xref: /netbsd-src/external/gpl3/gdb/dist/sim/frv/traps.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* frv trap support
2    Copyright (C) 1999-2014 Free Software Foundation, Inc.
3    Contributed by Red Hat.
4 
5 This file is part of the GNU simulators.
6 
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11 
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #define WANT_CPU frvbf
21 #define WANT_CPU_FRVBF
22 
23 #include "sim-main.h"
24 #include "targ-vals.h"
25 #include "cgen-engine.h"
26 #include "cgen-par.h"
27 #include "sim-fpu.h"
28 
29 #include "bfd.h"
30 #include "libiberty.h"
31 
32 CGEN_ATTR_VALUE_ENUM_TYPE frv_current_fm_slot;
33 
34 /* The semantic code invokes this for invalid (unrecognized) instructions.  */
35 
36 SEM_PC
37 sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc)
38 {
39   frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
40   return vpc;
41 }
42 
43 /* Process an address exception.  */
44 
45 void
46 frv_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
47 		  unsigned int map, int nr_bytes, address_word addr,
48 		  transfer_type transfer, sim_core_signals sig)
49 {
50   if (sig == sim_core_unaligned_signal)
51     {
52       if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400
53 	  || STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr450)
54 	frv_queue_data_access_error_interrupt (current_cpu, addr);
55       else
56 	frv_queue_mem_address_not_aligned_interrupt (current_cpu, addr);
57     }
58 
59   frv_term (sd);
60   sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr, transfer, sig);
61 }
62 
63 void
64 frv_sim_engine_halt_hook (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia)
65 {
66   int i;
67   if (current_cpu != NULL)
68     CIA_SET (current_cpu, cia);
69 
70   /* Invalidate the insn and data caches of all cpus.  */
71   for (i = 0; i < MAX_NR_PROCESSORS; ++i)
72     {
73       current_cpu = STATE_CPU (sd, i);
74       frv_cache_invalidate_all (CPU_INSN_CACHE (current_cpu), 0);
75       frv_cache_invalidate_all (CPU_DATA_CACHE (current_cpu), 1);
76     }
77   frv_term (sd);
78 }
79 
80 /* Read/write functions for system call interface.  */
81 
82 static int
83 syscall_read_mem (host_callback *cb, struct cb_syscall *sc,
84 		  unsigned long taddr, char *buf, int bytes)
85 {
86   SIM_DESC sd = (SIM_DESC) sc->p1;
87   SIM_CPU *cpu = (SIM_CPU *) sc->p2;
88 
89   frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
90   return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes);
91 }
92 
93 static int
94 syscall_write_mem (host_callback *cb, struct cb_syscall *sc,
95 		   unsigned long taddr, const char *buf, int bytes)
96 {
97   SIM_DESC sd = (SIM_DESC) sc->p1;
98   SIM_CPU *cpu = (SIM_CPU *) sc->p2;
99 
100   frv_cache_invalidate_all (CPU_INSN_CACHE (cpu), 0);
101   frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
102   return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes);
103 }
104 
105 /* Handle TRA and TIRA insns.  */
106 void
107 frv_itrap (SIM_CPU *current_cpu, PCADDR pc, USI base, SI offset)
108 {
109   SIM_DESC sd = CPU_STATE (current_cpu);
110   host_callback *cb = STATE_CALLBACK (sd);
111   USI num = ((base + offset) & 0x7f) + 0x80;
112 
113 #ifdef SIM_HAVE_BREAKPOINTS
114   /* Check for breakpoints "owned" by the simulator first, regardless
115      of --environment.  */
116   if (num == TRAP_BREAKPOINT)
117     {
118       /* First try sim-break.c.  If it's a breakpoint the simulator "owns"
119 	 it doesn't return.  Otherwise it returns and let's us try.  */
120       sim_handle_breakpoint (sd, current_cpu, pc);
121       /* Fall through.  */
122     }
123 #endif
124 
125   if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
126     {
127       frv_queue_software_interrupt (current_cpu, num);
128       return;
129     }
130 
131   switch (num)
132     {
133     case TRAP_SYSCALL :
134       {
135 	CB_SYSCALL s;
136 	CB_SYSCALL_INIT (&s);
137 	s.func = GET_H_GR (7);
138 	s.arg1 = GET_H_GR (8);
139 	s.arg2 = GET_H_GR (9);
140 	s.arg3 = GET_H_GR (10);
141 
142 	if (s.func == TARGET_SYS_exit)
143 	  {
144 	    sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1);
145 	  }
146 
147 	s.p1 = (PTR) sd;
148 	s.p2 = (PTR) current_cpu;
149 	s.read_mem = syscall_read_mem;
150 	s.write_mem = syscall_write_mem;
151 	cb_syscall (cb, &s);
152 	SET_H_GR (8, s.result);
153 	SET_H_GR (9, s.result2);
154 	SET_H_GR (10, s.errcode);
155 	break;
156       }
157 
158     case TRAP_BREAKPOINT:
159       sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
160       break;
161 
162       /* Add support for dumping registers, either at fixed traps, or all
163 	 unknown traps if configured with --enable-sim-trapdump.  */
164     default:
165 #if !TRAPDUMP
166       frv_queue_software_interrupt (current_cpu, num);
167       return;
168 #endif
169 
170 #ifdef TRAP_REGDUMP1
171     case TRAP_REGDUMP1:
172 #endif
173 
174 #ifdef TRAP_REGDUMP2
175     case TRAP_REGDUMP2:
176 #endif
177 
178 #if TRAPDUMP || (defined (TRAP_REGDUMP1)) || (defined (TRAP_REGDUMP2))
179       {
180 	char buf[256];
181 	int i, j;
182 
183 	buf[0] = 0;
184 	if (STATE_TEXT_SECTION (sd)
185 	    && pc >= STATE_TEXT_START (sd)
186 	    && pc < STATE_TEXT_END (sd))
187 	  {
188 	    const char *pc_filename = (const char *)0;
189 	    const char *pc_function = (const char *)0;
190 	    unsigned int pc_linenum = 0;
191 
192 	    if (bfd_find_nearest_line (STATE_PROG_BFD (sd),
193 				       STATE_TEXT_SECTION (sd),
194 				       (struct bfd_symbol **) 0,
195 				       pc - STATE_TEXT_START (sd),
196 				       &pc_filename, &pc_function, &pc_linenum)
197 		&& (pc_function || pc_filename))
198 	      {
199 		char *p = buf+2;
200 		buf[0] = ' ';
201 		buf[1] = '(';
202 		if (pc_function)
203 		  {
204 		    strcpy (p, pc_function);
205 		    p += strlen (p);
206 		  }
207 		else
208 		  {
209 		    char *q = (char *) strrchr (pc_filename, '/');
210 		    strcpy (p, (q) ? q+1 : pc_filename);
211 		    p += strlen (p);
212 		  }
213 
214 		if (pc_linenum)
215 		  {
216 		    sprintf (p, " line %d", pc_linenum);
217 		    p += strlen (p);
218 		  }
219 
220 		p[0] = ')';
221 		p[1] = '\0';
222 		if ((p+1) - buf > sizeof (buf))
223 		  abort ();
224 	      }
225 	  }
226 
227 	sim_io_printf (sd,
228 		       "\nRegister dump,    pc = 0x%.8x%s, base = %u, offset = %d\n",
229 		       (unsigned)pc, buf, (unsigned)base, (int)offset);
230 
231 	for (i = 0; i < 64; i += 8)
232 	  {
233 	    long g0 = (long)GET_H_GR (i);
234 	    long g1 = (long)GET_H_GR (i+1);
235 	    long g2 = (long)GET_H_GR (i+2);
236 	    long g3 = (long)GET_H_GR (i+3);
237 	    long g4 = (long)GET_H_GR (i+4);
238 	    long g5 = (long)GET_H_GR (i+5);
239 	    long g6 = (long)GET_H_GR (i+6);
240 	    long g7 = (long)GET_H_GR (i+7);
241 
242 	    if ((g0 | g1 | g2 | g3 | g4 | g5 | g6 | g7) != 0)
243 	      sim_io_printf (sd,
244 			     "\tgr%02d - gr%02d:   0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
245 			     i, i+7, g0, g1, g2, g3, g4, g5, g6, g7);
246 	  }
247 
248 	for (i = 0; i < 64; i += 8)
249 	  {
250 	    long f0 = (long)GET_H_FR (i);
251 	    long f1 = (long)GET_H_FR (i+1);
252 	    long f2 = (long)GET_H_FR (i+2);
253 	    long f3 = (long)GET_H_FR (i+3);
254 	    long f4 = (long)GET_H_FR (i+4);
255 	    long f5 = (long)GET_H_FR (i+5);
256 	    long f6 = (long)GET_H_FR (i+6);
257 	    long f7 = (long)GET_H_FR (i+7);
258 
259 	    if ((f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7) != 0)
260 	      sim_io_printf (sd,
261 			     "\tfr%02d - fr%02d:   0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
262 			     i, i+7, f0, f1, f2, f3, f4, f5, f6, f7);
263 	  }
264 
265 	sim_io_printf (sd,
266 		       "\tlr/lcr/cc/ccc: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
267 		       (long)GET_H_SPR (272),
268 		       (long)GET_H_SPR (273),
269 		       (long)GET_H_SPR (256),
270 		       (long)GET_H_SPR (263));
271       }
272       break;
273 #endif
274     }
275 }
276 
277 /* Handle the MTRAP insn.  */
278 void
279 frv_mtrap (SIM_CPU *current_cpu)
280 {
281   SIM_DESC sd = CPU_STATE (current_cpu);
282 
283   /* Check the status of media exceptions in MSR0.  */
284   SI msr = GET_MSR (0);
285   if (GET_MSR_AOVF (msr) || GET_MSR_MTT (msr) && STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
286     frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION);
287 }
288 
289 /* Handle the BREAK insn.  */
290 void
291 frv_break (SIM_CPU *current_cpu)
292 {
293   IADDR pc;
294   SIM_DESC sd = CPU_STATE (current_cpu);
295 
296 #ifdef SIM_HAVE_BREAKPOINTS
297   /* First try sim-break.c.  If it's a breakpoint the simulator "owns"
298      it doesn't return.  Otherwise it returns and let's us try.  */
299   pc = GET_H_PC ();
300   sim_handle_breakpoint (sd, current_cpu, pc);
301   /* Fall through.  */
302 #endif
303 
304   if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT)
305     {
306       /* Invalidate the insn cache because the debugger will presumably
307 	 replace the breakpoint insn with the real one.  */
308 #ifndef SIM_HAVE_BREAKPOINTS
309       pc = GET_H_PC ();
310 #endif
311       sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
312     }
313 
314   frv_queue_break_interrupt (current_cpu);
315 }
316 
317 /* Return from trap.  */
318 USI
319 frv_rett (SIM_CPU *current_cpu, PCADDR pc, BI debug_field)
320 {
321   USI new_pc;
322   /* if (normal running mode and debug_field==0
323        PC=PCSR
324        PSR.ET=1
325        PSR.S=PSR.PS
326      else if (debug running mode and debug_field==1)
327        PC=(BPCSR)
328        PSR.ET=BPSR.BET
329        PSR.S=BPSR.BS
330        change to normal running mode
331   */
332   int psr_s = GET_H_PSR_S ();
333   int psr_et = GET_H_PSR_ET ();
334 
335   /* Check for exceptions in the priority order listed in the FRV Architecture
336      Volume 2.  */
337   if (! psr_s)
338     {
339       /* Halt if PSR.ET is not set.  See chapter 6 of the LSI.  */
340       if (! psr_et)
341 	{
342 	  SIM_DESC sd = CPU_STATE (current_cpu);
343 	  sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
344 	}
345 
346       /* privileged_instruction interrupt will have already been queued by
347 	 frv_detect_insn_access_interrupts.  */
348       new_pc = pc + 4;
349     }
350   else if (psr_et)
351     {
352       /* Halt if PSR.S is set.  See chapter 6 of the LSI.  */
353       if (psr_s)
354 	{
355 	  SIM_DESC sd = CPU_STATE (current_cpu);
356 	  sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
357 	}
358 
359       frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
360       new_pc = pc + 4;
361     }
362   else if (! CPU_DEBUG_STATE (current_cpu) && debug_field == 0)
363     {
364       USI psr = GET_PSR ();
365       /* Return from normal running state.  */
366       new_pc = GET_H_SPR (H_SPR_PCSR);
367       SET_PSR_ET (psr, 1);
368       SET_PSR_S (psr, GET_PSR_PS (psr));
369       sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
370     }
371   else if (CPU_DEBUG_STATE (current_cpu) && debug_field == 1)
372     {
373       USI psr = GET_PSR ();
374       /* Return from debug state.  */
375       new_pc = GET_H_SPR (H_SPR_BPCSR);
376       SET_PSR_ET (psr, GET_H_BPSR_BET ());
377       SET_PSR_S (psr, GET_H_BPSR_BS ());
378       sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
379       CPU_DEBUG_STATE (current_cpu) = 0;
380     }
381   else
382     new_pc = pc + 4;
383 
384   return new_pc;
385 }
386 
387 /* Functions for handling non-excepting instruction side effects.  */
388 static SI next_available_nesr (SIM_CPU *current_cpu, SI current_index)
389 {
390   FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
391   if (control->spr[H_SPR_NECR].implemented)
392     {
393       int limit;
394       USI necr = GET_NECR ();
395 
396       /* See if any NESRs are implemented. First need to check the validity of
397 	 the NECR.  */
398       if (! GET_NECR_VALID (necr))
399 	return NO_NESR;
400 
401       limit = GET_NECR_NEN (necr);
402       for (++current_index; current_index < limit; ++current_index)
403 	{
404 	  SI nesr = GET_NESR (current_index);
405 	  if (! GET_NESR_VALID (nesr))
406 	    return current_index;
407 	}
408     }
409   return NO_NESR;
410 }
411 
412 static SI next_valid_nesr (SIM_CPU *current_cpu, SI current_index)
413 {
414   FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
415   if (control->spr[H_SPR_NECR].implemented)
416     {
417       int limit;
418       USI necr = GET_NECR ();
419 
420       /* See if any NESRs are implemented. First need to check the validity of
421 	 the NECR.  */
422       if (! GET_NECR_VALID (necr))
423 	return NO_NESR;
424 
425       limit = GET_NECR_NEN (necr);
426       for (++current_index; current_index < limit; ++current_index)
427 	{
428 	  SI nesr = GET_NESR (current_index);
429 	  if (GET_NESR_VALID (nesr))
430 	    return current_index;
431 	}
432     }
433   return NO_NESR;
434 }
435 
436 BI
437 frvbf_check_non_excepting_load (
438   SIM_CPU *current_cpu, SI base_index, SI disp_index, SI target_index,
439   SI immediate_disp, QI data_size, BI is_float
440 )
441 {
442   BI rc = 1; /* perform the load.  */
443   SIM_DESC sd = CPU_STATE (current_cpu);
444   int daec = 0;
445   int rec  = 0;
446   int ec   = 0;
447   USI necr;
448   int do_elos;
449   SI NE_flags[2];
450   SI NE_base;
451   SI nesr;
452   SI ne_index;
453   FRV_REGISTER_CONTROL *control;
454 
455   SI address = GET_H_GR (base_index);
456   if (disp_index >= 0)
457     address += GET_H_GR (disp_index);
458   else
459     address += immediate_disp;
460 
461   /* Check for interrupt factors.  */
462   switch (data_size)
463     {
464     case NESR_UQI_SIZE:
465     case NESR_QI_SIZE:
466       break;
467     case NESR_UHI_SIZE:
468     case NESR_HI_SIZE:
469       if (address & 1)
470 	ec = 1;
471       break;
472     case NESR_SI_SIZE:
473       if (address & 3)
474 	ec = 1;
475       break;
476     case NESR_DI_SIZE:
477       if (address & 7)
478 	ec = 1;
479       if (target_index & 1)
480 	rec = 1;
481       break;
482     case NESR_XI_SIZE:
483       if (address & 0xf)
484 	ec = 1;
485       if (target_index & 3)
486 	rec = 1;
487       break;
488     default:
489       {
490 	IADDR pc = GET_H_PC ();
491 	sim_engine_abort (sd, current_cpu, pc,
492 			  "check_non_excepting_load: Incorrect data_size\n");
493 	break;
494       }
495     }
496 
497   control = CPU_REGISTER_CONTROL (current_cpu);
498   if (control->spr[H_SPR_NECR].implemented)
499     {
500       necr = GET_NECR ();
501       do_elos = GET_NECR_VALID (necr) && GET_NECR_ELOS (necr);
502     }
503   else
504     do_elos = 0;
505 
506   /* NECR, NESR, NEEAR are only implemented for the full frv machine.  */
507   if (do_elos)
508     {
509       ne_index = next_available_nesr (current_cpu, NO_NESR);
510       if (ne_index == NO_NESR)
511 	{
512 	  IADDR pc = GET_H_PC ();
513 	  sim_engine_abort (sd, current_cpu, pc,
514 			    "No available NESR register\n");
515 	}
516 
517       /* Fill in the basic fields of the NESR.  */
518       nesr = GET_NESR (ne_index);
519       SET_NESR_VALID (nesr);
520       SET_NESR_EAV (nesr);
521       SET_NESR_DRN (nesr, target_index);
522       SET_NESR_SIZE (nesr, data_size);
523       SET_NESR_NEAN (nesr, ne_index);
524       if (is_float)
525 	SET_NESR_FR (nesr);
526       else
527 	CLEAR_NESR_FR (nesr);
528 
529       /* Set the corresponding NEEAR.  */
530       SET_NEEAR (ne_index, address);
531 
532       SET_NESR_DAEC (nesr, 0);
533       SET_NESR_REC (nesr, 0);
534       SET_NESR_EC (nesr, 0);
535     }
536 
537   /* Set the NE flag corresponding to the target register if an interrupt
538      factor was detected.
539      daec is not checked here yet, but is declared for future reference.  */
540   if (is_float)
541     NE_base = H_SPR_FNER0;
542   else
543     NE_base = H_SPR_GNER0;
544 
545   GET_NE_FLAGS (NE_flags, NE_base);
546   if (rec)
547     {
548       SET_NE_FLAG (NE_flags, target_index);
549       if (do_elos)
550 	SET_NESR_REC (nesr, NESR_REGISTER_NOT_ALIGNED);
551     }
552 
553   if (ec)
554     {
555       SET_NE_FLAG (NE_flags, target_index);
556       if (do_elos)
557 	SET_NESR_EC (nesr, NESR_MEM_ADDRESS_NOT_ALIGNED);
558     }
559 
560   if (do_elos)
561     SET_NESR (ne_index, nesr);
562 
563   /* If no interrupt factor was detected then set the NE flag on the
564      target register if the NE flag on one of the input registers
565      is already set.  */
566   if (! rec && ! ec && ! daec)
567     {
568       BI ne_flag = GET_NE_FLAG (NE_flags, base_index);
569       if (disp_index >= 0)
570 	ne_flag |= GET_NE_FLAG (NE_flags, disp_index);
571       if (ne_flag)
572 	{
573 	  SET_NE_FLAG (NE_flags, target_index);
574 	  rc = 0; /* Do not perform the load.  */
575 	}
576       else
577 	CLEAR_NE_FLAG (NE_flags, target_index);
578     }
579 
580   SET_NE_FLAGS (NE_base, NE_flags);
581 
582   return rc; /* perform the load?  */
583 }
584 
585 /* Record state for media exception: media_cr_not_aligned.  */
586 void
587 frvbf_media_cr_not_aligned (SIM_CPU *current_cpu)
588 {
589   SIM_DESC sd = CPU_STATE (current_cpu);
590 
591   /* On some machines this generates an illegal_instruction interrupt.  */
592   switch (STATE_ARCHITECTURE (sd)->mach)
593     {
594       /* Note: there is a discrepancy between V2.2 of the FR400
595 	 instruction manual and the various FR4xx LSI specs.  The former
596 	 claims that unaligned registers cause an mp_exception while the
597 	 latter say it's an illegal_instruction.  The LSI specs appear
598 	 to be correct since MTT is fixed at 1.  */
599     case bfd_mach_fr400:
600     case bfd_mach_fr450:
601     case bfd_mach_fr550:
602       frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
603       break;
604     default:
605       frv_set_mp_exception_registers (current_cpu, MTT_CR_NOT_ALIGNED, 0);
606       break;
607     }
608 }
609 
610 /* Record state for media exception: media_acc_not_aligned.  */
611 void
612 frvbf_media_acc_not_aligned (SIM_CPU *current_cpu)
613 {
614   SIM_DESC sd = CPU_STATE (current_cpu);
615 
616   /* On some machines this generates an illegal_instruction interrupt.  */
617   switch (STATE_ARCHITECTURE (sd)->mach)
618     {
619       /* See comment in frvbf_cr_not_aligned().  */
620     case bfd_mach_fr400:
621     case bfd_mach_fr450:
622     case bfd_mach_fr550:
623       frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
624       break;
625     default:
626       frv_set_mp_exception_registers (current_cpu, MTT_ACC_NOT_ALIGNED, 0);
627       break;
628     }
629 }
630 
631 /* Record state for media exception: media_register_not_aligned.  */
632 void
633 frvbf_media_register_not_aligned (SIM_CPU *current_cpu)
634 {
635   SIM_DESC sd = CPU_STATE (current_cpu);
636 
637   /* On some machines this generates an illegal_instruction interrupt.  */
638   switch (STATE_ARCHITECTURE (sd)->mach)
639     {
640       /* See comment in frvbf_cr_not_aligned().  */
641     case bfd_mach_fr400:
642     case bfd_mach_fr450:
643     case bfd_mach_fr550:
644       frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
645       break;
646     default:
647       frv_set_mp_exception_registers (current_cpu, MTT_INVALID_FR, 0);
648       break;
649     }
650 }
651 
652 /* Record state for media exception: media_overflow.  */
653 void
654 frvbf_media_overflow (SIM_CPU *current_cpu, int sie)
655 {
656   frv_set_mp_exception_registers (current_cpu, MTT_OVERFLOW, sie);
657 }
658 
659 /* Queue a division exception.  */
660 enum frv_dtt
661 frvbf_division_exception (SIM_CPU *current_cpu, enum frv_dtt dtt,
662 			  int target_index, int non_excepting)
663 {
664   /* If there was an overflow and it is masked, then record it in
665      ISR.AEXC.  */
666   USI isr = GET_ISR ();
667   if ((dtt & FRV_DTT_OVERFLOW) && GET_ISR_EDE (isr))
668     {
669       dtt &= ~FRV_DTT_OVERFLOW;
670       SET_ISR_AEXC (isr);
671       SET_ISR (isr);
672     }
673   if (dtt != FRV_DTT_NO_EXCEPTION)
674     {
675       if (non_excepting)
676 	{
677 	  /* Non excepting instruction, simply set the NE flag for the target
678 	     register.  */
679 	  SI NE_flags[2];
680 	  GET_NE_FLAGS (NE_flags, H_SPR_GNER0);
681 	  SET_NE_FLAG (NE_flags, target_index);
682 	  SET_NE_FLAGS (H_SPR_GNER0, NE_flags);
683 	}
684       else
685 	frv_queue_division_exception_interrupt (current_cpu, dtt);
686     }
687   return dtt;
688 }
689 
690 void
691 frvbf_check_recovering_store (
692   SIM_CPU *current_cpu, PCADDR address, SI regno, int size, int is_float
693 )
694 {
695   FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
696   int reg_ix;
697 
698   CPU_RSTR_INVALIDATE(current_cpu) = 0;
699 
700   for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
701        reg_ix != NO_NESR;
702        reg_ix = next_valid_nesr (current_cpu, reg_ix))
703     {
704       if (address == GET_H_SPR (H_SPR_NEEAR0 + reg_ix))
705 	{
706 	  SI nesr = GET_NESR (reg_ix);
707 	  int nesr_drn = GET_NESR_DRN (nesr);
708 	  BI nesr_fr = GET_NESR_FR (nesr);
709 	  SI remain;
710 
711 	  /* Invalidate cache block containing this address.
712 	     If we need to count cycles, then the cache operation will be
713 	     initiated from the model profiling functions.
714 	     See frvbf_model_....  */
715 	  if (model_insn)
716 	    {
717 	      CPU_RSTR_INVALIDATE(current_cpu) = 1;
718 	      CPU_LOAD_ADDRESS (current_cpu) = address;
719 	    }
720 	  else
721 	    frv_cache_invalidate (cache, address, 1/* flush */);
722 
723 	  /* Copy the stored value to the register indicated by NESR.DRN.  */
724 	  for (remain = size; remain > 0; remain -= 4)
725 	    {
726 	      SI value;
727 
728 	      if (is_float)
729 		value = GET_H_FR (regno);
730 	      else
731 		value = GET_H_GR (regno);
732 
733 	      switch (size)
734 		{
735 		case 1:
736 		  value &= 0xff;
737 		  break;
738 		case 2:
739 		  value &= 0xffff;
740 		  break;
741 		default:
742 		  break;
743 		}
744 
745 	      if (nesr_fr)
746 		sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, nesr_drn,
747 				       value);
748 	      else
749 		sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, nesr_drn,
750 				       value);
751 
752 	      nesr_drn++;
753 	      regno++;
754 	    }
755 	  break; /* Only consider the first matching register.  */
756 	}
757     } /* loop over active neear registers.  */
758 }
759 
760 SI
761 frvbf_check_acc_range (SIM_CPU *current_cpu, SI regno)
762 {
763   /* Only applicable to fr550 */
764   SIM_DESC sd = CPU_STATE (current_cpu);
765   if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
766     return;
767 
768   /* On the fr550, media insns in slots 0 and 2 can only access
769      accumulators acc0-acc3. Insns in slots 1 and 3 can only access
770      accumulators acc4-acc7 */
771   switch (frv_current_fm_slot)
772     {
773     case UNIT_FM0:
774     case UNIT_FM2:
775       if (regno <= 3)
776 	return 1; /* all is ok */
777       break;
778     case UNIT_FM1:
779     case UNIT_FM3:
780       if (regno >= 4)
781 	return 1; /* all is ok */
782       break;
783     }
784 
785   /* The specified accumulator is out of range. Queue an illegal_instruction
786      interrupt.  */
787   frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
788   return 0;
789 }
790 
791 void
792 frvbf_check_swap_address (SIM_CPU *current_cpu, SI address)
793 {
794   /* Only applicable to fr550 */
795   SIM_DESC sd = CPU_STATE (current_cpu);
796   if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
797     return;
798 
799   /* Adress must be aligned on a word boundary.  */
800   if (address & 0x3)
801     frv_queue_data_access_exception_interrupt (current_cpu);
802 }
803 
804 static void
805 clear_nesr_neear (SIM_CPU *current_cpu, SI target_index, BI is_float)
806 {
807   int reg_ix;
808 
809   /* Only implemented for full frv.  */
810   SIM_DESC sd = CPU_STATE (current_cpu);
811   if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_frv)
812     return;
813 
814   /* Clear the appropriate NESR and NEEAR registers.  */
815   for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
816        reg_ix != NO_NESR;
817        reg_ix = next_valid_nesr (current_cpu, reg_ix))
818     {
819       SI nesr;
820       /* The register is available, now check if it is active.  */
821       nesr = GET_NESR (reg_ix);
822       if (GET_NESR_FR (nesr) == is_float)
823 	{
824 	  if (target_index < 0 || GET_NESR_DRN (nesr) == target_index)
825 	    {
826 	      SET_NESR (reg_ix, 0);
827 	      SET_NEEAR (reg_ix, 0);
828 	    }
829 	}
830     }
831 }
832 
833 static void
834 clear_ne_flags (
835   SIM_CPU *current_cpu,
836   SI target_index,
837   int hi_available,
838   int lo_available,
839   SI NE_base
840 )
841 {
842   SI NE_flags[2];
843   int exception;
844 
845   GET_NE_FLAGS (NE_flags, NE_base);
846   if (target_index >= 0)
847     CLEAR_NE_FLAG (NE_flags, target_index);
848   else
849     {
850       if (lo_available)
851 	NE_flags[1] = 0;
852       if (hi_available)
853 	NE_flags[0] = 0;
854     }
855   SET_NE_FLAGS (NE_base, NE_flags);
856 }
857 
858 /* Return 1 if the given register is available, 0 otherwise.  TARGET_INDEX==-1
859    means to check for any register available.  */
860 static void
861 which_registers_available (
862   SIM_CPU *current_cpu, int *hi_available, int *lo_available, int is_float
863 )
864 {
865   if (is_float)
866     frv_fr_registers_available (current_cpu, hi_available, lo_available);
867   else
868     frv_gr_registers_available (current_cpu, hi_available, lo_available);
869 }
870 
871 void
872 frvbf_clear_ne_flags (SIM_CPU *current_cpu, SI target_index, BI is_float)
873 {
874   int hi_available;
875   int lo_available;
876   int exception;
877   SI NE_base;
878   USI necr;
879   FRV_REGISTER_CONTROL *control;
880 
881   /* Check for availability of the target register(s).  */
882   which_registers_available (current_cpu, & hi_available, & lo_available,
883 			     is_float);
884 
885   /* Check to make sure that the target register is available.  */
886   if (! frv_check_register_access (current_cpu, target_index,
887 				   hi_available, lo_available))
888     return;
889 
890   /* Determine whether we're working with GR or FR registers.  */
891   if (is_float)
892     NE_base = H_SPR_FNER0;
893   else
894     NE_base = H_SPR_GNER0;
895 
896   /* Always clear the appropriate NE flags.  */
897   clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
898 		  NE_base);
899 
900   /* Clear the appropriate NESR and NEEAR registers.  */
901   control = CPU_REGISTER_CONTROL (current_cpu);
902   if (control->spr[H_SPR_NECR].implemented)
903     {
904       necr = GET_NECR ();
905       if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr))
906 	clear_nesr_neear (current_cpu, target_index, is_float);
907     }
908 }
909 
910 void
911 frvbf_commit (SIM_CPU *current_cpu, SI target_index, BI is_float)
912 {
913   SI NE_base;
914   SI NE_flags[2];
915   BI NE_flag;
916   int exception;
917   int hi_available;
918   int lo_available;
919   USI necr;
920   FRV_REGISTER_CONTROL *control;
921 
922   /* Check for availability of the target register(s).  */
923   which_registers_available (current_cpu, & hi_available, & lo_available,
924 			     is_float);
925 
926   /* Check to make sure that the target register is available.  */
927   if (! frv_check_register_access (current_cpu, target_index,
928 				   hi_available, lo_available))
929     return;
930 
931   /* Determine whether we're working with GR or FR registers.  */
932   if (is_float)
933     NE_base = H_SPR_FNER0;
934   else
935     NE_base = H_SPR_GNER0;
936 
937   /* Determine whether a ne exception is pending.  */
938   GET_NE_FLAGS (NE_flags, NE_base);
939   if (target_index >= 0)
940     NE_flag = GET_NE_FLAG (NE_flags, target_index);
941   else
942     {
943       NE_flag =
944 	hi_available && NE_flags[0] != 0 || lo_available && NE_flags[1] != 0;
945     }
946 
947   /* Always clear the appropriate NE flags.  */
948   clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
949 		  NE_base);
950 
951   control = CPU_REGISTER_CONTROL (current_cpu);
952   if (control->spr[H_SPR_NECR].implemented)
953     {
954       necr = GET_NECR ();
955       if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr) && NE_flag)
956 	{
957 	  /* Clear the appropriate NESR and NEEAR registers.  */
958 	  clear_nesr_neear (current_cpu, target_index, is_float);
959 	  frv_queue_program_interrupt (current_cpu, FRV_COMMIT_EXCEPTION);
960 	}
961     }
962 }
963 
964 /* Generate the appropriate fp_exception(s) based on the given status code.  */
965 void
966 frvbf_fpu_error (CGEN_FPU* fpu, int status)
967 {
968   struct frv_fp_exception_info fp_info = {
969     FSR_NO_EXCEPTION, FTT_IEEE_754_EXCEPTION
970   };
971 
972   if (status &
973       (sim_fpu_status_invalid_snan |
974        sim_fpu_status_invalid_qnan |
975        sim_fpu_status_invalid_isi |
976        sim_fpu_status_invalid_idi |
977        sim_fpu_status_invalid_zdz |
978        sim_fpu_status_invalid_imz |
979        sim_fpu_status_invalid_cvi |
980        sim_fpu_status_invalid_cmp |
981        sim_fpu_status_invalid_sqrt))
982     fp_info.fsr_mask |= FSR_INVALID_OPERATION;
983 
984   if (status & sim_fpu_status_invalid_div0)
985     fp_info.fsr_mask |= FSR_DIVISION_BY_ZERO;
986 
987   if (status & sim_fpu_status_inexact)
988     fp_info.fsr_mask |= FSR_INEXACT;
989 
990   if (status & sim_fpu_status_overflow)
991     fp_info.fsr_mask |= FSR_OVERFLOW;
992 
993   if (status & sim_fpu_status_underflow)
994     fp_info.fsr_mask |= FSR_UNDERFLOW;
995 
996   if (status & sim_fpu_status_denorm)
997     {
998       fp_info.fsr_mask |= FSR_DENORMAL_INPUT;
999       fp_info.ftt = FTT_DENORMAL_INPUT;
1000     }
1001 
1002   if (fp_info.fsr_mask != FSR_NO_EXCEPTION)
1003     {
1004       SIM_CPU *current_cpu = (SIM_CPU *)fpu->owner;
1005       frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
1006     }
1007 }
1008