1 /* Interface to hashtable implementations. 2 Copyright (C) 2006-2020 Free Software Foundation, Inc. 3 4 This file is part of libctf. 5 6 libctf is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 This program is distributed in the hope that it will be useful, but 12 WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 14 See the GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; see the file COPYING. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include <ctf-impl.h> 21 #include <string.h> 22 #include "libiberty.h" 23 #include "hashtab.h" 24 25 /* We have three hashtable implementations: 26 27 - ctf_hash_* is an interface to a fixed-size hash from const char * -> 28 ctf_id_t with number of elements specified at creation time, that should 29 support addition of items but need not support removal. 30 31 - ctf_dynhash_* is an interface to a dynamically-expanding hash with 32 unknown size that should support addition of large numbers of items, and 33 removal as well, and is used only at type-insertion time and during 34 linking. 35 36 - ctf_dynset_* is an interface to a dynamically-expanding hash that contains 37 only keys: no values. 38 39 These can be implemented by the same underlying hashmap if you wish. */ 40 41 /* The helem is used for general key/value mappings in both the ctf_hash and 42 ctf_dynhash: the owner may not have space allocated for it, and will be 43 garbage (not NULL!) in that case. */ 44 45 typedef struct ctf_helem 46 { 47 void *key; /* Either a pointer, or a coerced ctf_id_t. */ 48 void *value; /* The value (possibly a coerced int). */ 49 ctf_dynhash_t *owner; /* The hash that owns us. */ 50 } ctf_helem_t; 51 52 /* Equally, the key_free and value_free may not exist. */ 53 54 struct ctf_dynhash 55 { 56 struct htab *htab; 57 ctf_hash_free_fun key_free; 58 ctf_hash_free_fun value_free; 59 }; 60 61 /* Hash and eq functions for the dynhash and hash. */ 62 63 unsigned int 64 ctf_hash_integer (const void *ptr) 65 { 66 ctf_helem_t *hep = (ctf_helem_t *) ptr; 67 68 return htab_hash_pointer (hep->key); 69 } 70 71 int 72 ctf_hash_eq_integer (const void *a, const void *b) 73 { 74 ctf_helem_t *hep_a = (ctf_helem_t *) a; 75 ctf_helem_t *hep_b = (ctf_helem_t *) b; 76 77 return htab_eq_pointer (hep_a->key, hep_b->key); 78 } 79 80 unsigned int 81 ctf_hash_string (const void *ptr) 82 { 83 ctf_helem_t *hep = (ctf_helem_t *) ptr; 84 85 return htab_hash_string (hep->key); 86 } 87 88 int 89 ctf_hash_eq_string (const void *a, const void *b) 90 { 91 ctf_helem_t *hep_a = (ctf_helem_t *) a; 92 ctf_helem_t *hep_b = (ctf_helem_t *) b; 93 94 return !strcmp((const char *) hep_a->key, (const char *) hep_b->key); 95 } 96 97 /* Hash a type_key. */ 98 unsigned int 99 ctf_hash_type_key (const void *ptr) 100 { 101 ctf_helem_t *hep = (ctf_helem_t *) ptr; 102 ctf_link_type_key_t *k = (ctf_link_type_key_t *) hep->key; 103 104 return htab_hash_pointer (k->cltk_fp) + 59 105 * htab_hash_pointer ((void *) (uintptr_t) k->cltk_idx); 106 } 107 108 int 109 ctf_hash_eq_type_key (const void *a, const void *b) 110 { 111 ctf_helem_t *hep_a = (ctf_helem_t *) a; 112 ctf_helem_t *hep_b = (ctf_helem_t *) b; 113 ctf_link_type_key_t *key_a = (ctf_link_type_key_t *) hep_a->key; 114 ctf_link_type_key_t *key_b = (ctf_link_type_key_t *) hep_b->key; 115 116 return (key_a->cltk_fp == key_b->cltk_fp) 117 && (key_a->cltk_idx == key_b->cltk_idx); 118 } 119 120 /* Hash a type_id_key. */ 121 unsigned int 122 ctf_hash_type_id_key (const void *ptr) 123 { 124 ctf_helem_t *hep = (ctf_helem_t *) ptr; 125 ctf_type_id_key_t *k = (ctf_type_id_key_t *) hep->key; 126 127 return htab_hash_pointer ((void *) (uintptr_t) k->ctii_input_num) 128 + 59 * htab_hash_pointer ((void *) (uintptr_t) k->ctii_type); 129 } 130 131 int 132 ctf_hash_eq_type_id_key (const void *a, const void *b) 133 { 134 ctf_helem_t *hep_a = (ctf_helem_t *) a; 135 ctf_helem_t *hep_b = (ctf_helem_t *) b; 136 ctf_type_id_key_t *key_a = (ctf_type_id_key_t *) hep_a->key; 137 ctf_type_id_key_t *key_b = (ctf_type_id_key_t *) hep_b->key; 138 139 return (key_a->ctii_input_num == key_b->ctii_input_num) 140 && (key_a->ctii_type == key_b->ctii_type); 141 } 142 143 /* Hash and eq functions for the dynset. Most of these can just use the 144 underlying hashtab functions directly. */ 145 146 int 147 ctf_dynset_eq_string (const void *a, const void *b) 148 { 149 return !strcmp((const char *) a, (const char *) b); 150 } 151 152 /* The dynhash, used for hashes whose size is not known at creation time. */ 153 154 /* Free a single ctf_helem with arbitrary key/value functions. */ 155 156 static void 157 ctf_dynhash_item_free (void *item) 158 { 159 ctf_helem_t *helem = item; 160 161 if (helem->owner->key_free && helem->key) 162 helem->owner->key_free (helem->key); 163 if (helem->owner->value_free && helem->value) 164 helem->owner->value_free (helem->value); 165 free (helem); 166 } 167 168 ctf_dynhash_t * 169 ctf_dynhash_create (ctf_hash_fun hash_fun, ctf_hash_eq_fun eq_fun, 170 ctf_hash_free_fun key_free, ctf_hash_free_fun value_free) 171 { 172 ctf_dynhash_t *dynhash; 173 htab_del del = ctf_dynhash_item_free; 174 175 if (key_free || value_free) 176 dynhash = malloc (sizeof (ctf_dynhash_t)); 177 else 178 dynhash = malloc (offsetof (ctf_dynhash_t, key_free)); 179 if (!dynhash) 180 return NULL; 181 182 if (key_free == NULL && value_free == NULL) 183 del = free; 184 185 /* 7 is arbitrary and untested for now. */ 186 if ((dynhash->htab = htab_create_alloc (7, (htab_hash) hash_fun, eq_fun, 187 del, xcalloc, free)) == NULL) 188 { 189 free (dynhash); 190 return NULL; 191 } 192 193 if (key_free || value_free) 194 { 195 dynhash->key_free = key_free; 196 dynhash->value_free = value_free; 197 } 198 199 return dynhash; 200 } 201 202 static ctf_helem_t ** 203 ctf_hashtab_lookup (struct htab *htab, const void *key, enum insert_option insert) 204 { 205 ctf_helem_t tmp = { .key = (void *) key }; 206 return (ctf_helem_t **) htab_find_slot (htab, &tmp, insert); 207 } 208 209 static ctf_helem_t * 210 ctf_hashtab_insert (struct htab *htab, void *key, void *value, 211 ctf_hash_free_fun key_free, 212 ctf_hash_free_fun value_free) 213 { 214 ctf_helem_t **slot; 215 216 slot = ctf_hashtab_lookup (htab, key, INSERT); 217 218 if (!slot) 219 { 220 errno = ENOMEM; 221 return NULL; 222 } 223 224 if (!*slot) 225 { 226 /* Only spend space on the owner if we're going to use it: if there is a 227 key or value freeing function. */ 228 if (key_free || value_free) 229 *slot = malloc (sizeof (ctf_helem_t)); 230 else 231 *slot = malloc (offsetof (ctf_helem_t, owner)); 232 if (!*slot) 233 return NULL; 234 (*slot)->key = key; 235 } 236 else 237 { 238 if (key_free) 239 key_free (key); 240 if (value_free) 241 value_free ((*slot)->value); 242 } 243 (*slot)->value = value; 244 return *slot; 245 } 246 247 int 248 ctf_dynhash_insert (ctf_dynhash_t *hp, void *key, void *value) 249 { 250 ctf_helem_t *slot; 251 ctf_hash_free_fun key_free = NULL, value_free = NULL; 252 253 if (hp->htab->del_f == ctf_dynhash_item_free) 254 { 255 key_free = hp->key_free; 256 value_free = hp->value_free; 257 } 258 slot = ctf_hashtab_insert (hp->htab, key, value, 259 key_free, value_free); 260 261 if (!slot) 262 return errno; 263 264 /* Keep track of the owner, so that the del function can get at the key_free 265 and value_free functions. Only do this if one of those functions is set: 266 if not, the owner is not even present in the helem. */ 267 268 if (key_free || value_free) 269 slot->owner = hp; 270 271 return 0; 272 } 273 274 void 275 ctf_dynhash_remove (ctf_dynhash_t *hp, const void *key) 276 { 277 ctf_helem_t hep = { (void *) key, NULL, NULL }; 278 htab_remove_elt (hp->htab, &hep); 279 } 280 281 void 282 ctf_dynhash_empty (ctf_dynhash_t *hp) 283 { 284 htab_empty (hp->htab); 285 } 286 287 size_t 288 ctf_dynhash_elements (ctf_dynhash_t *hp) 289 { 290 return htab_elements (hp->htab); 291 } 292 293 void * 294 ctf_dynhash_lookup (ctf_dynhash_t *hp, const void *key) 295 { 296 ctf_helem_t **slot; 297 298 slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT); 299 300 if (slot) 301 return (*slot)->value; 302 303 return NULL; 304 } 305 306 /* TRUE/FALSE return. */ 307 int 308 ctf_dynhash_lookup_kv (ctf_dynhash_t *hp, const void *key, 309 const void **orig_key, void **value) 310 { 311 ctf_helem_t **slot; 312 313 slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT); 314 315 if (slot) 316 { 317 if (orig_key) 318 *orig_key = (*slot)->key; 319 if (value) 320 *value = (*slot)->value; 321 return 1; 322 } 323 return 0; 324 } 325 326 typedef struct ctf_traverse_cb_arg 327 { 328 ctf_hash_iter_f fun; 329 void *arg; 330 } ctf_traverse_cb_arg_t; 331 332 static int 333 ctf_hashtab_traverse (void **slot, void *arg_) 334 { 335 ctf_helem_t *helem = *((ctf_helem_t **) slot); 336 ctf_traverse_cb_arg_t *arg = (ctf_traverse_cb_arg_t *) arg_; 337 338 arg->fun (helem->key, helem->value, arg->arg); 339 return 1; 340 } 341 342 void 343 ctf_dynhash_iter (ctf_dynhash_t *hp, ctf_hash_iter_f fun, void *arg_) 344 { 345 ctf_traverse_cb_arg_t arg = { fun, arg_ }; 346 htab_traverse (hp->htab, ctf_hashtab_traverse, &arg); 347 } 348 349 typedef struct ctf_traverse_find_cb_arg 350 { 351 ctf_hash_iter_find_f fun; 352 void *arg; 353 void *found_key; 354 } ctf_traverse_find_cb_arg_t; 355 356 static int 357 ctf_hashtab_traverse_find (void **slot, void *arg_) 358 { 359 ctf_helem_t *helem = *((ctf_helem_t **) slot); 360 ctf_traverse_find_cb_arg_t *arg = (ctf_traverse_find_cb_arg_t *) arg_; 361 362 if (arg->fun (helem->key, helem->value, arg->arg)) 363 { 364 arg->found_key = helem->key; 365 return 0; 366 } 367 return 1; 368 } 369 370 void * 371 ctf_dynhash_iter_find (ctf_dynhash_t *hp, ctf_hash_iter_find_f fun, void *arg_) 372 { 373 ctf_traverse_find_cb_arg_t arg = { fun, arg_, NULL }; 374 htab_traverse (hp->htab, ctf_hashtab_traverse_find, &arg); 375 return arg.found_key; 376 } 377 378 typedef struct ctf_traverse_remove_cb_arg 379 { 380 struct htab *htab; 381 ctf_hash_iter_remove_f fun; 382 void *arg; 383 } ctf_traverse_remove_cb_arg_t; 384 385 static int 386 ctf_hashtab_traverse_remove (void **slot, void *arg_) 387 { 388 ctf_helem_t *helem = *((ctf_helem_t **) slot); 389 ctf_traverse_remove_cb_arg_t *arg = (ctf_traverse_remove_cb_arg_t *) arg_; 390 391 if (arg->fun (helem->key, helem->value, arg->arg)) 392 htab_clear_slot (arg->htab, slot); 393 return 1; 394 } 395 396 void 397 ctf_dynhash_iter_remove (ctf_dynhash_t *hp, ctf_hash_iter_remove_f fun, 398 void *arg_) 399 { 400 ctf_traverse_remove_cb_arg_t arg = { hp->htab, fun, arg_ }; 401 htab_traverse (hp->htab, ctf_hashtab_traverse_remove, &arg); 402 } 403 404 /* Traverse a dynhash in arbitrary order, in _next iterator form. 405 406 Mutating the dynhash while iterating is not supported (just as it isn't for 407 htab_traverse). 408 409 Note: unusually, this returns zero on success and a *positive* value on 410 error, because it does not take an fp, taking an error pointer would be 411 incredibly clunky, and nearly all error-handling ends up stuffing the result 412 of this into some sort of errno or ctf_errno, which is invariably 413 positive. So doing this simplifies essentially all callers. */ 414 int 415 ctf_dynhash_next (ctf_dynhash_t *h, ctf_next_t **it, void **key, void **value) 416 { 417 ctf_next_t *i = *it; 418 ctf_helem_t *slot; 419 420 if (!i) 421 { 422 size_t size = htab_size (h->htab); 423 424 /* If the table has too many entries to fit in an ssize_t, just give up. 425 This might be spurious, but if any type-related hashtable has ever been 426 nearly as large as that then something very odd is going on. */ 427 if (((ssize_t) size) < 0) 428 return EDOM; 429 430 if ((i = ctf_next_create ()) == NULL) 431 return ENOMEM; 432 433 i->u.ctn_hash_slot = h->htab->entries; 434 i->cu.ctn_h = h; 435 i->ctn_n = 0; 436 i->ctn_size = (ssize_t) size; 437 i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next; 438 *it = i; 439 } 440 441 if ((void (*) (void)) ctf_dynhash_next != i->ctn_iter_fun) 442 return ECTF_NEXT_WRONGFUN; 443 444 if (h != i->cu.ctn_h) 445 return ECTF_NEXT_WRONGFP; 446 447 if ((ssize_t) i->ctn_n == i->ctn_size) 448 goto hash_end; 449 450 while ((ssize_t) i->ctn_n < i->ctn_size 451 && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY 452 || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY)) 453 { 454 i->u.ctn_hash_slot++; 455 i->ctn_n++; 456 } 457 458 if ((ssize_t) i->ctn_n == i->ctn_size) 459 goto hash_end; 460 461 slot = *i->u.ctn_hash_slot; 462 463 if (key) 464 *key = slot->key; 465 if (value) 466 *value = slot->value; 467 468 i->u.ctn_hash_slot++; 469 i->ctn_n++; 470 471 return 0; 472 473 hash_end: 474 ctf_next_destroy (i); 475 *it = NULL; 476 return ECTF_NEXT_END; 477 } 478 479 /* Traverse a sorted dynhash, in _next iterator form. 480 481 See ctf_dynhash_next for notes on error returns, etc. 482 483 Sort keys before iterating over them using the SORT_FUN and SORT_ARG. 484 485 If SORT_FUN is null, thunks to ctf_dynhash_next. */ 486 int 487 ctf_dynhash_next_sorted (ctf_dynhash_t *h, ctf_next_t **it, void **key, 488 void **value, ctf_hash_sort_f sort_fun, void *sort_arg) 489 { 490 ctf_next_t *i = *it; 491 492 if (sort_fun == NULL) 493 return ctf_dynhash_next (h, it, key, value); 494 495 if (!i) 496 { 497 size_t els = ctf_dynhash_elements (h); 498 ctf_next_t *accum_i = NULL; 499 void *key, *value; 500 int err; 501 ctf_next_hkv_t *walk; 502 503 if (((ssize_t) els) < 0) 504 return EDOM; 505 506 if ((i = ctf_next_create ()) == NULL) 507 return ENOMEM; 508 509 if ((i->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL) 510 { 511 ctf_next_destroy (i); 512 return ENOMEM; 513 } 514 walk = i->u.ctn_sorted_hkv; 515 516 i->cu.ctn_h = h; 517 518 while ((err = ctf_dynhash_next (h, &accum_i, &key, &value)) == 0) 519 { 520 walk->hkv_key = key; 521 walk->hkv_value = value; 522 walk++; 523 } 524 if (err != ECTF_NEXT_END) 525 { 526 ctf_next_destroy (i); 527 return err; 528 } 529 530 if (sort_fun) 531 ctf_qsort_r (i->u.ctn_sorted_hkv, els, sizeof (ctf_next_hkv_t), 532 (int (*) (const void *, const void *, void *)) sort_fun, 533 sort_arg); 534 i->ctn_n = 0; 535 i->ctn_size = (ssize_t) els; 536 i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next_sorted; 537 *it = i; 538 } 539 540 if ((void (*) (void)) ctf_dynhash_next_sorted != i->ctn_iter_fun) 541 return ECTF_NEXT_WRONGFUN; 542 543 if (h != i->cu.ctn_h) 544 return ECTF_NEXT_WRONGFP; 545 546 if ((ssize_t) i->ctn_n == i->ctn_size) 547 { 548 ctf_next_destroy (i); 549 *it = NULL; 550 return ECTF_NEXT_END; 551 } 552 553 if (key) 554 *key = i->u.ctn_sorted_hkv[i->ctn_n].hkv_key; 555 if (value) 556 *value = i->u.ctn_sorted_hkv[i->ctn_n].hkv_value; 557 i->ctn_n++; 558 return 0; 559 } 560 561 void 562 ctf_dynhash_destroy (ctf_dynhash_t *hp) 563 { 564 if (hp != NULL) 565 htab_delete (hp->htab); 566 free (hp); 567 } 568 569 /* The dynset, used for sets of keys with no value. The implementation of this 570 can be much simpler, because without a value the slot can simply be the 571 stored key, which means we don't need to store the freeing functions and the 572 dynset itself is just a htab. */ 573 574 ctf_dynset_t * 575 ctf_dynset_create (htab_hash hash_fun, htab_eq eq_fun, 576 ctf_hash_free_fun key_free) 577 { 578 /* 7 is arbitrary and untested for now. */ 579 return (ctf_dynset_t *) htab_create_alloc (7, (htab_hash) hash_fun, eq_fun, 580 key_free, xcalloc, free); 581 } 582 583 /* The dynset has one complexity: the underlying implementation reserves two 584 values for internal hash table implementation details (empty versus deleted 585 entries). These values are otherwise very useful for pointers cast to ints, 586 so transform the ctf_dynset_inserted value to allow for it. (This 587 introduces an ambiguity in that one can no longer store these two values in 588 the dynset, but if we pick high enough values this is very unlikely to be a 589 problem.) 590 591 We leak this implementation detail to the freeing functions on the grounds 592 that any use of these functions is overwhelmingly likely to be in sets using 593 real pointers, which will be unaffected. */ 594 595 #define DYNSET_EMPTY_ENTRY_REPLACEMENT ((void *) (uintptr_t) -64) 596 #define DYNSET_DELETED_ENTRY_REPLACEMENT ((void *) (uintptr_t) -63) 597 598 static void * 599 key_to_internal (const void *key) 600 { 601 if (key == HTAB_EMPTY_ENTRY) 602 return DYNSET_EMPTY_ENTRY_REPLACEMENT; 603 else if (key == HTAB_DELETED_ENTRY) 604 return DYNSET_DELETED_ENTRY_REPLACEMENT; 605 606 return (void *) key; 607 } 608 609 static void * 610 internal_to_key (const void *internal) 611 { 612 if (internal == DYNSET_EMPTY_ENTRY_REPLACEMENT) 613 return HTAB_EMPTY_ENTRY; 614 else if (internal == DYNSET_DELETED_ENTRY_REPLACEMENT) 615 return HTAB_DELETED_ENTRY; 616 return (void *) internal; 617 } 618 619 int 620 ctf_dynset_insert (ctf_dynset_t *hp, void *key) 621 { 622 struct htab *htab = (struct htab *) hp; 623 void **slot; 624 625 slot = htab_find_slot (htab, key, INSERT); 626 627 if (!slot) 628 { 629 errno = ENOMEM; 630 return -errno; 631 } 632 633 if (*slot) 634 { 635 if (htab->del_f) 636 (*htab->del_f) (*slot); 637 } 638 639 *slot = key_to_internal (key); 640 641 return 0; 642 } 643 644 void 645 ctf_dynset_remove (ctf_dynset_t *hp, const void *key) 646 { 647 htab_remove_elt ((struct htab *) hp, key_to_internal (key)); 648 } 649 650 void 651 ctf_dynset_destroy (ctf_dynset_t *hp) 652 { 653 if (hp != NULL) 654 htab_delete ((struct htab *) hp); 655 } 656 657 void * 658 ctf_dynset_lookup (ctf_dynset_t *hp, const void *key) 659 { 660 void **slot = htab_find_slot ((struct htab *) hp, 661 key_to_internal (key), NO_INSERT); 662 663 if (slot) 664 return internal_to_key (*slot); 665 return NULL; 666 } 667 668 /* TRUE/FALSE return. */ 669 int 670 ctf_dynset_exists (ctf_dynset_t *hp, const void *key, const void **orig_key) 671 { 672 void **slot = htab_find_slot ((struct htab *) hp, 673 key_to_internal (key), NO_INSERT); 674 675 if (orig_key && slot) 676 *orig_key = internal_to_key (*slot); 677 return (slot != NULL); 678 } 679 680 /* Look up a completely random value from the set, if any exist. 681 Keys with value zero cannot be distinguished from a nonexistent key. */ 682 void * 683 ctf_dynset_lookup_any (ctf_dynset_t *hp) 684 { 685 struct htab *htab = (struct htab *) hp; 686 void **slot = htab->entries; 687 void **limit = slot + htab_size (htab); 688 689 while (slot < limit 690 && (*slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)) 691 slot++; 692 693 if (slot < limit) 694 return internal_to_key (*slot); 695 return NULL; 696 } 697 698 /* Traverse a dynset in arbitrary order, in _next iterator form. 699 700 Otherwise, just like ctf_dynhash_next. */ 701 int 702 ctf_dynset_next (ctf_dynset_t *hp, ctf_next_t **it, void **key) 703 { 704 struct htab *htab = (struct htab *) hp; 705 ctf_next_t *i = *it; 706 void *slot; 707 708 if (!i) 709 { 710 size_t size = htab_size (htab); 711 712 /* If the table has too many entries to fit in an ssize_t, just give up. 713 This might be spurious, but if any type-related hashtable has ever been 714 nearly as large as that then somthing very odd is going on. */ 715 716 if (((ssize_t) size) < 0) 717 return EDOM; 718 719 if ((i = ctf_next_create ()) == NULL) 720 return ENOMEM; 721 722 i->u.ctn_hash_slot = htab->entries; 723 i->cu.ctn_s = hp; 724 i->ctn_n = 0; 725 i->ctn_size = (ssize_t) size; 726 i->ctn_iter_fun = (void (*) (void)) ctf_dynset_next; 727 *it = i; 728 } 729 730 if ((void (*) (void)) ctf_dynset_next != i->ctn_iter_fun) 731 return ECTF_NEXT_WRONGFUN; 732 733 if (hp != i->cu.ctn_s) 734 return ECTF_NEXT_WRONGFP; 735 736 if ((ssize_t) i->ctn_n == i->ctn_size) 737 goto set_end; 738 739 while ((ssize_t) i->ctn_n < i->ctn_size 740 && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY 741 || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY)) 742 { 743 i->u.ctn_hash_slot++; 744 i->ctn_n++; 745 } 746 747 if ((ssize_t) i->ctn_n == i->ctn_size) 748 goto set_end; 749 750 slot = *i->u.ctn_hash_slot; 751 752 if (key) 753 *key = internal_to_key (slot); 754 755 i->u.ctn_hash_slot++; 756 i->ctn_n++; 757 758 return 0; 759 760 set_end: 761 ctf_next_destroy (i); 762 *it = NULL; 763 return ECTF_NEXT_END; 764 } 765 766 /* ctf_hash, used for fixed-size maps from const char * -> ctf_id_t without 767 removal. This is a straight cast of a hashtab. */ 768 769 ctf_hash_t * 770 ctf_hash_create (unsigned long nelems, ctf_hash_fun hash_fun, 771 ctf_hash_eq_fun eq_fun) 772 { 773 return (ctf_hash_t *) htab_create_alloc (nelems, (htab_hash) hash_fun, 774 eq_fun, free, xcalloc, free); 775 } 776 777 uint32_t 778 ctf_hash_size (const ctf_hash_t *hp) 779 { 780 return htab_elements ((struct htab *) hp); 781 } 782 783 int 784 ctf_hash_insert_type (ctf_hash_t *hp, ctf_file_t *fp, uint32_t type, 785 uint32_t name) 786 { 787 const char *str = ctf_strraw (fp, name); 788 789 if (type == 0) 790 return EINVAL; 791 792 if (str == NULL 793 && CTF_NAME_STID (name) == CTF_STRTAB_1 794 && fp->ctf_syn_ext_strtab == NULL 795 && fp->ctf_str[CTF_NAME_STID (name)].cts_strs == NULL) 796 return ECTF_STRTAB; 797 798 if (str == NULL) 799 return ECTF_BADNAME; 800 801 if (str[0] == '\0') 802 return 0; /* Just ignore empty strings on behalf of caller. */ 803 804 if (ctf_hashtab_insert ((struct htab *) hp, (char *) str, 805 (void *) (ptrdiff_t) type, NULL, NULL) != NULL) 806 return 0; 807 return errno; 808 } 809 810 /* if the key is already in the hash, override the previous definition with 811 this new official definition. If the key is not present, then call 812 ctf_hash_insert_type and hash it in. */ 813 int 814 ctf_hash_define_type (ctf_hash_t *hp, ctf_file_t *fp, uint32_t type, 815 uint32_t name) 816 { 817 /* This matches the semantics of ctf_hash_insert_type in this 818 implementation anyway. */ 819 820 return ctf_hash_insert_type (hp, fp, type, name); 821 } 822 823 ctf_id_t 824 ctf_hash_lookup_type (ctf_hash_t *hp, ctf_file_t *fp __attribute__ ((__unused__)), 825 const char *key) 826 { 827 ctf_helem_t **slot; 828 829 slot = ctf_hashtab_lookup ((struct htab *) hp, key, NO_INSERT); 830 831 if (slot) 832 return (ctf_id_t) (uintptr_t) ((*slot)->value); 833 834 return 0; 835 } 836 837 void 838 ctf_hash_destroy (ctf_hash_t *hp) 839 { 840 if (hp != NULL) 841 htab_delete ((struct htab *) hp); 842 } 843