xref: /netbsd-src/external/gpl3/gdb/dist/sim/v850/v850-sim.h (revision f8cf1a9151c7af1cb0bd8b09c13c66bca599c027)
1 #ifndef V850_SIM_H
2 #define V850_SIM_H
3 
4 #include <stdint.h>
5 
6 struct simops
7 {
8   unsigned long   opcode;
9   unsigned long   mask;
10   int (* func) (void);
11   int    numops;
12   int    operands[12];
13 };
14 
15 #include "simops.h"
16 
17 typedef uint32_t reg_t;
18 typedef uint64_t reg64_t;
19 
20 
21 /* The current state of the processor; registers, memory, etc.  */
22 
23 typedef struct _v850_regs {
24   reg_t regs[32];		/* general-purpose registers */
25   reg_t sregs[32];		/* system registers, including psw */
26   reg_t pc;
27   int dummy_mem;                /* where invalid accesses go */
28   reg_t mpu0_sregs[28];         /* mpu0 system registers */
29   reg_t mpu1_sregs[28];         /* mpu1 system registers */
30   reg_t fpu_sregs[28];          /* fpu system registers */
31   reg_t selID_sregs[7][32];	/* system registers, selID 1 thru selID 7 */
32   reg64_t vregs[32];		/* vector registers.  */
33 } v850_regs;
34 
35 struct v850_sim_cpu {
36   v850_regs reg;
37   reg_t psw_mask;               /* only allow non-reserved bits to be set */
38   sim_event *pending_nmi;
39 };
40 
41 #define V850_SIM_CPU(cpu) ((struct v850_sim_cpu *) CPU_ARCH_DATA (cpu))
42 
43 /* For compatibility, until all functions converted to passing
44    SIM_DESC as an argument */
45 extern SIM_DESC simulator;
46 
47 
48 #define V850_ROM_SIZE 0x8000
49 #define V850_LOW_END 0x200000
50 #define V850_HIGH_START 0xffe000
51 
52 
53 /* Because we are still using the old semantic table, provide compat
54    macro's that store the instruction where the old simops expects
55    it. */
56 
57 extern uint32_t OP[4];
58 #if 0
59 OP[0] = inst & 0x1f;           /* RRRRR -> reg1 */
60 OP[1] = (inst >> 11) & 0x1f;   /* rrrrr -> reg2 */
61 OP[2] = (inst >> 16) & 0xffff; /* wwwww -> reg3 OR imm16 */
62 OP[3] = inst;
63 #endif
64 
65 #define SAVE_1 \
66 PC = cia; \
67 OP[0] = instruction_0 & 0x1f; \
68 OP[1] = (instruction_0 >> 11) & 0x1f; \
69 OP[2] = 0; \
70 OP[3] = instruction_0
71 
72 #define COMPAT_1(CALL) \
73 SAVE_1; \
74 PC += (CALL); \
75 nia = PC
76 
77 #define SAVE_2 \
78 PC = cia; \
79 OP[0] = instruction_0 & 0x1f; \
80 OP[1] = (instruction_0 >> 11) & 0x1f; \
81 OP[2] = instruction_1; \
82 OP[3] = (instruction_1 << 16) | instruction_0
83 
84 #define COMPAT_2(CALL) \
85 SAVE_2; \
86 PC += (CALL); \
87 nia = PC
88 
89 
90 /* new */
91 #define GR  (V850_SIM_CPU (CPU)->reg.regs)
92 #define SR  (V850_SIM_CPU (CPU)->reg.sregs)
93 #define VR  (V850_SIM_CPU (CPU)->reg.vregs)
94 #define MPU0_SR  (V850_SIM_CPU (CPU)->reg.mpu0_sregs)
95 #define MPU1_SR  (V850_SIM_CPU (CPU)->reg.mpu1_sregs)
96 #define FPU_SR   (V850_SIM_CPU (CPU)->reg.fpu_sregs)
97 
98 /* old */
99 #define State    (V850_SIM_CPU (STATE_CPU (simulator, 0))->reg)
100 #define PC	(State.pc)
101 #define SP_REGNO        3
102 #define SP      (State.regs[SP_REGNO])
103 #define EP	(State.regs[30])
104 
105 #define EIPC  (State.sregs[0])
106 #define EIPSW (State.sregs[1])
107 #define FEPC  (State.sregs[2])
108 #define FEPSW (State.sregs[3])
109 #define ECR   (State.sregs[4])
110 #define PSW   (State.sregs[5])
111 #define PSW_REGNO   5
112 #define EIIC  (State.sregs[13])
113 #define FEIC  (State.sregs[14])
114 #define DBIC  (SR[15])
115 #define CTPC  (SR[16])
116 #define CTPSW (SR[17])
117 #define DBPC  (State.sregs[18])
118 #define DBPSW (State.sregs[19])
119 #define CTBP  (State.sregs[20])
120 #define DIR   (SR[21])
121 #define EIWR  (SR[28])
122 #define FEWR  (SR[29])
123 #define DBWR  (SR[30])
124 #define BSEL  (SR[31])
125 
126 #define PSW_US BIT32 (8)
127 #define PSW_NP 0x80
128 #define PSW_EP 0x40
129 #define PSW_ID 0x20
130 #define PSW_SAT 0x10
131 #define PSW_CY 0x8
132 #define PSW_OV 0x4
133 #define PSW_S 0x2
134 #define PSW_Z 0x1
135 
136 #define PSW_NPV	(1<<18)
137 #define PSW_DMP	(1<<17)
138 #define PSW_IMP	(1<<16)
139 
140 #define ECR_EICC 0x0000ffff
141 #define ECR_FECC 0xffff0000
142 
143 /* FPU */
144 
145 #define FPSR  (FPU_SR[6])
146 #define FPSR_REGNO 6
147 #define FPEPC (FPU_SR[7])
148 #define FPST  (FPU_SR[8])
149 #define FPST_REGNO 8
150 #define FPCC  (FPU_SR[9])
151 #define FPCFG (FPU_SR[10])
152 #define FPCFG_REGNO 10
153 
154 #define FPSR_DEM  0x00200000
155 #define FPSR_SEM  0x00100000
156 #define FPSR_RM   0x000c0000
157 #define FPSR_RN   0x00000000
158 #define FPSR_FS   0x00020000
159 #define FPSR_PR   0x00010000
160 
161 #define FPSR_XC   0x0000fc00
162 #define FPSR_XCE  0x00008000
163 #define FPSR_XCV  0x00004000
164 #define FPSR_XCZ  0x00002000
165 #define FPSR_XCO  0x00001000
166 #define FPSR_XCU  0x00000800
167 #define FPSR_XCI  0x00000400
168 
169 #define FPSR_XE   0x000003e0
170 #define FPSR_XEV  0x00000200
171 #define FPSR_XEZ  0x00000100
172 #define FPSR_XEO  0x00000080
173 #define FPSR_XEU  0x00000040
174 #define FPSR_XEI  0x00000020
175 
176 #define FPSR_XP   0x0000001f
177 #define FPSR_XPV  0x00000010
178 #define FPSR_XPZ  0x00000008
179 #define FPSR_XPO  0x00000004
180 #define FPSR_XPU  0x00000002
181 #define FPSR_XPI  0x00000001
182 
183 #define FPST_PR   0x00008000
184 #define FPST_XCE  0x00002000
185 #define FPST_XCV  0x00001000
186 #define FPST_XCZ  0x00000800
187 #define FPST_XCO  0x00000400
188 #define FPST_XCU  0x00000200
189 #define FPST_XCI  0x00000100
190 
191 #define FPST_XPV  0x00000010
192 #define FPST_XPZ  0x00000008
193 #define FPST_XPO  0x00000004
194 #define FPST_XPU  0x00000002
195 #define FPST_XPI  0x00000001
196 
197 #define FPCFG_RM   0x00000180
198 #define FPCFG_XEV  0x00000010
199 #define FPCFG_XEZ  0x00000008
200 #define FPCFG_XEO  0x00000004
201 #define FPCFG_XEU  0x00000002
202 #define FPCFG_XEI  0x00000001
203 
204 #define GET_FPCC()\
205  ((FPSR >> 24) &0xf)
206 
207 #define CLEAR_FPCC(bbb)\
208   (FPSR &= ~(1 << (bbb+24)))
209 
210 #define SET_FPCC(bbb)\
211  (FPSR |= 1 << (bbb+24))
212 
213 #define TEST_FPCC(bbb)\
214   ((FPSR & (1 << (bbb+24))) != 0)
215 
216 #define FPSR_GET_ROUND()					\
217   (((FPSR & FPSR_RM) == FPSR_RN) ? sim_fpu_round_near		\
218    : ((FPSR & FPSR_RM) == 0x00040000) ? sim_fpu_round_up	\
219    : ((FPSR & FPSR_RM) == 0x00080000) ? sim_fpu_round_down	\
220    : sim_fpu_round_zero)
221 
222 
223 enum FPU_COMPARE {
224   FPU_CMP_F = 0,
225   FPU_CMP_UN,
226   FPU_CMP_EQ,
227   FPU_CMP_UEQ,
228   FPU_CMP_OLT,
229   FPU_CMP_ULT,
230   FPU_CMP_OLE,
231   FPU_CMP_ULE,
232   FPU_CMP_SF,
233   FPU_CMP_NGLE,
234   FPU_CMP_SEQ,
235   FPU_CMP_NGL,
236   FPU_CMP_LT,
237   FPU_CMP_NGE,
238   FPU_CMP_LE,
239   FPU_CMP_NGT
240 };
241 
242 
243 /* MPU */
244 #define MPM	(MPU1_SR[0])
245 #define MPC	(MPU1_SR[1])
246 #define MPC_REGNO 1
247 #define TID	(MPU1_SR[2])
248 #define PPA	(MPU1_SR[3])
249 #define PPM	(MPU1_SR[4])
250 #define PPC	(MPU1_SR[5])
251 #define DCC	(MPU1_SR[6])
252 #define DCV0	(MPU1_SR[7])
253 #define DCV1	(MPU1_SR[8])
254 #define SPAL	(MPU1_SR[10])
255 #define SPAU	(MPU1_SR[11])
256 #define IPA0L	(MPU1_SR[12])
257 #define IPA0U	(MPU1_SR[13])
258 #define IPA1L	(MPU1_SR[14])
259 #define IPA1U	(MPU1_SR[15])
260 #define IPA2L	(MPU1_SR[16])
261 #define IPA2U	(MPU1_SR[17])
262 #define IPA3L	(MPU1_SR[18])
263 #define IPA3U	(MPU1_SR[19])
264 #define DPA0L	(MPU1_SR[20])
265 #define DPA0U	(MPU1_SR[21])
266 #define DPA1L	(MPU1_SR[22])
267 #define DPA1U	(MPU1_SR[23])
268 #define DPA2L	(MPU1_SR[24])
269 #define DPA2U	(MPU1_SR[25])
270 #define DPA3L	(MPU1_SR[26])
271 #define DPA3U	(MPU1_SR[27])
272 
273 #define PPC_PPE 0x1
274 #define SPAL_SPE 0x1
275 #define SPAL_SPS 0x10
276 
277 #define VIP	(MPU0_SR[0])
278 #define VMECR	(MPU0_SR[4])
279 #define VMTID	(MPU0_SR[5])
280 #define VMADR	(MPU0_SR[6])
281 #define VPECR	(MPU0_SR[8])
282 #define VPTID	(MPU0_SR[9])
283 #define VPADR	(MPU0_SR[10])
284 #define VDECR	(MPU0_SR[12])
285 #define VDTID	(MPU0_SR[13])
286 
287 #define MPM_AUE	0x2
288 #define MPM_MPE	0x1
289 
290 #define VMECR_VMX   0x2
291 #define VMECR_VMR   0x4
292 #define VMECR_VMW   0x8
293 #define VMECR_VMS   0x10
294 #define VMECR_VMRMW 0x20
295 #define VMECR_VMMS  0x40
296 
297 #define IPA2ADDR(IPA)	((IPA) & 0x1fffff80)
298 #define IPA_IPE	0x1
299 #define IPA_IPX	0x2
300 #define IPA_IPR	0x4
301 #define IPE0	(IPA0L & IPA_IPE)
302 #define IPE1	(IPA1L & IPA_IPE)
303 #define IPE2	(IPA2L & IPA_IPE)
304 #define IPE3	(IPA3L & IPA_IPE)
305 #define IPX0	(IPA0L & IPA_IPX)
306 #define IPX1	(IPA1L & IPA_IPX)
307 #define IPX2	(IPA2L & IPA_IPX)
308 #define IPX3	(IPA3L & IPA_IPX)
309 #define IPR0	(IPA0L & IPA_IPR)
310 #define IPR1	(IPA1L & IPA_IPR)
311 #define IPR2	(IPA2L & IPA_IPR)
312 #define IPR3	(IPA3L & IPA_IPR)
313 
314 #define DPA2ADDR(DPA)	((DPA) & 0x1fffff80)
315 #define DPA_DPE 0x1
316 #define DPA_DPR 0x4
317 #define DPA_DPW 0x8
318 #define DPE0	(DPA0L & DPA_DPE)
319 #define DPE1	(DPA1L & DPA_DPE)
320 #define DPE2	(DPA2L & DPA_DPE)
321 #define DPE3	(DPA3L & DPA_DPE)
322 #define DPR0	(DPA0L & DPA_DPR)
323 #define DPR1	(DPA1L & DPA_DPR)
324 #define DPR2	(DPA2L & DPA_DPR)
325 #define DPR3	(DPA3L & DPA_DPR)
326 #define DPW0	(DPA0L & DPA_DPW)
327 #define DPW1	(DPA1L & DPA_DPW)
328 #define DPW2	(DPA2L & DPA_DPW)
329 #define DPW3	(DPA3L & DPA_DPW)
330 
331 #define DCC_DCE0 0x1
332 #define DCC_DCE1 0x10000
333 
334 #define PPA2ADDR(PPA)	((PPA) & 0x1fffff80)
335 #define PPC_PPC 0xfffffffe
336 #define PPC_PPE 0x1
337 #define PPC_PPM 0x0000fff8
338 
339 
340 #define SEXT3(x)	((((x)&0x7)^(~0x3))+0x4)
341 
342 /* sign-extend a 4-bit number */
343 #define SEXT4(x)	((((x)&0xf)^(~0x7))+0x8)
344 
345 /* sign-extend a 5-bit number */
346 #define SEXT5(x)	((((x)&0x1f)^(~0xf))+0x10)
347 
348 /* sign-extend a 9-bit number */
349 #define SEXT9(x)	((((x)&0x1ff)^(~0xff))+0x100)
350 
351 /* sign-extend a 22-bit number */
352 #define SEXT22(x)	((((x)&0x3fffff)^(~0x1fffff))+0x200000)
353 
354 /* sign extend a 40 bit number */
355 #define SEXT40(x)	((((x) & UNSIGNED64 (0xffffffffff)) \
356 			  ^ (~UNSIGNED64 (0x7fffffffff))) \
357 			 + UNSIGNED64 (0x8000000000))
358 
359 /* sign extend a 44 bit number */
360 #define SEXT44(x)	((((x) & UNSIGNED64 (0xfffffffffff)) \
361 			  ^ (~ UNSIGNED64 (0x7ffffffffff))) \
362 			 + UNSIGNED64 (0x80000000000))
363 
364 /* sign extend a 60 bit number */
365 #define SEXT60(x)	((((x) & UNSIGNED64 (0xfffffffffffffff)) \
366 			  ^ (~ UNSIGNED64 (0x7ffffffffffffff))) \
367 			 + UNSIGNED64 (0x800000000000000))
368 
369 /* No sign extension */
370 #define NOP(x)		(x)
371 
372 #define INC_ADDR(x,i)	x = ((State.MD && x == MOD_E) ? MOD_S : (x)+(i))
373 
374 #define RLW(x) load_mem (x, 4)
375 
376 /* Function declarations.  */
377 
378 #define IMEM16(EA) \
379 sim_core_read_aligned_2 (CPU, PC, exec_map, (EA))
380 
381 #define IMEM16_IMMED(EA,N) \
382 sim_core_read_aligned_2 (STATE_CPU (SD, 0), \
383 			 PC, exec_map, (EA) + (N) * 2)
384 
385 #define load_mem(ADDR,LEN) \
386 sim_core_read_unaligned_##LEN (STATE_CPU (simulator, 0), \
387 			       PC, read_map, (ADDR))
388 
389 #define store_mem(ADDR,LEN,DATA) \
390 sim_core_write_unaligned_##LEN (STATE_CPU (simulator, 0), \
391 				PC, write_map, (ADDR), (DATA))
392 
393 
394 /* compare cccc field against PSW */
395 int condition_met (unsigned code);
396 
397 
398 /* Debug/tracing calls */
399 
400 enum op_types
401 {
402   OP_UNKNOWN,
403   OP_NONE,
404   OP_TRAP,
405   OP_REG,
406   OP_REG_REG,
407   OP_REG_REG_CMP,
408   OP_REG_REG_MOVE,
409   OP_IMM_REG,
410   OP_IMM_REG_CMP,
411   OP_IMM_REG_MOVE,
412   OP_COND_BR,
413   OP_LOAD16,
414   OP_STORE16,
415   OP_LOAD32,
416   OP_STORE32,
417   OP_JUMP,
418   OP_IMM_REG_REG,
419   OP_UIMM_REG_REG,
420   OP_IMM16_REG_REG,
421   OP_UIMM16_REG_REG,
422   OP_BIT,
423   OP_EX1,
424   OP_EX2,
425   OP_LDSR,
426   OP_STSR,
427   OP_BIT_CHANGE,
428   OP_REG_REG_REG,
429   OP_REG_REG3,
430   OP_IMM_REG_REG_REG,
431   OP_PUSHPOP1,
432   OP_PUSHPOP2,
433   OP_PUSHPOP3,
434 };
435 
436 #if WITH_TRACE_ANY_P
437 void trace_input (char *name, enum op_types type, int size);
438 void trace_output (enum op_types result);
439 void trace_result (int has_result, uint32_t result);
440 
441 extern int trace_num_values;
442 extern uint32_t trace_values[];
443 extern uint32_t trace_pc;
444 extern const char *trace_name;
445 extern int trace_module;
446 
447 #define TRACE_BRANCH0() \
448 do { \
449   if (TRACE_BRANCH_P (CPU)) { \
450     trace_module = TRACE_BRANCH_IDX; \
451     trace_pc = cia; \
452     trace_name = itable[MY_INDEX].name; \
453     trace_num_values = 0; \
454     trace_result (1, (nia)); \
455   } \
456 } while (0)
457 
458 #define TRACE_BRANCH1(IN1) \
459 do { \
460   if (TRACE_BRANCH_P (CPU)) { \
461     trace_module = TRACE_BRANCH_IDX; \
462     trace_pc = cia; \
463     trace_name = itable[MY_INDEX].name; \
464     trace_values[0] = (IN1); \
465     trace_num_values = 1; \
466     trace_result (1, (nia)); \
467   } \
468 } while (0)
469 
470 #define TRACE_BRANCH2(IN1, IN2) \
471 do { \
472   if (TRACE_BRANCH_P (CPU)) { \
473     trace_module = TRACE_BRANCH_IDX; \
474     trace_pc = cia; \
475     trace_name = itable[MY_INDEX].name; \
476     trace_values[0] = (IN1); \
477     trace_values[1] = (IN2); \
478     trace_num_values = 2; \
479     trace_result (1, (nia)); \
480   } \
481 } while (0)
482 
483 #define TRACE_BRANCH3(IN1, IN2, IN3) \
484 do { \
485   if (TRACE_BRANCH_P (CPU)) { \
486     trace_module = TRACE_BRANCH_IDX; \
487     trace_pc = cia; \
488     trace_name = itable[MY_INDEX].name; \
489     trace_values[0] = (IN1); \
490     trace_values[1] = (IN2); \
491     trace_values[2] = (IN3); \
492     trace_num_values = 3; \
493     trace_result (1, (nia)); \
494   } \
495 } while (0)
496 
497 #define TRACE_LD(ADDR,RESULT) \
498 do { \
499   if (TRACE_MEMORY_P (CPU)) { \
500     trace_module = TRACE_MEMORY_IDX; \
501     trace_pc = cia; \
502     trace_name = itable[MY_INDEX].name; \
503     trace_values[0] = (ADDR); \
504     trace_num_values = 1; \
505     trace_result (1, (RESULT)); \
506   } \
507 } while (0)
508 
509 #define TRACE_LD_NAME(NAME, ADDR,RESULT) \
510 do { \
511   if (TRACE_MEMORY_P (CPU)) { \
512     trace_module = TRACE_MEMORY_IDX; \
513     trace_pc = cia; \
514     trace_name = (NAME); \
515     trace_values[0] = (ADDR); \
516     trace_num_values = 1; \
517     trace_result (1, (RESULT)); \
518   } \
519 } while (0)
520 
521 #define TRACE_ST(ADDR,RESULT) \
522 do { \
523   if (TRACE_MEMORY_P (CPU)) { \
524     trace_module = TRACE_MEMORY_IDX; \
525     trace_pc = cia; \
526     trace_name = itable[MY_INDEX].name; \
527     trace_values[0] = (ADDR); \
528     trace_num_values = 1; \
529     trace_result (1, (RESULT)); \
530   } \
531 } while (0)
532 
533 #define TRACE_FP_INPUT_FPU1(V0)	\
534 do { \
535   if (TRACE_FPU_P (CPU)) \
536     { \
537       uint64_t f0; \
538       sim_fpu_to64 (&f0, (V0)); \
539       trace_input_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
540     } \
541 } while (0)
542 
543 #define TRACE_FP_INPUT_FPU2(V0, V1) \
544 do { \
545   if (TRACE_FPU_P (CPU)) \
546     { \
547       uint64_t f0, f1; \
548       sim_fpu_to64 (&f0, (V0)); \
549       sim_fpu_to64 (&f1, (V1)); \
550       trace_input_fp2 (SD, CPU, TRACE_FPU_IDX, f0, f1);	\
551     } \
552 } while (0)
553 
554 #define TRACE_FP_INPUT_FPU3(V0, V1, V2) \
555 do { \
556   if (TRACE_FPU_P (CPU)) \
557     { \
558       uint64_t f0, f1, f2; \
559       sim_fpu_to64 (&f0, (V0)); \
560       sim_fpu_to64 (&f1, (V1)); \
561       sim_fpu_to64 (&f2, (V2)); \
562       trace_input_fp3 (SD, CPU, TRACE_FPU_IDX, f0, f1, f2); \
563     } \
564 } while (0)
565 
566 #define TRACE_FP_INPUT_BOOL1_FPU2(V0, V1, V2) \
567 do { \
568   if (TRACE_FPU_P (CPU)) \
569     { \
570       int d0 = (V0); \
571       uint64_t f1, f2; \
572       TRACE_DATA *data = CPU_TRACE_DATA (CPU); \
573       TRACE_IDX (data) = TRACE_FPU_IDX;	\
574       sim_fpu_to64 (&f1, (V1)); \
575       sim_fpu_to64 (&f2, (V2)); \
576       save_data (SD, data, trace_fmt_bool, sizeof (d0), &d0); \
577       save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f1); \
578       save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f2); \
579     } \
580 } while (0)
581 
582 #define TRACE_FP_INPUT_WORD2(V0, V1) \
583 do { \
584   if (TRACE_FPU_P (CPU)) \
585     trace_input_word2 (SD, CPU, TRACE_FPU_IDX, (V0), (V1)); \
586 } while (0)
587 
588 #define TRACE_FP_RESULT_FPU1(R0) \
589 do { \
590   if (TRACE_FPU_P (CPU)) \
591     { \
592       uint64_t f0; \
593       sim_fpu_to64 (&f0, (R0));	\
594       trace_result_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
595     } \
596 } while (0)
597 
598 #define TRACE_FP_RESULT_WORD1(R0) TRACE_FP_RESULT_WORD(R0)
599 
600 #define TRACE_FP_RESULT_WORD2(R0, R1) \
601 do { \
602   if (TRACE_FPU_P (CPU)) \
603     trace_result_word2 (SD, CPU, TRACE_FPU_IDX, (R0), (R1)); \
604 } while (0)
605 
606 #else
607 #define trace_input(NAME, IN1, IN2)
608 #define trace_output(RESULT)
609 #define trace_result(HAS_RESULT, RESULT)
610 
611 #define TRACE_BRANCH0()
612 #define TRACE_BRANCH1(IN1)
613 #define TRACE_BRANCH2(IN1, IN2)
614 #define TRACE_BRANCH3(IN1, IN2, IN3)
615 
616 #define TRACE_LD(ADDR,RESULT)
617 #define TRACE_ST(ADDR,RESULT)
618 
619 #endif
620 
621 #define GPR_SET(N, VAL) (State.regs[(N)] = (VAL))
622 #define GPR_CLEAR(N)    (State.regs[(N)] = 0)
623 
624 extern void divun ( unsigned int       N,
625 		    unsigned long int  als,
626 		    unsigned long int  sfi,
627 		    uint32_t /*unsigned long int*/ *  quotient_ptr,
628 		    uint32_t /*unsigned long int*/ *  remainder_ptr,
629 		    int *overflow_ptr
630 		    );
631 extern void divn ( unsigned int       N,
632 		   unsigned long int  als,
633 		   unsigned long int  sfi,
634 		   int32_t /*signed long int*/ *  quotient_ptr,
635 		   int32_t /*signed long int*/ *  remainder_ptr,
636 		   int *overflow_ptr
637 		   );
638 extern int type1_regs[];
639 extern int type2_regs[];
640 extern int type3_regs[];
641 
642 #define SESR_OV   (1 << 0)
643 #define SESR_SOV  (1 << 1)
644 
645 #define SESR      (State.sregs[12])
646 
647 #define ROUND_Q62_Q31(X) ((((X) + (1 << 30)) >> 31) & 0xffffffff)
648 #define ROUND_Q62_Q15(X) ((((X) + (1 << 30)) >> 47) & 0xffff)
649 #define ROUND_Q31_Q15(X) ((((X) + (1 << 15)) >> 15) & 0xffff)
650 #define ROUND_Q30_Q15(X) ((((X) + (1 << 14)) >> 15) & 0xffff)
651 
652 #define SAT16(X)			\
653   do					\
654     {					\
655       int64_t z = (X);			\
656       if (z > 0x7fff)			\
657 	{				\
658 	  SESR |= SESR_OV | SESR_SOV;	\
659 	  z = 0x7fff;			\
660 	}				\
661       else if (z < -0x8000)		\
662 	{				\
663 	  SESR |= SESR_OV | SESR_SOV;	\
664 	  z = - 0x8000;			\
665 	}				\
666       (X) = z;				\
667     }					\
668   while (0)
669 
670 #define SAT32(X)			\
671   do					\
672     {					\
673       int64_t z = (X);			\
674       if (z > 0x7fffffff)		\
675 	{				\
676 	  SESR |= SESR_OV | SESR_SOV;	\
677 	  z = 0x7fffffff;		\
678 	}				\
679       else if (z < -0x80000000)		\
680 	{				\
681 	  SESR |= SESR_OV | SESR_SOV;	\
682 	  z = - 0x80000000;		\
683 	}				\
684       (X) = z;				\
685     }					\
686   while (0)
687 
688 #define ABS16(X)			\
689   do					\
690     {					\
691       int64_t z = (X) & 0xffff;	\
692       if (z == 0x8000)			\
693 	{				\
694 	  SESR |= SESR_OV | SESR_SOV;	\
695 	  z = 0x7fff;			\
696 	}				\
697       else if (z & 0x8000)		\
698 	{				\
699 	  z = (- z) & 0xffff;		\
700 	}				\
701       (X) = z;				\
702     }					\
703   while (0)
704 
705 #define ABS32(X)			\
706   do					\
707     {					\
708       int64_t z = (X) & 0xffffffff;	\
709       if (z == 0x80000000)		\
710 	{				\
711 	  SESR |= SESR_OV | SESR_SOV;	\
712 	  z = 0x7fffffff;		\
713 	}				\
714       else if (z & 0x80000000)		\
715 	{				\
716 	  z = (- z) & 0xffffffff;	\
717 	}				\
718       (X) = z;				\
719     }					\
720   while (0)
721 
722 #endif
723