SYNOPSIS
9 /*	#include <tls.h>
10 /*
11 /*	TLS_APPL_STATE *tls_client_init(init_props)
12 /*	const TLS_CLIENT_INIT_PROPS *init_props;
13 /*
14 /*	TLS_SESS_STATE *tls_client_start(start_props)
15 /*	const TLS_CLIENT_START_PROPS *start_props;
16 /*
17 /*	TLS_SESS_STATE *tls_client_post_connect(TLScontext, start_props)
18 /*	TLS_SESS_STATE *TLScontext;
19 /*	const TLS_CLIENT_START_PROPS *start_props;
20 /*
21 /*	void	tls_client_stop(app_ctx, stream, failure, TLScontext)
22 /*	TLS_APPL_STATE *app_ctx;
23 /*	VSTREAM	*stream;
24 /*	int	failure;
25 /*	TLS_SESS_STATE *TLScontext;
26 /* DESCRIPTION
27 /*	This module is the interface between Postfix TLS clients,
28 /*	the OpenSSL library and the TLS entropy and cache manager.
29 /*
30 /*	The SMTP client will attempt to verify the server hostname
31 /*	against the names listed in the server certificate. When
32 /*	a hostname match is required, the verification fails
33 /*	on certificate verification or hostname mis-match errors.
34 /*	When no hostname match is required, hostname verification
35 /*	failures are logged but they do not affect the TLS handshake
36 /*	or the SMTP session.
37 /*
38 /*	The rules for peer name wild-card matching differ between
39 /*	RFC 2818 (HTTP over TLS) and RFC 2830 (LDAP over TLS), while
40 /*	RFC RFC3207 (SMTP over TLS) does not specify a rule at all.
41 /*	Postfix uses a restrictive match algorithm. One asterisk
42 /*	('*') is allowed as the left-most component of a wild-card
43 /*	certificate name; it matches the left-most component of
44 /*	the peer hostname.
45 /*
46 /*	Another area where RFCs aren't always explicit is the
47 /*	handling of dNSNames in peer certificates. RFC 3207 (SMTP
48 /*	over TLS) does not mention dNSNames. Postfix follows the
49 /*	strict rules in RFC 2818 (HTTP over TLS), section 3.1: The
50 /*	Subject Alternative Name/dNSName has precedence over
51 /*	CommonName.  If at least one dNSName is provided, Postfix
52 /*	verifies those against the peer hostname and ignores the
53 /*	CommonName, otherwise Postfix verifies the CommonName
54 /*	against the peer hostname.
55 /*
56 /*	tls_client_init() is called once when the SMTP client
57 /*	initializes.
58 /*	Certificate details are also decided during this phase,
59 /*	so peer-specific certificate selection is not possible.
60 /*
61 /*	tls_client_start() activates the TLS session over an established
62 /*	stream. We expect that network buffers are flushed and
63 /*	the TLS handshake can begin immediately.
64 /*
65 /*	tls_client_stop() sends the "close notify" alert via
66 /*	SSL_shutdown() to the peer and resets all connection specific
67 /*	TLS data. As RFC2487 does not specify a separate shutdown, it
68 /*	is assumed that the underlying TCP connection is shut down
69 /*	immediately afterwards. Any further writes to the channel will
70 /*	be discarded, and any further reads will report end-of-file.
71 /*	If the failure flag is set, no SSL_shutdown() handshake is performed.
72 /*
73 /*	Once the TLS connection is initiated, information about the TLS
74 /*	state is available via the TLScontext structure:
75 /* .IP TLScontext->protocol
76 /*	the protocol name (SSLv2, SSLv3, TLSv1),
77 /* .IP TLScontext->cipher_name
78 /*	the cipher name (e.g. RC4/MD5),
79 /* .IP TLScontext->cipher_usebits
80 /*	the number of bits actually used (e.g. 40),
81 /* .IP TLScontext->cipher_algbits
82 /*	the number of bits the algorithm is based on (e.g. 128).
83 /* .PP
84 /*	The last two values may differ from each other when export-strength
85 /*	encryption is used.
86 /*
87 /*	If the peer offered a certificate, part of the certificate data are
88 /*	available as:
89 /* .IP TLScontext->peer_status
90 /*	A bitmask field that records the status of the peer certificate
91 /*	verification. This consists of one or more of
92 /*	TLS_CERT_FLAG_PRESENT, TLS_CERT_FLAG_ALTNAME, TLS_CERT_FLAG_TRUSTED,
93 /*	TLS_CERT_FLAG_MATCHED and TLS_CERT_FLAG_SECURED.
94 /* .IP TLScontext->peer_CN
95 /*	Extracted CommonName of the peer, or zero-length string if the
96 /*	information could not be extracted.
97 /* .IP TLScontext->issuer_CN
98 /*	Extracted CommonName of the issuer, or zero-length string if the
99 /*	information could not be extracted.
100 /* .IP TLScontext->peer_cert_fprint
101 /*	At the fingerprint security level, if the peer presented a certificate
102 /*	the fingerprint of the certificate.
103 /* .PP
104 /*	If no peer certificate is presented the peer_status is set to 0.
105 /* EVENT_DRIVEN APPLICATIONS
106 /* .ad
107 /* .fi
108 /*	Event-driven programs manage multiple I/O channels.  Such
109 /*	programs cannot use the synchronous VSTREAM-over-TLS
110 /*	implementation that the TLS library historically provides,
111 /*	including tls_client_stop() and the underlying tls_stream(3)
112 /*	and tls_bio_ops(3) routines.
113 /*
114 /*	With the current TLS library implementation, this means
115 /*	that an event-driven application is responsible for calling
116 /*	and retrying SSL_connect(), SSL_read(), SSL_write() and
117 /*	SSL_shutdown().
118 /*
119 /*	To maintain control over TLS I/O, an event-driven client
120 /*	invokes tls_client_start() with a null VSTREAM argument and
121 /*	with an fd argument that specifies the I/O file descriptor.
122 /*	Then, tls_client_start() performs all the necessary
123 /*	preparations before the TLS handshake and returns a partially
124 /*	populated TLS context. The event-driven application is then
125 /*	responsible for invoking SSL_connect(), and if successful,
126 /*	for invoking tls_client_post_connect() to finish the work
127 /*	that was started by tls_client_start(). In case of unrecoverable
128 /*	failure, tls_client_post_connect() destroys the TLS context
129 /*	and returns a null pointer value.
130 /* LICENSE
131 /* .ad
132 /* .fi
133 /*	This software is free. You can do with it whatever you want.
134 /*	The original author kindly requests that you acknowledge
135 /*	the use of his software.
136 /* AUTHOR(S)
137 /*	Originally written by:
138 /*	Lutz Jaenicke
139 /*	BTU Cottbus
140 /*	Allgemeine Elektrotechnik
141 /*	Universitaetsplatz 3-4
142 /*	D-03044 Cottbus, Germany
143 /*
144 /*	Updated by:
145 /*	Wietse Venema
146 /*	IBM T.J. Watson Research
147 /*	P.O. Box 704
148 /*	Yorktown Heights, NY 10598, USA
149 /*
150 /*	Wietse Venema
151 /*	Google, Inc.
152 /*	111 8th Avenue
153 /*	New York, NY 10011, USA
154 /*
155 /*	Victor Duchovni
156 /*	Morgan Stanley
157 /*--*/
158 
159 /* System library. */
160 
161 #include <sys_defs.h>
162 
163 #ifdef USE_TLS
164 #include <string.h>
165 
166 #ifdef STRCASECMP_IN_STRINGS_H
167 #include <strings.h>
168 #endif
169 
170 /* Utility library. */
171 
172 #include <argv.h>
173 #include <mymalloc.h>
174 #include <vstring.h>
175 #include <vstream.h>
176 #include <stringops.h>
177 #include <msg.h>
178 #include <iostuff.h>			/* non-blocking */
179 #include <midna_domain.h>
180 
181 /* Global library. */
182 
183 #include <mail_params.h>
184 
185 /* TLS library. */
186 
187 #include <tls_mgr.h>
188 #define TLS_INTERNAL
189 #include <tls.h>
190 
191 /* Application-specific. */
192 
193 #define STR	vstring_str
194 #define LEN	VSTRING_LEN
195 
196 /* load_clnt_session - load session from client cache (non-callback) */
197 
198 static SSL_SESSION *load_clnt_session(TLS_SESS_STATE *TLScontext)
199 {
200     const char *myname = "load_clnt_session";
201     SSL_SESSION *session = 0;
202     VSTRING *session_data = vstring_alloc(2048);
203 
204     /*
205      * Prepare the query.
206      */
207     if (TLScontext->log_mask & TLS_LOG_CACHE)
208 	/* serverid contains transport:addr:port information */
209 	msg_info("looking for session %s in %s cache",
210 		 TLScontext->serverid, TLScontext->cache_type);
211 
212     /*
213      * We only get here if the cache_type is not empty. This code is not
214      * called unless caching is enabled and the cache_type is stored in the
215      * server SSL context.
216      */
217     if (TLScontext->cache_type == 0)
218 	msg_panic("%s: null client session cache type in session lookup",
219 		  myname);
220 
221     /*
222      * Look up and activate the SSL_SESSION object. Errors are non-fatal,
223      * since caching is only an optimization.
224      */
225     if (tls_mgr_lookup(TLScontext->cache_type, TLScontext->serverid,
226 		       session_data) == TLS_MGR_STAT_OK) {
227 	session = tls_session_activate(STR(session_data), LEN(session_data));
228 	if (session) {
229 	    if (TLScontext->log_mask & TLS_LOG_CACHE)
230 		/* serverid contains transport:addr:port information */
231 		msg_info("reloaded session %s from %s cache",
232 			 TLScontext->serverid, TLScontext->cache_type);
233 	}
234     }
235 
236     /*
237      * Clean up.
238      */
239     vstring_free(session_data);
240 
241     return (session);
242 }
243 
244 /* new_client_session_cb - name new session and save it to client cache */
245 
246 static int new_client_session_cb(SSL *ssl, SSL_SESSION *session)
247 {
248     const char *myname = "new_client_session_cb";
249     TLS_SESS_STATE *TLScontext;
250     VSTRING *session_data;
251 
252     /*
253      * The cache name (if caching is enabled in tlsmgr(8)) and the cache ID
254      * string for this session are stored in the TLScontext. It cannot be
255      * null at this point.
256      */
257     if ((TLScontext = SSL_get_ex_data(ssl, TLScontext_index)) == 0)
258 	msg_panic("%s: null TLScontext in new session callback", myname);
259 
260     /*
261      * We only get here if the cache_type is not empty. This callback is not
262      * set unless caching is enabled and the cache_type is stored in the
263      * server SSL context.
264      */
265     if (TLScontext->cache_type == 0)
266 	msg_panic("%s: null session cache type in new session callback",
267 		  myname);
268 
269     if (TLScontext->log_mask & TLS_LOG_CACHE)
270 	/* serverid contains transport:addr:port information */
271 	msg_info("save session %s to %s cache",
272 		 TLScontext->serverid, TLScontext->cache_type);
273 
274     /*
275      * Passivate and save the session object. Errors are non-fatal, since
276      * caching is only an optimization.
277      */
278     if ((session_data = tls_session_passivate(session)) != 0) {
279 	tls_mgr_update(TLScontext->cache_type, TLScontext->serverid,
280 		       STR(session_data), LEN(session_data));
281 	vstring_free(session_data);
282     }
283 
284     /*
285      * Clean up.
286      */
287     SSL_SESSION_free(session);			/* 200502 */
288 
289     return (1);
290 }
291 
292 /* uncache_session - remove session from the external cache */
293 
294 static void uncache_session(SSL_CTX *ctx, TLS_SESS_STATE *TLScontext)
295 {
296     SSL_SESSION *session = SSL_get_session(TLScontext->con);
297 
298     SSL_CTX_remove_session(ctx, session);
299     if (TLScontext->cache_type == 0 || TLScontext->serverid == 0)
300 	return;
301 
302     if (TLScontext->log_mask & TLS_LOG_CACHE)
303 	/* serverid contains transport:addr:port information */
304 	msg_info("remove session %s from client cache", TLScontext->serverid);
305 
306     tls_mgr_delete(TLScontext->cache_type, TLScontext->serverid);
307 }
308 
309 /* tls_client_init - initialize client-side TLS engine */
310 
311 TLS_APPL_STATE *tls_client_init(const TLS_CLIENT_INIT_PROPS *props)
312 {
313     long    off = 0;
314     int     cachable;
315     int     scache_timeout;
316     SSL_CTX *client_ctx;
317     TLS_APPL_STATE *app_ctx;
318     int     log_mask;
319 
320     /*
321      * Convert user loglevel to internal logmask.
322      */
323     log_mask = tls_log_mask(props->log_param, props->log_level);
324 
325     if (log_mask & TLS_LOG_VERBOSE)
326 	msg_info("initializing the client-side TLS engine");
327 
328     /*
329      * Load (mostly cipher related) TLS-library internal main.cf parameters.
330      */
331     tls_param_init();
332 
333     /*
334      * Detect mismatch between compile-time headers and run-time library.
335      */
336     tls_check_version();
337 
338 #if OPENSSL_VERSION_NUMBER < 0x10100000L
339 
340     /*
341      * Initialize the OpenSSL library by the book! To start with, we must
342      * initialize the algorithms. We want cleartext error messages instead of
343      * just error codes, so we load the error_strings.
344      */
345     SSL_load_error_strings();
346     OpenSSL_add_ssl_algorithms();
347 #endif
348 
349     /*
350      * Create an application data index for SSL objects, so that we can
351      * attach TLScontext information; this information is needed inside
352      * tls_verify_certificate_callback().
353      */
354     if (TLScontext_index < 0) {
355 	if ((TLScontext_index = SSL_get_ex_new_index(0, 0, 0, 0, 0)) < 0) {
356 	    msg_warn("Cannot allocate SSL application data index: "
357 		     "disabling TLS support");
358 	    return (0);
359 	}
360     }
361 
362     /*
363      * If the administrator specifies an unsupported digest algorithm, fail
364      * now, rather than in the middle of a TLS handshake.
365      */
366     if (!tls_validate_digest(props->mdalg)) {
367 	msg_warn("disabling TLS support");
368 	return (0);
369     }
370 
371     /*
372      * Initialize the PRNG (Pseudo Random Number Generator) with some seed
373      * from external and internal sources. Don't enable TLS without some real
374      * entropy.
375      */
376     if (tls_ext_seed(var_tls_daemon_rand_bytes) < 0) {
377 	msg_warn("no entropy for TLS key generation: disabling TLS support");
378 	return (0);
379     }
380     tls_int_seed();
381 
382     /*
383      * The SSL/TLS specifications require the client to send a message in the
384      * oldest specification it understands with the highest level it
385      * understands in the message. RFC2487 is only specified for TLSv1, but
386      * we want to be as compatible as possible, so we will start off with a
387      * SSLv2 greeting allowing the best we can offer: TLSv1. We can restrict
388      * this with the options setting later, anyhow.
389      */
390     ERR_clear_error();
391     client_ctx = SSL_CTX_new(TLS_client_method());
392     if (client_ctx == 0) {
393 	msg_warn("cannot allocate client SSL_CTX: disabling TLS support");
394 	tls_print_errors();
395 	return (0);
396     }
397 #ifdef SSL_SECOP_PEER
398     /* Backwards compatible security as a base for opportunistic TLS. */
399     SSL_CTX_set_security_level(client_ctx, 0);
400 #endif
401 
402     /*
403      * See the verify callback in tls_verify.c
404      */
405     SSL_CTX_set_verify_depth(client_ctx, props->verifydepth + 1);
406 
407     /*
408      * Protocol selection is destination dependent, so we delay the protocol
409      * selection options to the per-session SSL object.
410      */
411     off |= tls_bug_bits();
412     SSL_CTX_set_options(client_ctx, off);
413 
414     /*
415      * Set the call-back routine for verbose logging.
416      */
417     if (log_mask & TLS_LOG_DEBUG)
418 	SSL_CTX_set_info_callback(client_ctx, tls_info_callback);
419 
420     /*
421      * Load the CA public key certificates for both the client cert and for
422      * the verification of server certificates. As provided by OpenSSL we
423      * support two types of CA certificate handling: One possibility is to
424      * add all CA certificates to one large CAfile, the other possibility is
425      * a directory pointed to by CApath, containing separate files for each
426      * CA with softlinks named after the hash values of the certificate. The
427      * first alternative has the advantage that the file is opened and read
428      * at startup time, so that you don't have the hassle to maintain another
429      * copy of the CApath directory for chroot-jail.
430      */
431     if (tls_set_ca_certificate_info(client_ctx,
432 				    props->CAfile, props->CApath) < 0) {
433 	/* tls_set_ca_certificate_info() already logs a warning. */
434 	SSL_CTX_free(client_ctx);		/* 200411 */
435 	return (0);
436     }
437 
438     /*
439      * We do not need a client certificate, so the certificates are only
440      * loaded (and checked) if supplied. A clever client would handle
441      * multiple client certificates and decide based on the list of
442      * acceptable CAs, sent by the server, which certificate to submit.
443      * OpenSSL does however not do this and also has no call-back hooks to
444      * easily implement it.
445      *
446      * Load the client public key certificate and private key from file and
447      * check whether the cert matches the key. We can use RSA certificates
448      * ("cert") DSA certificates ("dcert") or ECDSA certificates ("eccert").
449      * All three can be made available at the same time. The CA certificates
450      * for all three are handled in the same setup already finished. Which
451      * one is used depends on the cipher negotiated (that is: the first
452      * cipher listed by the client which does match the server). The client
453      * certificate is presented after the server chooses the session cipher,
454      * so we will just present the right cert for the chosen cipher (if it
455      * uses certificates).
456      */
457     if (tls_set_my_certificate_key_info(client_ctx,
458 					props->chain_files,
459 					props->cert_file,
460 					props->key_file,
461 					props->dcert_file,
462 					props->dkey_file,
463 					props->eccert_file,
464 					props->eckey_file) < 0) {
465 	/* tls_set_my_certificate_key_info() already logs a warning. */
466 	SSL_CTX_free(client_ctx);		/* 200411 */
467 	return (0);
468     }
469 
470     /*
471      * 2015-12-05: Ephemeral RSA removed from OpenSSL 1.1.0-dev
472      */
473 #if OPENSSL_VERSION_NUMBER < 0x10100000L
474 
475     /*
476      * According to the OpenSSL documentation, temporary RSA key is needed
477      * export ciphers are in use. We have to provide one, so well, we just do
478      * it.
479      */
480     SSL_CTX_set_tmp_rsa_callback(client_ctx, tls_tmp_rsa_cb);
481 #endif
482 
483     /*
484      * With OpenSSL 1.0.2 and later the client EECDH curve list becomes
485      * configurable with the preferred curve negotiated via the supported
486      * curves extension.
487      */
488     tls_auto_eecdh_curves(client_ctx, var_tls_eecdh_auto);
489 
490     /*
491      * Finally, the setup for the server certificate checking, done "by the
492      * book".
493      */
494     SSL_CTX_set_verify(client_ctx, SSL_VERIFY_NONE,
495 		       tls_verify_certificate_callback);
496 
497     /*
498      * Initialize the session cache.
499      *
500      * Since the client does not search an internal cache, we simply disable it.
501      * It is only useful for expiring old sessions, but we do that in the
502      * tlsmgr(8).
503      *
504      * This makes SSL_CTX_remove_session() not useful for flushing broken
505      * sessions from the external cache, so we must delete them directly (not
506      * via a callback).
507      */
508     if (tls_mgr_policy(props->cache_type, &cachable,
509 		       &scache_timeout) != TLS_MGR_STAT_OK)
510 	scache_timeout = 0;
511     if (scache_timeout <= 0)
512 	cachable = 0;
513 
514     /*
515      * Allocate an application context, and populate with mandatory protocol
516      * and cipher data.
517      */
518     app_ctx = tls_alloc_app_context(client_ctx, 0, log_mask);
519 
520     /*
521      * The external session cache is implemented by the tlsmgr(8) process.
522      */
523     if (cachable) {
524 
525 	app_ctx->cache_type = mystrdup(props->cache_type);
526 
527 	/*
528 	 * OpenSSL does not use callbacks to load sessions from a client
529 	 * cache, so we must invoke that function directly. Apparently,
530 	 * OpenSSL does not provide a way to pass session names from here to
531 	 * call-back routines that do session lookup.
532 	 *
533 	 * OpenSSL can, however, automatically save newly created sessions for
534 	 * us by callback (we create the session name in the call-back
535 	 * function).
536 	 *
537 	 * XXX gcc 2.95 can't compile #ifdef .. #endif in the expansion of
538 	 * SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_NO_INTERNAL_STORE |
539 	 * SSL_SESS_CACHE_NO_AUTO_CLEAR.
540 	 */
541 #ifndef SSL_SESS_CACHE_NO_INTERNAL_STORE
542 #define SSL_SESS_CACHE_NO_INTERNAL_STORE 0
543 #endif
544 
545 	SSL_CTX_set_session_cache_mode(client_ctx,
546 				       SSL_SESS_CACHE_CLIENT |
547 				       SSL_SESS_CACHE_NO_INTERNAL_STORE |
548 				       SSL_SESS_CACHE_NO_AUTO_CLEAR);
549 	SSL_CTX_sess_set_new_cb(client_ctx, new_client_session_cb);
550 
551 	/*
552 	 * OpenSSL ignores timed-out sessions. We need to set the internal
553 	 * cache timeout at least as high as the external cache timeout. This
554 	 * applies even if no internal cache is used.  We set the session to
555 	 * twice the cache lifetime.  This way a session always lasts longer
556 	 * than its lifetime in the cache.
557 	 */
558 	SSL_CTX_set_timeout(client_ctx, 2 * scache_timeout);
559     }
560     return (app_ctx);
561 }
562 
563 /* match_servername -  match servername against pattern */
564 
565 static int match_servername(const char *certid,
566 			            const TLS_CLIENT_START_PROPS *props)
567 {
568     const ARGV *cmatch_argv;
569     const char *nexthop = props->nexthop;
570     const char *hname = props->host;
571     const char *domain;
572     const char *parent;
573     const char *aname;
574     int     match_subdomain;
575     int     i;
576     int     idlen;
577     int     domlen;
578 
579     if ((cmatch_argv = props->matchargv) == 0)
580 	return 0;
581 
582 #ifndef NO_EAI
583 
584     /*
585      * DNS subjectAltNames are required to be ASCII.
586      *
587      * Per RFC 6125 Section 6.4.4 Matching the CN-ID, follows the same rules
588      * (6.4.1, 6.4.2 and 6.4.3) that apply to subjectAltNames.  In
589      * particular, 6.4.2 says that the reference identifier is coerced to
590      * ASCII, but no conversion is stated or implied for the CN-ID, so it
591      * seems it only matches if it is all ASCII.  Otherwise, it is some other
592      * sort of name.
593      */
594     if (!allascii(certid))
595 	return (0);
596     if (!allascii(nexthop) && (aname = midna_domain_to_ascii(nexthop)) != 0) {
597 	if (msg_verbose)
598 	    msg_info("%s asciified to %s", nexthop, aname);
599 	nexthop = aname;
600     }
601 #endif
602 
603     /*
604      * Match the certid against each pattern until we find a match.
605      */
606     for (i = 0; i < cmatch_argv->argc; ++i) {
607 	match_subdomain = 0;
608 	if (!strcasecmp(cmatch_argv->argv[i], "nexthop"))
609 	    domain = nexthop;
610 	else if (!strcasecmp(cmatch_argv->argv[i], "hostname"))
611 	    domain = hname;
612 	else if (!strcasecmp(cmatch_argv->argv[i], "dot-nexthop")) {
613 	    domain = nexthop;
614 	    match_subdomain = 1;
615 	} else {
616 	    domain = cmatch_argv->argv[i];
617 	    if (*domain == '.') {
618 		if (domain[1]) {
619 		    ++domain;
620 		    match_subdomain = 1;
621 		}
622 	    }
623 #ifndef NO_EAI
624 
625 	    /*
626 	     * Besides U+002E (full stop) IDNA2003 allows labels to be
627 	     * separated by any of the Unicode variants U+3002 (ideographic
628 	     * full stop), U+FF0E (fullwidth full stop), and U+FF61
629 	     * (halfwidth ideographic full stop). Their respective UTF-8
630 	     * encodings are: E38082, EFBC8E and EFBDA1.
631 	     *
632 	     * IDNA2008 does not permit (upper) case and other variant
633 	     * differences in U-labels. The midna_domain_to_ascii() function,
634 	     * based on UTS46, normalizes such differences away.
635 	     *
636 	     * The IDNA to_ASCII conversion does not allow empty leading labels,
637 	     * so we handle these explicitly here.
638 	     */
639 	    else {
640 		unsigned char *cp = (unsigned char *) domain;
641 
642 		if ((cp[0] == 0xe3 && cp[1] == 0x80 && cp[2] == 0x82)
643 		    || (cp[0] == 0xef && cp[1] == 0xbc && cp[2] == 0x8e)
644 		    || (cp[0] == 0xef && cp[1] == 0xbd && cp[2] == 0xa1)) {
645 		    if (domain[3]) {
646 			domain = domain + 3;
647 			match_subdomain = 1;
648 		    }
649 		}
650 	    }
651 	    if (!allascii(domain)
652 		&& (aname = midna_domain_to_ascii(domain)) != 0) {
653 		if (msg_verbose)
654 		    msg_info("%s asciified to %s", domain, aname);
655 		domain = aname;
656 	    }
657 #endif
658 	}
659 
660 	/*
661 	 * Sub-domain match: certid is any sub-domain of hostname.
662 	 */
663 	if (match_subdomain) {
664 	    if ((idlen = strlen(certid)) > (domlen = strlen(domain)) + 1
665 		&& certid[idlen - domlen - 1] == '.'
666 		&& !strcasecmp(certid + (idlen - domlen), domain))
667 		return (1);
668 	    else
669 		continue;
670 	}
671 
672 	/*
673 	 * Exact match and initial "*" match. The initial "*" in a certid
674 	 * matches one (if var_tls_multi_label is false) or more hostname
675 	 * components under the condition that the certid contains multiple
676 	 * hostname components.
677 	 */
678 	if (!strcasecmp(certid, domain)
679 	    || (certid[0] == '*' && certid[1] == '.' && certid[2] != 0
680 		&& (parent = strchr(domain, '.')) != 0
681 		&& (idlen = strlen(certid + 1)) <= (domlen = strlen(parent))
682 		&& strcasecmp(var_tls_multi_wildcard == 0 ? parent :
683 			      parent + domlen - idlen,
684 			      certid + 1) == 0))
685 	    return (1);
686     }
687     return (0);
688 }
689 
690 /* verify_extract_name - verify peer name and extract peer information */
691 
692 static void verify_extract_name(TLS_SESS_STATE *TLScontext, X509 *peercert,
693 				        const TLS_CLIENT_START_PROPS *props)
694 {
695     int     i;
696     int     r;
697     int     matched = 0;
698     int     dnsname_match;
699     int     verify_peername = 0;
700     int     log_certmatch;
701     int     verbose;
702     const char *dnsname;
703     const GENERAL_NAME *gn;
704     general_name_stack_t *gens;
705 
706     /*
707      * On exit both peer_CN and issuer_CN should be set.
708      */
709     TLScontext->issuer_CN = tls_issuer_CN(peercert, TLScontext);
710 
711     /*
712      * Is the certificate trust chain valid and trusted?
713      */
714     if (SSL_get_verify_result(TLScontext->con) == X509_V_OK)
715 	TLScontext->peer_status |= TLS_CERT_FLAG_TRUSTED;
716 
717     /*
718      * With fingerprint or dane we may already be done. Otherwise, verify the
719      * peername if using traditional PKI or DANE with trust-anchors.
720      */
721     if (!TLS_CERT_IS_MATCHED(TLScontext)
722 	&& TLS_CERT_IS_TRUSTED(TLScontext)
723 	&& TLS_MUST_TRUST(props->tls_level))
724 	verify_peername = 1;
725 
726     /* Force cert processing so we can log the data? */
727     log_certmatch = TLScontext->log_mask & TLS_LOG_CERTMATCH;
728 
729     /* Log cert details when processing? */
730     verbose = log_certmatch || (TLScontext->log_mask & TLS_LOG_VERBOSE);
731 
732     if (verify_peername || log_certmatch) {
733 
734 	/*
735 	 * Verify the dNSName(s) in the peer certificate against the nexthop
736 	 * and hostname.
737 	 *
738 	 * If DNS names are present, we use the first matching (or else simply
739 	 * the first) DNS name as the subject CN. The CommonName in the
740 	 * issuer DN is obsolete when SubjectAltName is available. This
741 	 * yields much less surprising logs, because we log the name we
742 	 * verified or a name we checked and failed to match.
743 	 *
744 	 * XXX: The nexthop and host name may both be the same network address
745 	 * rather than a DNS name. In this case we really should be looking
746 	 * for GEN_IPADD entries, not GEN_DNS entries.
747 	 *
748 	 * XXX: In ideal world the caller who used the address to build the
749 	 * connection would tell us that the nexthop is the connection
750 	 * address, but if that is not practical, we can parse the nexthop
751 	 * again here.
752 	 */
753 	gens = X509_get_ext_d2i(peercert, NID_subject_alt_name, 0, 0);
754 	if (gens) {
755 	    r = sk_GENERAL_NAME_num(gens);
756 	    for (i = 0; i < r; ++i) {
757 		gn = sk_GENERAL_NAME_value(gens, i);
758 		if (gn->type != GEN_DNS)
759 		    continue;
760 
761 		/*
762 		 * Even if we have an invalid DNS name, we still ultimately
763 		 * ignore the CommonName, because subjectAltName:DNS is
764 		 * present (though malformed). Replace any previous peer_CN
765 		 * if empty or we get a match.
766 		 *
767 		 * We always set at least an empty peer_CN if the ALTNAME cert
768 		 * flag is set. If not, we set peer_CN from the cert
769 		 * CommonName below, so peer_CN is always non-null on return.
770 		 */
771 		TLScontext->peer_status |= TLS_CERT_FLAG_ALTNAME;
772 		dnsname = tls_dns_name(gn, TLScontext);
773 		if (dnsname && *dnsname) {
774 		    if ((dnsname_match = match_servername(dnsname, props)) != 0)
775 			matched++;
776 		    /* Keep the first matched name. */
777 		    if (TLScontext->peer_CN
778 			&& ((dnsname_match && matched == 1)
779 			    || *TLScontext->peer_CN == 0)) {
780 			myfree(TLScontext->peer_CN);
781 			TLScontext->peer_CN = 0;
782 		    }
783 		    if (verbose)
784 			msg_info("%s: %ssubjectAltName: %s", props->namaddr,
785 				 dnsname_match ? "Matched " : "", dnsname);
786 		}
787 		if (TLScontext->peer_CN == 0)
788 		    TLScontext->peer_CN = mystrdup(dnsname ? dnsname : "");
789 		if (matched && !log_certmatch)
790 		    break;
791 	    }
792 	    if (verify_peername && matched)
793 		TLScontext->peer_status |= TLS_CERT_FLAG_MATCHED;
794 
795 	    /*
796 	     * (Sam Rushing, Ironport) Free stack *and* member GENERAL_NAME
797 	     * objects
798 	     */
799 	    sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free);
800 	}
801 
802 	/*
803 	 * No subjectAltNames, peer_CN is taken from CommonName.
804 	 */
805 	if (TLScontext->peer_CN == 0) {
806 	    TLScontext->peer_CN = tls_peer_CN(peercert, TLScontext);
807 	    if (*TLScontext->peer_CN)
808 		matched = match_servername(TLScontext->peer_CN, props);
809 	    if (verify_peername && matched)
810 		TLScontext->peer_status |= TLS_CERT_FLAG_MATCHED;
811 	    if (verbose)
812 		msg_info("%s %sCommonName %s", props->namaddr,
813 			 matched ? "Matched " : "", TLScontext->peer_CN);
814 	} else if (verbose) {
815 	    char   *tmpcn = tls_peer_CN(peercert, TLScontext);
816 
817 	    /*
818 	     * Though the CommonName was superceded by a subjectAltName, log
819 	     * it when certificate match debugging was requested.
820 	     */
821 	    msg_info("%s CommonName %s", TLScontext->namaddr, tmpcn);
822 	    myfree(tmpcn);
823 	}
824     } else
825 	TLScontext->peer_CN = tls_peer_CN(peercert, TLScontext);
826 
827     /*
828      * Give them a clue. Problems with trust chain verification are logged
829      * when the session is first negotiated, before the session is stored
830      * into the cache. We don't want mystery failures, so log the fact the
831      * real problem is to be found in the past.
832      */
833     if (!TLS_CERT_IS_TRUSTED(TLScontext)
834 	&& (TLScontext->log_mask & TLS_LOG_UNTRUSTED)) {
835 	if (TLScontext->session_reused == 0)
836 	    tls_log_verify_error(TLScontext);
837 	else
838 	    msg_info("%s: re-using session with untrusted certificate, "
839 		     "look for details earlier in the log", props->namaddr);
840     }
841 }
842 
843 /* verify_extract_print - extract and verify peer fingerprint */
844 
845 static void verify_extract_print(TLS_SESS_STATE *TLScontext, X509 *peercert,
846 				         const TLS_CLIENT_START_PROPS *props)
847 {
848     TLScontext->peer_cert_fprint = tls_cert_fprint(peercert, props->mdalg);
849     TLScontext->peer_pkey_fprint = tls_pkey_fprint(peercert, props->mdalg);
850 
851     /*
852      * Whether the level is "dane" or "fingerprint" when the peer certificate
853      * is matched without resorting to a separate CA, we set both the trusted
854      * and matched bits.  This simplifies logic in smtp_proto.c where "dane"
855      * must be trusted and matched, since some "dane" TLSA RRsets do use CAs.
856      *
857      * This also suppresses spurious logging of the peer certificate as
858      * untrusted in verify_extract_name().
859      */
860     if (TLS_DANE_HASEE(props->dane)
861 	&& tls_dane_match(TLScontext, TLS_DANE_EE, peercert, 0))
862 	TLScontext->peer_status |=
863 	    TLS_CERT_FLAG_TRUSTED | TLS_CERT_FLAG_MATCHED;
864 }
865 
866  /*
867   * This is the actual startup routine for the connection. We expect that the
868   * buffers are flushed and the "220 Ready to start TLS" was received by us,
869   * so that we can immediately start the TLS handshake process.
870   */
871 TLS_SESS_STATE *tls_client_start(const TLS_CLIENT_START_PROPS *props)
872 {
873     int     sts;
874     int     protomask;
875     const char *cipher_list;
876     SSL_SESSION *session = 0;
877     TLS_SESS_STATE *TLScontext;
878     TLS_APPL_STATE *app_ctx = props->ctx;
879     const char *sni = 0;
880     char   *myserverid;
881     int     log_mask = app_ctx->log_mask;
882 
883     /*
884      * When certificate verification is required, log trust chain validation
885      * errors even when disabled by default for opportunistic sessions. For
886      * DANE this only applies when using trust-anchor associations.
887      */
888     if (TLS_MUST_TRUST(props->tls_level)
889       && (!TLS_DANE_BASED(props->tls_level) || TLS_DANE_HASTA(props->dane)))
890 	log_mask |= TLS_LOG_UNTRUSTED;
891 
892     if (log_mask & TLS_LOG_VERBOSE)
893 	msg_info("setting up TLS connection to %s", props->namaddr);
894 
895     /*
896      * First make sure we have valid protocol and cipher parameters
897      *
898      * Per-session protocol restrictions must be applied to the SSL connection,
899      * as restrictions in the global context cannot be cleared.
900      */
901     protomask = tls_protocol_mask(props->protocols);
902     if (protomask == TLS_PROTOCOL_INVALID) {
903 	/* tls_protocol_mask() logs no warning. */
904 	msg_warn("%s: Invalid TLS protocol list \"%s\": aborting TLS session",
905 		 props->namaddr, props->protocols);
906 	return (0);
907     }
908     /* DANE requires SSLv3 or later, not SSLv2. */
909     if (TLS_DANE_BASED(props->tls_level))
910 	protomask |= TLS_PROTOCOL_SSLv2;
911 
912     /*
913      * Allocate a new TLScontext for the new connection and get an SSL
914      * structure. Add the location of TLScontext to the SSL to later retrieve
915      * the information inside the tls_verify_certificate_callback().
916      *
917      * If session caching was enabled when TLS was initialized, the cache type
918      * is stored in the client SSL context.
919      */
920     TLScontext = tls_alloc_sess_context(log_mask, props->namaddr);
921     TLScontext->cache_type = app_ctx->cache_type;
922 
923     if ((TLScontext->con = SSL_new(app_ctx->ssl_ctx)) == NULL) {
924 	msg_warn("Could not allocate 'TLScontext->con' with SSL_new()");
925 	tls_print_errors();
926 	tls_free_context(TLScontext);
927 	return (0);
928     }
929 
930     /*
931      * Per session cipher selection for sessions with mandatory encryption
932      *
933      * The cipherlist is applied to the global SSL context, since it is likely
934      * to stay the same between connections, so we make use of a 1-element
935      * cache to return the same result for identical inputs.
936      */
937     cipher_list = tls_set_ciphers(TLScontext, props->cipher_grade,
938 				  props->cipher_exclusions);
939     if (cipher_list == 0) {
940 	/* already warned */
941 	tls_free_context(TLScontext);
942 	return (0);
943     }
944     if (log_mask & TLS_LOG_VERBOSE)
945 	msg_info("%s: TLS cipher list \"%s\"", props->namaddr, cipher_list);
946 
947     /*
948      * OpenSSL will ignore cached sessions that use the wrong protocol. So we
949      * do not need to filter out cached sessions with the "wrong" protocol,
950      * rather OpenSSL will simply negotiate a new session.
951      *
952      * We salt the session lookup key with the protocol list, so that sessions
953      * found in the cache are plausibly acceptable.
954      *
955      * By the time a TLS client is negotiating ciphers it has already offered to
956      * re-use a session, it is too late to renege on the offer. So we must
957      * not attempt to re-use sessions whose ciphers are too weak. We salt the
958      * session lookup key with the cipher list, so that sessions found in the
959      * cache are always acceptable.
960      *
961      * With DANE, (more generally any TLScontext where we specified explicit
962      * trust-anchor or end-entity certificates) the verification status of
963      * the SSL session depends on the specified list.  Since we verify the
964      * certificate only during the initial handshake, we must segregate
965      * sessions with different TA lists.  Note, that TA re-verification is
966      * not possible with cached sessions, since these don't hold the complete
967      * peer trust chain.  Therefore, we compute a digest of the sorted TA
968      * parameters and append it to the serverid.
969      */
970     myserverid = tls_serverid_digest(props, protomask, cipher_list);
971 
972     TLScontext->serverid = myserverid;
973     TLScontext->stream = props->stream;
974     TLScontext->mdalg = props->mdalg;
975 
976     /* Alias DANE digest info from props */
977     TLScontext->dane = props->dane;
978 
979     if (!SSL_set_ex_data(TLScontext->con, TLScontext_index, TLScontext)) {
980 	msg_warn("Could not set application data for 'TLScontext->con'");
981 	tls_print_errors();
982 	tls_free_context(TLScontext);
983 	return (0);
984     }
985 
986     /*
987      * Apply session protocol restrictions.
988      */
989     if (protomask != 0)
990 	SSL_set_options(TLScontext->con, TLS_SSL_OP_PROTOMASK(protomask));
991 
992 #ifdef SSL_SECOP_PEER
993     /* When authenticating the peer, use 80-bit plus OpenSSL security level */
994     if (TLS_MUST_MATCH(props->tls_level))
995 	SSL_set_security_level(TLScontext->con, 1);
996 #endif
997 
998     /*
999      * XXX To avoid memory leaks we must always call SSL_SESSION_free() after
1000      * calling SSL_set_session(), regardless of whether or not the session
1001      * will be reused.
1002      */
1003     if (TLScontext->cache_type) {
1004 	session = load_clnt_session(TLScontext);
1005 	if (session) {
1006 	    SSL_set_session(TLScontext->con, session);
1007 	    SSL_SESSION_free(session);		/* 200411 */
1008 	}
1009     }
1010 #ifdef TLSEXT_MAXLEN_host_name
1011     if (TLS_DANE_BASED(props->tls_level)) {
1012 
1013 	/*
1014 	 * With DANE sessions, send an SNI hint.  We don't care whether the
1015 	 * server reports finding a matching certificate or not, so no
1016 	 * callback is required to process the server response.  Our use of
1017 	 * SNI is limited to giving servers that are (mis)configured to use
1018 	 * SNI the best opportunity to find the certificate they promised via
1019 	 * the associated TLSA RRs.  (Generally, server administrators should
1020 	 * avoid SNI, and there are no plans to support SNI in the Postfix
1021 	 * SMTP server).
1022 	 *
1023 	 * Since the hostname is DNSSEC-validated, it must be a DNS FQDN and
1024 	 * thererefore valid for use with SNI.
1025 	 */
1026 	sni = props->host;
1027     } else if (props->sni && *props->sni) {
1028 	if (strcmp(props->sni, "hostname") == 0)
1029 	    sni = props->host;
1030 	else if (strcmp(props->sni, "nexthop") == 0)
1031 	    sni = props->nexthop;
1032 	else
1033 	    sni = props->sni;
1034     }
1035     if (sni && strlen(sni) <= TLSEXT_MAXLEN_host_name) {
1036 
1037 	/*
1038 	 * Failure to set a valid SNI hostname is a memory allocation error,
1039 	 * and thus transient.  Since we must not cache the session if we
1040 	 * failed to send the SNI name, we have little choice but to abort.
1041 	 */
1042 	if (!SSL_set_tlsext_host_name(TLScontext->con, sni)) {
1043 	    msg_warn("%s: error setting SNI hostname to: %s", props->namaddr,
1044 		     sni);
1045 	    tls_free_context(TLScontext);
1046 	    return (0);
1047 	}
1048 
1049 	/*
1050 	 * The saved value is not presently used client-side, but could later
1051 	 * be logged if acked by the server (requires new client-side
1052 	 * callback to detect the ack).  For now this just maintains symmetry
1053 	 * with the server code, where do record the received SNI for
1054 	 * logging.
1055 	 */
1056 	TLScontext->peer_sni = mystrdup(sni);
1057 	if (log_mask & TLS_LOG_DEBUG)
1058 	    msg_info("%s: SNI hostname: %s", props->namaddr, sni);
1059     }
1060 #endif
1061 
1062     /*
1063      * Before really starting anything, try to seed the PRNG a little bit
1064      * more.
1065      */
1066     tls_int_seed();
1067     (void) tls_ext_seed(var_tls_daemon_rand_bytes);
1068 
1069     /*
1070      * Connect the SSL connection with the network socket.
1071      */
1072     if (SSL_set_fd(TLScontext->con, props->stream == 0 ? props->fd :
1073 		   vstream_fileno(props->stream)) != 1) {
1074 	msg_info("SSL_set_fd error to %s", props->namaddr);
1075 	tls_print_errors();
1076 	uncache_session(app_ctx->ssl_ctx, TLScontext);
1077 	tls_free_context(TLScontext);
1078 	return (0);
1079     }
1080 
1081     /*
1082      * If the debug level selected is high enough, all of the data is dumped:
1083      * TLS_LOG_TLSPKTS will dump the SSL negotiation, TLS_LOG_ALLPKTS will
1084      * dump everything.
1085      *
1086      * We do have an SSL_set_fd() and now suddenly a BIO_ routine is called?
1087      * Well there is a BIO below the SSL routines that is automatically
1088      * created for us, so we can use it for debugging purposes.
1089      */
1090     if (log_mask & TLS_LOG_TLSPKTS)
1091 	BIO_set_callback(SSL_get_rbio(TLScontext->con), tls_bio_dump_cb);
1092 
1093     tls_dane_set_callback(app_ctx->ssl_ctx, TLScontext);
1094 
1095     /*
1096      * If we don't trigger the handshake in the library, leave control over
1097      * SSL_connect/read/write/etc with the application.
1098      */
1099     if (props->stream == 0)
1100 	return (TLScontext);
1101 
1102     /*
1103      * Turn on non-blocking I/O so that we can enforce timeouts on network
1104      * I/O.
1105      */
1106     non_blocking(vstream_fileno(props->stream), NON_BLOCKING);
1107 
1108     /*
1109      * Start TLS negotiations. This process is a black box that invokes our
1110      * call-backs for certificate verification.
1111      *
1112      * Error handling: If the SSL handshake fails, we print out an error message
1113      * and remove all TLS state concerning this session.
1114      */
1115     sts = tls_bio_connect(vstream_fileno(props->stream), props->timeout,
1116 			  TLScontext);
1117     if (sts <= 0) {
1118 	if (ERR_peek_error() != 0) {
1119 	    msg_info("SSL_connect error to %s: %d", props->namaddr, sts);
1120 	    tls_print_errors();
1121 	} else if (errno != 0) {
1122 	    msg_info("SSL_connect error to %s: %m", props->namaddr);
1123 	} else {
1124 	    msg_info("SSL_connect error to %s: lost connection",
1125 		     props->namaddr);
1126 	}
1127 	uncache_session(app_ctx->ssl_ctx, TLScontext);
1128 	tls_free_context(TLScontext);
1129 	return (0);
1130     }
1131     return (tls_client_post_connect(TLScontext, props));
1132 }
1133 
1134 /* tls_client_post_connect - post-handshake processing */
1135 
1136 TLS_SESS_STATE *tls_client_post_connect(TLS_SESS_STATE *TLScontext,
1137 				        const TLS_CLIENT_START_PROPS *props)
1138 {
1139     const SSL_CIPHER *cipher;
1140     X509   *peercert;
1141 
1142     /* Turn off packet dump if only dumping the handshake */
1143     if ((TLScontext->log_mask & TLS_LOG_ALLPKTS) == 0)
1144 	BIO_set_callback(SSL_get_rbio(TLScontext->con), 0);
1145 
1146     /*
1147      * The caller may want to know if this session was reused or if a new
1148      * session was negotiated.
1149      */
1150     TLScontext->session_reused = SSL_session_reused(TLScontext->con);
1151     if ((TLScontext->log_mask & TLS_LOG_CACHE) && TLScontext->session_reused)
1152 	msg_info("%s: Reusing old session", TLScontext->namaddr);
1153 
1154     /*
1155      * Do peername verification if requested and extract useful information
1156      * from the certificate for later use.
1157      */
1158     if ((peercert = SSL_get_peer_certificate(TLScontext->con)) != 0) {
1159 	TLScontext->peer_status |= TLS_CERT_FLAG_PRESENT;
1160 
1161 	/*
1162 	 * Peer name or fingerprint verification as requested.
1163 	 * Unconditionally set peer_CN, issuer_CN and peer_cert_fprint. Check
1164 	 * fingerprint first, and avoid logging verified as untrusted in the
1165 	 * call to verify_extract_name().
1166 	 */
1167 	verify_extract_print(TLScontext, peercert, props);
1168 	verify_extract_name(TLScontext, peercert, props);
1169 
1170 	if (TLScontext->log_mask &
1171 	    (TLS_LOG_CERTMATCH | TLS_LOG_VERBOSE | TLS_LOG_PEERCERT))
1172 	    msg_info("%s: subject_CN=%s, issuer_CN=%s, "
1173 		     "fingerprint=%s, pkey_fingerprint=%s", props->namaddr,
1174 		     TLScontext->peer_CN, TLScontext->issuer_CN,
1175 		     TLScontext->peer_cert_fprint,
1176 		     TLScontext->peer_pkey_fprint);
1177 	X509_free(peercert);
1178     } else {
1179 	TLScontext->issuer_CN = mystrdup("");
1180 	TLScontext->peer_CN = mystrdup("");
1181 	TLScontext->peer_cert_fprint = mystrdup("");
1182 	TLScontext->peer_pkey_fprint = mystrdup("");
1183     }
1184 
1185     /*
1186      * Finally, collect information about protocol and cipher for logging
1187      */
1188     TLScontext->protocol = SSL_get_version(TLScontext->con);
1189     cipher = SSL_get_current_cipher(TLScontext->con);
1190     TLScontext->cipher_name = SSL_CIPHER_get_name(cipher);
1191     TLScontext->cipher_usebits = SSL_CIPHER_get_bits(cipher,
1192 					     &(TLScontext->cipher_algbits));
1193 
1194     /*
1195      * The TLS engine is active. Switch to the tls_timed_read/write()
1196      * functions and make the TLScontext available to those functions.
1197      */
1198     if (TLScontext->stream != 0)
1199 	tls_stream_start(props->stream, TLScontext);
1200 
1201     /*
1202      * Fully secured only if trusted, matched and not insecure like halfdane.
1203      * Should perhaps also exclude "verify" (as opposed to "secure") here,
1204      * because that can be subject to insecure MX indirection, but that's
1205      * rather incompatible.  Users have been warned.
1206      */
1207     if (TLS_CERT_IS_PRESENT(TLScontext)
1208 	&& TLS_CERT_IS_TRUSTED(TLScontext)
1209 	&& TLS_CERT_IS_MATCHED(TLScontext)
1210 	&& !TLS_NEVER_SECURED(props->tls_level))
1211 	TLScontext->peer_status |= TLS_CERT_FLAG_SECURED;
1212 
1213     /*
1214      * With the handshake done, extract TLS 1.3 signature metadata.
1215      */
1216     tls_get_signature_params(TLScontext);
1217 
1218     if (TLScontext->log_mask & TLS_LOG_SUMMARY)
1219 	tls_log_summary(TLS_ROLE_CLIENT, TLS_USAGE_NEW, TLScontext);
1220 
1221     tls_int_seed();
1222 
1223     return (TLScontext);
1224 }
1225 
1226 #endif					/* USE_TLS */
1227