xref: /netbsd-src/external/gpl3/gdb/dist/sim/v850/sim-main.h (revision a45db23f655e22f0c2354600d3b3c2cb98abf2dc)
1 #ifndef SIM_MAIN_H
2 #define SIM_MAIN_H
3 
4 /* The v850 has 32bit words, numbered 31 (MSB) to 0 (LSB) */
5 
6 #define WITH_TARGET_WORD_MSB 31
7 
8 #include "sim-basics.h"
9 #include "sim-signal.h"
10 #include "sim-fpu.h"
11 #include "sim-base.h"
12 
13 #include "simops.h"
14 #include "bfd.h"
15 
16 
17 typedef uint32_t reg_t;
18 typedef uint64_t reg64_t;
19 
20 
21 /* The current state of the processor; registers, memory, etc.  */
22 
23 typedef struct _v850_regs {
24   reg_t regs[32];		/* general-purpose registers */
25   reg_t sregs[32];		/* system registers, including psw */
26   reg_t pc;
27   int dummy_mem;                /* where invalid accesses go */
28   reg_t mpu0_sregs[28];         /* mpu0 system registers */
29   reg_t mpu1_sregs[28];         /* mpu1 system registers */
30   reg_t fpu_sregs[28];          /* fpu system registers */
31   reg_t selID_sregs[7][32];	/* system registers, selID 1 thru selID 7 */
32   reg64_t vregs[32];		/* vector registers.  */
33 } v850_regs;
34 
35 struct _sim_cpu
36 {
37   /* ... simulator specific members ... */
38   v850_regs reg;
39   reg_t psw_mask;               /* only allow non-reserved bits to be set */
40   sim_event *pending_nmi;
41   /* ... base type ... */
42   sim_cpu_base base;
43 };
44 
45 /* For compatibility, until all functions converted to passing
46    SIM_DESC as an argument */
47 extern SIM_DESC simulator;
48 
49 
50 #define V850_ROM_SIZE 0x8000
51 #define V850_LOW_END 0x200000
52 #define V850_HIGH_START 0xffe000
53 
54 
55 /* Because we are still using the old semantic table, provide compat
56    macro's that store the instruction where the old simops expects
57    it. */
58 
59 extern uint32_t OP[4];
60 #if 0
61 OP[0] = inst & 0x1f;           /* RRRRR -> reg1 */
62 OP[1] = (inst >> 11) & 0x1f;   /* rrrrr -> reg2 */
63 OP[2] = (inst >> 16) & 0xffff; /* wwwww -> reg3 OR imm16 */
64 OP[3] = inst;
65 #endif
66 
67 #define SAVE_1 \
68 PC = cia; \
69 OP[0] = instruction_0 & 0x1f; \
70 OP[1] = (instruction_0 >> 11) & 0x1f; \
71 OP[2] = 0; \
72 OP[3] = instruction_0
73 
74 #define COMPAT_1(CALL) \
75 SAVE_1; \
76 PC += (CALL); \
77 nia = PC
78 
79 #define SAVE_2 \
80 PC = cia; \
81 OP[0] = instruction_0 & 0x1f; \
82 OP[1] = (instruction_0 >> 11) & 0x1f; \
83 OP[2] = instruction_1; \
84 OP[3] = (instruction_1 << 16) | instruction_0
85 
86 #define COMPAT_2(CALL) \
87 SAVE_2; \
88 PC += (CALL); \
89 nia = PC
90 
91 
92 /* new */
93 #define GR  ((CPU)->reg.regs)
94 #define SR  ((CPU)->reg.sregs)
95 #define VR  ((CPU)->reg.vregs)
96 #define MPU0_SR  ((STATE_CPU (sd, 0))->reg.mpu0_sregs)
97 #define MPU1_SR  ((STATE_CPU (sd, 0))->reg.mpu1_sregs)
98 #define FPU_SR   ((STATE_CPU (sd, 0))->reg.fpu_sregs)
99 
100 /* old */
101 #define State    (STATE_CPU (simulator, 0)->reg)
102 #define PC	(State.pc)
103 #define SP_REGNO        3
104 #define SP      (State.regs[SP_REGNO])
105 #define EP	(State.regs[30])
106 
107 #define EIPC  (State.sregs[0])
108 #define EIPSW (State.sregs[1])
109 #define FEPC  (State.sregs[2])
110 #define FEPSW (State.sregs[3])
111 #define ECR   (State.sregs[4])
112 #define PSW   (State.sregs[5])
113 #define PSW_REGNO   5
114 #define EIIC  (State.sregs[13])
115 #define FEIC  (State.sregs[14])
116 #define DBIC  (SR[15])
117 #define CTPC  (SR[16])
118 #define CTPSW (SR[17])
119 #define DBPC  (State.sregs[18])
120 #define DBPSW (State.sregs[19])
121 #define CTBP  (State.sregs[20])
122 #define DIR   (SR[21])
123 #define EIWR  (SR[28])
124 #define FEWR  (SR[29])
125 #define DBWR  (SR[30])
126 #define BSEL  (SR[31])
127 
128 #define PSW_US BIT32 (8)
129 #define PSW_NP 0x80
130 #define PSW_EP 0x40
131 #define PSW_ID 0x20
132 #define PSW_SAT 0x10
133 #define PSW_CY 0x8
134 #define PSW_OV 0x4
135 #define PSW_S 0x2
136 #define PSW_Z 0x1
137 
138 #define PSW_NPV	(1<<18)
139 #define PSW_DMP	(1<<17)
140 #define PSW_IMP	(1<<16)
141 
142 #define ECR_EICC 0x0000ffff
143 #define ECR_FECC 0xffff0000
144 
145 /* FPU */
146 
147 #define FPSR  (FPU_SR[6])
148 #define FPSR_REGNO 6
149 #define FPEPC (FPU_SR[7])
150 #define FPST  (FPU_SR[8])
151 #define FPST_REGNO 8
152 #define FPCC  (FPU_SR[9])
153 #define FPCFG (FPU_SR[10])
154 #define FPCFG_REGNO 10
155 
156 #define FPSR_DEM  0x00200000
157 #define FPSR_SEM  0x00100000
158 #define FPSR_RM   0x000c0000
159 #define FPSR_RN   0x00000000
160 #define FPSR_FS   0x00020000
161 #define FPSR_PR   0x00010000
162 
163 #define FPSR_XC   0x0000fc00
164 #define FPSR_XCE  0x00008000
165 #define FPSR_XCV  0x00004000
166 #define FPSR_XCZ  0x00002000
167 #define FPSR_XCO  0x00001000
168 #define FPSR_XCU  0x00000800
169 #define FPSR_XCI  0x00000400
170 
171 #define FPSR_XE   0x000003e0
172 #define FPSR_XEV  0x00000200
173 #define FPSR_XEZ  0x00000100
174 #define FPSR_XEO  0x00000080
175 #define FPSR_XEU  0x00000040
176 #define FPSR_XEI  0x00000020
177 
178 #define FPSR_XP   0x0000001f
179 #define FPSR_XPV  0x00000010
180 #define FPSR_XPZ  0x00000008
181 #define FPSR_XPO  0x00000004
182 #define FPSR_XPU  0x00000002
183 #define FPSR_XPI  0x00000001
184 
185 #define FPST_PR   0x00008000
186 #define FPST_XCE  0x00002000
187 #define FPST_XCV  0x00001000
188 #define FPST_XCZ  0x00000800
189 #define FPST_XCO  0x00000400
190 #define FPST_XCU  0x00000200
191 #define FPST_XCI  0x00000100
192 
193 #define FPST_XPV  0x00000010
194 #define FPST_XPZ  0x00000008
195 #define FPST_XPO  0x00000004
196 #define FPST_XPU  0x00000002
197 #define FPST_XPI  0x00000001
198 
199 #define FPCFG_RM   0x00000180
200 #define FPCFG_XEV  0x00000010
201 #define FPCFG_XEZ  0x00000008
202 #define FPCFG_XEO  0x00000004
203 #define FPCFG_XEU  0x00000002
204 #define FPCFG_XEI  0x00000001
205 
206 #define GET_FPCC()\
207  ((FPSR >> 24) &0xf)
208 
209 #define CLEAR_FPCC(bbb)\
210   (FPSR &= ~(1 << (bbb+24)))
211 
212 #define SET_FPCC(bbb)\
213  (FPSR |= 1 << (bbb+24))
214 
215 #define TEST_FPCC(bbb)\
216   ((FPSR & (1 << (bbb+24))) != 0)
217 
218 #define FPSR_GET_ROUND()					\
219   (((FPSR & FPSR_RM) == FPSR_RN) ? sim_fpu_round_near		\
220    : ((FPSR & FPSR_RM) == 0x00040000) ? sim_fpu_round_up	\
221    : ((FPSR & FPSR_RM) == 0x00080000) ? sim_fpu_round_down	\
222    : sim_fpu_round_zero)
223 
224 
225 enum FPU_COMPARE {
226   FPU_CMP_F = 0,
227   FPU_CMP_UN,
228   FPU_CMP_EQ,
229   FPU_CMP_UEQ,
230   FPU_CMP_OLT,
231   FPU_CMP_ULT,
232   FPU_CMP_OLE,
233   FPU_CMP_ULE,
234   FPU_CMP_SF,
235   FPU_CMP_NGLE,
236   FPU_CMP_SEQ,
237   FPU_CMP_NGL,
238   FPU_CMP_LT,
239   FPU_CMP_NGE,
240   FPU_CMP_LE,
241   FPU_CMP_NGT
242 };
243 
244 
245 /* MPU */
246 #define MPM	(MPU1_SR[0])
247 #define MPC	(MPU1_SR[1])
248 #define MPC_REGNO 1
249 #define TID	(MPU1_SR[2])
250 #define PPA	(MPU1_SR[3])
251 #define PPM	(MPU1_SR[4])
252 #define PPC	(MPU1_SR[5])
253 #define DCC	(MPU1_SR[6])
254 #define DCV0	(MPU1_SR[7])
255 #define DCV1	(MPU1_SR[8])
256 #define SPAL	(MPU1_SR[10])
257 #define SPAU	(MPU1_SR[11])
258 #define IPA0L	(MPU1_SR[12])
259 #define IPA0U	(MPU1_SR[13])
260 #define IPA1L	(MPU1_SR[14])
261 #define IPA1U	(MPU1_SR[15])
262 #define IPA2L	(MPU1_SR[16])
263 #define IPA2U	(MPU1_SR[17])
264 #define IPA3L	(MPU1_SR[18])
265 #define IPA3U	(MPU1_SR[19])
266 #define DPA0L	(MPU1_SR[20])
267 #define DPA0U	(MPU1_SR[21])
268 #define DPA1L	(MPU1_SR[22])
269 #define DPA1U	(MPU1_SR[23])
270 #define DPA2L	(MPU1_SR[24])
271 #define DPA2U	(MPU1_SR[25])
272 #define DPA3L	(MPU1_SR[26])
273 #define DPA3U	(MPU1_SR[27])
274 
275 #define PPC_PPE 0x1
276 #define SPAL_SPE 0x1
277 #define SPAL_SPS 0x10
278 
279 #define VIP	(MPU0_SR[0])
280 #define VMECR	(MPU0_SR[4])
281 #define VMTID	(MPU0_SR[5])
282 #define VMADR	(MPU0_SR[6])
283 #define VPECR	(MPU0_SR[8])
284 #define VPTID	(MPU0_SR[9])
285 #define VPADR	(MPU0_SR[10])
286 #define VDECR	(MPU0_SR[12])
287 #define VDTID	(MPU0_SR[13])
288 
289 #define MPM_AUE	0x2
290 #define MPM_MPE	0x1
291 
292 #define VMECR_VMX   0x2
293 #define VMECR_VMR   0x4
294 #define VMECR_VMW   0x8
295 #define VMECR_VMS   0x10
296 #define VMECR_VMRMW 0x20
297 #define VMECR_VMMS  0x40
298 
299 #define IPA2ADDR(IPA)	((IPA) & 0x1fffff80)
300 #define IPA_IPE	0x1
301 #define IPA_IPX	0x2
302 #define IPA_IPR	0x4
303 #define IPE0	(IPA0L & IPA_IPE)
304 #define IPE1	(IPA1L & IPA_IPE)
305 #define IPE2	(IPA2L & IPA_IPE)
306 #define IPE3	(IPA3L & IPA_IPE)
307 #define IPX0	(IPA0L & IPA_IPX)
308 #define IPX1	(IPA1L & IPA_IPX)
309 #define IPX2	(IPA2L & IPA_IPX)
310 #define IPX3	(IPA3L & IPA_IPX)
311 #define IPR0	(IPA0L & IPA_IPR)
312 #define IPR1	(IPA1L & IPA_IPR)
313 #define IPR2	(IPA2L & IPA_IPR)
314 #define IPR3	(IPA3L & IPA_IPR)
315 
316 #define DPA2ADDR(DPA)	((DPA) & 0x1fffff80)
317 #define DPA_DPE 0x1
318 #define DPA_DPR 0x4
319 #define DPA_DPW 0x8
320 #define DPE0	(DPA0L & DPA_DPE)
321 #define DPE1	(DPA1L & DPA_DPE)
322 #define DPE2	(DPA2L & DPA_DPE)
323 #define DPE3	(DPA3L & DPA_DPE)
324 #define DPR0	(DPA0L & DPA_DPR)
325 #define DPR1	(DPA1L & DPA_DPR)
326 #define DPR2	(DPA2L & DPA_DPR)
327 #define DPR3	(DPA3L & DPA_DPR)
328 #define DPW0	(DPA0L & DPA_DPW)
329 #define DPW1	(DPA1L & DPA_DPW)
330 #define DPW2	(DPA2L & DPA_DPW)
331 #define DPW3	(DPA3L & DPA_DPW)
332 
333 #define DCC_DCE0 0x1
334 #define DCC_DCE1 0x10000
335 
336 #define PPA2ADDR(PPA)	((PPA) & 0x1fffff80)
337 #define PPC_PPC 0xfffffffe
338 #define PPC_PPE 0x1
339 #define PPC_PPM 0x0000fff8
340 
341 
342 #define SEXT3(x)	((((x)&0x7)^(~0x3))+0x4)
343 
344 /* sign-extend a 4-bit number */
345 #define SEXT4(x)	((((x)&0xf)^(~0x7))+0x8)
346 
347 /* sign-extend a 5-bit number */
348 #define SEXT5(x)	((((x)&0x1f)^(~0xf))+0x10)
349 
350 /* sign-extend a 9-bit number */
351 #define SEXT9(x)	((((x)&0x1ff)^(~0xff))+0x100)
352 
353 /* sign-extend a 22-bit number */
354 #define SEXT22(x)	((((x)&0x3fffff)^(~0x1fffff))+0x200000)
355 
356 /* sign extend a 40 bit number */
357 #define SEXT40(x)	((((x) & UNSIGNED64 (0xffffffffff)) \
358 			  ^ (~UNSIGNED64 (0x7fffffffff))) \
359 			 + UNSIGNED64 (0x8000000000))
360 
361 /* sign extend a 44 bit number */
362 #define SEXT44(x)	((((x) & UNSIGNED64 (0xfffffffffff)) \
363 			  ^ (~ UNSIGNED64 (0x7ffffffffff))) \
364 			 + UNSIGNED64 (0x80000000000))
365 
366 /* sign extend a 60 bit number */
367 #define SEXT60(x)	((((x) & UNSIGNED64 (0xfffffffffffffff)) \
368 			  ^ (~ UNSIGNED64 (0x7ffffffffffffff))) \
369 			 + UNSIGNED64 (0x800000000000000))
370 
371 /* No sign extension */
372 #define NOP(x)		(x)
373 
374 #define INC_ADDR(x,i)	x = ((State.MD && x == MOD_E) ? MOD_S : (x)+(i))
375 
376 #define RLW(x) load_mem (x, 4)
377 
378 /* Function declarations.  */
379 
380 #define IMEM16(EA) \
381 sim_core_read_aligned_2 (CPU, PC, exec_map, (EA))
382 
383 #define IMEM16_IMMED(EA,N) \
384 sim_core_read_aligned_2 (STATE_CPU (sd, 0), \
385 			 PC, exec_map, (EA) + (N) * 2)
386 
387 #define load_mem(ADDR,LEN) \
388 sim_core_read_unaligned_##LEN (STATE_CPU (simulator, 0), \
389 			       PC, read_map, (ADDR))
390 
391 #define store_mem(ADDR,LEN,DATA) \
392 sim_core_write_unaligned_##LEN (STATE_CPU (simulator, 0), \
393 				PC, write_map, (ADDR), (DATA))
394 
395 
396 /* compare cccc field against PSW */
397 int condition_met (unsigned code);
398 
399 
400 /* Debug/tracing calls */
401 
402 enum op_types
403 {
404   OP_UNKNOWN,
405   OP_NONE,
406   OP_TRAP,
407   OP_REG,
408   OP_REG_REG,
409   OP_REG_REG_CMP,
410   OP_REG_REG_MOVE,
411   OP_IMM_REG,
412   OP_IMM_REG_CMP,
413   OP_IMM_REG_MOVE,
414   OP_COND_BR,
415   OP_LOAD16,
416   OP_STORE16,
417   OP_LOAD32,
418   OP_STORE32,
419   OP_JUMP,
420   OP_IMM_REG_REG,
421   OP_UIMM_REG_REG,
422   OP_IMM16_REG_REG,
423   OP_UIMM16_REG_REG,
424   OP_BIT,
425   OP_EX1,
426   OP_EX2,
427   OP_LDSR,
428   OP_STSR,
429   OP_BIT_CHANGE,
430   OP_REG_REG_REG,
431   OP_REG_REG3,
432   OP_IMM_REG_REG_REG,
433   OP_PUSHPOP1,
434   OP_PUSHPOP2,
435   OP_PUSHPOP3,
436 };
437 
438 #if WITH_TRACE_ANY_P
439 void trace_input (char *name, enum op_types type, int size);
440 void trace_output (enum op_types result);
441 void trace_result (int has_result, uint32_t result);
442 
443 extern int trace_num_values;
444 extern uint32_t trace_values[];
445 extern uint32_t trace_pc;
446 extern const char *trace_name;
447 extern int trace_module;
448 
449 #define TRACE_BRANCH0() \
450 do { \
451   if (TRACE_BRANCH_P (CPU)) { \
452     trace_module = TRACE_BRANCH_IDX; \
453     trace_pc = cia; \
454     trace_name = itable[MY_INDEX].name; \
455     trace_num_values = 0; \
456     trace_result (1, (nia)); \
457   } \
458 } while (0)
459 
460 #define TRACE_BRANCH1(IN1) \
461 do { \
462   if (TRACE_BRANCH_P (CPU)) { \
463     trace_module = TRACE_BRANCH_IDX; \
464     trace_pc = cia; \
465     trace_name = itable[MY_INDEX].name; \
466     trace_values[0] = (IN1); \
467     trace_num_values = 1; \
468     trace_result (1, (nia)); \
469   } \
470 } while (0)
471 
472 #define TRACE_BRANCH2(IN1, IN2) \
473 do { \
474   if (TRACE_BRANCH_P (CPU)) { \
475     trace_module = TRACE_BRANCH_IDX; \
476     trace_pc = cia; \
477     trace_name = itable[MY_INDEX].name; \
478     trace_values[0] = (IN1); \
479     trace_values[1] = (IN2); \
480     trace_num_values = 2; \
481     trace_result (1, (nia)); \
482   } \
483 } while (0)
484 
485 #define TRACE_BRANCH3(IN1, IN2, IN3) \
486 do { \
487   if (TRACE_BRANCH_P (CPU)) { \
488     trace_module = TRACE_BRANCH_IDX; \
489     trace_pc = cia; \
490     trace_name = itable[MY_INDEX].name; \
491     trace_values[0] = (IN1); \
492     trace_values[1] = (IN2); \
493     trace_values[2] = (IN3); \
494     trace_num_values = 3; \
495     trace_result (1, (nia)); \
496   } \
497 } while (0)
498 
499 #define TRACE_LD(ADDR,RESULT) \
500 do { \
501   if (TRACE_MEMORY_P (CPU)) { \
502     trace_module = TRACE_MEMORY_IDX; \
503     trace_pc = cia; \
504     trace_name = itable[MY_INDEX].name; \
505     trace_values[0] = (ADDR); \
506     trace_num_values = 1; \
507     trace_result (1, (RESULT)); \
508   } \
509 } while (0)
510 
511 #define TRACE_LD_NAME(NAME, ADDR,RESULT) \
512 do { \
513   if (TRACE_MEMORY_P (CPU)) { \
514     trace_module = TRACE_MEMORY_IDX; \
515     trace_pc = cia; \
516     trace_name = (NAME); \
517     trace_values[0] = (ADDR); \
518     trace_num_values = 1; \
519     trace_result (1, (RESULT)); \
520   } \
521 } while (0)
522 
523 #define TRACE_ST(ADDR,RESULT) \
524 do { \
525   if (TRACE_MEMORY_P (CPU)) { \
526     trace_module = TRACE_MEMORY_IDX; \
527     trace_pc = cia; \
528     trace_name = itable[MY_INDEX].name; \
529     trace_values[0] = (ADDR); \
530     trace_num_values = 1; \
531     trace_result (1, (RESULT)); \
532   } \
533 } while (0)
534 
535 #define TRACE_FP_INPUT_FPU1(V0)	\
536 do { \
537   if (TRACE_FPU_P (CPU)) \
538     { \
539       uint64_t f0; \
540       sim_fpu_to64 (&f0, (V0)); \
541       trace_input_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
542     } \
543 } while (0)
544 
545 #define TRACE_FP_INPUT_FPU2(V0, V1) \
546 do { \
547   if (TRACE_FPU_P (CPU)) \
548     { \
549       uint64_t f0, f1; \
550       sim_fpu_to64 (&f0, (V0)); \
551       sim_fpu_to64 (&f1, (V1)); \
552       trace_input_fp2 (SD, CPU, TRACE_FPU_IDX, f0, f1);	\
553     } \
554 } while (0)
555 
556 #define TRACE_FP_INPUT_FPU3(V0, V1, V2) \
557 do { \
558   if (TRACE_FPU_P (CPU)) \
559     { \
560       uint64_t f0, f1, f2; \
561       sim_fpu_to64 (&f0, (V0)); \
562       sim_fpu_to64 (&f1, (V1)); \
563       sim_fpu_to64 (&f2, (V2)); \
564       trace_input_fp3 (SD, CPU, TRACE_FPU_IDX, f0, f1, f2); \
565     } \
566 } while (0)
567 
568 #define TRACE_FP_INPUT_BOOL1_FPU2(V0, V1, V2) \
569 do { \
570   if (TRACE_FPU_P (CPU)) \
571     { \
572       int d0 = (V0); \
573       uint64_t f1, f2; \
574       TRACE_DATA *data = CPU_TRACE_DATA (CPU); \
575       TRACE_IDX (data) = TRACE_FPU_IDX;	\
576       sim_fpu_to64 (&f1, (V1)); \
577       sim_fpu_to64 (&f2, (V2)); \
578       save_data (SD, data, trace_fmt_bool, sizeof (d0), &d0); \
579       save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f1); \
580       save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f2); \
581     } \
582 } while (0)
583 
584 #define TRACE_FP_INPUT_WORD2(V0, V1) \
585 do { \
586   if (TRACE_FPU_P (CPU)) \
587     trace_input_word2 (SD, CPU, TRACE_FPU_IDX, (V0), (V1)); \
588 } while (0)
589 
590 #define TRACE_FP_RESULT_FPU1(R0) \
591 do { \
592   if (TRACE_FPU_P (CPU)) \
593     { \
594       uint64_t f0; \
595       sim_fpu_to64 (&f0, (R0));	\
596       trace_result_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
597     } \
598 } while (0)
599 
600 #define TRACE_FP_RESULT_WORD1(R0) TRACE_FP_RESULT_WORD(R0)
601 
602 #define TRACE_FP_RESULT_WORD2(R0, R1) \
603 do { \
604   if (TRACE_FPU_P (CPU)) \
605     trace_result_word2 (SD, CPU, TRACE_FPU_IDX, (R0), (R1)); \
606 } while (0)
607 
608 #else
609 #define trace_input(NAME, IN1, IN2)
610 #define trace_output(RESULT)
611 #define trace_result(HAS_RESULT, RESULT)
612 
613 #define TRACE_ALU_INPUT0()
614 #define TRACE_ALU_INPUT1(IN0)
615 #define TRACE_ALU_INPUT2(IN0, IN1)
616 #define TRACE_ALU_INPUT2(IN0, IN1)
617 #define TRACE_ALU_INPUT2(IN0, IN1 INS2)
618 #define TRACE_ALU_RESULT(RESULT)
619 
620 #define TRACE_BRANCH0()
621 #define TRACE_BRANCH1(IN1)
622 #define TRACE_BRANCH2(IN1, IN2)
623 #define TRACE_BRANCH2(IN1, IN2, IN3)
624 
625 #define TRACE_LD(ADDR,RESULT)
626 #define TRACE_ST(ADDR,RESULT)
627 
628 #endif
629 
630 #define GPR_SET(N, VAL) (State.regs[(N)] = (VAL))
631 #define GPR_CLEAR(N)    (State.regs[(N)] = 0)
632 
633 extern void divun ( unsigned int       N,
634 		    unsigned long int  als,
635 		    unsigned long int  sfi,
636 		    uint32_t /*unsigned long int*/ *  quotient_ptr,
637 		    uint32_t /*unsigned long int*/ *  remainder_ptr,
638 		    int *overflow_ptr
639 		    );
640 extern void divn ( unsigned int       N,
641 		   unsigned long int  als,
642 		   unsigned long int  sfi,
643 		   int32_t /*signed long int*/ *  quotient_ptr,
644 		   int32_t /*signed long int*/ *  remainder_ptr,
645 		   int *overflow_ptr
646 		   );
647 extern int type1_regs[];
648 extern int type2_regs[];
649 extern int type3_regs[];
650 
651 #define SESR_OV   (1 << 0)
652 #define SESR_SOV  (1 << 1)
653 
654 #define SESR      (State.sregs[12])
655 
656 #define ROUND_Q62_Q31(X) ((((X) + (1 << 30)) >> 31) & 0xffffffff)
657 #define ROUND_Q62_Q15(X) ((((X) + (1 << 30)) >> 47) & 0xffff)
658 #define ROUND_Q31_Q15(X) ((((X) + (1 << 15)) >> 15) & 0xffff)
659 #define ROUND_Q30_Q15(X) ((((X) + (1 << 14)) >> 15) & 0xffff)
660 
661 #define SAT16(X)			\
662   do					\
663     {					\
664       int64_t z = (X);			\
665       if (z > 0x7fff)			\
666 	{				\
667 	  SESR |= SESR_OV | SESR_SOV;	\
668 	  z = 0x7fff;			\
669 	}				\
670       else if (z < -0x8000)		\
671 	{				\
672 	  SESR |= SESR_OV | SESR_SOV;	\
673 	  z = - 0x8000;			\
674 	}				\
675       (X) = z;				\
676     }					\
677   while (0)
678 
679 #define SAT32(X)			\
680   do					\
681     {					\
682       int64_t z = (X);			\
683       if (z > 0x7fffffff)		\
684 	{				\
685 	  SESR |= SESR_OV | SESR_SOV;	\
686 	  z = 0x7fffffff;		\
687 	}				\
688       else if (z < -0x80000000)		\
689 	{				\
690 	  SESR |= SESR_OV | SESR_SOV;	\
691 	  z = - 0x80000000;		\
692 	}				\
693       (X) = z;				\
694     }					\
695   while (0)
696 
697 #define ABS16(X)			\
698   do					\
699     {					\
700       int64_t z = (X) & 0xffff;	\
701       if (z == 0x8000)			\
702 	{				\
703 	  SESR |= SESR_OV | SESR_SOV;	\
704 	  z = 0x7fff;			\
705 	}				\
706       else if (z & 0x8000)		\
707 	{				\
708 	  z = (- z) & 0xffff;		\
709 	}				\
710       (X) = z;				\
711     }					\
712   while (0)
713 
714 #define ABS32(X)			\
715   do					\
716     {					\
717       int64_t z = (X) & 0xffffffff;	\
718       if (z == 0x80000000)		\
719 	{				\
720 	  SESR |= SESR_OV | SESR_SOV;	\
721 	  z = 0x7fffffff;		\
722 	}				\
723       else if (z & 0x80000000)		\
724 	{				\
725 	  z = (- z) & 0xffffffff;	\
726 	}				\
727       (X) = z;				\
728     }					\
729   while (0)
730 
731 #endif
732