xref: /netbsd-src/external/gpl3/gdb/dist/sim/mips/sim-main.h (revision fdd524d4ccd2bb0c6f67401e938dabf773eb0372)
1 /* MIPS Simulator definition.
2    Copyright (C) 1997-2015 Free Software Foundation, Inc.
3    Contributed by Cygnus Support.
4 
5 This file is part of GDB, the GNU debugger.
6 
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11 
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef SIM_MAIN_H
21 #define SIM_MAIN_H
22 
23 /* hobble some common features for moment */
24 #define WITH_WATCHPOINTS 1
25 #define WITH_MODULO_MEMORY 1
26 
27 
28 #define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
29 mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
30 
31 #include "sim-basics.h"
32 #include "sim-base.h"
33 #include "bfd.h"
34 
35 /* Deprecated macros and types for manipulating 64bit values.  Use
36    ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
37 
38 typedef signed64 word64;
39 typedef unsigned64 uword64;
40 
41 #define WORD64LO(t)     (unsigned int)((t)&0xFFFFFFFF)
42 #define WORD64HI(t)     (unsigned int)(((uword64)(t))>>32)
43 #define SET64LO(t)      (((uword64)(t))&0xFFFFFFFF)
44 #define SET64HI(t)	(((uword64)(t))<<32)
45 #define WORD64(h,l)     ((word64)((SET64HI(h)|SET64LO(l))))
46 #define UWORD64(h,l)     (SET64HI(h)|SET64LO(l))
47 
48 /* Check if a value will fit within a halfword: */
49 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
50 
51 
52 
53 /* Floating-point operations: */
54 
55 #include "sim-fpu.h"
56 #include "cp1.h"
57 
58 /* FPU registers must be one of the following types. All other values
59    are reserved (and undefined). */
60 typedef enum {
61  fmt_single  = 0,
62  fmt_double  = 1,
63  fmt_word    = 4,
64  fmt_long    = 5,
65  fmt_ps      = 6,
66  /* The following are well outside the normal acceptable format
67     range, and are used in the register status vector. */
68  fmt_unknown       = 0x10000000,
69  fmt_uninterpreted = 0x20000000,
70  fmt_uninterpreted_32 = 0x40000000,
71  fmt_uninterpreted_64 = 0x80000000U,
72 } FP_formats;
73 
74 /* For paired word (pw) operations, the opcode representation is fmt_word,
75    but register transfers (StoreFPR, ValueFPR, etc.) are done as fmt_long.  */
76 #define fmt_pw fmt_long
77 
78 /* This should be the COC1 value at the start of the preceding
79    instruction: */
80 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
81 
82 #ifdef TARGET_ENABLE_FR
83 /* FIXME: this should be enabled for all targets, but needs testing first. */
84 #define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
85    ? ((SR & status_FR) ? 64 : 32) \
86    : (WITH_TARGET_FLOATING_POINT_BITSIZE))
87 #else
88 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
89 #endif
90 
91 
92 
93 
94 
95 /* HI/LO register accesses */
96 
97 /* For some MIPS targets, the HI/LO registers have certain timing
98    restrictions in that, for instance, a read of a HI register must be
99    separated by at least three instructions from a preceeding read.
100 
101    The struct below is used to record the last access by each of A MT,
102    MF or other OP instruction to a HI/LO register.  See mips.igen for
103    more details. */
104 
105 typedef struct _hilo_access {
106   signed64 timestamp;
107   address_word cia;
108 } hilo_access;
109 
110 typedef struct _hilo_history {
111   hilo_access mt;
112   hilo_access mf;
113   hilo_access op;
114 } hilo_history;
115 
116 
117 
118 
119 /* Integer ALU operations: */
120 
121 #include "sim-alu.h"
122 
123 #define ALU32_END(ANS) \
124   if (ALU32_HAD_OVERFLOW) \
125     SignalExceptionIntegerOverflow (); \
126   (ANS) = (signed32) ALU32_OVERFLOW_RESULT
127 
128 
129 #define ALU64_END(ANS) \
130   if (ALU64_HAD_OVERFLOW) \
131     SignalExceptionIntegerOverflow (); \
132   (ANS) = ALU64_OVERFLOW_RESULT;
133 
134 
135 
136 
137 
138 /* The following is probably not used for MIPS IV onwards: */
139 /* Slots for delayed register updates. For the moment we just have a
140    fixed number of slots (rather than a more generic, dynamic
141    system). This keeps the simulator fast. However, we only allow
142    for the register update to be delayed for a single instruction
143    cycle. */
144 #define PSLOTS (8) /* Maximum number of instruction cycles */
145 
146 typedef struct _pending_write_queue {
147   int in;
148   int out;
149   int total;
150   int slot_delay[PSLOTS];
151   int slot_size[PSLOTS];
152   int slot_bit[PSLOTS];
153   void *slot_dest[PSLOTS];
154   unsigned64 slot_value[PSLOTS];
155 } pending_write_queue;
156 
157 #ifndef PENDING_TRACE
158 #define PENDING_TRACE 0
159 #endif
160 #define PENDING_IN ((CPU)->pending.in)
161 #define PENDING_OUT ((CPU)->pending.out)
162 #define PENDING_TOTAL ((CPU)->pending.total)
163 #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
164 #define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
165 #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
166 #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
167 #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
168 
169 /* Invalidate the pending write queue, all pending writes are
170    discarded. */
171 
172 #define PENDING_INVALIDATE() \
173 memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
174 
175 /* Schedule a write to DEST for N cycles time.  For 64 bit
176    destinations, schedule two writes.  For floating point registers,
177    the caller should schedule a write to both the dest register and
178    the FPR_STATE register.  When BIT is non-negative, only BIT of DEST
179    is updated. */
180 
181 #define PENDING_SCHED(DEST,VAL,DELAY,BIT)				\
182   do {									\
183     if (PENDING_SLOT_DEST[PENDING_IN] != NULL)				\
184       sim_engine_abort (SD, CPU, cia,					\
185 		        "PENDING_SCHED - buffer overflow\n");		\
186     if (PENDING_TRACE)							\
187       sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n",			\
188 		      (unsigned long) cia, (unsigned long) &(DEST),	\
189 		      (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
190 		      PENDING_IN, PENDING_OUT, PENDING_TOTAL);		\
191     PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1;			\
192     PENDING_SLOT_DEST[PENDING_IN] = &(DEST);				\
193     PENDING_SLOT_VALUE[PENDING_IN] = (VAL);				\
194     PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST);			\
195     PENDING_SLOT_BIT[PENDING_IN] = (BIT);				\
196     PENDING_IN = (PENDING_IN + 1) % PSLOTS;                             \
197     PENDING_TOTAL += 1;			                                \
198   } while (0)
199 
200 #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
201 #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
202 
203 #define PENDING_TICK() pending_tick (SD, CPU, cia)
204 
205 #define PENDING_FLUSH() abort () /* think about this one */
206 #define PENDING_FP() abort () /* think about this one */
207 
208 /* For backward compatibility */
209 #define PENDING_FILL(R,VAL) 						\
210 do {									\
211   if ((R) >= FGR_BASE && (R) < FGR_BASE + NR_FGR)			\
212     {									\
213       PENDING_SCHED(FGR[(R) - FGR_BASE], VAL, 1, -1);			\
214       PENDING_SCHED(FPR_STATE[(R) - FGR_BASE], fmt_uninterpreted, 1, -1); \
215     }									\
216   else									\
217     PENDING_SCHED(GPR[(R)], VAL, 1, -1);				\
218 } while (0)
219 
220 
221 enum float_operation
222   {
223     FLOP_ADD,    FLOP_SUB,    FLOP_MUL,    FLOP_MADD,
224     FLOP_MSUB,   FLOP_MAX=10, FLOP_MIN,    FLOP_ABS,
225     FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
226   };
227 
228 
229 /* The internal representation of an MDMX accumulator.
230    Note that 24 and 48 bit accumulator elements are represented in
231    32 or 64 bits.  Since the accumulators are 2's complement with
232    overflow suppressed, high-order bits can be ignored in most contexts.  */
233 
234 typedef signed32 signed24;
235 typedef signed64 signed48;
236 
237 typedef union {
238   signed24  ob[8];
239   signed48  qh[4];
240 } MDMX_accumulator;
241 
242 
243 /* Conventional system arguments.  */
244 #define SIM_STATE  sim_cpu *cpu, address_word cia
245 #define SIM_ARGS   CPU, cia
246 
247 struct _sim_cpu {
248 
249 
250   /* The following are internal simulator state variables: */
251   address_word dspc;  /* delay-slot PC */
252 #define DSPC ((CPU)->dspc)
253 
254 #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
255 #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
256 
257 
258   /* State of the simulator */
259   unsigned int state;
260   unsigned int dsstate;
261 #define STATE ((CPU)->state)
262 #define DSSTATE ((CPU)->dsstate)
263 
264 /* Flags in the "state" variable: */
265 #define simHALTEX       (1 << 2)  /* 0 = run; 1 = halt on exception */
266 #define simHALTIN       (1 << 3)  /* 0 = run; 1 = halt on interrupt */
267 #define simTRACE        (1 << 8)  /* 0 = do nothing; 1 = trace address activity */
268 #define simPCOC0        (1 << 17) /* COC[1] from current */
269 #define simPCOC1        (1 << 18) /* COC[1] from previous */
270 #define simDELAYSLOT    (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
271 #define simSKIPNEXT     (1 << 25) /* 0 = do nothing; 1 = skip instruction */
272 #define simSIGINT	(1 << 28)  /* 0 = do nothing; 1 = SIGINT has occured */
273 #define simJALDELAYSLOT	(1 << 29) /* 1 = in jal delay slot */
274 
275 #ifndef ENGINE_ISSUE_PREFIX_HOOK
276 #define ENGINE_ISSUE_PREFIX_HOOK() \
277   { \
278     /* Perform any pending writes */ \
279     PENDING_TICK(); \
280     /* Set previous flag, depending on current: */ \
281     if (STATE & simPCOC0) \
282      STATE |= simPCOC1; \
283     else \
284      STATE &= ~simPCOC1; \
285     /* and update the current value: */ \
286     if (GETFCC(0)) \
287      STATE |= simPCOC0; \
288     else \
289      STATE &= ~simPCOC0; \
290   }
291 #endif /* ENGINE_ISSUE_PREFIX_HOOK */
292 
293 
294 /* This is nasty, since we have to rely on matching the register
295    numbers used by GDB. Unfortunately, depending on the MIPS target
296    GDB uses different register numbers. We cannot just include the
297    relevant "gdb/tm.h" link, since GDB may not be configured before
298    the sim world, and also the GDB header file requires too much other
299    state. */
300 
301 #ifndef TM_MIPS_H
302 #define LAST_EMBED_REGNUM (96)
303 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
304 
305 #define FP0_REGNUM 38           /* Floating point register 0 (single float) */
306 #define FCRCS_REGNUM 70         /* FP control/status */
307 #define FCRIR_REGNUM 71         /* FP implementation/revision */
308 #endif
309 
310 
311 /* To keep this default simulator simple, and fast, we use a direct
312    vector of registers. The internal simulator engine then uses
313    manifests to access the correct slot. */
314 
315   unsigned_word registers[LAST_EMBED_REGNUM + 1];
316 
317   int register_widths[NUM_REGS];
318 #define REGISTERS       ((CPU)->registers)
319 
320 #define GPR     (&REGISTERS[0])
321 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
322 
323 #define LO      (REGISTERS[33])
324 #define HI      (REGISTERS[34])
325 #define PCIDX	37
326 #define PC      (REGISTERS[PCIDX])
327 #define CAUSE   (REGISTERS[36])
328 #define SRIDX   (32)
329 #define SR      (REGISTERS[SRIDX])      /* CPU status register */
330 #define FCR0IDX  (71)
331 #define FCR0    (REGISTERS[FCR0IDX])    /* really a 32bit register */
332 #define FCR31IDX (70)
333 #define FCR31   (REGISTERS[FCR31IDX])   /* really a 32bit register */
334 #define FCSR    (FCR31)
335 #define Debug	(REGISTERS[86])
336 #define DEPC	(REGISTERS[87])
337 #define EPC	(REGISTERS[88])
338 #define ACX	(REGISTERS[89])
339 
340 #define AC0LOIDX	(33)	/* Must be the same register as LO */
341 #define AC0HIIDX	(34)	/* Must be the same register as HI */
342 #define AC1LOIDX	(90)
343 #define AC1HIIDX	(91)
344 #define AC2LOIDX	(92)
345 #define AC2HIIDX	(93)
346 #define AC3LOIDX	(94)
347 #define AC3HIIDX	(95)
348 
349 #define DSPLO(N)	(REGISTERS[DSPLO_REGNUM[N]])
350 #define DSPHI(N)	(REGISTERS[DSPHI_REGNUM[N]])
351 
352 #define DSPCRIDX	(96)	/* DSP control register */
353 #define DSPCR		(REGISTERS[DSPCRIDX])
354 
355 #define DSPCR_POS_SHIFT		(0)
356 #define DSPCR_POS_MASK		(0x3f)
357 #define DSPCR_POS_SMASK		(DSPCR_POS_MASK << DSPCR_POS_SHIFT)
358 
359 #define DSPCR_SCOUNT_SHIFT	(7)
360 #define DSPCR_SCOUNT_MASK	(0x3f)
361 #define DSPCR_SCOUNT_SMASK	(DSPCR_SCOUNT_MASK << DSPCR_SCOUNT_SHIFT)
362 
363 #define DSPCR_CARRY_SHIFT	(13)
364 #define DSPCR_CARRY_MASK	(1)
365 #define DSPCR_CARRY_SMASK	(DSPCR_CARRY_MASK << DSPCR_CARRY_SHIFT)
366 #define DSPCR_CARRY		(1 << DSPCR_CARRY_SHIFT)
367 
368 #define DSPCR_EFI_SHIFT		(14)
369 #define DSPCR_EFI_MASK		(1)
370 #define DSPCR_EFI_SMASK		(DSPCR_EFI_MASK << DSPCR_EFI_SHIFT)
371 #define DSPCR_EFI		(1 << DSPCR_EFI_MASK)
372 
373 #define DSPCR_OUFLAG_SHIFT	(16)
374 #define DSPCR_OUFLAG_MASK	(0xff)
375 #define DSPCR_OUFLAG_SMASK	(DSPCR_OUFLAG_MASK << DSPCR_OUFLAG_SHIFT)
376 #define DSPCR_OUFLAG4		(1 << (DSPCR_OUFLAG_SHIFT + 4))
377 #define DSPCR_OUFLAG5		(1 << (DSPCR_OUFLAG_SHIFT + 5))
378 #define DSPCR_OUFLAG6		(1 << (DSPCR_OUFLAG_SHIFT + 6))
379 #define DSPCR_OUFLAG7		(1 << (DSPCR_OUFLAG_SHIFT + 7))
380 
381 #define DSPCR_CCOND_SHIFT	(24)
382 #define DSPCR_CCOND_MASK	(0xf)
383 #define DSPCR_CCOND_SMASK	(DSPCR_CCOND_MASK << DSPCR_CCOND_SHIFT)
384 
385   /* All internal state modified by signal_exception() that may need to be
386      rolled back for passing moment-of-exception image back to gdb. */
387   unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
388   unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
389   int exc_suspended;
390 
391 #define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
392 #define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
393 #define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
394 
395   unsigned_word c0_config_reg;
396 #define C0_CONFIG ((CPU)->c0_config_reg)
397 
398 /* The following are pseudonyms for standard registers */
399 #define ZERO    (REGISTERS[0])
400 #define V0      (REGISTERS[2])
401 #define A0      (REGISTERS[4])
402 #define A1      (REGISTERS[5])
403 #define A2      (REGISTERS[6])
404 #define A3      (REGISTERS[7])
405 #define T8IDX   24
406 #define T8	(REGISTERS[T8IDX])
407 #define SPIDX   29
408 #define SP      (REGISTERS[SPIDX])
409 #define RAIDX   31
410 #define RA      (REGISTERS[RAIDX])
411 
412   /* While space is allocated in the main registers arrray for some of
413      the COP0 registers, that space isn't sufficient.  Unknown COP0
414      registers overflow into the array below */
415 
416 #define NR_COP0_GPR	32
417   unsigned_word cop0_gpr[NR_COP0_GPR];
418 #define COP0_GPR	((CPU)->cop0_gpr)
419 #define COP0_BADVADDR	(COP0_GPR[8])
420 
421   /* While space is allocated for the floating point registers in the
422      main registers array, they are stored separatly.  This is because
423      their size may not necessarily match the size of either the
424      general-purpose or system specific registers.  */
425 #define NR_FGR    (32)
426 #define FGR_BASE  FP0_REGNUM
427   fp_word fgr[NR_FGR];
428 #define FGR       ((CPU)->fgr)
429 
430   /* Keep the current format state for each register: */
431   FP_formats fpr_state[32];
432 #define FPR_STATE ((CPU)->fpr_state)
433 
434   pending_write_queue pending;
435 
436   /* The MDMX accumulator (used only for MDMX ASE).  */
437   MDMX_accumulator acc;
438 #define ACC             ((CPU)->acc)
439 
440   /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
441      read-write instructions. It is set when a linked load occurs. It
442      is tested and cleared by the conditional store. It is cleared
443      (during other CPU operations) when a store to the location would
444      no longer be atomic. In particular, it is cleared by exception
445      return instructions. */
446   int llbit;
447 #define LLBIT ((CPU)->llbit)
448 
449 
450 /* The HIHISTORY and LOHISTORY timestamps are used to ensure that
451    corruptions caused by using the HI or LO register too close to a
452    following operation is spotted. See mips.igen for more details. */
453 
454   hilo_history hi_history;
455 #define HIHISTORY (&(CPU)->hi_history)
456   hilo_history lo_history;
457 #define LOHISTORY (&(CPU)->lo_history)
458 
459 
460   sim_cpu_base base;
461 };
462 
463 
464 /* MIPS specific simulator watch config */
465 
466 void watch_options_install (SIM_DESC sd);
467 
468 struct swatch {
469   sim_event *pc;
470   sim_event *clock;
471   sim_event *cycles;
472 };
473 
474 
475 /* FIXME: At present much of the simulator is still static */
476 struct sim_state {
477 
478   struct swatch watch;
479 
480   sim_cpu *cpu[MAX_NR_PROCESSORS];
481 
482   sim_state_base base;
483 };
484 
485 
486 
487 /* Status information: */
488 
489 /* TODO : these should be the bitmasks for these bits within the
490    status register. At the moment the following are VR4300
491    bit-positions: */
492 #define status_KSU_mask  (0x18)         /* mask for KSU bits */
493 #define status_KSU_shift (3)            /* shift for field */
494 #define ksu_kernel       (0x0)
495 #define ksu_supervisor   (0x1)
496 #define ksu_user         (0x2)
497 #define ksu_unknown      (0x3)
498 
499 #define SR_KSU		 ((SR & status_KSU_mask) >> status_KSU_shift)
500 
501 #define status_IE	 (1 <<  0)      /* Interrupt enable */
502 #define status_EIE	 (1 << 16)      /* Enable Interrupt Enable */
503 #define status_EXL	 (1 <<  1)	/* Exception level */
504 #define status_RE        (1 << 25)      /* Reverse Endian in user mode */
505 #define status_FR        (1 << 26)      /* enables MIPS III additional FP registers */
506 #define status_SR        (1 << 20)      /* soft reset or NMI */
507 #define status_BEV       (1 << 22)      /* Location of general exception vectors */
508 #define status_TS        (1 << 21)      /* TLB shutdown has occurred */
509 #define status_ERL       (1 <<  2)      /* Error level */
510 #define status_IM7       (1 << 15)      /* Timer Interrupt Mask */
511 #define status_RP        (1 << 27)      /* Reduced Power mode */
512 
513 /* Specializations for TX39 family */
514 #define status_IEc       (1 << 0)       /* Interrupt enable (current) */
515 #define status_KUc       (1 << 1)       /* Kernel/User mode */
516 #define status_IEp       (1 << 2)       /* Interrupt enable (previous) */
517 #define status_KUp       (1 << 3)       /* Kernel/User mode */
518 #define status_IEo       (1 << 4)       /* Interrupt enable (old) */
519 #define status_KUo       (1 << 5)       /* Kernel/User mode */
520 #define status_IM_mask   (0xff)         /* Interrupt mask */
521 #define status_IM_shift  (8)
522 #define status_NMI       (1 << 20)      /* NMI */
523 #define status_NMI       (1 << 20)      /* NMI */
524 
525 /* Status bits used by MIPS32/MIPS64.  */
526 #define status_UX        (1 <<  5)      /* 64-bit user addrs */
527 #define status_SX        (1 <<  6)      /* 64-bit supervisor addrs */
528 #define status_KX        (1 <<  7)      /* 64-bit kernel addrs */
529 #define status_TS        (1 << 21)      /* TLB shutdown has occurred */
530 #define status_PX        (1 << 23)      /* Enable 64 bit operations */
531 #define status_MX        (1 << 24)      /* Enable MDMX resources */
532 #define status_CU0       (1 << 28)      /* Coprocessor 0 usable */
533 #define status_CU1       (1 << 29)      /* Coprocessor 1 usable */
534 #define status_CU2       (1 << 30)      /* Coprocessor 2 usable */
535 #define status_CU3       (1 << 31)      /* Coprocessor 3 usable */
536 /* Bits reserved for implementations:  */
537 #define status_SBX       (1 << 16)      /* Enable SiByte SB-1 extensions.  */
538 
539 #define cause_BD ((unsigned)1 << 31)    /* L1 Exception in branch delay slot */
540 #define cause_BD2         (1 << 30)     /* L2 Exception in branch delay slot */
541 #define cause_CE_mask     0x30000000	/* Coprocessor exception */
542 #define cause_CE_shift    28
543 #define cause_EXC2_mask   0x00070000
544 #define cause_EXC2_shift  16
545 #define cause_IP7 	  (1 << 15)	/* Interrupt pending */
546 #define cause_SIOP        (1 << 12)     /* SIO pending */
547 #define cause_IP3 	  (1 << 11)	/* Int 0 pending */
548 #define cause_IP2 	  (1 << 10)	/* Int 1 pending */
549 
550 #define cause_EXC_mask  (0x1c)          /* Exception code */
551 #define cause_EXC_shift (2)
552 
553 #define cause_SW0       (1 << 8)        /* Software interrupt 0 */
554 #define cause_SW1       (1 << 9)        /* Software interrupt 1 */
555 #define cause_IP_mask   (0x3f)          /* Interrupt pending field */
556 #define cause_IP_shift  (10)
557 
558 #define cause_set_EXC(x)  CAUSE = (CAUSE & ~cause_EXC_mask)  | ((x << cause_EXC_shift)  & cause_EXC_mask)
559 #define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
560 
561 
562 /* NOTE: We keep the following status flags as bit values (1 for true,
563    0 for false). This allows them to be used in binary boolean
564    operations without worrying about what exactly the non-zero true
565    value is. */
566 
567 /* UserMode */
568 #ifdef SUBTARGET_R3900
569 #define UserMode        ((SR & status_KUc) ? 1 : 0)
570 #else
571 #define UserMode	((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
572 #endif /* SUBTARGET_R3900 */
573 
574 /* BigEndianMem */
575 /* Hardware configuration. Affects endianness of LoadMemory and
576    StoreMemory and the endianness of Kernel and Supervisor mode
577    execution. The value is 0 for little-endian; 1 for big-endian. */
578 #define BigEndianMem    (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
579 /*(state & simBE) ? 1 : 0)*/
580 
581 /* ReverseEndian */
582 /* This mode is selected if in User mode with the RE bit being set in
583    SR (Status Register). It reverses the endianness of load and store
584    instructions. */
585 #define ReverseEndian   (((SR & status_RE) && UserMode) ? 1 : 0)
586 
587 /* BigEndianCPU */
588 /* The endianness for load and store instructions (0=little;1=big). In
589    User mode this endianness may be switched by setting the state_RE
590    bit in the SR register. Thus, BigEndianCPU may be computed as
591    (BigEndianMem EOR ReverseEndian). */
592 #define BigEndianCPU    (BigEndianMem ^ ReverseEndian) /* Already bits */
593 
594 
595 
596 /* Exceptions: */
597 
598 /* NOTE: These numbers depend on the processor architecture being
599    simulated: */
600 enum ExceptionCause {
601   Interrupt               = 0,
602   TLBModification         = 1,
603   TLBLoad                 = 2,
604   TLBStore                = 3,
605   AddressLoad             = 4,
606   AddressStore            = 5,
607   InstructionFetch        = 6,
608   DataReference           = 7,
609   SystemCall              = 8,
610   BreakPoint              = 9,
611   ReservedInstruction     = 10,
612   CoProcessorUnusable     = 11,
613   IntegerOverflow         = 12,    /* Arithmetic overflow (IDT monitor raises SIGFPE) */
614   Trap                    = 13,
615   FPE                     = 15,
616   DebugBreakPoint         = 16,    /* Impl. dep. in MIPS32/MIPS64.  */
617   MDMX                    = 22,
618   Watch                   = 23,
619   MCheck                  = 24,
620   CacheErr                = 30,
621   NMIReset                = 31,    /* Reserved in MIPS32/MIPS64.  */
622 
623 
624 /* The following exception code is actually private to the simulator
625    world. It is *NOT* a processor feature, and is used to signal
626    run-time errors in the simulator. */
627   SimulatorFault      	  = 0xFFFFFFFF
628 };
629 
630 #define TLB_REFILL  (0)
631 #define TLB_INVALID (1)
632 
633 
634 /* The following break instructions are reserved for use by the
635    simulator.  The first is used to halt the simulation.  The second
636    is used by gdb for break-points.  NOTE: Care must be taken, since
637    this value may be used in later revisions of the MIPS ISA. */
638 #define HALT_INSTRUCTION_MASK   (0x03FFFFC0)
639 
640 #define HALT_INSTRUCTION        (0x03ff000d)
641 #define HALT_INSTRUCTION2       (0x0000ffcd)
642 
643 
644 #define BREAKPOINT_INSTRUCTION  (0x0005000d)
645 #define BREAKPOINT_INSTRUCTION2 (0x0000014d)
646 
647 
648 
649 void interrupt_event (SIM_DESC sd, void *data);
650 
651 void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
652 #define SignalException(exc,instruction)     signal_exception (SD, CPU, cia, (exc), (instruction))
653 #define SignalExceptionInterrupt(level)      signal_exception (SD, CPU, cia, Interrupt, level)
654 #define SignalExceptionInstructionFetch()    signal_exception (SD, CPU, cia, InstructionFetch)
655 #define SignalExceptionAddressStore()        signal_exception (SD, CPU, cia, AddressStore)
656 #define SignalExceptionAddressLoad()         signal_exception (SD, CPU, cia, AddressLoad)
657 #define SignalExceptionDataReference()       signal_exception (SD, CPU, cia, DataReference)
658 #define SignalExceptionSimulatorFault(buf)   signal_exception (SD, CPU, cia, SimulatorFault, buf)
659 #define SignalExceptionFPE()                 signal_exception (SD, CPU, cia, FPE)
660 #define SignalExceptionIntegerOverflow()     signal_exception (SD, CPU, cia, IntegerOverflow)
661 #define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable)
662 #define SignalExceptionNMIReset()            signal_exception (SD, CPU, cia, NMIReset)
663 #define SignalExceptionTLBRefillStore()      signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
664 #define SignalExceptionTLBRefillLoad()       signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
665 #define SignalExceptionTLBInvalidStore()     signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
666 #define SignalExceptionTLBInvalidLoad()      signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
667 #define SignalExceptionTLBModification()     signal_exception (SD, CPU, cia, TLBModification)
668 #define SignalExceptionMDMX()                signal_exception (SD, CPU, cia, MDMX)
669 #define SignalExceptionWatch()               signal_exception (SD, CPU, cia, Watch)
670 #define SignalExceptionMCheck()              signal_exception (SD, CPU, cia, MCheck)
671 #define SignalExceptionCacheErr()            signal_exception (SD, CPU, cia, CacheErr)
672 
673 /* Co-processor accesses */
674 
675 /* XXX FIXME: For now, assume that FPU (cp1) is always usable.  */
676 #define COP_Usable(coproc_num)		(coproc_num == 1)
677 
678 void cop_lw  (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword);
679 void cop_ld  (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword);
680 unsigned int cop_sw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg);
681 uword64 cop_sd (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg);
682 
683 #define COP_LW(coproc_num,coproc_reg,memword) \
684 cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
685 #define COP_LD(coproc_num,coproc_reg,memword) \
686 cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
687 #define COP_SW(coproc_num,coproc_reg) \
688 cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
689 #define COP_SD(coproc_num,coproc_reg) \
690 cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
691 
692 
693 void decode_coproc (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction);
694 #define DecodeCoproc(instruction) \
695 decode_coproc (SD, CPU, cia, (instruction))
696 
697 int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
698 
699 
700 /* FPR access.  */
701 unsigned64 value_fpr (SIM_STATE, int fpr, FP_formats);
702 #define ValueFPR(FPR,FMT) value_fpr (SIM_ARGS, (FPR), (FMT))
703 void store_fpr (SIM_STATE, int fpr, FP_formats fmt, unsigned64 value);
704 #define StoreFPR(FPR,FMT,VALUE) store_fpr (SIM_ARGS, (FPR), (FMT), (VALUE))
705 unsigned64 ps_lower (SIM_STATE, unsigned64 op);
706 #define PSLower(op) ps_lower (SIM_ARGS, op)
707 unsigned64 ps_upper (SIM_STATE, unsigned64 op);
708 #define PSUpper(op) ps_upper (SIM_ARGS, op)
709 unsigned64 pack_ps (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats from);
710 #define PackPS(op1,op2) pack_ps (SIM_ARGS, op1, op2, fmt_single)
711 
712 
713 /* FCR access.  */
714 unsigned_word value_fcr (SIM_STATE, int fcr);
715 #define ValueFCR(FCR) value_fcr (SIM_ARGS, (FCR))
716 void store_fcr (SIM_STATE, int fcr, unsigned_word value);
717 #define StoreFCR(FCR,VALUE) store_fcr (SIM_ARGS, (FCR), (VALUE))
718 void test_fcsr (SIM_STATE);
719 #define TestFCSR() test_fcsr (SIM_ARGS)
720 
721 
722 /* FPU operations.  */
723 void fp_cmp (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt, int abs, int cond, int cc);
724 #define Compare(op1,op2,fmt,cond,cc) fp_cmp(SIM_ARGS, op1, op2, fmt, 0, cond, cc)
725 unsigned64 fp_abs (SIM_STATE, unsigned64 op, FP_formats fmt);
726 #define AbsoluteValue(op,fmt) fp_abs(SIM_ARGS, op, fmt)
727 unsigned64 fp_neg (SIM_STATE, unsigned64 op, FP_formats fmt);
728 #define Negate(op,fmt) fp_neg(SIM_ARGS, op, fmt)
729 unsigned64 fp_add (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
730 #define Add(op1,op2,fmt) fp_add(SIM_ARGS, op1, op2, fmt)
731 unsigned64 fp_sub (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
732 #define Sub(op1,op2,fmt) fp_sub(SIM_ARGS, op1, op2, fmt)
733 unsigned64 fp_mul (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
734 #define Multiply(op1,op2,fmt) fp_mul(SIM_ARGS, op1, op2, fmt)
735 unsigned64 fp_div (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
736 #define Divide(op1,op2,fmt) fp_div(SIM_ARGS, op1, op2, fmt)
737 unsigned64 fp_recip (SIM_STATE, unsigned64 op, FP_formats fmt);
738 #define Recip(op,fmt) fp_recip(SIM_ARGS, op, fmt)
739 unsigned64 fp_sqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
740 #define SquareRoot(op,fmt) fp_sqrt(SIM_ARGS, op, fmt)
741 unsigned64 fp_rsqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
742 #define RSquareRoot(op,fmt) fp_rsqrt(SIM_ARGS, op, fmt)
743 unsigned64 fp_madd (SIM_STATE, unsigned64 op1, unsigned64 op2,
744 		    unsigned64 op3, FP_formats fmt);
745 #define MultiplyAdd(op1,op2,op3,fmt) fp_madd(SIM_ARGS, op1, op2, op3, fmt)
746 unsigned64 fp_msub (SIM_STATE, unsigned64 op1, unsigned64 op2,
747 		    unsigned64 op3, FP_formats fmt);
748 #define MultiplySub(op1,op2,op3,fmt) fp_msub(SIM_ARGS, op1, op2, op3, fmt)
749 unsigned64 fp_nmadd (SIM_STATE, unsigned64 op1, unsigned64 op2,
750 		     unsigned64 op3, FP_formats fmt);
751 #define NegMultiplyAdd(op1,op2,op3,fmt) fp_nmadd(SIM_ARGS, op1, op2, op3, fmt)
752 unsigned64 fp_nmsub (SIM_STATE, unsigned64 op1, unsigned64 op2,
753 		     unsigned64 op3, FP_formats fmt);
754 #define NegMultiplySub(op1,op2,op3,fmt) fp_nmsub(SIM_ARGS, op1, op2, op3, fmt)
755 unsigned64 convert (SIM_STATE, int rm, unsigned64 op, FP_formats from, FP_formats to);
756 #define Convert(rm,op,from,to) convert (SIM_ARGS, rm, op, from, to)
757 unsigned64 convert_ps (SIM_STATE, int rm, unsigned64 op, FP_formats from,
758 		       FP_formats to);
759 #define ConvertPS(rm,op,from,to) convert_ps (SIM_ARGS, rm, op, from, to)
760 
761 
762 /* MIPS-3D ASE operations.  */
763 #define CompareAbs(op1,op2,fmt,cond,cc) \
764 fp_cmp(SIM_ARGS, op1, op2, fmt, 1, cond, cc)
765 unsigned64 fp_add_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
766 #define AddR(op1,op2,fmt) fp_add_r(SIM_ARGS, op1, op2, fmt)
767 unsigned64 fp_mul_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
768 #define MultiplyR(op1,op2,fmt) fp_mul_r(SIM_ARGS, op1, op2, fmt)
769 unsigned64 fp_recip1 (SIM_STATE, unsigned64 op, FP_formats fmt);
770 #define Recip1(op,fmt) fp_recip1(SIM_ARGS, op, fmt)
771 unsigned64 fp_recip2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
772 #define Recip2(op1,op2,fmt) fp_recip2(SIM_ARGS, op1, op2, fmt)
773 unsigned64 fp_rsqrt1 (SIM_STATE, unsigned64 op, FP_formats fmt);
774 #define RSquareRoot1(op,fmt) fp_rsqrt1(SIM_ARGS, op, fmt)
775 unsigned64 fp_rsqrt2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
776 #define RSquareRoot2(op1,op2,fmt) fp_rsqrt2(SIM_ARGS, op1, op2, fmt)
777 
778 
779 /* MDMX access.  */
780 
781 typedef unsigned int MX_fmtsel;   /* MDMX format select field (5 bits).  */
782 #define ob_fmtsel(sel) (((sel)<<1)|0x0)
783 #define qh_fmtsel(sel) (((sel)<<2)|0x1)
784 
785 #define fmt_mdmx fmt_uninterpreted
786 
787 #define MX_VECT_AND  (0)
788 #define MX_VECT_NOR  (1)
789 #define MX_VECT_OR   (2)
790 #define MX_VECT_XOR  (3)
791 #define MX_VECT_SLL  (4)
792 #define MX_VECT_SRL  (5)
793 #define MX_VECT_ADD  (6)
794 #define MX_VECT_SUB  (7)
795 #define MX_VECT_MIN  (8)
796 #define MX_VECT_MAX  (9)
797 #define MX_VECT_MUL  (10)
798 #define MX_VECT_MSGN (11)
799 #define MX_VECT_SRA  (12)
800 #define MX_VECT_ABSD (13)		/* SB-1 only.  */
801 #define MX_VECT_AVG  (14)		/* SB-1 only.  */
802 
803 unsigned64 mdmx_cpr_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
804 #define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel)
805 #define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel)
806 #define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel)
807 #define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel)
808 #define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel)
809 #define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel)
810 #define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel)
811 #define MX_Or(op1,vt,fmtsel)  mdmx_cpr_op(SIM_ARGS, MX_VECT_OR,  op1, vt, fmtsel)
812 #define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel)
813 #define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel)
814 #define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel)
815 #define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel)
816 #define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel)
817 #define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel)
818 #define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel)
819 
820 #define MX_C_EQ  0x1
821 #define MX_C_LT  0x4
822 
823 void mdmx_cc_op (SIM_STATE, int cond, unsigned64 op1, int vt, MX_fmtsel fmtsel);
824 #define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel)
825 
826 unsigned64 mdmx_pick_op (SIM_STATE, int tf, unsigned64 op1, int vt, MX_fmtsel fmtsel);
827 #define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel)
828 
829 #define MX_VECT_ADDA  (0)
830 #define MX_VECT_ADDL  (1)
831 #define MX_VECT_MULA  (2)
832 #define MX_VECT_MULL  (3)
833 #define MX_VECT_MULS  (4)
834 #define MX_VECT_MULSL (5)
835 #define MX_VECT_SUBA  (6)
836 #define MX_VECT_SUBL  (7)
837 #define MX_VECT_ABSDA (8)		/* SB-1 only.  */
838 
839 void mdmx_acc_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
840 #define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel)
841 #define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel)
842 #define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel)
843 #define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel)
844 #define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel)
845 #define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel)
846 #define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel)
847 #define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel)
848 #define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel)
849 
850 #define MX_FMT_OB   (0)
851 #define MX_FMT_QH   (1)
852 
853 /* The following codes chosen to indicate the units of shift.  */
854 #define MX_RAC_L    (0)
855 #define MX_RAC_M    (1)
856 #define MX_RAC_H    (2)
857 
858 unsigned64 mdmx_rac_op (SIM_STATE, int, int);
859 #define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt)
860 
861 void mdmx_wacl (SIM_STATE, int, unsigned64, unsigned64);
862 #define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt)
863 void mdmx_wach (SIM_STATE, int, unsigned64);
864 #define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs)
865 
866 #define MX_RND_AS   (0)
867 #define MX_RND_AU   (1)
868 #define MX_RND_ES   (2)
869 #define MX_RND_EU   (3)
870 #define MX_RND_ZS   (4)
871 #define MX_RND_ZU   (5)
872 
873 unsigned64 mdmx_round_op (SIM_STATE, int, int, MX_fmtsel);
874 #define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt)
875 #define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt)
876 #define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt)
877 #define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt)
878 #define MX_RZS(vt,fmt)  mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt)
879 #define MX_RZU(vt,fmt)  mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt)
880 
881 unsigned64 mdmx_shuffle (SIM_STATE, int, unsigned64, unsigned64);
882 #define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2)
883 
884 
885 
886 /* Memory accesses */
887 
888 /* The following are generic to all versions of the MIPS architecture
889    to date: */
890 
891 /* Memory Access Types (for CCA): */
892 #define Uncached                (0)
893 #define CachedNoncoherent       (1)
894 #define CachedCoherent          (2)
895 #define Cached                  (3)
896 
897 #define isINSTRUCTION   (1 == 0) /* FALSE */
898 #define isDATA          (1 == 1) /* TRUE */
899 #define isLOAD          (1 == 0) /* FALSE */
900 #define isSTORE         (1 == 1) /* TRUE */
901 #define isREAL          (1 == 0) /* FALSE */
902 #define isRAW           (1 == 1) /* TRUE */
903 /* The parameter HOST (isTARGET / isHOST) is ignored */
904 #define isTARGET        (1 == 0) /* FALSE */
905 /* #define isHOST          (1 == 1) TRUE */
906 
907 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
908    is the number of bytes minus 1. */
909 #define AccessLength_BYTE       (0)
910 #define AccessLength_HALFWORD   (1)
911 #define AccessLength_TRIPLEBYTE (2)
912 #define AccessLength_WORD       (3)
913 #define AccessLength_QUINTIBYTE (4)
914 #define AccessLength_SEXTIBYTE  (5)
915 #define AccessLength_SEPTIBYTE  (6)
916 #define AccessLength_DOUBLEWORD (7)
917 #define AccessLength_QUADWORD   (15)
918 
919 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
920 		    ? AccessLength_DOUBLEWORD /*7*/ \
921 		    : AccessLength_WORD /*3*/)
922 #define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
923 
924 
925 INLINE_SIM_MAIN (int) address_translation (SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw);
926 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
927 address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
928 
929 INLINE_SIM_MAIN (void) load_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD);
930 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
931 load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
932 
933 INLINE_SIM_MAIN (void) store_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr);
934 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
935 store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
936 
937 INLINE_SIM_MAIN (void) cache_op (SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction);
938 #define CacheOp(op,pAddr,vAddr,instruction) \
939 cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
940 
941 INLINE_SIM_MAIN (void) sync_operation (SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype);
942 #define SyncOperation(stype) \
943 sync_operation (SD, CPU, cia, (stype))
944 
945 INLINE_SIM_MAIN (void) prefetch (SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint);
946 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
947 prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
948 
949 void unpredictable_action (sim_cpu *cpu, address_word cia);
950 #define NotWordValue(val)	not_word_value (SD_, (val))
951 #define Unpredictable()		unpredictable (SD_)
952 #define UnpredictableResult()	/* For now, do nothing.  */
953 
954 INLINE_SIM_MAIN (unsigned32) ifetch32 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr);
955 #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
956 INLINE_SIM_MAIN (unsigned16) ifetch16 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr);
957 #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
958 #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
959 
960 #if WITH_TRACE_ANY_P
961 void dotrace (SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...);
962 extern FILE *tracefh;
963 #else
964 #define dotrace(sd, cpu, tracefh, type, address, width, comment, ...)
965 #endif
966 
967 extern int DSPLO_REGNUM[4];
968 extern int DSPHI_REGNUM[4];
969 
970 INLINE_SIM_MAIN (void) pending_tick (SIM_DESC sd, sim_cpu *cpu, address_word cia);
971 extern SIM_CORE_SIGNAL_FN mips_core_signal;
972 
973 char* pr_addr (SIM_ADDR addr);
974 char* pr_uword64 (uword64 addr);
975 
976 
977 #define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
978 
979 void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
980 void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
981 void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
982 
983 #ifdef MIPS_MACH_MULTI
984 extern int mips_mach_multi(SIM_DESC sd);
985 #define MIPS_MACH(SD)	mips_mach_multi(SD)
986 #else
987 #define	MIPS_MACH(SD)	MIPS_MACH_DEFAULT
988 #endif
989 
990 /* Macros for determining whether a MIPS IV or MIPS V part is subject
991    to the hi/lo restrictions described in mips.igen.  */
992 
993 #define MIPS_MACH_HAS_MT_HILO_HAZARD(SD) \
994   (MIPS_MACH (SD) != bfd_mach_mips5500)
995 
996 #define MIPS_MACH_HAS_MULT_HILO_HAZARD(SD) \
997   (MIPS_MACH (SD) != bfd_mach_mips5500)
998 
999 #define MIPS_MACH_HAS_DIV_HILO_HAZARD(SD) \
1000   (MIPS_MACH (SD) != bfd_mach_mips5500)
1001 
1002 #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
1003 #include "sim-main.c"
1004 #endif
1005 
1006 #endif
1007