1 /* armsupp.c -- ARMulator support code: ARM6 Instruction Emulator. 2 Copyright (C) 1994 Advanced RISC Machines Ltd. 3 4 This program is free software; you can redistribute it and/or modify 5 it under the terms of the GNU General Public License as published by 6 the Free Software Foundation; either version 2 of the License, or 7 (at your option) any later version. 8 9 This program is distributed in the hope that it will be useful, 10 but WITHOUT ANY WARRANTY; without even the implied warranty of 11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 GNU General Public License for more details. 13 14 You should have received a copy of the GNU General Public License 15 along with this program; if not, write to the Free Software 16 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ 17 18 #include "armdefs.h" 19 #include "armemu.h" 20 #include "ansidecl.h" 21 22 /* Definitions for the support routines. */ 23 24 static ARMword ModeToBank (ARMword); 25 static void EnvokeList (ARMul_State *, unsigned long, unsigned long); 26 27 struct EventNode 28 { /* An event list node. */ 29 unsigned (*func) (ARMul_State *); /* The function to call. */ 30 struct EventNode *next; 31 }; 32 33 /* This routine returns the value of a register from a mode. */ 34 35 ARMword 36 ARMul_GetReg (ARMul_State * state, unsigned mode, unsigned reg) 37 { 38 mode &= MODEBITS; 39 if (mode != state->Mode) 40 return (state->RegBank[ModeToBank ((ARMword) mode)][reg]); 41 else 42 return (state->Reg[reg]); 43 } 44 45 /* This routine sets the value of a register for a mode. */ 46 47 void 48 ARMul_SetReg (ARMul_State * state, unsigned mode, unsigned reg, ARMword value) 49 { 50 mode &= MODEBITS; 51 if (mode != state->Mode) 52 state->RegBank[ModeToBank ((ARMword) mode)][reg] = value; 53 else 54 state->Reg[reg] = value; 55 } 56 57 /* This routine returns the value of the PC, mode independently. */ 58 59 ARMword 60 ARMul_GetPC (ARMul_State * state) 61 { 62 if (state->Mode > SVC26MODE) 63 return state->Reg[15]; 64 else 65 return R15PC; 66 } 67 68 /* This routine returns the value of the PC, mode independently. */ 69 70 ARMword 71 ARMul_GetNextPC (ARMul_State * state) 72 { 73 if (state->Mode > SVC26MODE) 74 return state->Reg[15] + isize; 75 else 76 return (state->Reg[15] + isize) & R15PCBITS; 77 } 78 79 /* This routine sets the value of the PC. */ 80 81 void 82 ARMul_SetPC (ARMul_State * state, ARMword value) 83 { 84 if (ARMul_MODE32BIT) 85 state->Reg[15] = value & PCBITS; 86 else 87 state->Reg[15] = R15CCINTMODE | (value & R15PCBITS); 88 FLUSHPIPE; 89 } 90 91 /* This routine returns the value of register 15, mode independently. */ 92 93 ARMword 94 ARMul_GetR15 (ARMul_State * state) 95 { 96 if (state->Mode > SVC26MODE) 97 return (state->Reg[15]); 98 else 99 return (R15PC | ECC | ER15INT | EMODE); 100 } 101 102 /* This routine sets the value of Register 15. */ 103 104 void 105 ARMul_SetR15 (ARMul_State * state, ARMword value) 106 { 107 if (ARMul_MODE32BIT) 108 state->Reg[15] = value & PCBITS; 109 else 110 { 111 state->Reg[15] = value; 112 ARMul_R15Altered (state); 113 } 114 FLUSHPIPE; 115 } 116 117 /* This routine returns the value of the CPSR. */ 118 119 ARMword 120 ARMul_GetCPSR (ARMul_State * state) 121 { 122 return (CPSR | state->Cpsr); 123 } 124 125 /* This routine sets the value of the CPSR. */ 126 127 void 128 ARMul_SetCPSR (ARMul_State * state, ARMword value) 129 { 130 state->Cpsr = value; 131 ARMul_CPSRAltered (state); 132 } 133 134 /* This routine does all the nasty bits involved in a write to the CPSR, 135 including updating the register bank, given a MSR instruction. */ 136 137 void 138 ARMul_FixCPSR (ARMul_State * state, ARMword instr, ARMword rhs) 139 { 140 state->Cpsr = ARMul_GetCPSR (state); 141 142 if (state->Mode != USER26MODE 143 && state->Mode != USER32MODE) 144 { 145 /* In user mode, only write flags. */ 146 if (BIT (16)) 147 SETPSR_C (state->Cpsr, rhs); 148 if (BIT (17)) 149 SETPSR_X (state->Cpsr, rhs); 150 if (BIT (18)) 151 SETPSR_S (state->Cpsr, rhs); 152 } 153 if (BIT (19)) 154 SETPSR_F (state->Cpsr, rhs); 155 ARMul_CPSRAltered (state); 156 } 157 158 /* Get an SPSR from the specified mode. */ 159 160 ARMword 161 ARMul_GetSPSR (ARMul_State * state, ARMword mode) 162 { 163 ARMword bank = ModeToBank (mode & MODEBITS); 164 165 if (! BANK_CAN_ACCESS_SPSR (bank)) 166 return ARMul_GetCPSR (state); 167 168 return state->Spsr[bank]; 169 } 170 171 /* This routine does a write to an SPSR. */ 172 173 void 174 ARMul_SetSPSR (ARMul_State * state, ARMword mode, ARMword value) 175 { 176 ARMword bank = ModeToBank (mode & MODEBITS); 177 178 if (BANK_CAN_ACCESS_SPSR (bank)) 179 state->Spsr[bank] = value; 180 } 181 182 /* This routine does a write to the current SPSR, given an MSR instruction. */ 183 184 void 185 ARMul_FixSPSR (ARMul_State * state, ARMword instr, ARMword rhs) 186 { 187 if (BANK_CAN_ACCESS_SPSR (state->Bank)) 188 { 189 if (BIT (16)) 190 SETPSR_C (state->Spsr[state->Bank], rhs); 191 if (BIT (17)) 192 SETPSR_X (state->Spsr[state->Bank], rhs); 193 if (BIT (18)) 194 SETPSR_S (state->Spsr[state->Bank], rhs); 195 if (BIT (19)) 196 SETPSR_F (state->Spsr[state->Bank], rhs); 197 } 198 } 199 200 /* This routine updates the state of the emulator after the Cpsr has been 201 changed. Both the processor flags and register bank are updated. */ 202 203 void 204 ARMul_CPSRAltered (ARMul_State * state) 205 { 206 ARMword oldmode; 207 208 if (state->prog32Sig == LOW) 209 state->Cpsr &= (CCBITS | INTBITS | R15MODEBITS); 210 211 oldmode = state->Mode; 212 213 if (state->Mode != (state->Cpsr & MODEBITS)) 214 { 215 state->Mode = 216 ARMul_SwitchMode (state, state->Mode, state->Cpsr & MODEBITS); 217 218 state->NtransSig = (state->Mode & 3) ? HIGH : LOW; 219 } 220 state->Cpsr &= ~MODEBITS; 221 222 ASSIGNINT (state->Cpsr & INTBITS); 223 state->Cpsr &= ~INTBITS; 224 ASSIGNN ((state->Cpsr & NBIT) != 0); 225 state->Cpsr &= ~NBIT; 226 ASSIGNZ ((state->Cpsr & ZBIT) != 0); 227 state->Cpsr &= ~ZBIT; 228 ASSIGNC ((state->Cpsr & CBIT) != 0); 229 state->Cpsr &= ~CBIT; 230 ASSIGNV ((state->Cpsr & VBIT) != 0); 231 state->Cpsr &= ~VBIT; 232 ASSIGNS ((state->Cpsr & SBIT) != 0); 233 state->Cpsr &= ~SBIT; 234 #ifdef MODET 235 ASSIGNT ((state->Cpsr & TBIT) != 0); 236 state->Cpsr &= ~TBIT; 237 #endif 238 239 if (oldmode > SVC26MODE) 240 { 241 if (state->Mode <= SVC26MODE) 242 { 243 state->Emulate = CHANGEMODE; 244 state->Reg[15] = ECC | ER15INT | EMODE | R15PC; 245 } 246 } 247 else 248 { 249 if (state->Mode > SVC26MODE) 250 { 251 state->Emulate = CHANGEMODE; 252 state->Reg[15] = R15PC; 253 } 254 else 255 state->Reg[15] = ECC | ER15INT | EMODE | R15PC; 256 } 257 } 258 259 /* This routine updates the state of the emulator after register 15 has 260 been changed. Both the processor flags and register bank are updated. 261 This routine should only be called from a 26 bit mode. */ 262 263 void 264 ARMul_R15Altered (ARMul_State * state) 265 { 266 if (state->Mode != R15MODE) 267 { 268 state->Mode = ARMul_SwitchMode (state, state->Mode, R15MODE); 269 state->NtransSig = (state->Mode & 3) ? HIGH : LOW; 270 } 271 272 if (state->Mode > SVC26MODE) 273 state->Emulate = CHANGEMODE; 274 275 ASSIGNR15INT (R15INT); 276 277 ASSIGNN ((state->Reg[15] & NBIT) != 0); 278 ASSIGNZ ((state->Reg[15] & ZBIT) != 0); 279 ASSIGNC ((state->Reg[15] & CBIT) != 0); 280 ASSIGNV ((state->Reg[15] & VBIT) != 0); 281 } 282 283 /* This routine controls the saving and restoring of registers across mode 284 changes. The regbank matrix is largely unused, only rows 13 and 14 are 285 used across all modes, 8 to 14 are used for FIQ, all others use the USER 286 column. It's easier this way. old and new parameter are modes numbers. 287 Notice the side effect of changing the Bank variable. */ 288 289 ARMword 290 ARMul_SwitchMode (ARMul_State * state, ARMword oldmode, ARMword newmode) 291 { 292 unsigned i; 293 ARMword oldbank; 294 ARMword newbank; 295 296 oldbank = ModeToBank (oldmode); 297 newbank = state->Bank = ModeToBank (newmode); 298 299 /* Do we really need to do it? */ 300 if (oldbank != newbank) 301 { 302 /* Save away the old registers. */ 303 switch (oldbank) 304 { 305 case USERBANK: 306 case IRQBANK: 307 case SVCBANK: 308 case ABORTBANK: 309 case UNDEFBANK: 310 if (newbank == FIQBANK) 311 for (i = 8; i < 13; i++) 312 state->RegBank[USERBANK][i] = state->Reg[i]; 313 state->RegBank[oldbank][13] = state->Reg[13]; 314 state->RegBank[oldbank][14] = state->Reg[14]; 315 break; 316 case FIQBANK: 317 for (i = 8; i < 15; i++) 318 state->RegBank[FIQBANK][i] = state->Reg[i]; 319 break; 320 case DUMMYBANK: 321 for (i = 8; i < 15; i++) 322 state->RegBank[DUMMYBANK][i] = 0; 323 break; 324 default: 325 abort (); 326 } 327 328 /* Restore the new registers. */ 329 switch (newbank) 330 { 331 case USERBANK: 332 case IRQBANK: 333 case SVCBANK: 334 case ABORTBANK: 335 case UNDEFBANK: 336 if (oldbank == FIQBANK) 337 for (i = 8; i < 13; i++) 338 state->Reg[i] = state->RegBank[USERBANK][i]; 339 state->Reg[13] = state->RegBank[newbank][13]; 340 state->Reg[14] = state->RegBank[newbank][14]; 341 break; 342 case FIQBANK: 343 for (i = 8; i < 15; i++) 344 state->Reg[i] = state->RegBank[FIQBANK][i]; 345 break; 346 case DUMMYBANK: 347 for (i = 8; i < 15; i++) 348 state->Reg[i] = 0; 349 break; 350 default: 351 abort (); 352 } 353 } 354 355 return newmode; 356 } 357 358 /* Given a processor mode, this routine returns the 359 register bank that will be accessed in that mode. */ 360 361 static ARMword 362 ModeToBank (ARMword mode) 363 { 364 static ARMword bankofmode[] = 365 { 366 USERBANK, FIQBANK, IRQBANK, SVCBANK, 367 DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, 368 DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, 369 DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, 370 USERBANK, FIQBANK, IRQBANK, SVCBANK, 371 DUMMYBANK, DUMMYBANK, DUMMYBANK, ABORTBANK, 372 DUMMYBANK, DUMMYBANK, DUMMYBANK, UNDEFBANK, 373 DUMMYBANK, DUMMYBANK, DUMMYBANK, SYSTEMBANK 374 }; 375 376 if (mode >= (sizeof (bankofmode) / sizeof (bankofmode[0]))) 377 return DUMMYBANK; 378 379 return bankofmode[mode]; 380 } 381 382 /* Returns the register number of the nth register in a reg list. */ 383 384 unsigned 385 ARMul_NthReg (ARMword instr, unsigned number) 386 { 387 unsigned bit, upto; 388 389 for (bit = 0, upto = 0; upto <= number; bit ++) 390 if (BIT (bit)) 391 upto ++; 392 393 return (bit - 1); 394 } 395 396 /* Assigns the N and Z flags depending on the value of result. */ 397 398 void 399 ARMul_NegZero (ARMul_State * state, ARMword result) 400 { 401 if (NEG (result)) 402 { 403 SETN; 404 CLEARZ; 405 } 406 else if (result == 0) 407 { 408 CLEARN; 409 SETZ; 410 } 411 else 412 { 413 CLEARN; 414 CLEARZ; 415 } 416 } 417 418 /* Compute whether an addition of A and B, giving RESULT, overflowed. */ 419 420 int 421 AddOverflow (ARMword a, ARMword b, ARMword result) 422 { 423 return ((NEG (a) && NEG (b) && POS (result)) 424 || (POS (a) && POS (b) && NEG (result))); 425 } 426 427 /* Compute whether a subtraction of A and B, giving RESULT, overflowed. */ 428 429 int 430 SubOverflow (ARMword a, ARMword b, ARMword result) 431 { 432 return ((NEG (a) && POS (b) && POS (result)) 433 || (POS (a) && NEG (b) && NEG (result))); 434 } 435 436 /* Assigns the C flag after an addition of a and b to give result. */ 437 438 void 439 ARMul_AddCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result) 440 { 441 ASSIGNC ((NEG (a) && NEG (b)) || 442 (NEG (a) && POS (result)) || (NEG (b) && POS (result))); 443 } 444 445 /* Assigns the V flag after an addition of a and b to give result. */ 446 447 void 448 ARMul_AddOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result) 449 { 450 ASSIGNV (AddOverflow (a, b, result)); 451 } 452 453 /* Assigns the C flag after an subtraction of a and b to give result. */ 454 455 void 456 ARMul_SubCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result) 457 { 458 ASSIGNC ((NEG (a) && POS (b)) || 459 (NEG (a) && POS (result)) || (POS (b) && POS (result))); 460 } 461 462 /* Assigns the V flag after an subtraction of a and b to give result. */ 463 464 void 465 ARMul_SubOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result) 466 { 467 ASSIGNV (SubOverflow (a, b, result)); 468 } 469 470 /* This function does the work of generating the addresses used in an 471 LDC instruction. The code here is always post-indexed, it's up to the 472 caller to get the input address correct and to handle base register 473 modification. It also handles the Busy-Waiting. */ 474 475 void 476 ARMul_LDC (ARMul_State * state, ARMword instr, ARMword address) 477 { 478 unsigned cpab; 479 ARMword data; 480 481 UNDEF_LSCPCBaseWb; 482 483 if (! CP_ACCESS_ALLOWED (state, CPNum)) 484 { 485 ARMul_UndefInstr (state, instr); 486 return; 487 } 488 489 if (ADDREXCEPT (address)) 490 INTERNALABORT (address); 491 492 cpab = (state->LDC[CPNum]) (state, ARMul_FIRST, instr, 0); 493 while (cpab == ARMul_BUSY) 494 { 495 ARMul_Icycles (state, 1, 0); 496 497 if (IntPending (state)) 498 { 499 cpab = (state->LDC[CPNum]) (state, ARMul_INTERRUPT, instr, 0); 500 return; 501 } 502 else 503 cpab = (state->LDC[CPNum]) (state, ARMul_BUSY, instr, 0); 504 } 505 if (cpab == ARMul_CANT) 506 { 507 CPTAKEABORT; 508 return; 509 } 510 511 cpab = (state->LDC[CPNum]) (state, ARMul_TRANSFER, instr, 0); 512 data = ARMul_LoadWordN (state, address); 513 BUSUSEDINCPCN; 514 515 if (BIT (21)) 516 LSBase = state->Base; 517 cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data); 518 519 while (cpab == ARMul_INC) 520 { 521 address += 4; 522 data = ARMul_LoadWordN (state, address); 523 cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data); 524 } 525 526 if (state->abortSig || state->Aborted) 527 TAKEABORT; 528 } 529 530 /* This function does the work of generating the addresses used in an 531 STC instruction. The code here is always post-indexed, it's up to the 532 caller to get the input address correct and to handle base register 533 modification. It also handles the Busy-Waiting. */ 534 535 void 536 ARMul_STC (ARMul_State * state, ARMword instr, ARMword address) 537 { 538 unsigned cpab; 539 ARMword data; 540 541 UNDEF_LSCPCBaseWb; 542 543 if (! CP_ACCESS_ALLOWED (state, CPNum)) 544 { 545 ARMul_UndefInstr (state, instr); 546 return; 547 } 548 549 if (ADDREXCEPT (address) || VECTORACCESS (address)) 550 INTERNALABORT (address); 551 552 cpab = (state->STC[CPNum]) (state, ARMul_FIRST, instr, &data); 553 while (cpab == ARMul_BUSY) 554 { 555 ARMul_Icycles (state, 1, 0); 556 if (IntPending (state)) 557 { 558 cpab = (state->STC[CPNum]) (state, ARMul_INTERRUPT, instr, 0); 559 return; 560 } 561 else 562 cpab = (state->STC[CPNum]) (state, ARMul_BUSY, instr, &data); 563 } 564 565 if (cpab == ARMul_CANT) 566 { 567 CPTAKEABORT; 568 return; 569 } 570 #ifndef MODE32 571 if (ADDREXCEPT (address) || VECTORACCESS (address)) 572 INTERNALABORT (address); 573 #endif 574 BUSUSEDINCPCN; 575 if (BIT (21)) 576 LSBase = state->Base; 577 cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data); 578 ARMul_StoreWordN (state, address, data); 579 580 while (cpab == ARMul_INC) 581 { 582 address += 4; 583 cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data); 584 ARMul_StoreWordN (state, address, data); 585 } 586 587 if (state->abortSig || state->Aborted) 588 TAKEABORT; 589 } 590 591 /* This function does the Busy-Waiting for an MCR instruction. */ 592 593 void 594 ARMul_MCR (ARMul_State * state, ARMword instr, ARMword source) 595 { 596 unsigned cpab; 597 598 if (! CP_ACCESS_ALLOWED (state, CPNum)) 599 { 600 ARMul_UndefInstr (state, instr); 601 return; 602 } 603 604 cpab = (state->MCR[CPNum]) (state, ARMul_FIRST, instr, source); 605 606 while (cpab == ARMul_BUSY) 607 { 608 ARMul_Icycles (state, 1, 0); 609 610 if (IntPending (state)) 611 { 612 cpab = (state->MCR[CPNum]) (state, ARMul_INTERRUPT, instr, 0); 613 return; 614 } 615 else 616 cpab = (state->MCR[CPNum]) (state, ARMul_BUSY, instr, source); 617 } 618 619 if (cpab == ARMul_CANT) 620 ARMul_Abort (state, ARMul_UndefinedInstrV); 621 else 622 { 623 BUSUSEDINCPCN; 624 ARMul_Ccycles (state, 1, 0); 625 } 626 } 627 628 /* This function does the Busy-Waiting for an MRC instruction. */ 629 630 ARMword 631 ARMul_MRC (ARMul_State * state, ARMword instr) 632 { 633 unsigned cpab; 634 ARMword result = 0; 635 636 if (! CP_ACCESS_ALLOWED (state, CPNum)) 637 { 638 ARMul_UndefInstr (state, instr); 639 return; 640 } 641 642 cpab = (state->MRC[CPNum]) (state, ARMul_FIRST, instr, &result); 643 while (cpab == ARMul_BUSY) 644 { 645 ARMul_Icycles (state, 1, 0); 646 if (IntPending (state)) 647 { 648 cpab = (state->MRC[CPNum]) (state, ARMul_INTERRUPT, instr, 0); 649 return (0); 650 } 651 else 652 cpab = (state->MRC[CPNum]) (state, ARMul_BUSY, instr, &result); 653 } 654 if (cpab == ARMul_CANT) 655 { 656 ARMul_Abort (state, ARMul_UndefinedInstrV); 657 /* Parent will destroy the flags otherwise. */ 658 result = ECC; 659 } 660 else 661 { 662 BUSUSEDINCPCN; 663 ARMul_Ccycles (state, 1, 0); 664 ARMul_Icycles (state, 1, 0); 665 } 666 667 return result; 668 } 669 670 /* This function does the Busy-Waiting for an CDP instruction. */ 671 672 void 673 ARMul_CDP (ARMul_State * state, ARMword instr) 674 { 675 unsigned cpab; 676 677 if (! CP_ACCESS_ALLOWED (state, CPNum)) 678 { 679 ARMul_UndefInstr (state, instr); 680 return; 681 } 682 683 cpab = (state->CDP[CPNum]) (state, ARMul_FIRST, instr); 684 while (cpab == ARMul_BUSY) 685 { 686 ARMul_Icycles (state, 1, 0); 687 if (IntPending (state)) 688 { 689 cpab = (state->CDP[CPNum]) (state, ARMul_INTERRUPT, instr); 690 return; 691 } 692 else 693 cpab = (state->CDP[CPNum]) (state, ARMul_BUSY, instr); 694 } 695 if (cpab == ARMul_CANT) 696 ARMul_Abort (state, ARMul_UndefinedInstrV); 697 else 698 BUSUSEDN; 699 } 700 701 /* This function handles Undefined instructions, as CP isntruction. */ 702 703 void 704 ARMul_UndefInstr (ARMul_State * state, ARMword instr ATTRIBUTE_UNUSED) 705 { 706 ARMul_Abort (state, ARMul_UndefinedInstrV); 707 } 708 709 /* Return TRUE if an interrupt is pending, FALSE otherwise. */ 710 711 unsigned 712 IntPending (ARMul_State * state) 713 { 714 if (state->Exception) 715 { 716 /* Any exceptions. */ 717 if (state->NresetSig == LOW) 718 { 719 ARMul_Abort (state, ARMul_ResetV); 720 return TRUE; 721 } 722 else if (!state->NfiqSig && !FFLAG) 723 { 724 ARMul_Abort (state, ARMul_FIQV); 725 return TRUE; 726 } 727 else if (!state->NirqSig && !IFLAG) 728 { 729 ARMul_Abort (state, ARMul_IRQV); 730 return TRUE; 731 } 732 } 733 734 return FALSE; 735 } 736 737 /* Align a word access to a non word boundary. */ 738 739 ARMword 740 ARMul_Align (state, address, data) 741 ARMul_State * state ATTRIBUTE_UNUSED; 742 ARMword address; 743 ARMword data; 744 { 745 /* This code assumes the address is really unaligned, 746 as a shift by 32 is undefined in C. */ 747 748 address = (address & 3) << 3; /* Get the word address. */ 749 return ((data >> address) | (data << (32 - address))); /* rot right */ 750 } 751 752 /* This routine is used to call another routine after a certain number of 753 cycles have been executed. The first parameter is the number of cycles 754 delay before the function is called, the second argument is a pointer 755 to the function. A delay of zero doesn't work, just call the function. */ 756 757 void 758 ARMul_ScheduleEvent (ARMul_State * state, unsigned long delay, 759 unsigned (*what) (ARMul_State *)) 760 { 761 unsigned long when; 762 struct EventNode *event; 763 764 if (state->EventSet++ == 0) 765 state->Now = ARMul_Time (state); 766 when = (state->Now + delay) % EVENTLISTSIZE; 767 event = (struct EventNode *) malloc (sizeof (struct EventNode)); 768 event->func = what; 769 event->next = *(state->EventPtr + when); 770 *(state->EventPtr + when) = event; 771 } 772 773 /* This routine is called at the beginning of 774 every cycle, to envoke scheduled events. */ 775 776 void 777 ARMul_EnvokeEvent (ARMul_State * state) 778 { 779 static unsigned long then; 780 781 then = state->Now; 782 state->Now = ARMul_Time (state) % EVENTLISTSIZE; 783 if (then < state->Now) 784 /* Schedule events. */ 785 EnvokeList (state, then, state->Now); 786 else if (then > state->Now) 787 { 788 /* Need to wrap around the list. */ 789 EnvokeList (state, then, EVENTLISTSIZE - 1L); 790 EnvokeList (state, 0L, state->Now); 791 } 792 } 793 794 /* Envokes all the entries in a range. */ 795 796 static void 797 EnvokeList (ARMul_State * state, unsigned long from, unsigned long to) 798 { 799 for (; from <= to; from++) 800 { 801 struct EventNode *anevent; 802 803 anevent = *(state->EventPtr + from); 804 while (anevent) 805 { 806 (anevent->func) (state); 807 state->EventSet--; 808 anevent = anevent->next; 809 } 810 *(state->EventPtr + from) = NULL; 811 } 812 } 813 814 /* This routine is returns the number of clock ticks since the last reset. */ 815 816 unsigned long 817 ARMul_Time (ARMul_State * state) 818 { 819 return (state->NumScycles + state->NumNcycles + 820 state->NumIcycles + state->NumCcycles + state->NumFcycles); 821 } 822