xref: /netbsd-src/external/gpl3/gdb/dist/zlib/examples/enough.c (revision 4b169a6ba595ae283ca507b26b15fdff40495b1c)
1212397c6Schristos /* enough.c -- determine the maximum size of inflate's Huffman code tables over
2*4b169a6bSchristos  * all possible valid and complete prefix codes, subject to a length limit.
3*4b169a6bSchristos  * Copyright (C) 2007, 2008, 2012, 2018 Mark Adler
4*4b169a6bSchristos  * Version 1.5  5 August 2018  Mark Adler
5212397c6Schristos  */
6212397c6Schristos 
7212397c6Schristos /* Version history:
8212397c6Schristos    1.0   3 Jan 2007  First version (derived from codecount.c version 1.4)
9212397c6Schristos    1.1   4 Jan 2007  Use faster incremental table usage computation
10212397c6Schristos                      Prune examine() search on previously visited states
11212397c6Schristos    1.2   5 Jan 2007  Comments clean up
12212397c6Schristos                      As inflate does, decrease root for short codes
13212397c6Schristos                      Refuse cases where inflate would increase root
14212397c6Schristos    1.3  17 Feb 2008  Add argument for initial root table size
15212397c6Schristos                      Fix bug for initial root table size == max - 1
16212397c6Schristos                      Use a macro to compute the history index
17ba340e45Schristos    1.4  18 Aug 2012  Avoid shifts more than bits in type (caused endless loop!)
18ba340e45Schristos                      Clean up comparisons of different types
19ba340e45Schristos                      Clean up code indentation
20*4b169a6bSchristos    1.5   5 Aug 2018  Clean up code style, formatting, and comments
21*4b169a6bSchristos                      Show all the codes for the maximum, and only the maximum
22212397c6Schristos  */
23212397c6Schristos 
24212397c6Schristos /*
25*4b169a6bSchristos    Examine all possible prefix codes for a given number of symbols and a
26*4b169a6bSchristos    maximum code length in bits to determine the maximum table size for zlib's
27*4b169a6bSchristos    inflate. Only complete prefix codes are counted.
28212397c6Schristos 
29212397c6Schristos    Two codes are considered distinct if the vectors of the number of codes per
30212397c6Schristos    length are not identical. So permutations of the symbol assignments result
31212397c6Schristos    in the same code for the counting, as do permutations of the assignments of
32212397c6Schristos    the bit values to the codes (i.e. only canonical codes are counted).
33212397c6Schristos 
34212397c6Schristos    We build a code from shorter to longer lengths, determining how many symbols
35212397c6Schristos    are coded at each length. At each step, we have how many symbols remain to
36212397c6Schristos    be coded, what the last code length used was, and how many bit patterns of
37212397c6Schristos    that length remain unused. Then we add one to the code length and double the
38212397c6Schristos    number of unused patterns to graduate to the next code length. We then
39212397c6Schristos    assign all portions of the remaining symbols to that code length that
40212397c6Schristos    preserve the properties of a correct and eventually complete code. Those
41212397c6Schristos    properties are: we cannot use more bit patterns than are available; and when
42*4b169a6bSchristos    all the symbols are used, there are exactly zero possible bit patterns left
43*4b169a6bSchristos    unused.
44212397c6Schristos 
45212397c6Schristos    The inflate Huffman decoding algorithm uses two-level lookup tables for
46212397c6Schristos    speed. There is a single first-level table to decode codes up to root bits
47*4b169a6bSchristos    in length (root == 9 for literal/length codes and root == 6 for distance
48*4b169a6bSchristos    codes, in the current inflate implementation). The base table has 1 << root
49*4b169a6bSchristos    entries and is indexed by the next root bits of input. Codes shorter than
50*4b169a6bSchristos    root bits have replicated table entries, so that the correct entry is
51*4b169a6bSchristos    pointed to regardless of the bits that follow the short code. If the code is
52*4b169a6bSchristos    longer than root bits, then the table entry points to a second-level table.
53*4b169a6bSchristos    The size of that table is determined by the longest code with that root-bit
54*4b169a6bSchristos    prefix. If that longest code has length len, then the table has size 1 <<
55*4b169a6bSchristos    (len - root), to index the remaining bits in that set of codes. Each
56*4b169a6bSchristos    subsequent root-bit prefix then has its own sub-table. The total number of
57*4b169a6bSchristos    table entries required by the code is calculated incrementally as the number
58*4b169a6bSchristos    of codes at each bit length is populated. When all of the codes are shorter
59*4b169a6bSchristos    than root bits, then root is reduced to the longest code length, resulting
60*4b169a6bSchristos    in a single, smaller, one-level table.
61212397c6Schristos 
62212397c6Schristos    The inflate algorithm also provides for small values of root (relative to
63212397c6Schristos    the log2 of the number of symbols), where the shortest code has more bits
64212397c6Schristos    than root. In that case, root is increased to the length of the shortest
65212397c6Schristos    code. This program, by design, does not handle that case, so it is verified
66*4b169a6bSchristos    that the number of symbols is less than 1 << (root + 1).
67212397c6Schristos 
68212397c6Schristos    In order to speed up the examination (by about ten orders of magnitude for
69212397c6Schristos    the default arguments), the intermediate states in the build-up of a code
70212397c6Schristos    are remembered and previously visited branches are pruned. The memory
71212397c6Schristos    required for this will increase rapidly with the total number of symbols and
72212397c6Schristos    the maximum code length in bits. However this is a very small price to pay
73212397c6Schristos    for the vast speedup.
74212397c6Schristos 
75*4b169a6bSchristos    First, all of the possible prefix codes are counted, and reachable
76212397c6Schristos    intermediate states are noted by a non-zero count in a saved-results array.
77212397c6Schristos    Second, the intermediate states that lead to (root + 1) bit or longer codes
78212397c6Schristos    are used to look at all sub-codes from those junctures for their inflate
79212397c6Schristos    memory usage. (The amount of memory used is not affected by the number of
80212397c6Schristos    codes of root bits or less in length.)  Third, the visited states in the
81212397c6Schristos    construction of those sub-codes and the associated calculation of the table
82212397c6Schristos    size is recalled in order to avoid recalculating from the same juncture.
83212397c6Schristos    Beginning the code examination at (root + 1) bit codes, which is enabled by
84212397c6Schristos    identifying the reachable nodes, accounts for about six of the orders of
85212397c6Schristos    magnitude of improvement for the default arguments. About another four
86212397c6Schristos    orders of magnitude come from not revisiting previous states. Out of
87*4b169a6bSchristos    approximately 2x10^16 possible prefix codes, only about 2x10^6 sub-codes
88212397c6Schristos    need to be examined to cover all of the possible table memory usage cases
89212397c6Schristos    for the default arguments of 286 symbols limited to 15-bit codes.
90212397c6Schristos 
91*4b169a6bSchristos    Note that the uintmax_t type is used for counting. It is quite easy to
92*4b169a6bSchristos    exceed the capacity of an eight-byte integer with a large number of symbols
93*4b169a6bSchristos    and a large maximum code length, so multiple-precision arithmetic would need
94*4b169a6bSchristos    to replace the integer arithmetic in that case. This program will abort if
95*4b169a6bSchristos    an overflow occurs. The big_t type identifies where the counting takes
96*4b169a6bSchristos    place.
97212397c6Schristos 
98*4b169a6bSchristos    The uintmax_t type is also used for calculating the number of possible codes
99*4b169a6bSchristos    remaining at the maximum length. This limits the maximum code length to the
100*4b169a6bSchristos    number of bits in a long long minus the number of bits needed to represent
101*4b169a6bSchristos    the symbols in a flat code. The code_t type identifies where the bit-pattern
102*4b169a6bSchristos    counting takes place.
103212397c6Schristos  */
104212397c6Schristos 
105212397c6Schristos #include <stdio.h>
106212397c6Schristos #include <stdlib.h>
107212397c6Schristos #include <string.h>
108*4b169a6bSchristos #include <stdarg.h>
109*4b169a6bSchristos #include <stdint.h>
110212397c6Schristos #include <assert.h>
111212397c6Schristos 
112212397c6Schristos #define local static
113212397c6Schristos 
114*4b169a6bSchristos // Special data types.
115*4b169a6bSchristos typedef uintmax_t big_t;    // type for code counting
116*4b169a6bSchristos #define PRIbig "ju"         // printf format for big_t
117*4b169a6bSchristos typedef uintmax_t code_t;   // type for bit pattern counting
118*4b169a6bSchristos struct tab {                // type for been-here check
119*4b169a6bSchristos     size_t len;             // allocated length of bit vector in octets
120*4b169a6bSchristos     char *vec;              // allocated bit vector
121212397c6Schristos };
122212397c6Schristos 
123212397c6Schristos /* The array for saving results, num[], is indexed with this triplet:
124212397c6Schristos 
125212397c6Schristos       syms: number of symbols remaining to code
126212397c6Schristos       left: number of available bit patterns at length len
127212397c6Schristos       len: number of bits in the codes currently being assigned
128212397c6Schristos 
129212397c6Schristos    Those indices are constrained thusly when saving results:
130212397c6Schristos 
131212397c6Schristos       syms: 3..totsym (totsym == total symbols to code)
132212397c6Schristos       left: 2..syms - 1, but only the evens (so syms == 8 -> 2, 4, 6)
133212397c6Schristos       len: 1..max - 1 (max == maximum code length in bits)
134212397c6Schristos 
135212397c6Schristos    syms == 2 is not saved since that immediately leads to a single code. left
136212397c6Schristos    must be even, since it represents the number of available bit patterns at
137*4b169a6bSchristos    the current length, which is double the number at the previous length. left
138*4b169a6bSchristos    ends at syms-1 since left == syms immediately results in a single code.
139212397c6Schristos    (left > sym is not allowed since that would result in an incomplete code.)
140212397c6Schristos    len is less than max, since the code completes immediately when len == max.
141212397c6Schristos 
142*4b169a6bSchristos    The offset into the array is calculated for the three indices with the first
143*4b169a6bSchristos    one (syms) being outermost, and the last one (len) being innermost. We build
144*4b169a6bSchristos    the array with length max-1 lists for the len index, with syms-3 of those
145*4b169a6bSchristos    for each symbol. There are totsym-2 of those, with each one varying in
146*4b169a6bSchristos    length as a function of sym. See the calculation of index in map() for the
147*4b169a6bSchristos    index, and the calculation of size in main() for the size of the array.
148212397c6Schristos 
149212397c6Schristos    For the deflate example of 286 symbols limited to 15-bit codes, the array
150*4b169a6bSchristos    has 284,284 entries, taking up 2.17 MB for an 8-byte big_t. More than half
151*4b169a6bSchristos    of the space allocated for saved results is actually used -- not all
152*4b169a6bSchristos    possible triplets are reached in the generation of valid prefix codes.
153212397c6Schristos  */
154212397c6Schristos 
155212397c6Schristos /* The array for tracking visited states, done[], is itself indexed identically
156212397c6Schristos    to the num[] array as described above for the (syms, left, len) triplet.
157212397c6Schristos    Each element in the array is further indexed by the (mem, rem) doublet,
158212397c6Schristos    where mem is the amount of inflate table space used so far, and rem is the
159212397c6Schristos    remaining unused entries in the current inflate sub-table. Each indexed
160212397c6Schristos    element is simply one bit indicating whether the state has been visited or
161212397c6Schristos    not. Since the ranges for mem and rem are not known a priori, each bit
162212397c6Schristos    vector is of a variable size, and grows as needed to accommodate the visited
163212397c6Schristos    states. mem and rem are used to calculate a single index in a triangular
164212397c6Schristos    array. Since the range of mem is expected in the default case to be about
165212397c6Schristos    ten times larger than the range of rem, the array is skewed to reduce the
166212397c6Schristos    memory usage, with eight times the range for mem than for rem. See the
167*4b169a6bSchristos    calculations for offset and bit in been_here() for the details.
168212397c6Schristos 
169212397c6Schristos    For the deflate example of 286 symbols limited to 15-bit codes, the bit
170*4b169a6bSchristos    vectors grow to total 5.5 MB, in addition to the 4.3 MB done array itself.
171212397c6Schristos  */
172212397c6Schristos 
173*4b169a6bSchristos // Type for a variable-length, allocated string.
174*4b169a6bSchristos typedef struct {
175*4b169a6bSchristos     char *str;          // pointer to allocated string
176*4b169a6bSchristos     size_t size;        // size of allocation
177*4b169a6bSchristos     size_t len;         // length of string, not including terminating zero
178*4b169a6bSchristos } string_t;
179212397c6Schristos 
180*4b169a6bSchristos // Clear a string_t.
string_clear(string_t * s)181*4b169a6bSchristos local void string_clear(string_t *s) {
182*4b169a6bSchristos     s->str[0] = 0;
183*4b169a6bSchristos     s->len = 0;
184212397c6Schristos }
185212397c6Schristos 
186*4b169a6bSchristos // Initialize a string_t.
string_init(string_t * s)187*4b169a6bSchristos local void string_init(string_t *s) {
188*4b169a6bSchristos     s->size = 16;
189*4b169a6bSchristos     s->str = malloc(s->size);
190*4b169a6bSchristos     assert(s->str != NULL && "out of memory");
191*4b169a6bSchristos     string_clear(s);
192*4b169a6bSchristos }
193212397c6Schristos 
194*4b169a6bSchristos // Release the allocation of a string_t.
string_free(string_t * s)195*4b169a6bSchristos local void string_free(string_t *s) {
196*4b169a6bSchristos     free(s->str);
197*4b169a6bSchristos     s->str = NULL;
198*4b169a6bSchristos     s->size = 0;
199*4b169a6bSchristos     s->len = 0;
200*4b169a6bSchristos }
201*4b169a6bSchristos 
202*4b169a6bSchristos // Save the results of printf with fmt and the subsequent argument list to s.
203*4b169a6bSchristos // Each call appends to s. The allocated space for s is increased as needed.
string_printf(string_t * s,char * fmt,...)204*4b169a6bSchristos local void string_printf(string_t *s, char *fmt, ...) {
205*4b169a6bSchristos     va_list ap;
206*4b169a6bSchristos     va_start(ap, fmt);
207*4b169a6bSchristos     size_t len = s->len;
208*4b169a6bSchristos     int ret = vsnprintf(s->str + len, s->size - len, fmt, ap);
209*4b169a6bSchristos     assert(ret >= 0 && "out of memory");
210*4b169a6bSchristos     s->len += ret;
211*4b169a6bSchristos     if (s->size < s->len + 1) {
212*4b169a6bSchristos         do {
213*4b169a6bSchristos             s->size <<= 1;
214*4b169a6bSchristos             assert(s->size != 0 && "overflow");
215*4b169a6bSchristos         } while (s->size < s->len + 1);
216*4b169a6bSchristos         s->str = realloc(s->str, s->size);
217*4b169a6bSchristos         assert(s->str != NULL && "out of memory");
218*4b169a6bSchristos         vsnprintf(s->str + len, s->size - len, fmt, ap);
219*4b169a6bSchristos     }
220*4b169a6bSchristos     va_end(ap);
221*4b169a6bSchristos }
222*4b169a6bSchristos 
223*4b169a6bSchristos // Globals to avoid propagating constants or constant pointers recursively.
224*4b169a6bSchristos struct {
225*4b169a6bSchristos     int max;            // maximum allowed bit length for the codes
226*4b169a6bSchristos     int root;           // size of base code table in bits
227*4b169a6bSchristos     int large;          // largest code table so far
228*4b169a6bSchristos     size_t size;        // number of elements in num and done
229*4b169a6bSchristos     big_t tot;          // total number of codes with maximum tables size
230*4b169a6bSchristos     string_t out;       // display of subcodes for maximum tables size
231*4b169a6bSchristos     int *code;          // number of symbols assigned to each bit length
232*4b169a6bSchristos     big_t *num;         // saved results array for code counting
233*4b169a6bSchristos     struct tab *done;   // states already evaluated array
234*4b169a6bSchristos } g;
235*4b169a6bSchristos 
236*4b169a6bSchristos // Index function for num[] and done[].
map(int syms,int left,int len)237*4b169a6bSchristos local inline size_t map(int syms, int left, int len) {
238*4b169a6bSchristos     return ((size_t)((syms - 1) >> 1) * ((syms - 2) >> 1) +
239*4b169a6bSchristos             (left >> 1) - 1) * (g.max - 1) +
240*4b169a6bSchristos            len - 1;
241*4b169a6bSchristos }
242*4b169a6bSchristos 
243*4b169a6bSchristos // Free allocated space in globals.
cleanup(void)244*4b169a6bSchristos local void cleanup(void) {
245*4b169a6bSchristos     if (g.done != NULL) {
246*4b169a6bSchristos         for (size_t n = 0; n < g.size; n++)
247*4b169a6bSchristos             if (g.done[n].len)
248*4b169a6bSchristos                 free(g.done[n].vec);
249*4b169a6bSchristos         g.size = 0;
250*4b169a6bSchristos         free(g.done);   g.done = NULL;
251*4b169a6bSchristos     }
252*4b169a6bSchristos     free(g.num);    g.num = NULL;
253*4b169a6bSchristos     free(g.code);   g.code = NULL;
254*4b169a6bSchristos     string_free(&g.out);
255*4b169a6bSchristos }
256*4b169a6bSchristos 
257*4b169a6bSchristos // Return the number of possible prefix codes using bit patterns of lengths len
258*4b169a6bSchristos // through max inclusive, coding syms symbols, with left bit patterns of length
259*4b169a6bSchristos // len unused -- return -1 if there is an overflow in the counting. Keep a
260*4b169a6bSchristos // record of previous results in num to prevent repeating the same calculation.
count(int syms,int left,int len)261*4b169a6bSchristos local big_t count(int syms, int left, int len) {
262*4b169a6bSchristos     // see if only one possible code
263212397c6Schristos     if (syms == left)
264212397c6Schristos         return 1;
265212397c6Schristos 
266*4b169a6bSchristos     // note and verify the expected state
267*4b169a6bSchristos     assert(syms > left && left > 0 && len < g.max);
268212397c6Schristos 
269*4b169a6bSchristos     // see if we've done this one already
270*4b169a6bSchristos     size_t index = map(syms, left, len);
271*4b169a6bSchristos     big_t got = g.num[index];
272212397c6Schristos     if (got)
273*4b169a6bSchristos         return got;         // we have -- return the saved result
274212397c6Schristos 
275*4b169a6bSchristos     // we need to use at least this many bit patterns so that the code won't be
276*4b169a6bSchristos     // incomplete at the next length (more bit patterns than symbols)
277*4b169a6bSchristos     int least = (left << 1) - syms;
278212397c6Schristos     if (least < 0)
279212397c6Schristos         least = 0;
280212397c6Schristos 
281*4b169a6bSchristos     // we can use at most this many bit patterns, lest there not be enough
282*4b169a6bSchristos     // available for the remaining symbols at the maximum length (if there were
283*4b169a6bSchristos     // no limit to the code length, this would become: most = left - 1)
284*4b169a6bSchristos     int most = (((code_t)left << (g.max - len)) - syms) /
285*4b169a6bSchristos                (((code_t)1 << (g.max - len)) - 1);
286212397c6Schristos 
287*4b169a6bSchristos     // count all possible codes from this juncture and add them up
288*4b169a6bSchristos     big_t sum = 0;
289*4b169a6bSchristos     for (int use = least; use <= most; use++) {
290*4b169a6bSchristos         got = count(syms - use, (left - use) << 1, len + 1);
291212397c6Schristos         sum += got;
292*4b169a6bSchristos         if (got == (big_t)-1 || sum < got)      // overflow
293*4b169a6bSchristos             return (big_t)-1;
294212397c6Schristos     }
295212397c6Schristos 
296*4b169a6bSchristos     // verify that all recursive calls are productive
297212397c6Schristos     assert(sum != 0);
298212397c6Schristos 
299*4b169a6bSchristos     // save the result and return it
300*4b169a6bSchristos     g.num[index] = sum;
301212397c6Schristos     return sum;
302212397c6Schristos }
303212397c6Schristos 
304*4b169a6bSchristos // Return true if we've been here before, set to true if not. Set a bit in a
305*4b169a6bSchristos // bit vector to indicate visiting this state. Each (syms,len,left) state has a
306*4b169a6bSchristos // variable size bit vector indexed by (mem,rem). The bit vector is lengthened
307*4b169a6bSchristos // as needed to allow setting the (mem,rem) bit.
been_here(int syms,int left,int len,int mem,int rem)308*4b169a6bSchristos local int been_here(int syms, int left, int len, int mem, int rem) {
309*4b169a6bSchristos     // point to vector for (syms,left,len), bit in vector for (mem,rem)
310*4b169a6bSchristos     size_t index = map(syms, left, len);
311*4b169a6bSchristos     mem -= 1 << g.root;             // mem always includes the root table
312*4b169a6bSchristos     mem >>= 1;                      // mem and rem are always even
313*4b169a6bSchristos     rem >>= 1;
314*4b169a6bSchristos     size_t offset = (mem >> 3) + rem;
315212397c6Schristos     offset = ((offset * (offset + 1)) >> 1) + rem;
316*4b169a6bSchristos     int bit = 1 << (mem & 7);
317212397c6Schristos 
318*4b169a6bSchristos     // see if we've been here
319*4b169a6bSchristos     size_t length = g.done[index].len;
320*4b169a6bSchristos     if (offset < length && (g.done[index].vec[offset] & bit) != 0)
321*4b169a6bSchristos         return 1;       // done this!
322212397c6Schristos 
323*4b169a6bSchristos     // we haven't been here before -- set the bit to show we have now
324212397c6Schristos 
325*4b169a6bSchristos     // see if we need to lengthen the vector in order to set the bit
326212397c6Schristos     if (length <= offset) {
327*4b169a6bSchristos         // if we have one already, enlarge it, zero out the appended space
328*4b169a6bSchristos         char *vector;
329212397c6Schristos         if (length) {
330212397c6Schristos             do {
331212397c6Schristos                 length <<= 1;
332212397c6Schristos             } while (length <= offset);
333*4b169a6bSchristos             vector = realloc(g.done[index].vec, length);
334*4b169a6bSchristos             assert(vector != NULL && "out of memory");
335*4b169a6bSchristos             memset(vector + g.done[index].len, 0, length - g.done[index].len);
336212397c6Schristos         }
337212397c6Schristos 
338*4b169a6bSchristos         // otherwise we need to make a new vector and zero it out
339212397c6Schristos         else {
340*4b169a6bSchristos             length = 16;
341212397c6Schristos             while (length <= offset)
342212397c6Schristos                 length <<= 1;
343*4b169a6bSchristos             vector = calloc(length, 1);
344*4b169a6bSchristos             assert(vector != NULL && "out of memory");
345212397c6Schristos         }
346212397c6Schristos 
347*4b169a6bSchristos         // install the new vector
348*4b169a6bSchristos         g.done[index].len = length;
349*4b169a6bSchristos         g.done[index].vec = vector;
350212397c6Schristos     }
351212397c6Schristos 
352*4b169a6bSchristos     // set the bit
353*4b169a6bSchristos     g.done[index].vec[offset] |= bit;
354212397c6Schristos     return 0;
355212397c6Schristos }
356212397c6Schristos 
357*4b169a6bSchristos // Examine all possible codes from the given node (syms, len, left). Compute
358*4b169a6bSchristos // the amount of memory required to build inflate's decoding tables, where the
359*4b169a6bSchristos // number of code structures used so far is mem, and the number remaining in
360*4b169a6bSchristos // the current sub-table is rem.
examine(int syms,int left,int len,int mem,int rem)361*4b169a6bSchristos local void examine(int syms, int left, int len, int mem, int rem) {
362*4b169a6bSchristos     // see if we have a complete code
363212397c6Schristos     if (syms == left) {
364*4b169a6bSchristos         // set the last code entry
365*4b169a6bSchristos         g.code[len] = left;
366212397c6Schristos 
367*4b169a6bSchristos         // complete computation of memory used by this code
368212397c6Schristos         while (rem < left) {
369212397c6Schristos             left -= rem;
370*4b169a6bSchristos             rem = 1 << (len - g.root);
371212397c6Schristos             mem += rem;
372212397c6Schristos         }
373212397c6Schristos         assert(rem == left);
374212397c6Schristos 
375*4b169a6bSchristos         // if this is at the maximum, show the sub-code
376*4b169a6bSchristos         if (mem >= g.large) {
377*4b169a6bSchristos             // if this is a new maximum, update the maximum and clear out the
378*4b169a6bSchristos             // printed sub-codes from the previous maximum
379*4b169a6bSchristos             if (mem > g.large) {
380*4b169a6bSchristos                 g.large = mem;
381*4b169a6bSchristos                 string_clear(&g.out);
382212397c6Schristos             }
383212397c6Schristos 
384*4b169a6bSchristos             // compute the starting state for this sub-code
385*4b169a6bSchristos             syms = 0;
386*4b169a6bSchristos             left = 1 << g.max;
387*4b169a6bSchristos             for (int bits = g.max; bits > g.root; bits--) {
388*4b169a6bSchristos                 syms += g.code[bits];
389*4b169a6bSchristos                 left -= g.code[bits];
390*4b169a6bSchristos                 assert((left & 1) == 0);
391*4b169a6bSchristos                 left >>= 1;
392*4b169a6bSchristos             }
393*4b169a6bSchristos 
394*4b169a6bSchristos             // print the starting state and the resulting sub-code to g.out
395*4b169a6bSchristos             string_printf(&g.out, "<%u, %u, %u>:",
396*4b169a6bSchristos                           syms, g.root + 1, ((1 << g.root) - left) << 1);
397*4b169a6bSchristos             for (int bits = g.root + 1; bits <= g.max; bits++)
398*4b169a6bSchristos                 if (g.code[bits])
399*4b169a6bSchristos                     string_printf(&g.out, " %d[%d]", g.code[bits], bits);
400*4b169a6bSchristos             string_printf(&g.out, "\n");
401*4b169a6bSchristos         }
402*4b169a6bSchristos 
403*4b169a6bSchristos         // remove entries as we drop back down in the recursion
404*4b169a6bSchristos         g.code[len] = 0;
405212397c6Schristos         return;
406212397c6Schristos     }
407212397c6Schristos 
408*4b169a6bSchristos     // prune the tree if we can
409*4b169a6bSchristos     if (been_here(syms, left, len, mem, rem))
410212397c6Schristos         return;
411212397c6Schristos 
412*4b169a6bSchristos     // we need to use at least this many bit patterns so that the code won't be
413*4b169a6bSchristos     // incomplete at the next length (more bit patterns than symbols)
414*4b169a6bSchristos     int least = (left << 1) - syms;
415212397c6Schristos     if (least < 0)
416212397c6Schristos         least = 0;
417212397c6Schristos 
418*4b169a6bSchristos     // we can use at most this many bit patterns, lest there not be enough
419*4b169a6bSchristos     // available for the remaining symbols at the maximum length (if there were
420*4b169a6bSchristos     // no limit to the code length, this would become: most = left - 1)
421*4b169a6bSchristos     int most = (((code_t)left << (g.max - len)) - syms) /
422*4b169a6bSchristos                (((code_t)1 << (g.max - len)) - 1);
423212397c6Schristos 
424*4b169a6bSchristos     // occupy least table spaces, creating new sub-tables as needed
425*4b169a6bSchristos     int use = least;
426212397c6Schristos     while (rem < use) {
427212397c6Schristos         use -= rem;
428*4b169a6bSchristos         rem = 1 << (len - g.root);
429212397c6Schristos         mem += rem;
430212397c6Schristos     }
431212397c6Schristos     rem -= use;
432212397c6Schristos 
433*4b169a6bSchristos     // examine codes from here, updating table space as we go
434212397c6Schristos     for (use = least; use <= most; use++) {
435*4b169a6bSchristos         g.code[len] = use;
436*4b169a6bSchristos         examine(syms - use, (left - use) << 1, len + 1,
437*4b169a6bSchristos                 mem + (rem ? 1 << (len - g.root) : 0), rem << 1);
438212397c6Schristos         if (rem == 0) {
439*4b169a6bSchristos             rem = 1 << (len - g.root);
440212397c6Schristos             mem += rem;
441212397c6Schristos         }
442212397c6Schristos         rem--;
443212397c6Schristos     }
444212397c6Schristos 
445*4b169a6bSchristos     // remove entries as we drop back down in the recursion
446*4b169a6bSchristos     g.code[len] = 0;
447212397c6Schristos }
448212397c6Schristos 
449*4b169a6bSchristos // Look at all sub-codes starting with root + 1 bits. Look at only the valid
450*4b169a6bSchristos // intermediate code states (syms, left, len). For each completed code,
451*4b169a6bSchristos // calculate the amount of memory required by inflate to build the decoding
452*4b169a6bSchristos // tables. Find the maximum amount of memory required and show the codes that
453*4b169a6bSchristos // require that maximum.
enough(int syms)454*4b169a6bSchristos local void enough(int syms) {
455*4b169a6bSchristos     // clear code
456*4b169a6bSchristos     for (int n = 0; n <= g.max; n++)
457*4b169a6bSchristos         g.code[n] = 0;
458212397c6Schristos 
459*4b169a6bSchristos     // look at all (root + 1) bit and longer codes
460*4b169a6bSchristos     string_clear(&g.out);           // empty saved results
461*4b169a6bSchristos     g.large = 1 << g.root;          // base table
462*4b169a6bSchristos     if (g.root < g.max)             // otherwise, there's only a base table
463*4b169a6bSchristos         for (int n = 3; n <= syms; n++)
464*4b169a6bSchristos             for (int left = 2; left < n; left += 2) {
465*4b169a6bSchristos                 // look at all reachable (root + 1) bit nodes, and the
466*4b169a6bSchristos                 // resulting codes (complete at root + 2 or more)
467*4b169a6bSchristos                 size_t index = map(n, left, g.root + 1);
468*4b169a6bSchristos                 if (g.root + 1 < g.max && g.num[index]) // reachable node
469*4b169a6bSchristos                     examine(n, left, g.root + 1, 1 << g.root, 0);
470212397c6Schristos 
471*4b169a6bSchristos                 // also look at root bit codes with completions at root + 1
472*4b169a6bSchristos                 // bits (not saved in num, since complete), just in case
473*4b169a6bSchristos                 if (g.num[index - 1] && n <= left << 1)
474*4b169a6bSchristos                     examine((n - left) << 1, (n - left) << 1, g.root + 1,
475*4b169a6bSchristos                             1 << g.root, 0);
476212397c6Schristos             }
477212397c6Schristos 
478*4b169a6bSchristos     // done
479*4b169a6bSchristos     printf("maximum of %d table entries for root = %d\n", g.large, g.root);
480*4b169a6bSchristos     fputs(g.out.str, stdout);
481212397c6Schristos }
482212397c6Schristos 
483*4b169a6bSchristos // Examine and show the total number of possible prefix codes for a given
484*4b169a6bSchristos // maximum number of symbols, initial root table size, and maximum code length
485*4b169a6bSchristos // in bits -- those are the command arguments in that order. The default values
486*4b169a6bSchristos // are 286, 9, and 15 respectively, for the deflate literal/length code. The
487*4b169a6bSchristos // possible codes are counted for each number of coded symbols from two to the
488*4b169a6bSchristos // maximum. The counts for each of those and the total number of codes are
489*4b169a6bSchristos // shown. The maximum number of inflate table entires is then calculated across
490*4b169a6bSchristos // all possible codes. Each new maximum number of table entries and the
491*4b169a6bSchristos // associated sub-code (starting at root + 1 == 10 bits) is shown.
492*4b169a6bSchristos //
493*4b169a6bSchristos // To count and examine prefix codes that are not length-limited, provide a
494*4b169a6bSchristos // maximum length equal to the number of symbols minus one.
495*4b169a6bSchristos //
496*4b169a6bSchristos // For the deflate literal/length code, use "enough". For the deflate distance
497*4b169a6bSchristos // code, use "enough 30 6".
main(int argc,char ** argv)498*4b169a6bSchristos int main(int argc, char **argv) {
499*4b169a6bSchristos     // set up globals for cleanup()
500*4b169a6bSchristos     g.code = NULL;
501*4b169a6bSchristos     g.num = NULL;
502*4b169a6bSchristos     g.done = NULL;
503*4b169a6bSchristos     string_init(&g.out);
504212397c6Schristos 
505*4b169a6bSchristos     // get arguments -- default to the deflate literal/length code
506*4b169a6bSchristos     int syms = 286;
507*4b169a6bSchristos     g.root = 9;
508*4b169a6bSchristos     g.max = 15;
509212397c6Schristos     if (argc > 1) {
510212397c6Schristos         syms = atoi(argv[1]);
511212397c6Schristos         if (argc > 2) {
512*4b169a6bSchristos             g.root = atoi(argv[2]);
513212397c6Schristos             if (argc > 3)
514*4b169a6bSchristos                 g.max = atoi(argv[3]);
515212397c6Schristos         }
516212397c6Schristos     }
517*4b169a6bSchristos     if (argc > 4 || syms < 2 || g.root < 1 || g.max < 1) {
518212397c6Schristos         fputs("invalid arguments, need: [sym >= 2 [root >= 1 [max >= 1]]]\n",
519212397c6Schristos               stderr);
520212397c6Schristos         return 1;
521212397c6Schristos     }
522212397c6Schristos 
523*4b169a6bSchristos     // if not restricting the code length, the longest is syms - 1
524*4b169a6bSchristos     if (g.max > syms - 1)
525*4b169a6bSchristos         g.max = syms - 1;
526212397c6Schristos 
527*4b169a6bSchristos     // determine the number of bits in a code_t
528*4b169a6bSchristos     int bits = 0;
529*4b169a6bSchristos     for (code_t word = 1; word; word <<= 1)
530*4b169a6bSchristos         bits++;
531212397c6Schristos 
532*4b169a6bSchristos     // make sure that the calculation of most will not overflow
533*4b169a6bSchristos     if (g.max > bits || (code_t)(syms - 2) >= ((code_t)-1 >> (g.max - 1))) {
534212397c6Schristos         fputs("abort: code length too long for internal types\n", stderr);
535212397c6Schristos         return 1;
536212397c6Schristos     }
537212397c6Schristos 
538*4b169a6bSchristos     // reject impossible code requests
539*4b169a6bSchristos     if ((code_t)(syms - 1) > ((code_t)1 << g.max) - 1) {
540212397c6Schristos         fprintf(stderr, "%d symbols cannot be coded in %d bits\n",
541*4b169a6bSchristos                 syms, g.max);
542212397c6Schristos         return 1;
543212397c6Schristos     }
544212397c6Schristos 
545*4b169a6bSchristos     // allocate code vector
546*4b169a6bSchristos     g.code = calloc(g.max + 1, sizeof(int));
547*4b169a6bSchristos     assert(g.code != NULL && "out of memory");
548212397c6Schristos 
549*4b169a6bSchristos     // determine size of saved results array, checking for overflows,
550*4b169a6bSchristos     // allocate and clear the array (set all to zero with calloc())
551*4b169a6bSchristos     if (syms == 2)              // iff max == 1
552*4b169a6bSchristos         g.num = NULL;           // won't be saving any results
553212397c6Schristos     else {
554*4b169a6bSchristos         g.size = syms >> 1;
555*4b169a6bSchristos         int n = (syms - 1) >> 1;
556*4b169a6bSchristos         assert(g.size <= (size_t)-1 / n && "overflow");
557*4b169a6bSchristos         g.size *= n;
558*4b169a6bSchristos         n = g.max - 1;
559*4b169a6bSchristos         assert(g.size <= (size_t)-1 / n && "overflow");
560*4b169a6bSchristos         g.size *= n;
561*4b169a6bSchristos         g.num = calloc(g.size, sizeof(big_t));
562*4b169a6bSchristos         assert(g.num != NULL && "out of memory");
563212397c6Schristos     }
564212397c6Schristos 
565*4b169a6bSchristos     // count possible codes for all numbers of symbols, add up counts
566*4b169a6bSchristos     big_t sum = 0;
567*4b169a6bSchristos     for (int n = 2; n <= syms; n++) {
568*4b169a6bSchristos         big_t got = count(n, 2, 1);
569212397c6Schristos         sum += got;
570*4b169a6bSchristos         assert(got != (big_t)-1 && sum >= got && "overflow");
571212397c6Schristos     }
572*4b169a6bSchristos     printf("%"PRIbig" total codes for 2 to %d symbols", sum, syms);
573*4b169a6bSchristos     if (g.max < syms - 1)
574*4b169a6bSchristos         printf(" (%d-bit length limit)\n", g.max);
575212397c6Schristos     else
576212397c6Schristos         puts(" (no length limit)");
577212397c6Schristos 
578*4b169a6bSchristos     // allocate and clear done array for been_here()
579212397c6Schristos     if (syms == 2)
580*4b169a6bSchristos         g.done = NULL;
581*4b169a6bSchristos     else {
582*4b169a6bSchristos         g.done = calloc(g.size, sizeof(struct tab));
583*4b169a6bSchristos         assert(g.done != NULL && "out of memory");
584212397c6Schristos     }
585212397c6Schristos 
586*4b169a6bSchristos     // find and show maximum inflate table usage
587*4b169a6bSchristos     if (g.root > g.max)             // reduce root to max length
588*4b169a6bSchristos         g.root = g.max;
589*4b169a6bSchristos     if ((code_t)syms < ((code_t)1 << (g.root + 1)))
590212397c6Schristos         enough(syms);
591212397c6Schristos     else
592*4b169a6bSchristos         fputs("cannot handle minimum code lengths > root", stderr);
593212397c6Schristos 
594*4b169a6bSchristos     // done
595212397c6Schristos     cleanup();
596212397c6Schristos     return 0;
597212397c6Schristos }
598