xref: /netbsd-src/external/gpl3/gdb/dist/sim/common/sim-fpu.h (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Simulator Floating-point support.
2 
3    Copyright 1997-2014 Free Software Foundation, Inc.
4 
5    Contributed by Cygnus Support.
6 
7 This file is part of GDB, the GNU debugger.
8 
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13 
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 
23 
24 #ifndef SIM_FPU_H
25 #define SIM_FPU_H
26 
27 
28 
29 /* The FPU intermediate type - this object, passed by reference,
30    should be treated as opaque.
31 
32 
33    Pragmatics - pass struct by ref:
34 
35    The alternatives for this object/interface that were considered
36    were: a packed 64 bit value; an unpacked structure passed by value;
37    and an unpacked structure passed by reference.
38 
39    The packed 64 bit value was rejected because: it limited the
40    precision of intermediate values; reasonable performance would only
41    be achieved when the sim_fpu package was in-lined allowing repeated
42    unpacking operations to be eliminated.
43 
44    For unpacked structures (passed by value and reference), the code
45    quality of GCC-2.7 (on x86) for each alternative was compared.
46    Needless to say the results, while better than for a packed 64 bit
47    object, were still poor (GCC had only limited support for the
48    optimization of references to structure members).  Regardless, the
49    struct-by-ref alternative achieved better results when compiled
50    with (better speed) and without (better code density) in-lining.
51    Here's looking forward to an improved GCC optimizer.
52 
53 
54    Pragmatics - avoid host FP hardware:
55 
56    FP operations can be implemented by either: the host's floating
57    point hardware; or by emulating the FP operations using integer
58    only routines.  This is direct tradeoff between speed, portability
59    and correctness.
60 
61    The two principal reasons for selecting portability and correctness
62    over speed are:
63 
64    1 - Correctness.  The assumption that FP correctness wasn't an
65    issue for code being run on simulators was wrong.  Instead of
66    running FP tolerant (?) code, simulator users instead typically run
67    very aggressive FP code sequences.  The sole purpose of those
68    sequences being to test the target ISA's FP implementation.
69 
70    2 - Portability.  The host FP implementation is not predictable.  A
71    simulator modeling aggressive FP code sequences using the hosts FPU
72    relies heavily on the correctness of the hosts FP implementation.
73    It turns out that such trust can be misplaced.  The behavior of
74    host FP implementations when handling edge conditions such as SNaNs
75    and exceptions varied widely.
76 
77 
78    */
79 
80 
81 typedef enum
82 {
83   sim_fpu_class_zero,
84   sim_fpu_class_snan,
85   sim_fpu_class_qnan,
86   sim_fpu_class_number,
87   sim_fpu_class_denorm,
88   sim_fpu_class_infinity,
89 } sim_fpu_class;
90 
91 typedef struct _sim_fpu {
92   sim_fpu_class class;
93   int sign;
94   unsigned64 fraction;
95   int normal_exp;
96 } sim_fpu;
97 
98 
99 
100 /* Rounding options.
101 
102    The value zero (sim_fpu_round_default) for ALU operations indicates
103    that, when possible, rounding should be avoided. */
104 
105 typedef enum
106 {
107   sim_fpu_round_default = 0,
108   sim_fpu_round_near = 1,
109   sim_fpu_round_zero = 2,
110   sim_fpu_round_up = 3,
111   sim_fpu_round_down = 4,
112 } sim_fpu_round;
113 
114 
115 /* Options when handling denormalized numbers.  */
116 
117 typedef enum
118 {
119   sim_fpu_denorm_default = 0,
120   sim_fpu_denorm_underflow_inexact = 1,
121   sim_fpu_denorm_zero = 2,
122 } sim_fpu_denorm;
123 
124 
125 
126 /* Status values returned by FPU operators.
127 
128    When checking the result of an FP sequence (ex 32to, add, single,
129    to32) the caller may either: check the return value of each FP
130    operator; or form the union (OR) of the returned values and examine
131    them once at the end.
132 
133    FIXME: This facility is still being developed.  The choice of
134    status values returned and their exact meaning may changed in the
135    future.  */
136 
137 typedef enum
138 {
139   sim_fpu_status_invalid_snan = 1,
140   sim_fpu_status_invalid_qnan = 2,
141   sim_fpu_status_invalid_isi = 4, /* (inf - inf) */
142   sim_fpu_status_invalid_idi = 8, /* (inf / inf) */
143   sim_fpu_status_invalid_zdz = 16, /* (0 / 0) */
144   sim_fpu_status_invalid_imz = 32, /* (inf * 0) */
145   sim_fpu_status_invalid_cvi = 64, /* convert to integer */
146   sim_fpu_status_invalid_div0 = 128, /* (X / 0) */
147   sim_fpu_status_invalid_cmp = 256, /* compare */
148   sim_fpu_status_invalid_sqrt = 512,
149   sim_fpu_status_rounded = 1024,
150   sim_fpu_status_inexact = 2048,
151   sim_fpu_status_overflow = 4096,
152   sim_fpu_status_underflow = 8192,
153   sim_fpu_status_denorm = 16384,
154 } sim_fpu_status;
155 
156 
157 
158 
159 /* Directly map between a 32/64 bit register and the sim_fpu internal
160    type.
161 
162    When converting from the 32/64 bit packed format to the sim_fpu
163    internal type, the operation is exact.
164 
165    When converting from the sim_fpu internal type to 32/64 bit packed
166    format, the operation may result in a loss of precision. The
167    configuration macro WITH_FPU_CONVERSION controls this.  By default,
168    silent round to nearest is performed.  Alternatively, round up,
169    round down and round to zero can be performed.  In a simulator
170    emulating exact FPU behavior, sim_fpu_round_{32,64} should be
171    called before packing the sim_fpu value.  */
172 
173 INLINE_SIM_FPU (void) sim_fpu_32to (sim_fpu *f, unsigned32 s);
174 INLINE_SIM_FPU (void) sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l);
175 INLINE_SIM_FPU (void) sim_fpu_64to (sim_fpu *f, unsigned64 d);
176 
177 INLINE_SIM_FPU (void) sim_fpu_to32 (unsigned32 *s, const sim_fpu *f);
178 INLINE_SIM_FPU (void) sim_fpu_to232 (unsigned32 *h, unsigned32 *l, const sim_fpu *f);
179 INLINE_SIM_FPU (void) sim_fpu_to64 (unsigned64 *d, const sim_fpu *f);
180 
181 
182 /* Create a sim_fpu struct using raw information.  (FRACTION & LSMASK
183    (PRECISION-1, 0)) is assumed to contain the fraction part of the
184    floating-point number.  The leading bit LSBIT (PRECISION) is always
185    implied.  The number created can be represented by:
186 
187    (SIGN ? "-" : "+") "1." FRACTION{PRECISION-1,0} X 2 ^ NORMAL_EXP>
188 
189    You can not specify zero using this function. */
190 
191 INLINE_SIM_FPU (void) sim_fpu_fractionto (sim_fpu *f, int sign, int normal_exp, unsigned64 fraction, int precision);
192 
193 /* Reverse operation.  If S is a non-zero number, discards the implied
194    leading one and returns PRECISION fraction bits.  No rounding is
195    performed. */
196 INLINE_SIM_FPU (unsigned64) sim_fpu_tofraction (const sim_fpu *s, int precision);
197 
198 
199 
200 /* Rounding operators.
201 
202    Force an intermediate result to an exact 32/64 bit
203    representation. */
204 
205 INLINE_SIM_FPU (int) sim_fpu_round_32 (sim_fpu *f,
206 				       sim_fpu_round round,
207 				       sim_fpu_denorm denorm);
208 INLINE_SIM_FPU (int) sim_fpu_round_64 (sim_fpu *f,
209 				       sim_fpu_round round,
210 				       sim_fpu_denorm denorm);
211 
212 
213 
214 /* Arithmetic operators.
215 
216    FIXME: In the future, additional arguments ROUNDING and BITSIZE may
217    be added. */
218 
219 typedef int (sim_fpu_op1) (sim_fpu *f,
220 			   const sim_fpu *l);
221 typedef int (sim_fpu_op2) (sim_fpu *f,
222 			   const sim_fpu *l,
223 			   const sim_fpu *r);
224 
225 INLINE_SIM_FPU (int) sim_fpu_add (sim_fpu *f,
226 				  const sim_fpu *l, const sim_fpu *r);
227 INLINE_SIM_FPU (int) sim_fpu_sub (sim_fpu *f,
228 				  const sim_fpu *l, const sim_fpu *r);
229 INLINE_SIM_FPU (int) sim_fpu_mul (sim_fpu *f,
230 				  const sim_fpu *l, const sim_fpu *r);
231 INLINE_SIM_FPU (int) sim_fpu_div (sim_fpu *f,
232 				  const sim_fpu *l, const sim_fpu *r);
233 INLINE_SIM_FPU (int) sim_fpu_max (sim_fpu *f,
234 				  const sim_fpu *l, const sim_fpu *r);
235 INLINE_SIM_FPU (int) sim_fpu_min (sim_fpu *f,
236 				  const sim_fpu *l, const sim_fpu *r);
237 INLINE_SIM_FPU (int) sim_fpu_neg (sim_fpu *f,
238 				  const sim_fpu *a);
239 INLINE_SIM_FPU (int) sim_fpu_abs (sim_fpu *f,
240 				  const sim_fpu *a);
241 INLINE_SIM_FPU (int) sim_fpu_inv (sim_fpu *f,
242 				  const sim_fpu *a);
243 INLINE_SIM_FPU (int) sim_fpu_sqrt (sim_fpu *f,
244 				   const sim_fpu *sqr);
245 
246 
247 
248 /* Conversion of integer <-> floating point. */
249 
250 INLINE_SIM_FPU (int) sim_fpu_i32to (sim_fpu *f, signed32 i,
251 				    sim_fpu_round round);
252 INLINE_SIM_FPU (int) sim_fpu_u32to (sim_fpu *f, unsigned32 u,
253 				    sim_fpu_round round);
254 INLINE_SIM_FPU (int) sim_fpu_i64to (sim_fpu *f, signed64 i,
255 				    sim_fpu_round round);
256 INLINE_SIM_FPU (int) sim_fpu_u64to (sim_fpu *f, unsigned64 u,
257 				    sim_fpu_round round);
258 #if 0
259 INLINE_SIM_FPU (int) sim_fpu_i232to (sim_fpu *f, signed32 h, signed32 l,
260 				     sim_fpu_round round);
261 #endif
262 #if 0
263 INLINE_SIM_FPU (int) sim_fpu_u232to (sim_fpu *f, unsigned32 h, unsigned32 l,
264 				     sim_fpu_round round);
265 #endif
266 
267 INLINE_SIM_FPU (int) sim_fpu_to32i (signed32 *i, const sim_fpu *f,
268 				    sim_fpu_round round);
269 INLINE_SIM_FPU (int) sim_fpu_to32u (unsigned32 *u, const sim_fpu *f,
270 				    sim_fpu_round round);
271 INLINE_SIM_FPU (int) sim_fpu_to64i (signed64 *i, const sim_fpu *f,
272 				    sim_fpu_round round);
273 INLINE_SIM_FPU (int) sim_fpu_to64u (unsigned64 *u, const sim_fpu *f,
274 				    sim_fpu_round round);
275 #if 0
276 INLINE_SIM_FPU (int) sim_fpu_to232i (signed64 *h, signed64 *l, const sim_fpu *f,
277 				     sim_fpu_round round);
278 #endif
279 #if 0
280 INLINE_SIM_FPU (int) sim_fpu_to232u (unsigned64 *h, unsigned64 *l, const sim_fpu *f,
281 				     sim_fpu_round round);
282 #endif
283 
284 
285 /* Conversion of internal sim_fpu type to host double format.
286 
287    For debugging/tracing only.  A SNaN is never returned. */
288 
289 /* INLINE_SIM_FPU (float) sim_fpu_2f (const sim_fpu *f); */
290 INLINE_SIM_FPU (double) sim_fpu_2d (const sim_fpu *d);
291 
292 /* INLINE_SIM_FPU (void) sim_fpu_f2 (sim_fpu *f, float s); */
293 INLINE_SIM_FPU (void) sim_fpu_d2 (sim_fpu *f, double d);
294 
295 
296 
297 /* Specific number classes.
298 
299    NB: When either, a 32/64 bit floating points is converted to
300    internal format, or an internal format number is rounded to 32/64
301    bit precision, a special marker is retained that indicates that the
302    value was normalized.  For such numbers both is_number and
303    is_denorm return true. */
304 
305 INLINE_SIM_FPU (int) sim_fpu_is_nan (const sim_fpu *s); /* 1 => SNaN or QNaN */
306 INLINE_SIM_FPU (int) sim_fpu_is_snan (const sim_fpu *s); /* 1 => SNaN */
307 INLINE_SIM_FPU (int) sim_fpu_is_qnan (const sim_fpu *s); /* 1 => QNaN */
308 
309 INLINE_SIM_FPU (int) sim_fpu_is_zero (const sim_fpu *s);
310 INLINE_SIM_FPU (int) sim_fpu_is_infinity (const sim_fpu *s);
311 INLINE_SIM_FPU (int) sim_fpu_is_number (const sim_fpu *s); /* !zero */
312 INLINE_SIM_FPU (int) sim_fpu_is_denorm (const sim_fpu *s); /* !zero */
313 
314 
315 
316 /* Floating point fields */
317 
318 INLINE_SIM_FPU (int) sim_fpu_sign (const sim_fpu *s);
319 INLINE_SIM_FPU (int) sim_fpu_exp (const sim_fpu *s);
320 INLINE_SIM_FPU (unsigned64) sim_fpu_fraction (const sim_fpu *s);
321 INLINE_SIM_FPU (unsigned64) sim_fpu_guard (const sim_fpu *s, int is_double);
322 
323 
324 
325 /* Specific comparison operators
326 
327    For NaNs et al., the comparison operators will set IS to zero and
328    return a nonzero result. */
329 
330 INLINE_SIM_FPU (int) sim_fpu_lt (int *is, const sim_fpu *l, const sim_fpu *r);
331 INLINE_SIM_FPU (int) sim_fpu_le (int *is, const sim_fpu *l, const sim_fpu *r);
332 INLINE_SIM_FPU (int) sim_fpu_eq (int *is, const sim_fpu *l, const sim_fpu *r);
333 INLINE_SIM_FPU (int) sim_fpu_ne (int *is, const sim_fpu *l, const sim_fpu *r);
334 INLINE_SIM_FPU (int) sim_fpu_ge (int *is, const sim_fpu *l, const sim_fpu *r);
335 INLINE_SIM_FPU (int) sim_fpu_gt (int *is, const sim_fpu *l, const sim_fpu *r);
336 
337 INLINE_SIM_FPU (int) sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r);
338 INLINE_SIM_FPU (int) sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r);
339 INLINE_SIM_FPU (int) sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r);
340 INLINE_SIM_FPU (int) sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r);
341 INLINE_SIM_FPU (int) sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r);
342 INLINE_SIM_FPU (int) sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r);
343 
344 
345 
346 /* General number class and comparison operators.
347 
348    The result of the comparison is indicated by returning one of the
349    values below.  Efficient emulation of a target FP compare
350    instruction can be achieved by redefining the values below to match
351    corresponding target FP status bits.
352 
353    For instance.  SIM_FPU_QNAN may be redefined to be the bit
354    `INVALID' while SIM_FPU_NINF might be redefined as the bits
355    `NEGATIVE | INFINITY | VALID'. */
356 
357 #ifndef SIM_FPU_IS_SNAN
358 enum {
359   SIM_FPU_IS_SNAN = 1, /* Noisy not-a-number */
360   SIM_FPU_IS_QNAN = 2, /* Quiet not-a-number */
361   SIM_FPU_IS_NINF = 3, /* -infinity */
362   SIM_FPU_IS_PINF = 4, /* +infinity */
363   SIM_FPU_IS_NNUMBER = 5, /* -number - [ -MAX .. -MIN ] */
364   SIM_FPU_IS_PNUMBER = 6, /* +number - [ +MIN .. +MAX ] */
365   SIM_FPU_IS_NDENORM = 7, /* -denorm - ( MIN .. 0 ) */
366   SIM_FPU_IS_PDENORM = 8, /* +denorm - ( 0 .. MIN ) */
367   SIM_FPU_IS_NZERO = 9, /* -0 */
368   SIM_FPU_IS_PZERO = 10, /* +0 */
369 };
370 #endif
371 
372 INLINE_SIM_FPU (int) sim_fpu_is (const sim_fpu *l);
373 INLINE_SIM_FPU (int) sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r);
374 
375 
376 
377 /* A number of useful constants.  */
378 
379 extern const sim_fpu sim_fpu_zero;
380 extern const sim_fpu sim_fpu_one;
381 extern const sim_fpu sim_fpu_two;
382 extern const sim_fpu sim_fpu_qnan;
383 extern const sim_fpu sim_fpu_max32;
384 extern const sim_fpu sim_fpu_max64;
385 
386 
387 /* Select the applicable functions for the fp_word type */
388 
389 #if WITH_TARGET_FLOATING_POINT_BITSIZE == 32
390 #define sim_fpu_tofp sim_fpu_to32
391 #define sim_fpu_fpto sim_fpu_32to
392 #define sim_fpu_round_fp sim_fpu_round_32
393 #define sim_fpu_maxfp sim_fpu_max32
394 #endif
395 #if WITH_TARGET_FLOATING_POINT_BITSIZE == 64
396 #define sim_fpu_tofp sim_fpu_to64
397 #define sim_fpu_fpto sim_fpu_64to
398 #define sim_fpu_round_fp sim_fpu_round_64
399 #define sim_fpu_maxfp sim_fpu_max64
400 #endif
401 
402 
403 
404 /* For debugging */
405 
406 typedef void sim_fpu_print_func (void *, const char *, ...);
407 
408 /* Print a sim_fpu with full precision.  */
409 INLINE_SIM_FPU (void) sim_fpu_print_fpu (const sim_fpu *f,
410 					 sim_fpu_print_func *print,
411 					 void *arg);
412 
413 /* Print a sim_fpu with `n' trailing digits.  */
414 INLINE_SIM_FPU (void) sim_fpu_printn_fpu (const sim_fpu *f,
415 					  sim_fpu_print_func *print,
416 					  int digits,
417 					  void *arg);
418 
419 INLINE_SIM_FPU (void) sim_fpu_print_status (int status,
420 					    sim_fpu_print_func *print,
421 					    void *arg);
422 
423 #if H_REVEALS_MODULE_P (SIM_FPU_INLINE)
424 #include "sim-fpu.c"
425 #endif
426 
427 #endif
428