1 /* aarch64-dis.c -- AArch64 disassembler. 2 Copyright 2009-2013 Free Software Foundation, Inc. 3 Contributed by ARM Ltd. 4 5 This file is part of the GNU opcodes library. 6 7 This library is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 It is distributed in the hope that it will be useful, but WITHOUT 13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public 15 License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; see the file COPYING3. If not, 19 see <http://www.gnu.org/licenses/>. */ 20 21 #include "sysdep.h" 22 #include "bfd_stdint.h" 23 #include "dis-asm.h" 24 #include "libiberty.h" 25 #include "opintl.h" 26 #include "aarch64-dis.h" 27 #include "elf-bfd.h" 28 29 #define ERR_OK 0 30 #define ERR_UND -1 31 #define ERR_UNP -3 32 #define ERR_NYI -5 33 34 #define INSNLEN 4 35 36 /* Cached mapping symbol state. */ 37 enum map_type 38 { 39 MAP_INSN, 40 MAP_DATA 41 }; 42 43 static enum map_type last_type; 44 static int last_mapping_sym = -1; 45 static bfd_vma last_mapping_addr = 0; 46 47 /* Other options */ 48 static int no_aliases = 0; /* If set disassemble as most general inst. */ 49 50 51 static void 52 set_default_aarch64_dis_options (struct disassemble_info *info ATTRIBUTE_UNUSED) 53 { 54 } 55 56 static void 57 parse_aarch64_dis_option (const char *option, unsigned int len ATTRIBUTE_UNUSED) 58 { 59 /* Try to match options that are simple flags */ 60 if (CONST_STRNEQ (option, "no-aliases")) 61 { 62 no_aliases = 1; 63 return; 64 } 65 66 if (CONST_STRNEQ (option, "aliases")) 67 { 68 no_aliases = 0; 69 return; 70 } 71 72 #ifdef DEBUG_AARCH64 73 if (CONST_STRNEQ (option, "debug_dump")) 74 { 75 debug_dump = 1; 76 return; 77 } 78 #endif /* DEBUG_AARCH64 */ 79 80 /* Invalid option. */ 81 fprintf (stderr, _("Unrecognised disassembler option: %s\n"), option); 82 } 83 84 static void 85 parse_aarch64_dis_options (const char *options) 86 { 87 const char *option_end; 88 89 if (options == NULL) 90 return; 91 92 while (*options != '\0') 93 { 94 /* Skip empty options. */ 95 if (*options == ',') 96 { 97 options++; 98 continue; 99 } 100 101 /* We know that *options is neither NUL or a comma. */ 102 option_end = options + 1; 103 while (*option_end != ',' && *option_end != '\0') 104 option_end++; 105 106 parse_aarch64_dis_option (options, option_end - options); 107 108 /* Go on to the next one. If option_end points to a comma, it 109 will be skipped above. */ 110 options = option_end; 111 } 112 } 113 114 /* Functions doing the instruction disassembling. */ 115 116 /* The unnamed arguments consist of the number of fields and information about 117 these fields where the VALUE will be extracted from CODE and returned. 118 MASK can be zero or the base mask of the opcode. 119 120 N.B. the fields are required to be in such an order than the most signficant 121 field for VALUE comes the first, e.g. the <index> in 122 SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>] 123 is encoded in H:L:M in some cases, the fields H:L:M should be passed in 124 the order of H, L, M. */ 125 126 static inline aarch64_insn 127 extract_fields (aarch64_insn code, aarch64_insn mask, ...) 128 { 129 uint32_t num; 130 const aarch64_field *field; 131 enum aarch64_field_kind kind; 132 va_list va; 133 134 va_start (va, mask); 135 num = va_arg (va, uint32_t); 136 assert (num <= 5); 137 aarch64_insn value = 0x0; 138 while (num--) 139 { 140 kind = va_arg (va, enum aarch64_field_kind); 141 field = &fields[kind]; 142 value <<= field->width; 143 value |= extract_field (kind, code, mask); 144 } 145 return value; 146 } 147 148 /* Sign-extend bit I of VALUE. */ 149 static inline int32_t 150 sign_extend (aarch64_insn value, unsigned i) 151 { 152 uint32_t ret = value; 153 154 assert (i < 32); 155 if ((value >> i) & 0x1) 156 { 157 uint32_t val = (uint32_t)(-1) << i; 158 ret = ret | val; 159 } 160 return (int32_t) ret; 161 } 162 163 /* N.B. the following inline helpfer functions create a dependency on the 164 order of operand qualifier enumerators. */ 165 166 /* Given VALUE, return qualifier for a general purpose register. */ 167 static inline enum aarch64_opnd_qualifier 168 get_greg_qualifier_from_value (aarch64_insn value) 169 { 170 enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_W + value; 171 assert (value <= 0x1 172 && aarch64_get_qualifier_standard_value (qualifier) == value); 173 return qualifier; 174 } 175 176 /* Given VALUE, return qualifier for a vector register. */ 177 static inline enum aarch64_opnd_qualifier 178 get_vreg_qualifier_from_value (aarch64_insn value) 179 { 180 enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_V_8B + value; 181 182 assert (value <= 0x8 183 && aarch64_get_qualifier_standard_value (qualifier) == value); 184 return qualifier; 185 } 186 187 /* Given VALUE, return qualifier for an FP or AdvSIMD scalar register. */ 188 static inline enum aarch64_opnd_qualifier 189 get_sreg_qualifier_from_value (aarch64_insn value) 190 { 191 enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_S_B + value; 192 193 assert (value <= 0x4 194 && aarch64_get_qualifier_standard_value (qualifier) == value); 195 return qualifier; 196 } 197 198 /* Given the instruction in *INST which is probably half way through the 199 decoding and our caller wants to know the expected qualifier for operand 200 I. Return such a qualifier if we can establish it; otherwise return 201 AARCH64_OPND_QLF_NIL. */ 202 203 static aarch64_opnd_qualifier_t 204 get_expected_qualifier (const aarch64_inst *inst, int i) 205 { 206 aarch64_opnd_qualifier_seq_t qualifiers; 207 /* Should not be called if the qualifier is known. */ 208 assert (inst->operands[i].qualifier == AARCH64_OPND_QLF_NIL); 209 if (aarch64_find_best_match (inst, inst->opcode->qualifiers_list, 210 i, qualifiers)) 211 return qualifiers[i]; 212 else 213 return AARCH64_OPND_QLF_NIL; 214 } 215 216 /* Operand extractors. */ 217 218 int 219 aarch64_ext_regno (const aarch64_operand *self, aarch64_opnd_info *info, 220 const aarch64_insn code, 221 const aarch64_inst *inst ATTRIBUTE_UNUSED) 222 { 223 info->reg.regno = extract_field (self->fields[0], code, 0); 224 return 1; 225 } 226 227 /* e.g. IC <ic_op>{, <Xt>}. */ 228 int 229 aarch64_ext_regrt_sysins (const aarch64_operand *self, aarch64_opnd_info *info, 230 const aarch64_insn code, 231 const aarch64_inst *inst ATTRIBUTE_UNUSED) 232 { 233 info->reg.regno = extract_field (self->fields[0], code, 0); 234 assert (info->idx == 1 235 && (aarch64_get_operand_class (inst->operands[0].type) 236 == AARCH64_OPND_CLASS_SYSTEM)); 237 /* This will make the constraint checking happy and more importantly will 238 help the disassembler determine whether this operand is optional or 239 not. */ 240 info->present = inst->operands[0].sysins_op->has_xt; 241 242 return 1; 243 } 244 245 /* e.g. SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]. */ 246 int 247 aarch64_ext_reglane (const aarch64_operand *self, aarch64_opnd_info *info, 248 const aarch64_insn code, 249 const aarch64_inst *inst ATTRIBUTE_UNUSED) 250 { 251 /* regno */ 252 info->reglane.regno = extract_field (self->fields[0], code, 253 inst->opcode->mask); 254 255 /* Index and/or type. */ 256 if (inst->opcode->iclass == asisdone 257 || inst->opcode->iclass == asimdins) 258 { 259 if (info->type == AARCH64_OPND_En 260 && inst->opcode->operands[0] == AARCH64_OPND_Ed) 261 { 262 unsigned shift; 263 /* index2 for e.g. INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]. */ 264 assert (info->idx == 1); /* Vn */ 265 aarch64_insn value = extract_field (FLD_imm4, code, 0); 266 /* Depend on AARCH64_OPND_Ed to determine the qualifier. */ 267 info->qualifier = get_expected_qualifier (inst, info->idx); 268 shift = get_logsz (aarch64_get_qualifier_esize (info->qualifier)); 269 info->reglane.index = value >> shift; 270 } 271 else 272 { 273 /* index and type for e.g. DUP <V><d>, <Vn>.<T>[<index>]. 274 imm5<3:0> <V> 275 0000 RESERVED 276 xxx1 B 277 xx10 H 278 x100 S 279 1000 D */ 280 int pos = -1; 281 aarch64_insn value = extract_field (FLD_imm5, code, 0); 282 while (++pos <= 3 && (value & 0x1) == 0) 283 value >>= 1; 284 if (pos > 3) 285 return 0; 286 info->qualifier = get_sreg_qualifier_from_value (pos); 287 info->reglane.index = (unsigned) (value >> 1); 288 } 289 } 290 else 291 { 292 /* Index only for e.g. SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>] 293 or SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]. */ 294 295 /* Need information in other operand(s) to help decoding. */ 296 info->qualifier = get_expected_qualifier (inst, info->idx); 297 switch (info->qualifier) 298 { 299 case AARCH64_OPND_QLF_S_H: 300 /* h:l:m */ 301 info->reglane.index = extract_fields (code, 0, 3, FLD_H, FLD_L, 302 FLD_M); 303 info->reglane.regno &= 0xf; 304 break; 305 case AARCH64_OPND_QLF_S_S: 306 /* h:l */ 307 info->reglane.index = extract_fields (code, 0, 2, FLD_H, FLD_L); 308 break; 309 case AARCH64_OPND_QLF_S_D: 310 /* H */ 311 info->reglane.index = extract_field (FLD_H, code, 0); 312 break; 313 default: 314 return 0; 315 } 316 } 317 318 return 1; 319 } 320 321 int 322 aarch64_ext_reglist (const aarch64_operand *self, aarch64_opnd_info *info, 323 const aarch64_insn code, 324 const aarch64_inst *inst ATTRIBUTE_UNUSED) 325 { 326 /* R */ 327 info->reglist.first_regno = extract_field (self->fields[0], code, 0); 328 /* len */ 329 info->reglist.num_regs = extract_field (FLD_len, code, 0) + 1; 330 return 1; 331 } 332 333 /* Decode Rt and opcode fields of Vt in AdvSIMD load/store instructions. */ 334 int 335 aarch64_ext_ldst_reglist (const aarch64_operand *self ATTRIBUTE_UNUSED, 336 aarch64_opnd_info *info, const aarch64_insn code, 337 const aarch64_inst *inst) 338 { 339 aarch64_insn value; 340 /* Number of elements in each structure to be loaded/stored. */ 341 unsigned expected_num = get_opcode_dependent_value (inst->opcode); 342 343 struct 344 { 345 unsigned is_reserved; 346 unsigned num_regs; 347 unsigned num_elements; 348 } data [] = 349 { {0, 4, 4}, 350 {1, 4, 4}, 351 {0, 4, 1}, 352 {0, 4, 2}, 353 {0, 3, 3}, 354 {1, 3, 3}, 355 {0, 3, 1}, 356 {0, 1, 1}, 357 {0, 2, 2}, 358 {1, 2, 2}, 359 {0, 2, 1}, 360 }; 361 362 /* Rt */ 363 info->reglist.first_regno = extract_field (FLD_Rt, code, 0); 364 /* opcode */ 365 value = extract_field (FLD_opcode, code, 0); 366 if (expected_num != data[value].num_elements || data[value].is_reserved) 367 return 0; 368 info->reglist.num_regs = data[value].num_regs; 369 370 return 1; 371 } 372 373 /* Decode Rt and S fields of Vt in AdvSIMD load single structure to all 374 lanes instructions. */ 375 int 376 aarch64_ext_ldst_reglist_r (const aarch64_operand *self ATTRIBUTE_UNUSED, 377 aarch64_opnd_info *info, const aarch64_insn code, 378 const aarch64_inst *inst) 379 { 380 aarch64_insn value; 381 382 /* Rt */ 383 info->reglist.first_regno = extract_field (FLD_Rt, code, 0); 384 /* S */ 385 value = extract_field (FLD_S, code, 0); 386 387 /* Number of registers is equal to the number of elements in 388 each structure to be loaded/stored. */ 389 info->reglist.num_regs = get_opcode_dependent_value (inst->opcode); 390 assert (info->reglist.num_regs >= 1 && info->reglist.num_regs <= 4); 391 392 /* Except when it is LD1R. */ 393 if (info->reglist.num_regs == 1 && value == (aarch64_insn) 1) 394 info->reglist.num_regs = 2; 395 396 return 1; 397 } 398 399 /* Decode Q, opcode<2:1>, S, size and Rt fields of Vt in AdvSIMD 400 load/store single element instructions. */ 401 int 402 aarch64_ext_ldst_elemlist (const aarch64_operand *self ATTRIBUTE_UNUSED, 403 aarch64_opnd_info *info, const aarch64_insn code, 404 const aarch64_inst *inst ATTRIBUTE_UNUSED) 405 { 406 aarch64_field field = {0, 0}; 407 aarch64_insn QSsize; /* fields Q:S:size. */ 408 aarch64_insn opcodeh2; /* opcode<2:1> */ 409 410 /* Rt */ 411 info->reglist.first_regno = extract_field (FLD_Rt, code, 0); 412 413 /* Decode the index, opcode<2:1> and size. */ 414 gen_sub_field (FLD_asisdlso_opcode, 1, 2, &field); 415 opcodeh2 = extract_field_2 (&field, code, 0); 416 QSsize = extract_fields (code, 0, 3, FLD_Q, FLD_S, FLD_vldst_size); 417 switch (opcodeh2) 418 { 419 case 0x0: 420 info->qualifier = AARCH64_OPND_QLF_S_B; 421 /* Index encoded in "Q:S:size". */ 422 info->reglist.index = QSsize; 423 break; 424 case 0x1: 425 info->qualifier = AARCH64_OPND_QLF_S_H; 426 /* Index encoded in "Q:S:size<1>". */ 427 info->reglist.index = QSsize >> 1; 428 break; 429 case 0x2: 430 if ((QSsize & 0x1) == 0) 431 { 432 info->qualifier = AARCH64_OPND_QLF_S_S; 433 /* Index encoded in "Q:S". */ 434 info->reglist.index = QSsize >> 2; 435 } 436 else 437 { 438 info->qualifier = AARCH64_OPND_QLF_S_D; 439 /* Index encoded in "Q". */ 440 info->reglist.index = QSsize >> 3; 441 if (extract_field (FLD_S, code, 0)) 442 /* UND */ 443 return 0; 444 } 445 break; 446 default: 447 return 0; 448 } 449 450 info->reglist.has_index = 1; 451 info->reglist.num_regs = 0; 452 /* Number of registers is equal to the number of elements in 453 each structure to be loaded/stored. */ 454 info->reglist.num_regs = get_opcode_dependent_value (inst->opcode); 455 assert (info->reglist.num_regs >= 1 && info->reglist.num_regs <= 4); 456 457 return 1; 458 } 459 460 /* Decode fields immh:immb and/or Q for e.g. 461 SSHR <Vd>.<T>, <Vn>.<T>, #<shift> 462 or SSHR <V><d>, <V><n>, #<shift>. */ 463 464 int 465 aarch64_ext_advsimd_imm_shift (const aarch64_operand *self ATTRIBUTE_UNUSED, 466 aarch64_opnd_info *info, const aarch64_insn code, 467 const aarch64_inst *inst) 468 { 469 int pos; 470 aarch64_insn Q, imm, immh; 471 enum aarch64_insn_class iclass = inst->opcode->iclass; 472 473 immh = extract_field (FLD_immh, code, 0); 474 if (immh == 0) 475 return 0; 476 imm = extract_fields (code, 0, 2, FLD_immh, FLD_immb); 477 pos = 4; 478 /* Get highest set bit in immh. */ 479 while (--pos >= 0 && (immh & 0x8) == 0) 480 immh <<= 1; 481 482 assert ((iclass == asimdshf || iclass == asisdshf) 483 && (info->type == AARCH64_OPND_IMM_VLSR 484 || info->type == AARCH64_OPND_IMM_VLSL)); 485 486 if (iclass == asimdshf) 487 { 488 Q = extract_field (FLD_Q, code, 0); 489 /* immh Q <T> 490 0000 x SEE AdvSIMD modified immediate 491 0001 0 8B 492 0001 1 16B 493 001x 0 4H 494 001x 1 8H 495 01xx 0 2S 496 01xx 1 4S 497 1xxx 0 RESERVED 498 1xxx 1 2D */ 499 info->qualifier = 500 get_vreg_qualifier_from_value ((pos << 1) | (int) Q); 501 } 502 else 503 info->qualifier = get_sreg_qualifier_from_value (pos); 504 505 if (info->type == AARCH64_OPND_IMM_VLSR) 506 /* immh <shift> 507 0000 SEE AdvSIMD modified immediate 508 0001 (16-UInt(immh:immb)) 509 001x (32-UInt(immh:immb)) 510 01xx (64-UInt(immh:immb)) 511 1xxx (128-UInt(immh:immb)) */ 512 info->imm.value = (16 << pos) - imm; 513 else 514 /* immh:immb 515 immh <shift> 516 0000 SEE AdvSIMD modified immediate 517 0001 (UInt(immh:immb)-8) 518 001x (UInt(immh:immb)-16) 519 01xx (UInt(immh:immb)-32) 520 1xxx (UInt(immh:immb)-64) */ 521 info->imm.value = imm - (8 << pos); 522 523 return 1; 524 } 525 526 /* Decode shift immediate for e.g. sshr (imm). */ 527 int 528 aarch64_ext_shll_imm (const aarch64_operand *self ATTRIBUTE_UNUSED, 529 aarch64_opnd_info *info, const aarch64_insn code, 530 const aarch64_inst *inst ATTRIBUTE_UNUSED) 531 { 532 int64_t imm; 533 aarch64_insn val; 534 val = extract_field (FLD_size, code, 0); 535 switch (val) 536 { 537 case 0: imm = 8; break; 538 case 1: imm = 16; break; 539 case 2: imm = 32; break; 540 default: return 0; 541 } 542 info->imm.value = imm; 543 return 1; 544 } 545 546 /* Decode imm for e.g. BFM <Wd>, <Wn>, #<immr>, #<imms>. 547 value in the field(s) will be extracted as unsigned immediate value. */ 548 int 549 aarch64_ext_imm (const aarch64_operand *self, aarch64_opnd_info *info, 550 const aarch64_insn code, 551 const aarch64_inst *inst ATTRIBUTE_UNUSED) 552 { 553 int64_t imm; 554 /* Maximum of two fields to extract. */ 555 assert (self->fields[2] == FLD_NIL); 556 557 if (self->fields[1] == FLD_NIL) 558 imm = extract_field (self->fields[0], code, 0); 559 else 560 /* e.g. TBZ b5:b40. */ 561 imm = extract_fields (code, 0, 2, self->fields[0], self->fields[1]); 562 563 if (info->type == AARCH64_OPND_FPIMM) 564 info->imm.is_fp = 1; 565 566 if (operand_need_sign_extension (self)) 567 imm = sign_extend (imm, get_operand_fields_width (self) - 1); 568 569 if (operand_need_shift_by_two (self)) 570 imm <<= 2; 571 572 if (info->type == AARCH64_OPND_ADDR_ADRP) 573 imm <<= 12; 574 575 info->imm.value = imm; 576 return 1; 577 } 578 579 /* Decode imm and its shifter for e.g. MOVZ <Wd>, #<imm16>{, LSL #<shift>}. */ 580 int 581 aarch64_ext_imm_half (const aarch64_operand *self, aarch64_opnd_info *info, 582 const aarch64_insn code, 583 const aarch64_inst *inst ATTRIBUTE_UNUSED) 584 { 585 aarch64_ext_imm (self, info, code, inst); 586 info->shifter.kind = AARCH64_MOD_LSL; 587 info->shifter.amount = extract_field (FLD_hw, code, 0) << 4; 588 return 1; 589 } 590 591 /* Decode cmode and "a:b:c:d:e:f:g:h" for e.g. 592 MOVI <Vd>.<T>, #<imm8> {, LSL #<amount>}. */ 593 int 594 aarch64_ext_advsimd_imm_modified (const aarch64_operand *self ATTRIBUTE_UNUSED, 595 aarch64_opnd_info *info, 596 const aarch64_insn code, 597 const aarch64_inst *inst ATTRIBUTE_UNUSED) 598 { 599 uint64_t imm; 600 enum aarch64_opnd_qualifier opnd0_qualifier = inst->operands[0].qualifier; 601 aarch64_field field = {0, 0}; 602 603 assert (info->idx == 1); 604 605 if (info->type == AARCH64_OPND_SIMD_FPIMM) 606 info->imm.is_fp = 1; 607 608 /* a:b:c:d:e:f:g:h */ 609 imm = extract_fields (code, 0, 2, FLD_abc, FLD_defgh); 610 if (!info->imm.is_fp && aarch64_get_qualifier_esize (opnd0_qualifier) == 8) 611 { 612 /* Either MOVI <Dd>, #<imm> 613 or MOVI <Vd>.2D, #<imm>. 614 <imm> is a 64-bit immediate 615 'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh', 616 encoded in "a:b:c:d:e:f:g:h". */ 617 int i; 618 unsigned abcdefgh = imm; 619 for (imm = 0ull, i = 0; i < 8; i++) 620 if (((abcdefgh >> i) & 0x1) != 0) 621 imm |= 0xffull << (8 * i); 622 } 623 info->imm.value = imm; 624 625 /* cmode */ 626 info->qualifier = get_expected_qualifier (inst, info->idx); 627 switch (info->qualifier) 628 { 629 case AARCH64_OPND_QLF_NIL: 630 /* no shift */ 631 info->shifter.kind = AARCH64_MOD_NONE; 632 return 1; 633 case AARCH64_OPND_QLF_LSL: 634 /* shift zeros */ 635 info->shifter.kind = AARCH64_MOD_LSL; 636 switch (aarch64_get_qualifier_esize (opnd0_qualifier)) 637 { 638 case 4: gen_sub_field (FLD_cmode, 1, 2, &field); break; /* per word */ 639 case 2: gen_sub_field (FLD_cmode, 1, 1, &field); break; /* per half */ 640 case 1: gen_sub_field (FLD_cmode, 1, 0, &field); break; /* per byte */ 641 default: assert (0); return 0; 642 } 643 /* 00: 0; 01: 8; 10:16; 11:24. */ 644 info->shifter.amount = extract_field_2 (&field, code, 0) << 3; 645 break; 646 case AARCH64_OPND_QLF_MSL: 647 /* shift ones */ 648 info->shifter.kind = AARCH64_MOD_MSL; 649 gen_sub_field (FLD_cmode, 0, 1, &field); /* per word */ 650 info->shifter.amount = extract_field_2 (&field, code, 0) ? 16 : 8; 651 break; 652 default: 653 assert (0); 654 return 0; 655 } 656 657 return 1; 658 } 659 660 /* Decode scale for e.g. SCVTF <Dd>, <Wn>, #<fbits>. */ 661 int 662 aarch64_ext_fbits (const aarch64_operand *self ATTRIBUTE_UNUSED, 663 aarch64_opnd_info *info, const aarch64_insn code, 664 const aarch64_inst *inst ATTRIBUTE_UNUSED) 665 { 666 info->imm.value = 64- extract_field (FLD_scale, code, 0); 667 return 1; 668 } 669 670 /* Decode arithmetic immediate for e.g. 671 SUBS <Wd>, <Wn|WSP>, #<imm> {, <shift>}. */ 672 int 673 aarch64_ext_aimm (const aarch64_operand *self ATTRIBUTE_UNUSED, 674 aarch64_opnd_info *info, const aarch64_insn code, 675 const aarch64_inst *inst ATTRIBUTE_UNUSED) 676 { 677 aarch64_insn value; 678 679 info->shifter.kind = AARCH64_MOD_LSL; 680 /* shift */ 681 value = extract_field (FLD_shift, code, 0); 682 if (value >= 2) 683 return 0; 684 info->shifter.amount = value ? 12 : 0; 685 /* imm12 (unsigned) */ 686 info->imm.value = extract_field (FLD_imm12, code, 0); 687 688 return 1; 689 } 690 691 /* Decode logical immediate for e.g. ORR <Wd|WSP>, <Wn>, #<imm>. */ 692 693 int 694 aarch64_ext_limm (const aarch64_operand *self ATTRIBUTE_UNUSED, 695 aarch64_opnd_info *info, const aarch64_insn code, 696 const aarch64_inst *inst ATTRIBUTE_UNUSED) 697 { 698 uint64_t imm, mask; 699 uint32_t sf; 700 uint32_t N, R, S; 701 unsigned simd_size; 702 aarch64_insn value; 703 704 value = extract_fields (code, 0, 3, FLD_N, FLD_immr, FLD_imms); 705 assert (inst->operands[0].qualifier == AARCH64_OPND_QLF_W 706 || inst->operands[0].qualifier == AARCH64_OPND_QLF_X); 707 sf = aarch64_get_qualifier_esize (inst->operands[0].qualifier) != 4; 708 709 /* value is N:immr:imms. */ 710 S = value & 0x3f; 711 R = (value >> 6) & 0x3f; 712 N = (value >> 12) & 0x1; 713 714 if (sf == 0 && N == 1) 715 return 0; 716 717 /* The immediate value is S+1 bits to 1, left rotated by SIMDsize - R 718 (in other words, right rotated by R), then replicated. */ 719 if (N != 0) 720 { 721 simd_size = 64; 722 mask = 0xffffffffffffffffull; 723 } 724 else 725 { 726 switch (S) 727 { 728 case 0x00 ... 0x1f: /* 0xxxxx */ simd_size = 32; break; 729 case 0x20 ... 0x2f: /* 10xxxx */ simd_size = 16; S &= 0xf; break; 730 case 0x30 ... 0x37: /* 110xxx */ simd_size = 8; S &= 0x7; break; 731 case 0x38 ... 0x3b: /* 1110xx */ simd_size = 4; S &= 0x3; break; 732 case 0x3c ... 0x3d: /* 11110x */ simd_size = 2; S &= 0x1; break; 733 default: return 0; 734 } 735 mask = (1ull << simd_size) - 1; 736 /* Top bits are IGNORED. */ 737 R &= simd_size - 1; 738 } 739 /* NOTE: if S = simd_size - 1 we get 0xf..f which is rejected. */ 740 if (S == simd_size - 1) 741 return 0; 742 /* S+1 consecutive bits to 1. */ 743 /* NOTE: S can't be 63 due to detection above. */ 744 imm = (1ull << (S + 1)) - 1; 745 /* Rotate to the left by simd_size - R. */ 746 if (R != 0) 747 imm = ((imm << (simd_size - R)) & mask) | (imm >> R); 748 /* Replicate the value according to SIMD size. */ 749 switch (simd_size) 750 { 751 case 2: imm = (imm << 2) | imm; 752 case 4: imm = (imm << 4) | imm; 753 case 8: imm = (imm << 8) | imm; 754 case 16: imm = (imm << 16) | imm; 755 case 32: imm = (imm << 32) | imm; 756 case 64: break; 757 default: assert (0); return 0; 758 } 759 760 info->imm.value = sf ? imm : imm & 0xffffffff; 761 762 return 1; 763 } 764 765 /* Decode Ft for e.g. STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}] 766 or LDP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>. */ 767 int 768 aarch64_ext_ft (const aarch64_operand *self ATTRIBUTE_UNUSED, 769 aarch64_opnd_info *info, 770 const aarch64_insn code, const aarch64_inst *inst) 771 { 772 aarch64_insn value; 773 774 /* Rt */ 775 info->reg.regno = extract_field (FLD_Rt, code, 0); 776 777 /* size */ 778 value = extract_field (FLD_ldst_size, code, 0); 779 if (inst->opcode->iclass == ldstpair_indexed 780 || inst->opcode->iclass == ldstnapair_offs 781 || inst->opcode->iclass == ldstpair_off 782 || inst->opcode->iclass == loadlit) 783 { 784 enum aarch64_opnd_qualifier qualifier; 785 switch (value) 786 { 787 case 0: qualifier = AARCH64_OPND_QLF_S_S; break; 788 case 1: qualifier = AARCH64_OPND_QLF_S_D; break; 789 case 2: qualifier = AARCH64_OPND_QLF_S_Q; break; 790 default: return 0; 791 } 792 info->qualifier = qualifier; 793 } 794 else 795 { 796 /* opc1:size */ 797 value = extract_fields (code, 0, 2, FLD_opc1, FLD_ldst_size); 798 if (value > 0x4) 799 return 0; 800 info->qualifier = get_sreg_qualifier_from_value (value); 801 } 802 803 return 1; 804 } 805 806 /* Decode the address operand for e.g. STXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]. */ 807 int 808 aarch64_ext_addr_simple (const aarch64_operand *self ATTRIBUTE_UNUSED, 809 aarch64_opnd_info *info, 810 aarch64_insn code, 811 const aarch64_inst *inst ATTRIBUTE_UNUSED) 812 { 813 /* Rn */ 814 info->addr.base_regno = extract_field (FLD_Rn, code, 0); 815 return 1; 816 } 817 818 /* Decode the address operand for e.g. 819 STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */ 820 int 821 aarch64_ext_addr_regoff (const aarch64_operand *self ATTRIBUTE_UNUSED, 822 aarch64_opnd_info *info, 823 aarch64_insn code, const aarch64_inst *inst) 824 { 825 aarch64_insn S, value; 826 827 /* Rn */ 828 info->addr.base_regno = extract_field (FLD_Rn, code, 0); 829 /* Rm */ 830 info->addr.offset.regno = extract_field (FLD_Rm, code, 0); 831 /* option */ 832 value = extract_field (FLD_option, code, 0); 833 info->shifter.kind = 834 aarch64_get_operand_modifier_from_value (value, TRUE /* extend_p */); 835 /* Fix-up the shifter kind; although the table-driven approach is 836 efficient, it is slightly inflexible, thus needing this fix-up. */ 837 if (info->shifter.kind == AARCH64_MOD_UXTX) 838 info->shifter.kind = AARCH64_MOD_LSL; 839 /* S */ 840 S = extract_field (FLD_S, code, 0); 841 if (S == 0) 842 { 843 info->shifter.amount = 0; 844 info->shifter.amount_present = 0; 845 } 846 else 847 { 848 int size; 849 /* Need information in other operand(s) to help achieve the decoding 850 from 'S' field. */ 851 info->qualifier = get_expected_qualifier (inst, info->idx); 852 /* Get the size of the data element that is accessed, which may be 853 different from that of the source register size, e.g. in strb/ldrb. */ 854 size = aarch64_get_qualifier_esize (info->qualifier); 855 info->shifter.amount = get_logsz (size); 856 info->shifter.amount_present = 1; 857 } 858 859 return 1; 860 } 861 862 /* Decode the address operand for e.g. LDRSW <Xt>, [<Xn|SP>], #<simm>. */ 863 int 864 aarch64_ext_addr_simm (const aarch64_operand *self, aarch64_opnd_info *info, 865 aarch64_insn code, const aarch64_inst *inst) 866 { 867 aarch64_insn imm; 868 info->qualifier = get_expected_qualifier (inst, info->idx); 869 870 /* Rn */ 871 info->addr.base_regno = extract_field (FLD_Rn, code, 0); 872 /* simm (imm9 or imm7) */ 873 imm = extract_field (self->fields[0], code, 0); 874 info->addr.offset.imm = sign_extend (imm, fields[self->fields[0]].width - 1); 875 if (self->fields[0] == FLD_imm7) 876 /* scaled immediate in ld/st pair instructions. */ 877 info->addr.offset.imm *= aarch64_get_qualifier_esize (info->qualifier); 878 /* qualifier */ 879 if (inst->opcode->iclass == ldst_unscaled 880 || inst->opcode->iclass == ldstnapair_offs 881 || inst->opcode->iclass == ldstpair_off 882 || inst->opcode->iclass == ldst_unpriv) 883 info->addr.writeback = 0; 884 else 885 { 886 /* pre/post- index */ 887 info->addr.writeback = 1; 888 if (extract_field (self->fields[1], code, 0) == 1) 889 info->addr.preind = 1; 890 else 891 info->addr.postind = 1; 892 } 893 894 return 1; 895 } 896 897 /* Decode the address operand for e.g. LDRSW <Xt>, [<Xn|SP>{, #<simm>}]. */ 898 int 899 aarch64_ext_addr_uimm12 (const aarch64_operand *self, aarch64_opnd_info *info, 900 aarch64_insn code, 901 const aarch64_inst *inst ATTRIBUTE_UNUSED) 902 { 903 int shift; 904 info->qualifier = get_expected_qualifier (inst, info->idx); 905 shift = get_logsz (aarch64_get_qualifier_esize (info->qualifier)); 906 /* Rn */ 907 info->addr.base_regno = extract_field (self->fields[0], code, 0); 908 /* uimm12 */ 909 info->addr.offset.imm = extract_field (self->fields[1], code, 0) << shift; 910 return 1; 911 } 912 913 /* Decode the address operand for e.g. 914 LD1 {<Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <Xm|#<amount>>. */ 915 int 916 aarch64_ext_simd_addr_post (const aarch64_operand *self ATTRIBUTE_UNUSED, 917 aarch64_opnd_info *info, 918 aarch64_insn code, const aarch64_inst *inst) 919 { 920 /* The opcode dependent area stores the number of elements in 921 each structure to be loaded/stored. */ 922 int is_ld1r = get_opcode_dependent_value (inst->opcode) == 1; 923 924 /* Rn */ 925 info->addr.base_regno = extract_field (FLD_Rn, code, 0); 926 /* Rm | #<amount> */ 927 info->addr.offset.regno = extract_field (FLD_Rm, code, 0); 928 if (info->addr.offset.regno == 31) 929 { 930 if (inst->opcode->operands[0] == AARCH64_OPND_LVt_AL) 931 /* Special handling of loading single structure to all lane. */ 932 info->addr.offset.imm = (is_ld1r ? 1 933 : inst->operands[0].reglist.num_regs) 934 * aarch64_get_qualifier_esize (inst->operands[0].qualifier); 935 else 936 info->addr.offset.imm = inst->operands[0].reglist.num_regs 937 * aarch64_get_qualifier_esize (inst->operands[0].qualifier) 938 * aarch64_get_qualifier_nelem (inst->operands[0].qualifier); 939 } 940 else 941 info->addr.offset.is_reg = 1; 942 info->addr.writeback = 1; 943 944 return 1; 945 } 946 947 /* Decode the condition operand for e.g. CSEL <Xd>, <Xn>, <Xm>, <cond>. */ 948 int 949 aarch64_ext_cond (const aarch64_operand *self ATTRIBUTE_UNUSED, 950 aarch64_opnd_info *info, 951 aarch64_insn code, const aarch64_inst *inst ATTRIBUTE_UNUSED) 952 { 953 aarch64_insn value; 954 /* cond */ 955 value = extract_field (FLD_cond, code, 0); 956 info->cond = get_cond_from_value (value); 957 return 1; 958 } 959 960 /* Decode the system register operand for e.g. MRS <Xt>, <systemreg>. */ 961 int 962 aarch64_ext_sysreg (const aarch64_operand *self ATTRIBUTE_UNUSED, 963 aarch64_opnd_info *info, 964 aarch64_insn code, 965 const aarch64_inst *inst ATTRIBUTE_UNUSED) 966 { 967 /* op0:op1:CRn:CRm:op2 */ 968 info->sysreg = extract_fields (code, 0, 5, FLD_op0, FLD_op1, FLD_CRn, 969 FLD_CRm, FLD_op2); 970 return 1; 971 } 972 973 /* Decode the PSTATE field operand for e.g. MSR <pstatefield>, #<imm>. */ 974 int 975 aarch64_ext_pstatefield (const aarch64_operand *self ATTRIBUTE_UNUSED, 976 aarch64_opnd_info *info, aarch64_insn code, 977 const aarch64_inst *inst ATTRIBUTE_UNUSED) 978 { 979 int i; 980 /* op1:op2 */ 981 info->pstatefield = extract_fields (code, 0, 2, FLD_op1, FLD_op2); 982 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i) 983 if (aarch64_pstatefields[i].value == (aarch64_insn)info->pstatefield) 984 return 1; 985 /* Reserved value in <pstatefield>. */ 986 return 0; 987 } 988 989 /* Decode the system instruction op operand for e.g. AT <at_op>, <Xt>. */ 990 int 991 aarch64_ext_sysins_op (const aarch64_operand *self ATTRIBUTE_UNUSED, 992 aarch64_opnd_info *info, 993 aarch64_insn code, 994 const aarch64_inst *inst ATTRIBUTE_UNUSED) 995 { 996 int i; 997 aarch64_insn value; 998 const aarch64_sys_ins_reg *sysins_ops; 999 /* op0:op1:CRn:CRm:op2 */ 1000 value = extract_fields (code, 0, 5, 1001 FLD_op0, FLD_op1, FLD_CRn, 1002 FLD_CRm, FLD_op2); 1003 1004 switch (info->type) 1005 { 1006 case AARCH64_OPND_SYSREG_AT: sysins_ops = aarch64_sys_regs_at; break; 1007 case AARCH64_OPND_SYSREG_DC: sysins_ops = aarch64_sys_regs_dc; break; 1008 case AARCH64_OPND_SYSREG_IC: sysins_ops = aarch64_sys_regs_ic; break; 1009 case AARCH64_OPND_SYSREG_TLBI: sysins_ops = aarch64_sys_regs_tlbi; break; 1010 default: assert (0); return 0; 1011 } 1012 1013 for (i = 0; sysins_ops[i].template != NULL; ++i) 1014 if (sysins_ops[i].value == value) 1015 { 1016 info->sysins_op = sysins_ops + i; 1017 DEBUG_TRACE ("%s found value: %x, has_xt: %d, i: %d.", 1018 info->sysins_op->template, 1019 (unsigned)info->sysins_op->value, 1020 info->sysins_op->has_xt, i); 1021 return 1; 1022 } 1023 1024 return 0; 1025 } 1026 1027 /* Decode the memory barrier option operand for e.g. DMB <option>|#<imm>. */ 1028 1029 int 1030 aarch64_ext_barrier (const aarch64_operand *self ATTRIBUTE_UNUSED, 1031 aarch64_opnd_info *info, 1032 aarch64_insn code, 1033 const aarch64_inst *inst ATTRIBUTE_UNUSED) 1034 { 1035 /* CRm */ 1036 info->barrier = aarch64_barrier_options + extract_field (FLD_CRm, code, 0); 1037 return 1; 1038 } 1039 1040 /* Decode the prefetch operation option operand for e.g. 1041 PRFM <prfop>, [<Xn|SP>{, #<pimm>}]. */ 1042 1043 int 1044 aarch64_ext_prfop (const aarch64_operand *self ATTRIBUTE_UNUSED, 1045 aarch64_opnd_info *info, 1046 aarch64_insn code, const aarch64_inst *inst ATTRIBUTE_UNUSED) 1047 { 1048 /* prfop in Rt */ 1049 info->prfop = aarch64_prfops + extract_field (FLD_Rt, code, 0); 1050 return 1; 1051 } 1052 1053 /* Decode the extended register operand for e.g. 1054 STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */ 1055 int 1056 aarch64_ext_reg_extended (const aarch64_operand *self ATTRIBUTE_UNUSED, 1057 aarch64_opnd_info *info, 1058 aarch64_insn code, 1059 const aarch64_inst *inst ATTRIBUTE_UNUSED) 1060 { 1061 aarch64_insn value; 1062 1063 /* Rm */ 1064 info->reg.regno = extract_field (FLD_Rm, code, 0); 1065 /* option */ 1066 value = extract_field (FLD_option, code, 0); 1067 info->shifter.kind = 1068 aarch64_get_operand_modifier_from_value (value, TRUE /* extend_p */); 1069 /* imm3 */ 1070 info->shifter.amount = extract_field (FLD_imm3, code, 0); 1071 1072 /* This makes the constraint checking happy. */ 1073 info->shifter.operator_present = 1; 1074 1075 /* Assume inst->operands[0].qualifier has been resolved. */ 1076 assert (inst->operands[0].qualifier != AARCH64_OPND_QLF_NIL); 1077 info->qualifier = AARCH64_OPND_QLF_W; 1078 if (inst->operands[0].qualifier == AARCH64_OPND_QLF_X 1079 && (info->shifter.kind == AARCH64_MOD_UXTX 1080 || info->shifter.kind == AARCH64_MOD_SXTX)) 1081 info->qualifier = AARCH64_OPND_QLF_X; 1082 1083 return 1; 1084 } 1085 1086 /* Decode the shifted register operand for e.g. 1087 SUBS <Xd>, <Xn>, <Xm> {, <shift> #<amount>}. */ 1088 int 1089 aarch64_ext_reg_shifted (const aarch64_operand *self ATTRIBUTE_UNUSED, 1090 aarch64_opnd_info *info, 1091 aarch64_insn code, 1092 const aarch64_inst *inst ATTRIBUTE_UNUSED) 1093 { 1094 aarch64_insn value; 1095 1096 /* Rm */ 1097 info->reg.regno = extract_field (FLD_Rm, code, 0); 1098 /* shift */ 1099 value = extract_field (FLD_shift, code, 0); 1100 info->shifter.kind = 1101 aarch64_get_operand_modifier_from_value (value, FALSE /* extend_p */); 1102 if (info->shifter.kind == AARCH64_MOD_ROR 1103 && inst->opcode->iclass != log_shift) 1104 /* ROR is not available for the shifted register operand in arithmetic 1105 instructions. */ 1106 return 0; 1107 /* imm6 */ 1108 info->shifter.amount = extract_field (FLD_imm6, code, 0); 1109 1110 /* This makes the constraint checking happy. */ 1111 info->shifter.operator_present = 1; 1112 1113 return 1; 1114 } 1115 1116 /* Bitfields that are commonly used to encode certain operands' information 1117 may be partially used as part of the base opcode in some instructions. 1118 For example, the bit 1 of the field 'size' in 1119 FCVTXN <Vb><d>, <Va><n> 1120 is actually part of the base opcode, while only size<0> is available 1121 for encoding the register type. Another example is the AdvSIMD 1122 instruction ORR (register), in which the field 'size' is also used for 1123 the base opcode, leaving only the field 'Q' available to encode the 1124 vector register arrangement specifier '8B' or '16B'. 1125 1126 This function tries to deduce the qualifier from the value of partially 1127 constrained field(s). Given the VALUE of such a field or fields, the 1128 qualifiers CANDIDATES and the MASK (indicating which bits are valid for 1129 operand encoding), the function returns the matching qualifier or 1130 AARCH64_OPND_QLF_NIL if nothing matches. 1131 1132 N.B. CANDIDATES is a group of possible qualifiers that are valid for 1133 one operand; it has a maximum of AARCH64_MAX_QLF_SEQ_NUM qualifiers and 1134 may end with AARCH64_OPND_QLF_NIL. */ 1135 1136 static enum aarch64_opnd_qualifier 1137 get_qualifier_from_partial_encoding (aarch64_insn value, 1138 const enum aarch64_opnd_qualifier* \ 1139 candidates, 1140 aarch64_insn mask) 1141 { 1142 int i; 1143 DEBUG_TRACE ("enter with value: %d, mask: %d", (int)value, (int)mask); 1144 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i) 1145 { 1146 aarch64_insn standard_value; 1147 if (candidates[i] == AARCH64_OPND_QLF_NIL) 1148 break; 1149 standard_value = aarch64_get_qualifier_standard_value (candidates[i]); 1150 if ((standard_value & mask) == (value & mask)) 1151 return candidates[i]; 1152 } 1153 return AARCH64_OPND_QLF_NIL; 1154 } 1155 1156 /* Given a list of qualifier sequences, return all possible valid qualifiers 1157 for operand IDX in QUALIFIERS. 1158 Assume QUALIFIERS is an array whose length is large enough. */ 1159 1160 static void 1161 get_operand_possible_qualifiers (int idx, 1162 const aarch64_opnd_qualifier_seq_t *list, 1163 enum aarch64_opnd_qualifier *qualifiers) 1164 { 1165 int i; 1166 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i) 1167 if ((qualifiers[i] = list[i][idx]) == AARCH64_OPND_QLF_NIL) 1168 break; 1169 } 1170 1171 /* Decode the size Q field for e.g. SHADD. 1172 We tag one operand with the qualifer according to the code; 1173 whether the qualifier is valid for this opcode or not, it is the 1174 duty of the semantic checking. */ 1175 1176 static int 1177 decode_sizeq (aarch64_inst *inst) 1178 { 1179 int idx; 1180 enum aarch64_opnd_qualifier qualifier; 1181 aarch64_insn code; 1182 aarch64_insn value, mask; 1183 enum aarch64_field_kind fld_sz; 1184 enum aarch64_opnd_qualifier candidates[AARCH64_MAX_QLF_SEQ_NUM]; 1185 1186 if (inst->opcode->iclass == asisdlse 1187 || inst->opcode->iclass == asisdlsep 1188 || inst->opcode->iclass == asisdlso 1189 || inst->opcode->iclass == asisdlsop) 1190 fld_sz = FLD_vldst_size; 1191 else 1192 fld_sz = FLD_size; 1193 1194 code = inst->value; 1195 value = extract_fields (code, inst->opcode->mask, 2, fld_sz, FLD_Q); 1196 /* Obtain the info that which bits of fields Q and size are actually 1197 available for operand encoding. Opcodes like FMAXNM and FMLA have 1198 size[1] unavailable. */ 1199 mask = extract_fields (~inst->opcode->mask, 0, 2, fld_sz, FLD_Q); 1200 1201 /* The index of the operand we are going to tag a qualifier and the qualifer 1202 itself are reasoned from the value of the size and Q fields and the 1203 possible valid qualifier lists. */ 1204 idx = aarch64_select_operand_for_sizeq_field_coding (inst->opcode); 1205 DEBUG_TRACE ("key idx: %d", idx); 1206 1207 /* For most related instruciton, size:Q are fully available for operand 1208 encoding. */ 1209 if (mask == 0x7) 1210 { 1211 inst->operands[idx].qualifier = get_vreg_qualifier_from_value (value); 1212 return 1; 1213 } 1214 1215 get_operand_possible_qualifiers (idx, inst->opcode->qualifiers_list, 1216 candidates); 1217 #ifdef DEBUG_AARCH64 1218 if (debug_dump) 1219 { 1220 int i; 1221 for (i = 0; candidates[i] != AARCH64_OPND_QLF_NIL 1222 && i < AARCH64_MAX_QLF_SEQ_NUM; ++i) 1223 DEBUG_TRACE ("qualifier %d: %s", i, 1224 aarch64_get_qualifier_name(candidates[i])); 1225 DEBUG_TRACE ("%d, %d", (int)value, (int)mask); 1226 } 1227 #endif /* DEBUG_AARCH64 */ 1228 1229 qualifier = get_qualifier_from_partial_encoding (value, candidates, mask); 1230 1231 if (qualifier == AARCH64_OPND_QLF_NIL) 1232 return 0; 1233 1234 inst->operands[idx].qualifier = qualifier; 1235 return 1; 1236 } 1237 1238 /* Decode size[0]:Q, i.e. bit 22 and bit 30, for 1239 e.g. FCVTN<Q> <Vd>.<Tb>, <Vn>.<Ta>. */ 1240 1241 static int 1242 decode_asimd_fcvt (aarch64_inst *inst) 1243 { 1244 aarch64_field field = {0, 0}; 1245 aarch64_insn value; 1246 enum aarch64_opnd_qualifier qualifier; 1247 1248 gen_sub_field (FLD_size, 0, 1, &field); 1249 value = extract_field_2 (&field, inst->value, 0); 1250 qualifier = value == 0 ? AARCH64_OPND_QLF_V_4S 1251 : AARCH64_OPND_QLF_V_2D; 1252 switch (inst->opcode->op) 1253 { 1254 case OP_FCVTN: 1255 case OP_FCVTN2: 1256 /* FCVTN<Q> <Vd>.<Tb>, <Vn>.<Ta>. */ 1257 inst->operands[1].qualifier = qualifier; 1258 break; 1259 case OP_FCVTL: 1260 case OP_FCVTL2: 1261 /* FCVTL<Q> <Vd>.<Ta>, <Vn>.<Tb>. */ 1262 inst->operands[0].qualifier = qualifier; 1263 break; 1264 default: 1265 assert (0); 1266 return 0; 1267 } 1268 1269 return 1; 1270 } 1271 1272 /* Decode size[0], i.e. bit 22, for 1273 e.g. FCVTXN <Vb><d>, <Va><n>. */ 1274 1275 static int 1276 decode_asisd_fcvtxn (aarch64_inst *inst) 1277 { 1278 aarch64_field field = {0, 0}; 1279 gen_sub_field (FLD_size, 0, 1, &field); 1280 if (!extract_field_2 (&field, inst->value, 0)) 1281 return 0; 1282 inst->operands[0].qualifier = AARCH64_OPND_QLF_S_S; 1283 return 1; 1284 } 1285 1286 /* Decode the 'opc' field for e.g. FCVT <Dd>, <Sn>. */ 1287 static int 1288 decode_fcvt (aarch64_inst *inst) 1289 { 1290 enum aarch64_opnd_qualifier qualifier; 1291 aarch64_insn value; 1292 const aarch64_field field = {15, 2}; 1293 1294 /* opc dstsize */ 1295 value = extract_field_2 (&field, inst->value, 0); 1296 switch (value) 1297 { 1298 case 0: qualifier = AARCH64_OPND_QLF_S_S; break; 1299 case 1: qualifier = AARCH64_OPND_QLF_S_D; break; 1300 case 3: qualifier = AARCH64_OPND_QLF_S_H; break; 1301 default: return 0; 1302 } 1303 inst->operands[0].qualifier = qualifier; 1304 1305 return 1; 1306 } 1307 1308 /* Do miscellaneous decodings that are not common enough to be driven by 1309 flags. */ 1310 1311 static int 1312 do_misc_decoding (aarch64_inst *inst) 1313 { 1314 switch (inst->opcode->op) 1315 { 1316 case OP_FCVT: 1317 return decode_fcvt (inst); 1318 case OP_FCVTN: 1319 case OP_FCVTN2: 1320 case OP_FCVTL: 1321 case OP_FCVTL2: 1322 return decode_asimd_fcvt (inst); 1323 case OP_FCVTXN_S: 1324 return decode_asisd_fcvtxn (inst); 1325 default: 1326 return 0; 1327 } 1328 } 1329 1330 /* Opcodes that have fields shared by multiple operands are usually flagged 1331 with flags. In this function, we detect such flags, decode the related 1332 field(s) and store the information in one of the related operands. The 1333 'one' operand is not any operand but one of the operands that can 1334 accommadate all the information that has been decoded. */ 1335 1336 static int 1337 do_special_decoding (aarch64_inst *inst) 1338 { 1339 int idx; 1340 aarch64_insn value; 1341 /* Condition for truly conditional executed instructions, e.g. b.cond. */ 1342 if (inst->opcode->flags & F_COND) 1343 { 1344 value = extract_field (FLD_cond2, inst->value, 0); 1345 inst->cond = get_cond_from_value (value); 1346 } 1347 /* 'sf' field. */ 1348 if (inst->opcode->flags & F_SF) 1349 { 1350 idx = select_operand_for_sf_field_coding (inst->opcode); 1351 value = extract_field (FLD_sf, inst->value, 0); 1352 inst->operands[idx].qualifier = get_greg_qualifier_from_value (value); 1353 if ((inst->opcode->flags & F_N) 1354 && extract_field (FLD_N, inst->value, 0) != value) 1355 return 0; 1356 } 1357 /* size:Q fields. */ 1358 if (inst->opcode->flags & F_SIZEQ) 1359 return decode_sizeq (inst); 1360 1361 if (inst->opcode->flags & F_FPTYPE) 1362 { 1363 idx = select_operand_for_fptype_field_coding (inst->opcode); 1364 value = extract_field (FLD_type, inst->value, 0); 1365 switch (value) 1366 { 1367 case 0: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_S; break; 1368 case 1: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_D; break; 1369 case 3: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_H; break; 1370 default: return 0; 1371 } 1372 } 1373 1374 if (inst->opcode->flags & F_SSIZE) 1375 { 1376 /* N.B. some opcodes like FCMGT <V><d>, <V><n>, #0 have the size[1] as part 1377 of the base opcode. */ 1378 aarch64_insn mask; 1379 enum aarch64_opnd_qualifier candidates[AARCH64_MAX_QLF_SEQ_NUM]; 1380 idx = select_operand_for_scalar_size_field_coding (inst->opcode); 1381 value = extract_field (FLD_size, inst->value, inst->opcode->mask); 1382 mask = extract_field (FLD_size, ~inst->opcode->mask, 0); 1383 /* For most related instruciton, the 'size' field is fully available for 1384 operand encoding. */ 1385 if (mask == 0x3) 1386 inst->operands[idx].qualifier = get_sreg_qualifier_from_value (value); 1387 else 1388 { 1389 get_operand_possible_qualifiers (idx, inst->opcode->qualifiers_list, 1390 candidates); 1391 inst->operands[idx].qualifier 1392 = get_qualifier_from_partial_encoding (value, candidates, mask); 1393 } 1394 } 1395 1396 if (inst->opcode->flags & F_T) 1397 { 1398 /* Num of consecutive '0's on the right side of imm5<3:0>. */ 1399 int num = 0; 1400 unsigned val, Q; 1401 assert (aarch64_get_operand_class (inst->opcode->operands[0]) 1402 == AARCH64_OPND_CLASS_SIMD_REG); 1403 /* imm5<3:0> q <t> 1404 0000 x reserved 1405 xxx1 0 8b 1406 xxx1 1 16b 1407 xx10 0 4h 1408 xx10 1 8h 1409 x100 0 2s 1410 x100 1 4s 1411 1000 0 reserved 1412 1000 1 2d */ 1413 val = extract_field (FLD_imm5, inst->value, 0); 1414 while ((val & 0x1) == 0 && ++num <= 3) 1415 val >>= 1; 1416 if (num > 3) 1417 return 0; 1418 Q = (unsigned) extract_field (FLD_Q, inst->value, inst->opcode->mask); 1419 inst->operands[0].qualifier = 1420 get_vreg_qualifier_from_value ((num << 1) | Q); 1421 } 1422 1423 if (inst->opcode->flags & F_GPRSIZE_IN_Q) 1424 { 1425 /* Use Rt to encode in the case of e.g. 1426 STXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]. */ 1427 idx = aarch64_operand_index (inst->opcode->operands, AARCH64_OPND_Rt); 1428 if (idx == -1) 1429 { 1430 /* Otherwise use the result operand, which has to be a integer 1431 register. */ 1432 assert (aarch64_get_operand_class (inst->opcode->operands[0]) 1433 == AARCH64_OPND_CLASS_INT_REG); 1434 idx = 0; 1435 } 1436 assert (idx == 0 || idx == 1); 1437 value = extract_field (FLD_Q, inst->value, 0); 1438 inst->operands[idx].qualifier = get_greg_qualifier_from_value (value); 1439 } 1440 1441 if (inst->opcode->flags & F_LDS_SIZE) 1442 { 1443 aarch64_field field = {0, 0}; 1444 assert (aarch64_get_operand_class (inst->opcode->operands[0]) 1445 == AARCH64_OPND_CLASS_INT_REG); 1446 gen_sub_field (FLD_opc, 0, 1, &field); 1447 value = extract_field_2 (&field, inst->value, 0); 1448 inst->operands[0].qualifier 1449 = value ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X; 1450 } 1451 1452 /* Miscellaneous decoding; done as the last step. */ 1453 if (inst->opcode->flags & F_MISC) 1454 return do_misc_decoding (inst); 1455 1456 return 1; 1457 } 1458 1459 /* Converters converting a real opcode instruction to its alias form. */ 1460 1461 /* ROR <Wd>, <Ws>, #<shift> 1462 is equivalent to: 1463 EXTR <Wd>, <Ws>, <Ws>, #<shift>. */ 1464 static int 1465 convert_extr_to_ror (aarch64_inst *inst) 1466 { 1467 if (inst->operands[1].reg.regno == inst->operands[2].reg.regno) 1468 { 1469 copy_operand_info (inst, 2, 3); 1470 inst->operands[3].type = AARCH64_OPND_NIL; 1471 return 1; 1472 } 1473 return 0; 1474 } 1475 1476 /* UXTL<Q> <Vd>.<Ta>, <Vn>.<Tb> 1477 is equivalent to: 1478 USHLL<Q> <Vd>.<Ta>, <Vn>.<Tb>, #0. */ 1479 static int 1480 convert_shll_to_xtl (aarch64_inst *inst) 1481 { 1482 if (inst->operands[2].imm.value == 0) 1483 { 1484 inst->operands[2].type = AARCH64_OPND_NIL; 1485 return 1; 1486 } 1487 return 0; 1488 } 1489 1490 /* Convert 1491 UBFM <Xd>, <Xn>, #<shift>, #63. 1492 to 1493 LSR <Xd>, <Xn>, #<shift>. */ 1494 static int 1495 convert_bfm_to_sr (aarch64_inst *inst) 1496 { 1497 int64_t imms, val; 1498 1499 imms = inst->operands[3].imm.value; 1500 val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 31 : 63; 1501 if (imms == val) 1502 { 1503 inst->operands[3].type = AARCH64_OPND_NIL; 1504 return 1; 1505 } 1506 1507 return 0; 1508 } 1509 1510 /* Convert MOV to ORR. */ 1511 static int 1512 convert_orr_to_mov (aarch64_inst *inst) 1513 { 1514 /* MOV <Vd>.<T>, <Vn>.<T> 1515 is equivalent to: 1516 ORR <Vd>.<T>, <Vn>.<T>, <Vn>.<T>. */ 1517 if (inst->operands[1].reg.regno == inst->operands[2].reg.regno) 1518 { 1519 inst->operands[2].type = AARCH64_OPND_NIL; 1520 return 1; 1521 } 1522 return 0; 1523 } 1524 1525 /* When <imms> >= <immr>, the instruction written: 1526 SBFX <Xd>, <Xn>, #<lsb>, #<width> 1527 is equivalent to: 1528 SBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1). */ 1529 1530 static int 1531 convert_bfm_to_bfx (aarch64_inst *inst) 1532 { 1533 int64_t immr, imms; 1534 1535 immr = inst->operands[2].imm.value; 1536 imms = inst->operands[3].imm.value; 1537 if (imms >= immr) 1538 { 1539 int64_t lsb = immr; 1540 inst->operands[2].imm.value = lsb; 1541 inst->operands[3].imm.value = imms + 1 - lsb; 1542 /* The two opcodes have different qualifiers for 1543 the immediate operands; reset to help the checking. */ 1544 reset_operand_qualifier (inst, 2); 1545 reset_operand_qualifier (inst, 3); 1546 return 1; 1547 } 1548 1549 return 0; 1550 } 1551 1552 /* When <imms> < <immr>, the instruction written: 1553 SBFIZ <Xd>, <Xn>, #<lsb>, #<width> 1554 is equivalent to: 1555 SBFM <Xd>, <Xn>, #((64-<lsb>)&0x3f), #(<width>-1). */ 1556 1557 static int 1558 convert_bfm_to_bfi (aarch64_inst *inst) 1559 { 1560 int64_t immr, imms, val; 1561 1562 immr = inst->operands[2].imm.value; 1563 imms = inst->operands[3].imm.value; 1564 val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 32 : 64; 1565 if (imms < immr) 1566 { 1567 inst->operands[2].imm.value = (val - immr) & (val - 1); 1568 inst->operands[3].imm.value = imms + 1; 1569 /* The two opcodes have different qualifiers for 1570 the immediate operands; reset to help the checking. */ 1571 reset_operand_qualifier (inst, 2); 1572 reset_operand_qualifier (inst, 3); 1573 return 1; 1574 } 1575 1576 return 0; 1577 } 1578 1579 /* The instruction written: 1580 LSL <Xd>, <Xn>, #<shift> 1581 is equivalent to: 1582 UBFM <Xd>, <Xn>, #((64-<shift>)&0x3f), #(63-<shift>). */ 1583 1584 static int 1585 convert_ubfm_to_lsl (aarch64_inst *inst) 1586 { 1587 int64_t immr = inst->operands[2].imm.value; 1588 int64_t imms = inst->operands[3].imm.value; 1589 int64_t val 1590 = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 31 : 63; 1591 1592 if ((immr == 0 && imms == val) || immr == imms + 1) 1593 { 1594 inst->operands[3].type = AARCH64_OPND_NIL; 1595 inst->operands[2].imm.value = val - imms; 1596 return 1; 1597 } 1598 1599 return 0; 1600 } 1601 1602 /* CINC <Wd>, <Wn>, <cond> 1603 is equivalent to: 1604 CSINC <Wd>, <Wn>, <Wn>, invert(<cond>) 1605 where <cond> is not AL or NV. */ 1606 1607 static int 1608 convert_from_csel (aarch64_inst *inst) 1609 { 1610 if (inst->operands[1].reg.regno == inst->operands[2].reg.regno 1611 && (inst->operands[3].cond->value & 0xe) != 0xe) 1612 { 1613 copy_operand_info (inst, 2, 3); 1614 inst->operands[2].cond = get_inverted_cond (inst->operands[3].cond); 1615 inst->operands[3].type = AARCH64_OPND_NIL; 1616 return 1; 1617 } 1618 return 0; 1619 } 1620 1621 /* CSET <Wd>, <cond> 1622 is equivalent to: 1623 CSINC <Wd>, WZR, WZR, invert(<cond>) 1624 where <cond> is not AL or NV. */ 1625 1626 static int 1627 convert_csinc_to_cset (aarch64_inst *inst) 1628 { 1629 if (inst->operands[1].reg.regno == 0x1f 1630 && inst->operands[2].reg.regno == 0x1f 1631 && (inst->operands[3].cond->value & 0xe) != 0xe) 1632 { 1633 copy_operand_info (inst, 1, 3); 1634 inst->operands[1].cond = get_inverted_cond (inst->operands[3].cond); 1635 inst->operands[3].type = AARCH64_OPND_NIL; 1636 inst->operands[2].type = AARCH64_OPND_NIL; 1637 return 1; 1638 } 1639 return 0; 1640 } 1641 1642 /* MOV <Wd>, #<imm> 1643 is equivalent to: 1644 MOVZ <Wd>, #<imm16>, LSL #<shift>. 1645 1646 A disassembler may output ORR, MOVZ and MOVN as a MOV mnemonic, except when 1647 ORR has an immediate that could be generated by a MOVZ or MOVN instruction, 1648 or where a MOVN has an immediate that could be encoded by MOVZ, or where 1649 MOVZ/MOVN #0 have a shift amount other than LSL #0, in which case the 1650 machine-instruction mnemonic must be used. */ 1651 1652 static int 1653 convert_movewide_to_mov (aarch64_inst *inst) 1654 { 1655 uint64_t value = inst->operands[1].imm.value; 1656 /* MOVZ/MOVN #0 have a shift amount other than LSL #0. */ 1657 if (value == 0 && inst->operands[1].shifter.amount != 0) 1658 return 0; 1659 inst->operands[1].type = AARCH64_OPND_IMM_MOV; 1660 inst->operands[1].shifter.kind = AARCH64_MOD_NONE; 1661 value <<= inst->operands[1].shifter.amount; 1662 /* As an alias convertor, it has to be clear that the INST->OPCODE 1663 is the opcode of the real instruction. */ 1664 if (inst->opcode->op == OP_MOVN) 1665 { 1666 int is32 = inst->operands[0].qualifier == AARCH64_OPND_QLF_W; 1667 value = ~value; 1668 /* A MOVN has an immediate that could be encoded by MOVZ. */ 1669 if (aarch64_wide_constant_p (value, is32, NULL) == TRUE) 1670 return 0; 1671 } 1672 inst->operands[1].imm.value = value; 1673 inst->operands[1].shifter.amount = 0; 1674 return 1; 1675 } 1676 1677 /* MOV <Wd>, #<imm> 1678 is equivalent to: 1679 ORR <Wd>, WZR, #<imm>. 1680 1681 A disassembler may output ORR, MOVZ and MOVN as a MOV mnemonic, except when 1682 ORR has an immediate that could be generated by a MOVZ or MOVN instruction, 1683 or where a MOVN has an immediate that could be encoded by MOVZ, or where 1684 MOVZ/MOVN #0 have a shift amount other than LSL #0, in which case the 1685 machine-instruction mnemonic must be used. */ 1686 1687 static int 1688 convert_movebitmask_to_mov (aarch64_inst *inst) 1689 { 1690 int is32; 1691 uint64_t value; 1692 1693 /* Should have been assured by the base opcode value. */ 1694 assert (inst->operands[1].reg.regno == 0x1f); 1695 copy_operand_info (inst, 1, 2); 1696 is32 = inst->operands[0].qualifier == AARCH64_OPND_QLF_W; 1697 inst->operands[1].type = AARCH64_OPND_IMM_MOV; 1698 value = inst->operands[1].imm.value; 1699 /* ORR has an immediate that could be generated by a MOVZ or MOVN 1700 instruction. */ 1701 if (inst->operands[0].reg.regno != 0x1f 1702 && (aarch64_wide_constant_p (value, is32, NULL) == TRUE 1703 || aarch64_wide_constant_p (~value, is32, NULL) == TRUE)) 1704 return 0; 1705 1706 inst->operands[2].type = AARCH64_OPND_NIL; 1707 return 1; 1708 } 1709 1710 /* Some alias opcodes are disassembled by being converted from their real-form. 1711 N.B. INST->OPCODE is the real opcode rather than the alias. */ 1712 1713 static int 1714 convert_to_alias (aarch64_inst *inst, const aarch64_opcode *alias) 1715 { 1716 switch (alias->op) 1717 { 1718 case OP_ASR_IMM: 1719 case OP_LSR_IMM: 1720 return convert_bfm_to_sr (inst); 1721 case OP_LSL_IMM: 1722 return convert_ubfm_to_lsl (inst); 1723 case OP_CINC: 1724 case OP_CINV: 1725 case OP_CNEG: 1726 return convert_from_csel (inst); 1727 case OP_CSET: 1728 case OP_CSETM: 1729 return convert_csinc_to_cset (inst); 1730 case OP_UBFX: 1731 case OP_BFXIL: 1732 case OP_SBFX: 1733 return convert_bfm_to_bfx (inst); 1734 case OP_SBFIZ: 1735 case OP_BFI: 1736 case OP_UBFIZ: 1737 return convert_bfm_to_bfi (inst); 1738 case OP_MOV_V: 1739 return convert_orr_to_mov (inst); 1740 case OP_MOV_IMM_WIDE: 1741 case OP_MOV_IMM_WIDEN: 1742 return convert_movewide_to_mov (inst); 1743 case OP_MOV_IMM_LOG: 1744 return convert_movebitmask_to_mov (inst); 1745 case OP_ROR_IMM: 1746 return convert_extr_to_ror (inst); 1747 case OP_SXTL: 1748 case OP_SXTL2: 1749 case OP_UXTL: 1750 case OP_UXTL2: 1751 return convert_shll_to_xtl (inst); 1752 default: 1753 return 0; 1754 } 1755 } 1756 1757 static int aarch64_opcode_decode (const aarch64_opcode *, const aarch64_insn, 1758 aarch64_inst *, int); 1759 1760 /* Given the instruction information in *INST, check if the instruction has 1761 any alias form that can be used to represent *INST. If the answer is yes, 1762 update *INST to be in the form of the determined alias. */ 1763 1764 /* In the opcode description table, the following flags are used in opcode 1765 entries to help establish the relations between the real and alias opcodes: 1766 1767 F_ALIAS: opcode is an alias 1768 F_HAS_ALIAS: opcode has alias(es) 1769 F_P1 1770 F_P2 1771 F_P3: Disassembly preference priority 1-3 (the larger the 1772 higher). If nothing is specified, it is the priority 1773 0 by default, i.e. the lowest priority. 1774 1775 Although the relation between the machine and the alias instructions are not 1776 explicitly described, it can be easily determined from the base opcode 1777 values, masks and the flags F_ALIAS and F_HAS_ALIAS in their opcode 1778 description entries: 1779 1780 The mask of an alias opcode must be equal to or a super-set (i.e. more 1781 constrained) of that of the aliased opcode; so is the base opcode value. 1782 1783 if (opcode_has_alias (real) && alias_opcode_p (opcode) 1784 && (opcode->mask & real->mask) == real->mask 1785 && (real->mask & opcode->opcode) == (real->mask & real->opcode)) 1786 then OPCODE is an alias of, and only of, the REAL instruction 1787 1788 The alias relationship is forced flat-structured to keep related algorithm 1789 simple; an opcode entry cannot be flagged with both F_ALIAS and F_HAS_ALIAS. 1790 1791 During the disassembling, the decoding decision tree (in 1792 opcodes/aarch64-dis-2.c) always returns an machine instruction opcode entry; 1793 if the decoding of such a machine instruction succeeds (and -Mno-aliases is 1794 not specified), the disassembler will check whether there is any alias 1795 instruction exists for this real instruction. If there is, the disassembler 1796 will try to disassemble the 32-bit binary again using the alias's rule, or 1797 try to convert the IR to the form of the alias. In the case of the multiple 1798 aliases, the aliases are tried one by one from the highest priority 1799 (currently the flag F_P3) to the lowest priority (no priority flag), and the 1800 first succeeds first adopted. 1801 1802 You may ask why there is a need for the conversion of IR from one form to 1803 another in handling certain aliases. This is because on one hand it avoids 1804 adding more operand code to handle unusual encoding/decoding; on other 1805 hand, during the disassembling, the conversion is an effective approach to 1806 check the condition of an alias (as an alias may be adopted only if certain 1807 conditions are met). 1808 1809 In order to speed up the alias opcode lookup, aarch64-gen has preprocessed 1810 aarch64_opcode_table and generated aarch64_find_alias_opcode and 1811 aarch64_find_next_alias_opcode (in opcodes/aarch64-dis-2.c) to help. */ 1812 1813 static void 1814 determine_disassembling_preference (struct aarch64_inst *inst) 1815 { 1816 const aarch64_opcode *opcode; 1817 const aarch64_opcode *alias; 1818 1819 opcode = inst->opcode; 1820 1821 /* This opcode does not have an alias, so use itself. */ 1822 if (opcode_has_alias (opcode) == FALSE) 1823 return; 1824 1825 alias = aarch64_find_alias_opcode (opcode); 1826 assert (alias); 1827 1828 #ifdef DEBUG_AARCH64 1829 if (debug_dump) 1830 { 1831 const aarch64_opcode *tmp = alias; 1832 printf ("#### LIST orderd: "); 1833 while (tmp) 1834 { 1835 printf ("%s, ", tmp->name); 1836 tmp = aarch64_find_next_alias_opcode (tmp); 1837 } 1838 printf ("\n"); 1839 } 1840 #endif /* DEBUG_AARCH64 */ 1841 1842 for (; alias; alias = aarch64_find_next_alias_opcode (alias)) 1843 { 1844 DEBUG_TRACE ("try %s", alias->name); 1845 assert (alias_opcode_p (alias)); 1846 1847 /* An alias can be a pseudo opcode which will never be used in the 1848 disassembly, e.g. BIC logical immediate is such a pseudo opcode 1849 aliasing AND. */ 1850 if (pseudo_opcode_p (alias)) 1851 { 1852 DEBUG_TRACE ("skip pseudo %s", alias->name); 1853 continue; 1854 } 1855 1856 if ((inst->value & alias->mask) != alias->opcode) 1857 { 1858 DEBUG_TRACE ("skip %s as base opcode not match", alias->name); 1859 continue; 1860 } 1861 /* No need to do any complicated transformation on operands, if the alias 1862 opcode does not have any operand. */ 1863 if (aarch64_num_of_operands (alias) == 0 && alias->opcode == inst->value) 1864 { 1865 DEBUG_TRACE ("succeed with 0-operand opcode %s", alias->name); 1866 aarch64_replace_opcode (inst, alias); 1867 return; 1868 } 1869 if (alias->flags & F_CONV) 1870 { 1871 aarch64_inst copy; 1872 memcpy (©, inst, sizeof (aarch64_inst)); 1873 /* ALIAS is the preference as long as the instruction can be 1874 successfully converted to the form of ALIAS. */ 1875 if (convert_to_alias (©, alias) == 1) 1876 { 1877 aarch64_replace_opcode (©, alias); 1878 assert (aarch64_match_operands_constraint (©, NULL)); 1879 DEBUG_TRACE ("succeed with %s via conversion", alias->name); 1880 memcpy (inst, ©, sizeof (aarch64_inst)); 1881 return; 1882 } 1883 } 1884 else 1885 { 1886 /* Directly decode the alias opcode. */ 1887 aarch64_inst temp; 1888 memset (&temp, '\0', sizeof (aarch64_inst)); 1889 if (aarch64_opcode_decode (alias, inst->value, &temp, 1) == 1) 1890 { 1891 DEBUG_TRACE ("succeed with %s via direct decoding", alias->name); 1892 memcpy (inst, &temp, sizeof (aarch64_inst)); 1893 return; 1894 } 1895 } 1896 } 1897 } 1898 1899 /* Decode the CODE according to OPCODE; fill INST. Return 0 if the decoding 1900 fails, which meanes that CODE is not an instruction of OPCODE; otherwise 1901 return 1. 1902 1903 If OPCODE has alias(es) and NOALIASES_P is 0, an alias opcode may be 1904 determined and used to disassemble CODE; this is done just before the 1905 return. */ 1906 1907 static int 1908 aarch64_opcode_decode (const aarch64_opcode *opcode, const aarch64_insn code, 1909 aarch64_inst *inst, int noaliases_p) 1910 { 1911 int i; 1912 1913 DEBUG_TRACE ("enter with %s", opcode->name); 1914 1915 assert (opcode && inst); 1916 1917 /* Check the base opcode. */ 1918 if ((code & opcode->mask) != (opcode->opcode & opcode->mask)) 1919 { 1920 DEBUG_TRACE ("base opcode match FAIL"); 1921 goto decode_fail; 1922 } 1923 1924 /* Clear inst. */ 1925 memset (inst, '\0', sizeof (aarch64_inst)); 1926 1927 inst->opcode = opcode; 1928 inst->value = code; 1929 1930 /* Assign operand codes and indexes. */ 1931 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i) 1932 { 1933 if (opcode->operands[i] == AARCH64_OPND_NIL) 1934 break; 1935 inst->operands[i].type = opcode->operands[i]; 1936 inst->operands[i].idx = i; 1937 } 1938 1939 /* Call the opcode decoder indicated by flags. */ 1940 if (opcode_has_special_coder (opcode) && do_special_decoding (inst) == 0) 1941 { 1942 DEBUG_TRACE ("opcode flag-based decoder FAIL"); 1943 goto decode_fail; 1944 } 1945 1946 /* Call operand decoders. */ 1947 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i) 1948 { 1949 const aarch64_operand *opnd; 1950 enum aarch64_opnd type; 1951 type = opcode->operands[i]; 1952 if (type == AARCH64_OPND_NIL) 1953 break; 1954 opnd = &aarch64_operands[type]; 1955 if (operand_has_extractor (opnd) 1956 && (! aarch64_extract_operand (opnd, &inst->operands[i], code, inst))) 1957 { 1958 DEBUG_TRACE ("operand decoder FAIL at operand %d", i); 1959 goto decode_fail; 1960 } 1961 } 1962 1963 /* Match the qualifiers. */ 1964 if (aarch64_match_operands_constraint (inst, NULL) == 1) 1965 { 1966 /* Arriving here, the CODE has been determined as a valid instruction 1967 of OPCODE and *INST has been filled with information of this OPCODE 1968 instruction. Before the return, check if the instruction has any 1969 alias and should be disassembled in the form of its alias instead. 1970 If the answer is yes, *INST will be updated. */ 1971 if (!noaliases_p) 1972 determine_disassembling_preference (inst); 1973 DEBUG_TRACE ("SUCCESS"); 1974 return 1; 1975 } 1976 else 1977 { 1978 DEBUG_TRACE ("constraint matching FAIL"); 1979 } 1980 1981 decode_fail: 1982 return 0; 1983 } 1984 1985 /* This does some user-friendly fix-up to *INST. It is currently focus on 1986 the adjustment of qualifiers to help the printed instruction 1987 recognized/understood more easily. */ 1988 1989 static void 1990 user_friendly_fixup (aarch64_inst *inst) 1991 { 1992 switch (inst->opcode->iclass) 1993 { 1994 case testbranch: 1995 /* TBNZ Xn|Wn, #uimm6, label 1996 Test and Branch Not Zero: conditionally jumps to label if bit number 1997 uimm6 in register Xn is not zero. The bit number implies the width of 1998 the register, which may be written and should be disassembled as Wn if 1999 uimm is less than 32. Limited to a branch offset range of +/- 32KiB. 2000 */ 2001 if (inst->operands[1].imm.value < 32) 2002 inst->operands[0].qualifier = AARCH64_OPND_QLF_W; 2003 break; 2004 default: break; 2005 } 2006 } 2007 2008 /* Decode INSN and fill in *INST the instruction information. */ 2009 2010 static int 2011 disas_aarch64_insn (uint64_t pc ATTRIBUTE_UNUSED, uint32_t insn, 2012 aarch64_inst *inst) 2013 { 2014 const aarch64_opcode *opcode = aarch64_opcode_lookup (insn); 2015 2016 #ifdef DEBUG_AARCH64 2017 if (debug_dump) 2018 { 2019 const aarch64_opcode *tmp = opcode; 2020 printf ("\n"); 2021 DEBUG_TRACE ("opcode lookup:"); 2022 while (tmp != NULL) 2023 { 2024 aarch64_verbose (" %s", tmp->name); 2025 tmp = aarch64_find_next_opcode (tmp); 2026 } 2027 } 2028 #endif /* DEBUG_AARCH64 */ 2029 2030 /* A list of opcodes may have been found, as aarch64_opcode_lookup cannot 2031 distinguish some opcodes, e.g. SSHR and MOVI, which almost share the same 2032 opcode field and value, apart from the difference that one of them has an 2033 extra field as part of the opcode, but such a field is used for operand 2034 encoding in other opcode(s) ('immh' in the case of the example). */ 2035 while (opcode != NULL) 2036 { 2037 /* But only one opcode can be decoded successfully for, as the 2038 decoding routine will check the constraint carefully. */ 2039 if (aarch64_opcode_decode (opcode, insn, inst, no_aliases) == 1) 2040 return ERR_OK; 2041 opcode = aarch64_find_next_opcode (opcode); 2042 } 2043 2044 return ERR_UND; 2045 } 2046 2047 /* Print operands. */ 2048 2049 static void 2050 print_operands (bfd_vma pc, const aarch64_opcode *opcode, 2051 const aarch64_opnd_info *opnds, struct disassemble_info *info) 2052 { 2053 int i, pcrel_p, num_printed; 2054 for (i = 0, num_printed = 0; i < AARCH64_MAX_OPND_NUM; ++i) 2055 { 2056 const size_t size = 128; 2057 char str[size]; 2058 /* We regard the opcode operand info more, however we also look into 2059 the inst->operands to support the disassembling of the optional 2060 operand. 2061 The two operand code should be the same in all cases, apart from 2062 when the operand can be optional. */ 2063 if (opcode->operands[i] == AARCH64_OPND_NIL 2064 || opnds[i].type == AARCH64_OPND_NIL) 2065 break; 2066 2067 /* Generate the operand string in STR. */ 2068 aarch64_print_operand (str, size, pc, opcode, opnds, i, &pcrel_p, 2069 &info->target); 2070 2071 /* Print the delimiter (taking account of omitted operand(s)). */ 2072 if (str[0] != '\0') 2073 (*info->fprintf_func) (info->stream, "%s", 2074 num_printed++ == 0 ? "\t" : ", "); 2075 2076 /* Print the operand. */ 2077 if (pcrel_p) 2078 (*info->print_address_func) (info->target, info); 2079 else 2080 (*info->fprintf_func) (info->stream, "%s", str); 2081 } 2082 } 2083 2084 /* Print the instruction mnemonic name. */ 2085 2086 static void 2087 print_mnemonic_name (const aarch64_inst *inst, struct disassemble_info *info) 2088 { 2089 if (inst->opcode->flags & F_COND) 2090 { 2091 /* For instructions that are truly conditionally executed, e.g. b.cond, 2092 prepare the full mnemonic name with the corresponding condition 2093 suffix. */ 2094 char name[8], *ptr; 2095 size_t len; 2096 2097 ptr = strchr (inst->opcode->name, '.'); 2098 assert (ptr && inst->cond); 2099 len = ptr - inst->opcode->name; 2100 assert (len < 8); 2101 strncpy (name, inst->opcode->name, len); 2102 name [len] = '\0'; 2103 (*info->fprintf_func) (info->stream, "%s.%s", name, inst->cond->names[0]); 2104 } 2105 else 2106 (*info->fprintf_func) (info->stream, "%s", inst->opcode->name); 2107 } 2108 2109 /* Print the instruction according to *INST. */ 2110 2111 static void 2112 print_aarch64_insn (bfd_vma pc, const aarch64_inst *inst, 2113 struct disassemble_info *info) 2114 { 2115 print_mnemonic_name (inst, info); 2116 print_operands (pc, inst->opcode, inst->operands, info); 2117 } 2118 2119 /* Entry-point of the instruction disassembler and printer. */ 2120 2121 static void 2122 print_insn_aarch64_word (bfd_vma pc, 2123 uint32_t word, 2124 struct disassemble_info *info) 2125 { 2126 static const char *err_msg[6] = 2127 { 2128 [ERR_OK] = "_", 2129 [-ERR_UND] = "undefined", 2130 [-ERR_UNP] = "unpredictable", 2131 [-ERR_NYI] = "NYI" 2132 }; 2133 2134 int ret; 2135 aarch64_inst inst; 2136 2137 info->insn_info_valid = 1; 2138 info->branch_delay_insns = 0; 2139 info->data_size = 0; 2140 info->target = 0; 2141 info->target2 = 0; 2142 2143 if (info->flags & INSN_HAS_RELOC) 2144 /* If the instruction has a reloc associated with it, then 2145 the offset field in the instruction will actually be the 2146 addend for the reloc. (If we are using REL type relocs). 2147 In such cases, we can ignore the pc when computing 2148 addresses, since the addend is not currently pc-relative. */ 2149 pc = 0; 2150 2151 ret = disas_aarch64_insn (pc, word, &inst); 2152 2153 if (((word >> 21) & 0x3ff) == 1) 2154 { 2155 /* RESERVED for ALES. */ 2156 assert (ret != ERR_OK); 2157 ret = ERR_NYI; 2158 } 2159 2160 switch (ret) 2161 { 2162 case ERR_UND: 2163 case ERR_UNP: 2164 case ERR_NYI: 2165 /* Handle undefined instructions. */ 2166 info->insn_type = dis_noninsn; 2167 (*info->fprintf_func) (info->stream,".inst\t0x%08x ; %s", 2168 word, err_msg[-ret]); 2169 break; 2170 case ERR_OK: 2171 user_friendly_fixup (&inst); 2172 print_aarch64_insn (pc, &inst, info); 2173 break; 2174 default: 2175 abort (); 2176 } 2177 } 2178 2179 /* Disallow mapping symbols ($x, $d etc) from 2180 being displayed in symbol relative addresses. */ 2181 2182 bfd_boolean 2183 aarch64_symbol_is_valid (asymbol * sym, 2184 struct disassemble_info * info ATTRIBUTE_UNUSED) 2185 { 2186 const char * name; 2187 2188 if (sym == NULL) 2189 return FALSE; 2190 2191 name = bfd_asymbol_name (sym); 2192 2193 return name 2194 && (name[0] != '$' 2195 || (name[1] != 'x' && name[1] != 'd') 2196 || (name[2] != '\0' && name[2] != '.')); 2197 } 2198 2199 /* Print data bytes on INFO->STREAM. */ 2200 2201 static void 2202 print_insn_data (bfd_vma pc ATTRIBUTE_UNUSED, 2203 uint32_t word, 2204 struct disassemble_info *info) 2205 { 2206 switch (info->bytes_per_chunk) 2207 { 2208 case 1: 2209 info->fprintf_func (info->stream, ".byte\t0x%02x", word); 2210 break; 2211 case 2: 2212 info->fprintf_func (info->stream, ".short\t0x%04x", word); 2213 break; 2214 case 4: 2215 info->fprintf_func (info->stream, ".word\t0x%08x", word); 2216 break; 2217 default: 2218 abort (); 2219 } 2220 } 2221 2222 /* Try to infer the code or data type from a symbol. 2223 Returns nonzero if *MAP_TYPE was set. */ 2224 2225 static int 2226 get_sym_code_type (struct disassemble_info *info, int n, 2227 enum map_type *map_type) 2228 { 2229 elf_symbol_type *es; 2230 unsigned int type; 2231 const char *name; 2232 2233 es = *(elf_symbol_type **)(info->symtab + n); 2234 type = ELF_ST_TYPE (es->internal_elf_sym.st_info); 2235 2236 /* If the symbol has function type then use that. */ 2237 if (type == STT_FUNC) 2238 { 2239 *map_type = MAP_INSN; 2240 return TRUE; 2241 } 2242 2243 /* Check for mapping symbols. */ 2244 name = bfd_asymbol_name(info->symtab[n]); 2245 if (name[0] == '$' 2246 && (name[1] == 'x' || name[1] == 'd') 2247 && (name[2] == '\0' || name[2] == '.')) 2248 { 2249 *map_type = (name[1] == 'x' ? MAP_INSN : MAP_DATA); 2250 return TRUE; 2251 } 2252 2253 return FALSE; 2254 } 2255 2256 /* Entry-point of the AArch64 disassembler. */ 2257 2258 int 2259 print_insn_aarch64 (bfd_vma pc, 2260 struct disassemble_info *info) 2261 { 2262 bfd_byte buffer[INSNLEN]; 2263 int status; 2264 void (*printer) (bfd_vma, uint32_t, struct disassemble_info *); 2265 bfd_boolean found = FALSE; 2266 unsigned int size = 4; 2267 unsigned long data; 2268 2269 if (info->disassembler_options) 2270 { 2271 set_default_aarch64_dis_options (info); 2272 2273 parse_aarch64_dis_options (info->disassembler_options); 2274 2275 /* To avoid repeated parsing of these options, we remove them here. */ 2276 info->disassembler_options = NULL; 2277 } 2278 2279 /* Aarch64 instructions are always little-endian */ 2280 info->endian_code = BFD_ENDIAN_LITTLE; 2281 2282 /* First check the full symtab for a mapping symbol, even if there 2283 are no usable non-mapping symbols for this address. */ 2284 if (info->symtab_size != 0 2285 && bfd_asymbol_flavour (*info->symtab) == bfd_target_elf_flavour) 2286 { 2287 enum map_type type = MAP_INSN; 2288 int last_sym = -1; 2289 bfd_vma addr; 2290 int n; 2291 2292 if (pc <= last_mapping_addr) 2293 last_mapping_sym = -1; 2294 2295 /* Start scanning at the start of the function, or wherever 2296 we finished last time. */ 2297 n = info->symtab_pos + 1; 2298 if (n < last_mapping_sym) 2299 n = last_mapping_sym; 2300 2301 /* Scan up to the location being disassembled. */ 2302 for (; n < info->symtab_size; n++) 2303 { 2304 addr = bfd_asymbol_value (info->symtab[n]); 2305 if (addr > pc) 2306 break; 2307 if ((info->section == NULL 2308 || info->section == info->symtab[n]->section) 2309 && get_sym_code_type (info, n, &type)) 2310 { 2311 last_sym = n; 2312 found = TRUE; 2313 } 2314 } 2315 2316 if (!found) 2317 { 2318 n = info->symtab_pos; 2319 if (n < last_mapping_sym) 2320 n = last_mapping_sym; 2321 2322 /* No mapping symbol found at this address. Look backwards 2323 for a preceeding one. */ 2324 for (; n >= 0; n--) 2325 { 2326 if (get_sym_code_type (info, n, &type)) 2327 { 2328 last_sym = n; 2329 found = TRUE; 2330 break; 2331 } 2332 } 2333 } 2334 2335 last_mapping_sym = last_sym; 2336 last_type = type; 2337 2338 /* Look a little bit ahead to see if we should print out 2339 less than four bytes of data. If there's a symbol, 2340 mapping or otherwise, after two bytes then don't 2341 print more. */ 2342 if (last_type == MAP_DATA) 2343 { 2344 size = 4 - (pc & 3); 2345 for (n = last_sym + 1; n < info->symtab_size; n++) 2346 { 2347 addr = bfd_asymbol_value (info->symtab[n]); 2348 if (addr > pc) 2349 { 2350 if (addr - pc < size) 2351 size = addr - pc; 2352 break; 2353 } 2354 } 2355 /* If the next symbol is after three bytes, we need to 2356 print only part of the data, so that we can use either 2357 .byte or .short. */ 2358 if (size == 3) 2359 size = (pc & 1) ? 1 : 2; 2360 } 2361 } 2362 2363 if (last_type == MAP_DATA) 2364 { 2365 /* size was set above. */ 2366 info->bytes_per_chunk = size; 2367 info->display_endian = info->endian; 2368 printer = print_insn_data; 2369 } 2370 else 2371 { 2372 info->bytes_per_chunk = size = INSNLEN; 2373 info->display_endian = info->endian_code; 2374 printer = print_insn_aarch64_word; 2375 } 2376 2377 status = (*info->read_memory_func) (pc, buffer, size, info); 2378 if (status != 0) 2379 { 2380 (*info->memory_error_func) (status, pc, info); 2381 return -1; 2382 } 2383 2384 data = bfd_get_bits (buffer, size * 8, 2385 info->display_endian == BFD_ENDIAN_BIG); 2386 2387 (*printer) (pc, data, info); 2388 2389 return size; 2390 } 2391 2392 void 2393 print_aarch64_disassembler_options (FILE *stream) 2394 { 2395 fprintf (stream, _("\n\ 2396 The following AARCH64 specific disassembler options are supported for use\n\ 2397 with the -M switch (multiple options should be separated by commas):\n")); 2398 2399 fprintf (stream, _("\n\ 2400 no-aliases Don't print instruction aliases.\n")); 2401 2402 fprintf (stream, _("\n\ 2403 aliases Do print instruction aliases.\n")); 2404 2405 #ifdef DEBUG_AARCH64 2406 fprintf (stream, _("\n\ 2407 debug_dump Temp switch for debug trace.\n")); 2408 #endif /* DEBUG_AARCH64 */ 2409 2410 fprintf (stream, _("\n")); 2411 } 2412