xref: /netbsd-src/external/gpl3/gdb/dist/sim/arm/arminit.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*  arminit.c -- ARMulator initialization:  ARM6 Instruction Emulator.
2     Copyright (C) 1994 Advanced RISC Machines Ltd.
3 
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 3 of the License, or
7     (at your option) any later version.
8 
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13 
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, see <http://www.gnu.org/licenses/>. */
16 
17 #include <string.h>
18 
19 #include "armdefs.h"
20 #include "armemu.h"
21 #include "dbg_rdi.h"
22 
23 /***************************************************************************\
24 *                 Definitions for the emulator architecture                 *
25 \***************************************************************************/
26 
27 void ARMul_EmulateInit (void);
28 ARMul_State *ARMul_NewState (void);
29 void ARMul_Reset (ARMul_State * state);
30 ARMword ARMul_DoCycle (ARMul_State * state);
31 unsigned ARMul_DoCoPro (ARMul_State * state);
32 ARMword ARMul_DoProg (ARMul_State * state);
33 ARMword ARMul_DoInstr (ARMul_State * state);
34 void ARMul_Abort (ARMul_State * state, ARMword address);
35 
36 unsigned ARMul_MultTable[32] =
37   { 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
38   10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 16
39 };
40 ARMword ARMul_ImmedTable[4096];	/* immediate DP LHS values */
41 char ARMul_BitList[256];	/* number of bits in a byte table */
42 
43 /***************************************************************************\
44 *         Call this routine once to set up the emulator's tables.           *
45 \***************************************************************************/
46 
47 void
48 ARMul_EmulateInit (void)
49 {
50   unsigned long i, j;
51 
52   for (i = 0; i < 4096; i++)
53     {				/* the values of 12 bit dp rhs's */
54       ARMul_ImmedTable[i] = ROTATER (i & 0xffL, (i >> 7L) & 0x1eL);
55     }
56 
57   for (i = 0; i < 256; ARMul_BitList[i++] = 0);	/* how many bits in LSM */
58   for (j = 1; j < 256; j <<= 1)
59     for (i = 0; i < 256; i++)
60       if ((i & j) > 0)
61 	ARMul_BitList[i]++;
62 
63   for (i = 0; i < 256; i++)
64     ARMul_BitList[i] *= 4;	/* you always need 4 times these values */
65 
66 }
67 
68 /***************************************************************************\
69 *            Returns a new instantiation of the ARMulator's state           *
70 \***************************************************************************/
71 
72 ARMul_State *
73 ARMul_NewState (void)
74 {
75   ARMul_State *state;
76   unsigned i, j;
77 
78   state = (ARMul_State *) malloc (sizeof (ARMul_State));
79   memset (state, 0, sizeof (ARMul_State));
80 
81   state->Emulate = RUN;
82   for (i = 0; i < 16; i++)
83     {
84       state->Reg[i] = 0;
85       for (j = 0; j < 7; j++)
86 	state->RegBank[j][i] = 0;
87     }
88   for (i = 0; i < 7; i++)
89     state->Spsr[i] = 0;
90 
91   /* state->Mode = USER26MODE;  */
92   state->Mode = USER32MODE;
93 
94   state->CallDebug = FALSE;
95   state->Debug = FALSE;
96   state->VectorCatch = 0;
97   state->Aborted = FALSE;
98   state->Reseted = FALSE;
99   state->Inted = 3;
100   state->LastInted = 3;
101 
102   state->MemDataPtr = NULL;
103   state->MemInPtr = NULL;
104   state->MemOutPtr = NULL;
105   state->MemSparePtr = NULL;
106   state->MemSize = 0;
107 
108   state->OSptr = NULL;
109   state->CommandLine = NULL;
110 
111   state->CP14R0_CCD = -1;
112   state->LastTime = 0;
113 
114   state->EventSet = 0;
115   state->Now = 0;
116   state->EventPtr = (struct EventNode **) malloc ((unsigned) EVENTLISTSIZE *
117 						  sizeof (struct EventNode
118 							  *));
119   for (i = 0; i < EVENTLISTSIZE; i++)
120     *(state->EventPtr + i) = NULL;
121 
122   state->prog32Sig = HIGH;
123   state->data32Sig = HIGH;
124 
125   state->lateabtSig = LOW;
126   state->bigendSig = LOW;
127 
128   state->is_v4 = LOW;
129   state->is_v5 = LOW;
130   state->is_v5e = LOW;
131   state->is_XScale = LOW;
132   state->is_iWMMXt = LOW;
133   state->is_v6 = LOW;
134 
135   ARMul_Reset (state);
136 
137   return state;
138 }
139 
140 /***************************************************************************\
141   Call this routine to set ARMulator to model certain processor properities
142 \***************************************************************************/
143 
144 void
145 ARMul_SelectProcessor (ARMul_State * state, unsigned properties)
146 {
147   if (properties & ARM_Fix26_Prop)
148     {
149       state->prog32Sig = LOW;
150       state->data32Sig = LOW;
151     }
152   else
153     {
154       state->prog32Sig = HIGH;
155       state->data32Sig = HIGH;
156     }
157 
158   state->lateabtSig = LOW;
159 
160   state->is_v4 = (properties & (ARM_v4_Prop | ARM_v5_Prop)) ? HIGH : LOW;
161   state->is_v5 = (properties & ARM_v5_Prop) ? HIGH : LOW;
162   state->is_v5e = (properties & ARM_v5e_Prop) ? HIGH : LOW;
163   state->is_XScale = (properties & ARM_XScale_Prop) ? HIGH : LOW;
164   state->is_iWMMXt = (properties & ARM_iWMMXt_Prop) ? HIGH : LOW;
165   state->is_ep9312 = (properties & ARM_ep9312_Prop) ? HIGH : LOW;
166   state->is_v6 = (properties & ARM_v6_Prop) ? HIGH : LOW;
167 
168   /* Only initialse the coprocessor support once we
169      know what kind of chip we are dealing with.  */
170   ARMul_CoProInit (state);
171 }
172 
173 /***************************************************************************\
174 * Call this routine to set up the initial machine state (or perform a RESET *
175 \***************************************************************************/
176 
177 void
178 ARMul_Reset (ARMul_State * state)
179 {
180   state->NextInstr = 0;
181 
182   if (state->prog32Sig)
183     {
184       state->Reg[15] = 0;
185       state->Cpsr = INTBITS | SVC32MODE;
186       state->Mode = SVC32MODE;
187     }
188   else
189     {
190       state->Reg[15] = R15INTBITS | SVC26MODE;
191       state->Cpsr = INTBITS | SVC26MODE;
192       state->Mode = SVC26MODE;
193     }
194 
195   ARMul_CPSRAltered (state);
196   state->Bank = SVCBANK;
197 
198   FLUSHPIPE;
199 
200   state->EndCondition = 0;
201   state->ErrorCode = 0;
202 
203   state->Exception = FALSE;
204   state->NresetSig = HIGH;
205   state->NfiqSig = HIGH;
206   state->NirqSig = HIGH;
207   state->NtransSig = (state->Mode & 3) ? HIGH : LOW;
208   state->abortSig = LOW;
209   state->AbortAddr = 1;
210 
211   state->NumInstrs = 0;
212   state->NumNcycles = 0;
213   state->NumScycles = 0;
214   state->NumIcycles = 0;
215   state->NumCcycles = 0;
216   state->NumFcycles = 0;
217 #ifdef ASIM
218   (void) ARMul_MemoryInit ();
219   ARMul_OSInit (state);
220 #endif
221 }
222 
223 
224 /***************************************************************************\
225 * Emulate the execution of an entire program.  Start the correct emulator   *
226 * (Emulate26 for a 26 bit ARM and Emulate32 for a 32 bit ARM), return the   *
227 * address of the last instruction that is executed.                         *
228 \***************************************************************************/
229 
230 ARMword
231 ARMul_DoProg (ARMul_State * state)
232 {
233   ARMword pc = 0;
234 
235   state->Emulate = RUN;
236   while (state->Emulate != STOP)
237     {
238       state->Emulate = RUN;
239       if (state->prog32Sig && ARMul_MODE32BIT)
240 	pc = ARMul_Emulate32 (state);
241       else
242 	pc = ARMul_Emulate26 (state);
243     }
244   return (pc);
245 }
246 
247 /***************************************************************************\
248 * Emulate the execution of one instruction.  Start the correct emulator     *
249 * (Emulate26 for a 26 bit ARM and Emulate32 for a 32 bit ARM), return the   *
250 * address of the instruction that is executed.                              *
251 \***************************************************************************/
252 
253 ARMword
254 ARMul_DoInstr (ARMul_State * state)
255 {
256   ARMword pc = 0;
257 
258   state->Emulate = ONCE;
259   if (state->prog32Sig && ARMul_MODE32BIT)
260     pc = ARMul_Emulate32 (state);
261   else
262     pc = ARMul_Emulate26 (state);
263 
264   return (pc);
265 }
266 
267 /***************************************************************************\
268 * This routine causes an Abort to occur, including selecting the correct    *
269 * mode, register bank, and the saving of registers.  Call with the          *
270 * appropriate vector's memory address (0,4,8 ....)                          *
271 \***************************************************************************/
272 
273 void
274 ARMul_Abort (ARMul_State * state, ARMword vector)
275 {
276   ARMword temp;
277   int isize = INSN_SIZE;
278   int esize = (TFLAG ? 0 : 4);
279   int e2size = (TFLAG ? -4 : 0);
280 
281   state->Aborted = FALSE;
282 
283   if (ARMul_OSException (state, vector, ARMul_GetPC (state)))
284     return;
285 
286   if (state->prog32Sig)
287     if (ARMul_MODE26BIT)
288       temp = R15PC;
289     else
290       temp = state->Reg[15];
291   else
292     temp = R15PC | ECC | ER15INT | EMODE;
293 
294   switch (vector)
295     {
296     case ARMul_ResetV:		/* RESET */
297       SETABORT (INTBITS, state->prog32Sig ? SVC32MODE : SVC26MODE, 0);
298       break;
299     case ARMul_UndefinedInstrV:	/* Undefined Instruction */
300       SETABORT (IBIT, state->prog32Sig ? UNDEF32MODE : SVC26MODE, isize);
301       break;
302     case ARMul_SWIV:		/* Software Interrupt */
303       SETABORT (IBIT, state->prog32Sig ? SVC32MODE : SVC26MODE, isize);
304       break;
305     case ARMul_PrefetchAbortV:	/* Prefetch Abort */
306       state->AbortAddr = 1;
307       SETABORT (IBIT, state->prog32Sig ? ABORT32MODE : SVC26MODE, esize);
308       break;
309     case ARMul_DataAbortV:	/* Data Abort */
310       SETABORT (IBIT, state->prog32Sig ? ABORT32MODE : SVC26MODE, e2size);
311       break;
312     case ARMul_AddrExceptnV:	/* Address Exception */
313       SETABORT (IBIT, SVC26MODE, isize);
314       break;
315     case ARMul_IRQV:		/* IRQ */
316       if (   ! state->is_XScale
317 	  || ! state->CPRead[13] (state, 0, & temp)
318 	  || (temp & ARMul_CP13_R0_IRQ))
319         SETABORT (IBIT, state->prog32Sig ? IRQ32MODE : IRQ26MODE, esize);
320       break;
321     case ARMul_FIQV:		/* FIQ */
322       if (   ! state->is_XScale
323 	  || ! state->CPRead[13] (state, 0, & temp)
324 	  || (temp & ARMul_CP13_R0_FIQ))
325         SETABORT (INTBITS, state->prog32Sig ? FIQ32MODE : FIQ26MODE, esize);
326       break;
327     }
328   if (ARMul_MODE32BIT)
329     ARMul_SetR15 (state, vector);
330   else
331     ARMul_SetR15 (state, R15CCINTMODE | vector);
332 
333   if (ARMul_ReadWord (state, ARMul_GetPC (state)) == 0)
334     {
335       /* No vector has been installed.  Rather than simulating whatever
336 	 random bits might happen to be at address 0x20 onwards we elect
337 	 to stop.  */
338       switch (vector)
339 	{
340 	case ARMul_ResetV: state->EndCondition = RDIError_Reset; break;
341 	case ARMul_UndefinedInstrV: state->EndCondition = RDIError_UndefinedInstruction; break;
342 	case ARMul_SWIV: state->EndCondition = RDIError_SoftwareInterrupt; break;
343 	case ARMul_PrefetchAbortV: state->EndCondition = RDIError_PrefetchAbort; break;
344 	case ARMul_DataAbortV: state->EndCondition = RDIError_DataAbort; break;
345 	case ARMul_AddrExceptnV: state->EndCondition = RDIError_AddressException; break;
346 	case ARMul_IRQV: state->EndCondition = RDIError_IRQ; break;
347 	case ARMul_FIQV: state->EndCondition = RDIError_FIQ; break;
348 	default: break;
349 	}
350       state->Emulate = FALSE;
351     }
352 }
353