xref: /netbsd-src/external/gpl3/gdb/dist/include/ctf-api.h (revision 32d1c65c71fbdb65a012e8392a62a757dd6853e9)
1 /* Public API to libctf.
2    Copyright (C) 2019-2024 Free Software Foundation, Inc.
3 
4    This file is part of libctf.
5 
6    libctf is free software; you can redistribute it and/or modify it under
7    the terms of the GNU General Public License as published by the Free
8    Software Foundation; either version 3, or (at your option) any later
9    version.
10 
11    This program is distributed in the hope that it will be useful, but
12    WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14    See the GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; see the file COPYING.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 /* This header file defines the interfaces available from the CTF debugger
21    library, libctf.  This API can be used by a debugger to operate on data in
22    the Compact ANSI-C Type Format (CTF).  */
23 
24 #ifndef	_CTF_API_H
25 #define	_CTF_API_H
26 
27 #include <sys/types.h>
28 #include <ctf.h>
29 #include <zlib.h>
30 
31 #ifdef	__cplusplus
32 extern "C"
33 {
34 #endif
35 
36 /* Clients can open one or more CTF containers and obtain a pointer to an
37    opaque ctf_dict_t.  Types are identified by an opaque ctf_id_t token.
38    They can also open or create read-only archives of CTF containers in a
39    ctf_archive_t.
40 
41    These opaque definitions allow libctf to evolve without breaking clients.  */
42 
43 typedef struct ctf_dict ctf_dict_t;
44 typedef struct ctf_archive_internal ctf_archive_t;
45 typedef unsigned long ctf_id_t;
46 
47 /* This opaque definition allows libctf to accept BFD data structures without
48    importing all the BFD noise into users' namespaces.  */
49 
50 struct bfd;
51 
52 /* If the debugger needs to provide the CTF library with a set of raw buffers
53    for use as the CTF data, symbol table, and string table, it can do so by
54    filling in ctf_sect_t structures and passing them to ctf_bufopen.
55 
56    The contents of this structure must always be in native endianness.  At read
57    time, the symbol table endianness is derived from the BFD target (if BFD is
58    in use): if a BFD target is not in use, please call ctf_symsect_endianness or
59    ctf_arc_symsect_endianness.  */
60 
61 typedef struct ctf_sect
62 {
63   const char *cts_name;		  /* Section name (if any).  */
64   const void *cts_data;		  /* Pointer to section data.  */
65   size_t cts_size;		  /* Size of data in bytes.  */
66   size_t cts_entsize;		  /* Size of each section entry (symtab only).  */
67 } ctf_sect_t;
68 
69 /* A minimal symbol extracted from a linker's internal symbol table
70    representation.  The symbol name can be given either via st_name or via a
71    strtab offset in st_nameidx, which corresponds to one of the string offsets
72    communicated via the ctf_link_add_strtab callback.   */
73 
74 typedef struct ctf_link_sym
75 {
76   /* The st_name and st_nameidx will not be accessed outside the call to
77      ctf_link_shuffle_syms.  If you set st_nameidx to offset zero, make sure
78      to set st_nameidx_set as well.  */
79 
80   const char *st_name;
81   size_t st_nameidx;
82   int st_nameidx_set;
83   uint32_t st_symidx;
84   uint32_t st_shndx;
85   uint32_t st_type;
86   uint32_t st_value;
87 } ctf_link_sym_t;
88 
89 /* Flags applying to this specific link.  */
90 
91 /* Share all types that are not in conflict.  The default.  */
92 #define CTF_LINK_SHARE_UNCONFLICTED 0x0
93 
94 /* Share only types that are used by multiple inputs.  */
95 #define CTF_LINK_SHARE_DUPLICATED 0x1
96 
97 /* Do a nondeduplicating link, or otherwise deduplicate "less hard", trading off
98    CTF output size for link time.  */
99 #define CTF_LINK_NONDEDUP 0x2
100 
101 /* Create empty outputs for all registered CU mappings even if no types are
102    emitted into them.  */
103 #define CTF_LINK_EMPTY_CU_MAPPINGS 0x4
104 
105 /* Omit the content of the variables section.  */
106 #define CTF_LINK_OMIT_VARIABLES_SECTION 0x8
107 
108 /* If *unset*, filter out entries corresponding to linker-reported symbols
109    from the variable section, and filter out all entries with no linker-reported
110    symbols from the data object and function info sections: if set, do no
111    filtering and leave all entries in place.  (This is a negative-sense flag
112    because it is rare to want symbols the linker has not reported as present to
113    stick around in the symtypetab sections nonetheless: relocatable links are
114    the only likely case.)  */
115 #define CTF_LINK_NO_FILTER_REPORTED_SYMS 0x10
116 
117 /* Symbolic names for CTF sections.  */
118 
119 typedef enum ctf_sect_names
120   {
121    CTF_SECT_HEADER,
122    CTF_SECT_LABEL,
123    CTF_SECT_OBJT,
124    CTF_SECT_OBJTIDX = CTF_SECT_OBJT,
125    CTF_SECT_FUNC,
126    CTF_SECT_FUNCIDX = CTF_SECT_FUNC,
127    CTF_SECT_VAR,
128    CTF_SECT_TYPE,
129    CTF_SECT_STR
130   } ctf_sect_names_t;
131 
132 /* Encoding information for integers, floating-point values, and certain other
133    intrinsics can be obtained by calling ctf_type_encoding, below.  The flags
134    field will contain values appropriate for the type defined in <ctf.h>.  */
135 
136 typedef struct ctf_encoding
137 {
138   uint32_t cte_format;		 /* Data format (CTF_INT_* or CTF_FP_* flags).  */
139   uint32_t cte_offset;		 /* Offset of value in bits.  */
140   uint32_t cte_bits;		 /* Size of storage in bits.  */
141 } ctf_encoding_t;
142 
143 typedef struct ctf_membinfo
144 {
145   ctf_id_t ctm_type;		/* Type of struct or union member.  */
146   unsigned long ctm_offset;	/* Offset of member in bits.  */
147 } ctf_membinfo_t;
148 
149 typedef struct ctf_arinfo
150 {
151   ctf_id_t ctr_contents;	/* Type of array contents.  */
152   ctf_id_t ctr_index;		/* Type of array index.  */
153   uint32_t ctr_nelems;		/* Number of elements.  */
154 } ctf_arinfo_t;
155 
156 typedef struct ctf_funcinfo
157 {
158   ctf_id_t ctc_return;		/* Function return type.  */
159   uint32_t ctc_argc;		/* Number of typed arguments to function.  */
160   uint32_t ctc_flags;		/* Function attributes (see below).  */
161 } ctf_funcinfo_t;
162 
163 typedef struct ctf_lblinfo
164 {
165   ctf_id_t ctb_type;		/* Last type associated with the label.  */
166 } ctf_lblinfo_t;
167 
168 typedef struct ctf_snapshot_id
169 {
170   unsigned long dtd_id;		/* Highest DTD ID at time of snapshot.  */
171   unsigned long snapshot_id;	/* Snapshot id at time of snapshot.  */
172 } ctf_snapshot_id_t;
173 
174 #define	CTF_FUNC_VARARG	0x1	/* Function arguments end with varargs.  */
175 
176 /* Functions that return a ctf_id_t use the following value to indicate failure.
177    ctf_errno can be used to obtain an error code.  Functions that return
178    a straight integral -1 also use ctf_errno.  */
179 #define	CTF_ERR	((ctf_id_t) -1L)
180 
181 /* This macro holds information about all the available ctf errors.
182    It is used to form both an enum holding all the error constants,
183    and also the error strings themselves.  To use, define _CTF_FIRST
184    and _CTF_ITEM to expand as you like, then mention the macro name.
185    See the enum after this for an example.  */
186 #define _CTF_ERRORS \
187   _CTF_FIRST (ECTF_FMT, "File is not in CTF or ELF format.")	\
188   _CTF_ITEM (ECTF_BFDERR, "BFD error.")				\
189   _CTF_ITEM (ECTF_CTFVERS, "CTF dict version is too new for libctf.") \
190   _CTF_ITEM (ECTF_BFD_AMBIGUOUS, "Ambiguous BFD target.")	\
191   _CTF_ITEM (ECTF_SYMTAB, "Symbol table uses invalid entry size.") \
192   _CTF_ITEM (ECTF_SYMBAD, "Symbol table data buffer is not valid.") \
193   _CTF_ITEM (ECTF_STRBAD, "String table data buffer is not valid.") \
194   _CTF_ITEM (ECTF_CORRUPT, "File data structure corruption detected.") \
195   _CTF_ITEM (ECTF_NOCTFDATA, "File does not contain CTF data.") \
196   _CTF_ITEM (ECTF_NOCTFBUF, "Buffer does not contain CTF data.") \
197   _CTF_ITEM (ECTF_NOSYMTAB, "Symbol table information is not available.") \
198   _CTF_ITEM (ECTF_NOPARENT, "The parent CTF dictionary is unavailable.") \
199   _CTF_ITEM (ECTF_DMODEL, "Data model mismatch.") \
200   _CTF_ITEM (ECTF_LINKADDEDLATE, "File added to link too late.") \
201   _CTF_ITEM (ECTF_ZALLOC, "Failed to allocate (de)compression buffer.") \
202   _CTF_ITEM (ECTF_DECOMPRESS, "Failed to decompress CTF data.") \
203   _CTF_ITEM (ECTF_STRTAB, "External string table is not available.") \
204   _CTF_ITEM (ECTF_BADNAME, "String name offset is corrupt.") \
205   _CTF_ITEM (ECTF_BADID, "Invalid type identifier.") \
206   _CTF_ITEM (ECTF_NOTSOU, "Type is not a struct or union.") \
207   _CTF_ITEM (ECTF_NOTENUM, "Type is not an enum.") \
208   _CTF_ITEM (ECTF_NOTSUE, "Type is not a struct, union, or enum.") \
209   _CTF_ITEM (ECTF_NOTINTFP, "Type is not an integer, float, or enum.") \
210   _CTF_ITEM (ECTF_NOTARRAY, "Type is not an array.") \
211   _CTF_ITEM (ECTF_NOTREF, "Type does not reference another type.") \
212   _CTF_ITEM (ECTF_NAMELEN, "Buffer is too small to hold type name.") \
213   _CTF_ITEM (ECTF_NOTYPE, "No type found corresponding to name.") \
214   _CTF_ITEM (ECTF_SYNTAX, "Syntax error in type name.") \
215   _CTF_ITEM (ECTF_NOTFUNC, "Symbol table entry or type is not a function.") \
216   _CTF_ITEM (ECTF_NOFUNCDAT, "No function information available for function.") \
217   _CTF_ITEM (ECTF_NOTDATA, "Symbol table entry does not refer to a data object.") \
218   _CTF_ITEM (ECTF_NOTYPEDAT, "No type information available for symbol.") \
219   _CTF_ITEM (ECTF_NOLABEL, "No label found corresponding to name.") \
220   _CTF_ITEM (ECTF_NOLABELDATA, "File does not contain any labels.") \
221   _CTF_ITEM (ECTF_NOTSUP, "Feature not supported.") \
222   _CTF_ITEM (ECTF_NOENUMNAM, "Enum element name not found.") \
223   _CTF_ITEM (ECTF_NOMEMBNAM, "Member name not found.") \
224   _CTF_ITEM (ECTF_RDONLY, "CTF container is read-only.") \
225   _CTF_ITEM (ECTF_DTFULL, "CTF type is full (no more members allowed).") \
226   _CTF_ITEM (ECTF_FULL, "CTF container is full.") \
227   _CTF_ITEM (ECTF_DUPLICATE, "Duplicate member or variable name.") \
228   _CTF_ITEM (ECTF_CONFLICT, "Conflicting type is already defined.") \
229   _CTF_ITEM (ECTF_OVERROLLBACK, "Attempt to roll back past a ctf_update.") \
230   _CTF_ITEM (ECTF_COMPRESS, "Failed to compress CTF data.") \
231   _CTF_ITEM (ECTF_ARCREATE, "Error creating CTF archive.") \
232   _CTF_ITEM (ECTF_ARNNAME, "Name not found in CTF archive.") \
233   _CTF_ITEM (ECTF_SLICEOVERFLOW, "Overflow of type bitness or offset in slice.") \
234   _CTF_ITEM (ECTF_DUMPSECTUNKNOWN, "Unknown section number in dump.") \
235   _CTF_ITEM (ECTF_DUMPSECTCHANGED, "Section changed in middle of dump.") \
236   _CTF_ITEM (ECTF_NOTYET, "Feature not yet implemented.") \
237   _CTF_ITEM (ECTF_INTERNAL, "Internal error: assertion failure.") \
238   _CTF_ITEM (ECTF_NONREPRESENTABLE, "Type not representable in CTF.") \
239   _CTF_ITEM (ECTF_NEXT_END, "End of iteration.") \
240   _CTF_ITEM (ECTF_NEXT_WRONGFUN, "Wrong iteration function called.") \
241   _CTF_ITEM (ECTF_NEXT_WRONGFP, "Iteration entity changed in mid-iterate.") \
242   _CTF_ITEM (ECTF_FLAGS, "CTF header contains flags unknown to libctf.") \
243   _CTF_ITEM (ECTF_NEEDSBFD, "This feature needs a libctf with BFD support.") \
244   _CTF_ITEM (ECTF_INCOMPLETE, "Type is not a complete type.") \
245   _CTF_ITEM (ECTF_NONAME, "Type name must not be empty.")
246 
247 #define	ECTF_BASE	1000	/* Base value for libctf errnos.  */
248 
249 enum
250   {
251 #define _CTF_FIRST(NAME, STR) NAME = ECTF_BASE
252 #define _CTF_ITEM(NAME, STR) , NAME
253 _CTF_ERRORS
254 #undef _CTF_ITEM
255 #undef _CTF_FIRST
256   };
257 
258 #define ECTF_NERR (ECTF_NONAME - ECTF_BASE + 1) /* Count of CTF errors.  */
259 
260 /* The CTF data model is inferred to be the caller's data model or the data
261    model of the given object, unless ctf_setmodel is explicitly called.  */
262 #define	CTF_MODEL_ILP32 1	/* Object data model is ILP32.  */
263 #define	CTF_MODEL_LP64  2	/* Object data model is LP64.  */
264 #ifdef _LP64
265 # define CTF_MODEL_NATIVE CTF_MODEL_LP64
266 #else
267 # define CTF_MODEL_NATIVE CTF_MODEL_ILP32
268 #endif
269 
270 /* Dynamic CTF containers can be created using ctf_create.  The ctf_add_*
271    routines can be used to add new definitions to the dynamic container.
272    New types are labeled as root or non-root to determine whether they are
273    visible at the top-level program scope when subsequently doing a lookup.  */
274 
275 #define	CTF_ADD_NONROOT	0	/* Type only visible in nested scope.  */
276 #define	CTF_ADD_ROOT	1	/* Type visible at top-level scope.  */
277 
278 /* Flags for ctf_member_next.  */
279 
280 #define CTF_MN_RECURSE 0x1	/* Recurse into unnamed members.  */
281 
282 /* These typedefs are used to define the signature for callback functions that
283    can be used with the iteration and visit functions below.  There is also a
284    family of iteration functions that do not require callbacks.  */
285 
286 typedef int ctf_visit_f (const char *name, ctf_id_t type, unsigned long offset,
287 			 int depth, void *arg);
288 typedef int ctf_member_f (const char *name, ctf_id_t membtype,
289 			  unsigned long offset, void *arg);
290 typedef int ctf_enum_f (const char *name, int val, void *arg);
291 typedef int ctf_variable_f (const char *name, ctf_id_t type, void *arg);
292 typedef int ctf_type_f (ctf_id_t type, void *arg);
293 typedef int ctf_type_all_f (ctf_id_t type, int flag, void *arg);
294 typedef int ctf_label_f (const char *name, const ctf_lblinfo_t *info,
295 			 void *arg);
296 typedef int ctf_archive_member_f (ctf_dict_t *fp, const char *name, void *arg);
297 typedef int ctf_archive_raw_member_f (const char *name, const void *content,
298 				      size_t len, void *arg);
299 typedef char *ctf_dump_decorate_f (ctf_sect_names_t sect,
300 				   char *line, void *arg);
301 
302 typedef struct ctf_dump_state ctf_dump_state_t;
303 
304 /* Iteration state for the _next functions, and allocators/copiers/freers for
305    it.  (None of these are needed for the simple case of iterating to the end:
306    the _next functions allocate and free the iterators for you.)
307 
308    The _next iterators all work in similar ways: they take things to query (a
309    dict, a name, a type ID, something like that), then a ctf_next_t iterator
310    arg which must be the address of a variable whose value is NULL on first
311    call, and will be set to NULL again once iteration has completed.
312 
313    They return something important about the thing being iterated over (often a
314    type ID or a name); on end of iteration they instead return return CTF_ERR,
315    -1, or NULL and set the error ECTF_NEXT_END on the dict.  They can often
316    provide more information too: this is done via pointer parameters (e.g. the
317    membname and membtype in ctf_member_next()).  These parameters are always
318    optional and can be set to NULL if not needed.
319 
320    Errors other than end-of-iteration will return CTF_ERR/-1/NULL and set the
321    error to something other than ECTF_NEXT_END, and *not* destroy the iterator:
322    you should either recover somehow and continue iterating, or call
323    ctf_next_destroy() on it.  (You can call ctf_next_destroy() on a NULL
324    iterator, so it's safe to just unconditionally do it after iteration has
325    completed.)  */
326 
327 typedef struct ctf_next ctf_next_t;
328 extern ctf_next_t *ctf_next_create (void);
329 extern void ctf_next_destroy (ctf_next_t *);
330 extern ctf_next_t *ctf_next_copy (ctf_next_t *);
331 
332 /* Opening.  These mostly return an abstraction over both CTF files and CTF
333    archives: so they can be used to open both.  CTF files will appear to be an
334    archive with one member named '.ctf'.
335 
336    All these functions except for ctf_close use BFD and can open anything BFD
337    can open, hunting down the .ctf section for you, so are not available in the
338    libctf-nobfd flavour of the library.  If you want to provide the CTF section
339    yourself, you can do that with ctf_bfdopen_ctfsect.  */
340 
341 extern ctf_archive_t *ctf_bfdopen (struct bfd *, int *);
342 extern ctf_archive_t *ctf_bfdopen_ctfsect (struct bfd *, const ctf_sect_t *,
343 					   int *);
344 extern ctf_archive_t *ctf_fdopen (int fd, const char *filename,
345 				  const char *target, int *errp);
346 extern ctf_archive_t *ctf_open (const char *filename,
347 				const char *target, int *errp);
348 extern void ctf_close (ctf_archive_t *);
349 
350 /* Return the data, symbol, or string sections used by a given CTF dict.  */
351 extern ctf_sect_t ctf_getdatasect (const ctf_dict_t *);
352 extern ctf_sect_t ctf_getsymsect (const ctf_dict_t *);
353 extern ctf_sect_t ctf_getstrsect (const ctf_dict_t *);
354 
355 /* Set the endianness of the symbol section, which may be different from
356    the endianness of the CTF dict. Done for you by ctf_open and ctf_fdopen,
357    but direct calls to ctf_bufopen etc with symbol sections provided must
358    do so explicitly.  */
359 
360 extern void ctf_symsect_endianness (ctf_dict_t *, int little_endian);
361 extern void ctf_arc_symsect_endianness (ctf_archive_t *, int little_endian);
362 
363 /* Open CTF archives from files or raw section data, and close them again.
364    Closing may munmap() the data making up the archive, so should not be
365    done until all dicts are finished with and closed themselves.
366 
367    Almost all functions that open archives will also open raw CTF dicts, which
368    are treated as if they were archives with only one member.
369 
370    Some of these functions take optional raw symtab and strtab section content
371    in the form of ctf_sect_t structures.  For CTF in ELF files, the more
372    convenient opening functions above extract these .dynsym and its associated
373    string table (usually .dynsym) whenever the CTF_F_DYNSTR flag is set in the
374    CTF preamble (which it almost always will be for linked objects, but not for
375    .o files).  If you use ctf_arc_bufopen and do not specify symbol/string
376    tables, the ctf_*_lookuup_symbol functions will fail with ECTF_NOSYMTAB.
377 
378    Like many other convenient opening functions, ctf_arc_open needs BFD and is
379    not available in libctf-nobfd.  */
380 
381 extern ctf_archive_t *ctf_arc_open (const char *, int *);
382 extern ctf_archive_t *ctf_arc_bufopen (const ctf_sect_t *ctfsect,
383 				       const ctf_sect_t *symsect,
384 				       const ctf_sect_t *strsect,
385 				       int *);
386 extern void ctf_arc_close (ctf_archive_t *);
387 
388 /* Get the archive a given dictionary came from (if any).  */
389 
390 extern ctf_archive_t *ctf_get_arc (const ctf_dict_t *);
391 
392 /* Return the number of members in an archive.  */
393 
394 extern size_t ctf_archive_count (const ctf_archive_t *);
395 
396 /* Open a dictionary with a given name, given a CTF archive and
397    optionally symbol and string table sections to accompany it (if the
398    archive was oriiginally opened from an ELF file via ctf_open*, or
399    if string or symbol tables were explicitly passed when the archive
400    was opened, this can be used to override that choice).  The dict
401    should be closed with ctf_dict_close() when done.
402 
403    (The low-level functions ctf_simple_open and ctf_bufopen return
404    ctf_dict_t's directly, and cannot be used on CTF archives: use these
405    functions instead.)  */
406 
407 extern ctf_dict_t *ctf_dict_open (const ctf_archive_t *,
408 				  const char *, int *);
409 extern ctf_dict_t *ctf_dict_open_sections (const ctf_archive_t *,
410 					   const ctf_sect_t *symsect,
411 					   const ctf_sect_t *strsect,
412 					   const char *, int *);
413 
414 /* Look up symbols' types in archives by index or name, returning the dict
415    and optionally type ID in which the type is found.  Lookup results are
416    cached so future lookups are faster.  Needs symbol tables and (for name
417    lookups) string tables to be known for this CTF archive.  */
418 
419 extern ctf_dict_t *ctf_arc_lookup_symbol (ctf_archive_t *,
420 					  unsigned long symidx,
421 					  ctf_id_t *, int *errp);
422 extern ctf_dict_t *ctf_arc_lookup_symbol_name (ctf_archive_t *,
423 					       const char *name,
424 					       ctf_id_t *, int *errp);
425 extern void ctf_arc_flush_caches (ctf_archive_t *);
426 
427 /* The next functions return or close real CTF files, or write out CTF
428    archives, not archives or ELF files containing CTF content.  As with
429    ctf_dict_open_sections, they can be passed symbol and string table
430    sections.  */
431 
432 extern ctf_dict_t *ctf_simple_open (const char *ctfsect, size_t ctfsect_size,
433 				    const char *symsect, size_t symsect_size,
434 				    size_t symsect_entsize,
435 				    const char *strsect, size_t strsect_size,
436 				    int *errp);
437 extern ctf_dict_t *ctf_bufopen (const ctf_sect_t *ctfsect,
438 				const ctf_sect_t *symsect,
439 				const ctf_sect_t *strsect, int *);
440 extern void ctf_ref (ctf_dict_t *);
441 extern void ctf_dict_close (ctf_dict_t *);
442 
443 /* CTF dicts may be in a parent/child relationship, where the child dicts
444    contain the name of their originating compilation unit and the name of
445    their parent.  Dicts opened from CTF archives have this relationship set
446    up already, but if opening via raw low-level calls, you need to figure
447    out which dict is the parent and set it on the child via ctf_import(). */
448 
449 extern const char *ctf_cuname (ctf_dict_t *);
450 extern ctf_dict_t *ctf_parent_dict (ctf_dict_t *);
451 extern const char *ctf_parent_name (ctf_dict_t *);
452 extern int ctf_type_isparent (ctf_dict_t *, ctf_id_t);
453 extern int ctf_type_ischild (ctf_dict_t *, ctf_id_t);
454 extern int ctf_import (ctf_dict_t *, ctf_dict_t *);
455 
456 /* Set these names (used when creating dicts).  */
457 
458 extern int ctf_cuname_set (ctf_dict_t *, const char *);
459 extern int ctf_parent_name_set (ctf_dict_t *, const char *);
460 
461 /* Set and get the CTF data model (see above).  */
462 
463 extern int ctf_setmodel (ctf_dict_t *, int);
464 extern int ctf_getmodel (ctf_dict_t *);
465 
466 /* CTF dicts can carry a single (in-memory-only) non-persistent pointer to
467    arbitrary data.  No meaning is attached to this data and the dict does
468    not own it: nothing is done to it when the dict is closed.  */
469 
470 extern void ctf_setspecific (ctf_dict_t *, void *);
471 extern void *ctf_getspecific (ctf_dict_t *);
472 
473 /* Error handling.  ctf dicts carry a system errno value or one of the
474    CTF_ERRORS above, which are returned via ctf_errno.  The return value of
475    ctf_errno is only meaningful when the immediately preceding CTF function
476    call returns an error code.
477 
478    There are four possible sorts of error return:
479 
480     - From opening functions, a return value of NULL and the error returned
481       via an errp instead of via ctf_errno; all other functions return return
482       errors via ctf_errno.
483 
484     - Functions returning a ctf_id_t are in error if the return value == CTF_ERR
485     - Functions returning an int are in error if their return value < 0
486     - Functions returning a pointer are in error if their return value ==
487       NULL.  */
488 
489 extern int ctf_errno (ctf_dict_t *);
490 extern const char *ctf_errmsg (int);
491 
492 /* Return the version of CTF dicts written by writeout functions.  The
493    argument must currently be zero.  All dicts with versions below the value
494    returned by this function can be read by the library.  CTF dicts written
495    by other non-GNU CTF libraries (e.g. that in FreeBSD) are not compatible
496    and cannot be read by this library.  */
497 
498 extern int ctf_version (int);
499 
500 /* Given a symbol table index corresponding to a function symbol, return info on
501    the type of a given function's arguments or return value.  Vararg functions
502    have a final arg with CTF_FUNC_VARARG on in ctc_flags.  */
503 
504 extern int ctf_func_info (ctf_dict_t *, unsigned long, ctf_funcinfo_t *);
505 extern int ctf_func_args (ctf_dict_t *, unsigned long, uint32_t, ctf_id_t *);
506 
507 /* As above, but for CTF_K_FUNCTION types in CTF dicts.  */
508 
509 extern int ctf_func_type_info (ctf_dict_t *, ctf_id_t, ctf_funcinfo_t *);
510 extern int ctf_func_type_args (ctf_dict_t *, ctf_id_t, uint32_t, ctf_id_t *);
511 
512 /* Look up function or data symbols by name and return their CTF type ID,
513   if any.  (For both function symbols and data symbols that are function
514   pointers, the types are of kind CTF_K_FUNCTION.)  */
515 
516 extern ctf_id_t ctf_lookup_by_symbol (ctf_dict_t *, unsigned long);
517 extern ctf_id_t ctf_lookup_by_symbol_name (ctf_dict_t *, const char *);
518 
519 /* Traverse all (function or data) symbols in a dict, one by one, and return the
520    type of each and (if NAME is non-NULL) optionally its name.  */
521 
522 extern ctf_id_t ctf_symbol_next (ctf_dict_t *, ctf_next_t **,
523 				 const char **name, int functions);
524 
525 /* Look up a type by name: some simple C type parsing is done, but this is by no
526    means comprehensive.  Structures, unions and enums need "struct ", "union "
527    or "enum " on the front, as usual in C.  */
528 
529 extern ctf_id_t ctf_lookup_by_name (ctf_dict_t *, const char *);
530 
531 /* Look up a variable, which is a name -> type mapping with no specific
532    relationship to a symbol table.  Before linking, everything with types in the
533    symbol table will be in the variable table as well; after linking, only those
534    typed functions and data objects that are not asssigned to symbols by the
535    linker are left in the variable table here.  */
536 
537 extern ctf_id_t ctf_lookup_variable (ctf_dict_t *, const char *);
538 
539 /* Type lookup functions.  */
540 
541 /* Strip qualifiers and typedefs off a type, returning the base type.
542 
543    Stripping also stops when we hit slices (see ctf_add_slice below), so it is
544    possible (given a chain looking like const -> slice -> typedef -> int) to
545    still have a typedef after you're done with this, but in that case it is a
546    typedef of a type with a *different width* (because this slice has not been
547    applied to it).
548 
549    Most of the time you don't need to call this: the type-querying functions
550    will do it for you (as noted below).  */
551 
552 extern ctf_id_t ctf_type_resolve (ctf_dict_t *, ctf_id_t);
553 
554 /* Get the name of a type, including any const/volatile/restrict qualifiers
555    (cvr-quals), and return it as a new dynamically-allocated string.
556    (The 'a' stands for 'a'llocated.) */
557 
558 extern char *ctf_type_aname (ctf_dict_t *, ctf_id_t);
559 
560 /* As above, but with no cvr-quals.  */
561 
562 extern char *ctf_type_aname_raw (ctf_dict_t *, ctf_id_t);
563 
564 /* A raw name that is owned by the ctf_dict_t and will live as long as it
565    does.  Do not change the value this function returns!  */
566 
567 extern const char *ctf_type_name_raw (ctf_dict_t *, ctf_id_t);
568 
569 /* Like ctf_type_aname, but print the string into the passed buffer, truncating
570    if necessary and setting ECTF_NAMELEN on the errno: return the actual number
571    of bytes needed (not including the trailing \0).  Consider using
572    ctf_type_aname instead.  */
573 
574 extern ssize_t ctf_type_lname (ctf_dict_t *, ctf_id_t, char *, size_t);
575 
576 /* Like ctf_type_lname, but return the string, or NULL if truncated.
577    Consider using ctf_type_aname instead.  */
578 
579 extern char *ctf_type_name (ctf_dict_t *, ctf_id_t, char *, size_t);
580 
581 /* Return the size or alignment of a type.  Types with no meaningful size, like
582    function types, return 0 as their size; incomplete types set ECTF_INCOMPLETE.
583    The type is resolved for you, so cvr-quals and typedefs can be passsed in.  */
584 
585 extern ssize_t ctf_type_size (ctf_dict_t *, ctf_id_t);
586 extern ssize_t ctf_type_align (ctf_dict_t *, ctf_id_t);
587 
588 /* Return the kind of a type (CTF_K_* constant).  Slices are considered to be
589    the kind they are a slice of.  Forwards to incomplete structs, etc, return
590    CTF_K_FORWARD (but deduplication resolves most forwards to their concrete
591    types).  */
592 
593 extern int ctf_type_kind (ctf_dict_t *, ctf_id_t);
594 
595 /* Return the kind of a type (CTF_K_* constant).  Slices are considered to be
596    the kind they are a slice of; forwards are considered to be the kind they are
597    a forward of.  */
598 
599 extern int ctf_type_kind_forwarded (ctf_dict_t *, ctf_id_t);
600 
601 /* Return the type a pointer, typedef, cvr-qual, or slice refers to, or return
602    an ECTF_NOTREF error otherwise.  ctf_type_kind pretends that slices are
603    actually the type they are a slice of: this is usually want you want, but if
604    you want to find out if a type was actually a slice of some (usually-wider)
605    base type, you can call ctf_type_reference on it: a non-error return means
606    it was a slice.  */
607 
608 extern ctf_id_t ctf_type_reference (ctf_dict_t *, ctf_id_t);
609 
610 /* Return the encoding of a given type.  No attempt is made to resolve the
611    type first, so passing in typedefs etc will yield an error.  */
612 
613 extern int ctf_type_encoding (ctf_dict_t *, ctf_id_t, ctf_encoding_t *);
614 
615 /* Given a type, return some other type that is a pointer to this type (if any
616    exists), or return ECTF_NOTYPE otherwise.  If non exists, try resolving away
617    typedefs and cvr-quals and check again (so if you call this on foo_t, you
618    might get back foo *).  No attempt is made to hunt for pointers to qualified
619    versions of the type passed in.  */
620 
621 extern ctf_id_t ctf_type_pointer (ctf_dict_t *, ctf_id_t);
622 
623 /* Return 1 if two types are assignment-compatible.  */
624 
625 extern int ctf_type_compat (ctf_dict_t *, ctf_id_t, ctf_dict_t *, ctf_id_t);
626 
627 /* Recursively visit the members of any type, calling the ctf_visit_f for each.  */
628 
629 extern int ctf_type_visit (ctf_dict_t *, ctf_id_t, ctf_visit_f *, void *);
630 
631 /* Comparison function that defines an ordering over types.  If the types are in
632    different dicts, the ordering may vary between different openings of the same
633    dicts.  */
634 
635 extern int ctf_type_cmp (ctf_dict_t *, ctf_id_t, ctf_dict_t *, ctf_id_t);
636 
637 /* Get the name of an enumerator given its value, or vice versa.  If many
638    enumerators have the same value, the first with that value is returned.  */
639 
640 extern const char *ctf_enum_name (ctf_dict_t *, ctf_id_t, int);
641 extern int ctf_enum_value (ctf_dict_t *, ctf_id_t, const char *, int *);
642 
643 /* Get the size and member type of an array.  */
644 
645 extern int ctf_array_info (ctf_dict_t *, ctf_id_t, ctf_arinfo_t *);
646 
647 /* Get info on specific named members of structs or unions, and count the number
648    of members in a struct, union, or enum.  */
649 
650 extern int ctf_member_info (ctf_dict_t *, ctf_id_t, const char *,
651 			    ctf_membinfo_t *);
652 extern int ctf_member_count (ctf_dict_t *, ctf_id_t);
653 
654 /* Iterators.  */
655 
656 /* ctf_member_next is a _next-style iterator that can additionally traverse into
657    the members of unnamed structs nested within this struct as if they were
658    direct members, if CTF_MN_RECURSE is passed in the flags.  */
659 
660 extern int ctf_member_iter (ctf_dict_t *, ctf_id_t, ctf_member_f *, void *);
661 extern ssize_t ctf_member_next (ctf_dict_t *, ctf_id_t, ctf_next_t **,
662 				const char **name, ctf_id_t *membtype,
663 				int flags);
664 extern int ctf_enum_iter (ctf_dict_t *, ctf_id_t, ctf_enum_f *, void *);
665 extern const char *ctf_enum_next (ctf_dict_t *, ctf_id_t, ctf_next_t **,
666 				  int *);
667 
668 /* Iterate over all types in a dict.  ctf_type_iter_all recurses over all types:
669    ctf_type_iter recurses only over types with user-visible names (for which
670    CTF_ADD_ROOT was passed).  All such types are returned, even if they are
671    things like pointers that intrinsically have no name: this is the only effect
672    of CTF_ADD_ROOT for such types.  ctf_type_next allows you to choose whether
673    to see hidden types or not with the want_hidden arg: if set, the flag (if
674    passed) returns the hidden state of each type in turn.  */
675 
676 extern int ctf_type_iter (ctf_dict_t *, ctf_type_f *, void *);
677 extern int ctf_type_iter_all (ctf_dict_t *, ctf_type_all_f *, void *);
678 extern ctf_id_t ctf_type_next (ctf_dict_t *, ctf_next_t **,
679 			       int *flag, int want_hidden);
680 
681 extern int ctf_variable_iter (ctf_dict_t *, ctf_variable_f *, void *);
682 extern ctf_id_t ctf_variable_next (ctf_dict_t *, ctf_next_t **,
683 				   const char **);
684 
685 /* ctf_archive_iter and ctf_archive_next open each member dict for you,
686    automatically importing any parent dict as usual: ctf_archive_iter closes the
687    dict on return from ctf_archive_member_f, but for ctf_archive_next the caller
688    must close each dict returned.  If skip_parent is set, the parent dict is
689    skipped on the basis that it's already been seen in every child dict (but if
690    no child dicts exist, this will lead to nothing being returned).
691 
692    If an open fails, ctf_archive_iter returns -1 early (losing the error), but
693    ctf_archive_next both passes back the error in the passed errp and allows you
694    to iterate past errors (until the usual ECTF_NEXT_END is returned).  */
695 
696 extern int ctf_archive_iter (const ctf_archive_t *, ctf_archive_member_f *,
697 			     void *);
698 extern ctf_dict_t *ctf_archive_next (const ctf_archive_t *, ctf_next_t **,
699 				     const char **, int skip_parent, int *errp);
700 
701 /* Pass the raw content of each archive member in turn to
702    ctf_archive_raw_member_f.
703 
704    This function alone does not currently operate on CTF files masquerading as
705    archives, and returns -EINVAL: the raw data is no longer available.  It is
706    expected to be used only by archiving tools, in any case, which have no need
707    to deal with non-archives at all.  (There is currently no _next analogue of
708    this function.)  */
709 
710 extern int ctf_archive_raw_iter (const ctf_archive_t *,
711 				 ctf_archive_raw_member_f *, void *);
712 
713 /* Dump the contents of a section in a CTF dict.  STATE is an
714    iterator which should be a pointer to a variable set to NULL.  The decorator
715    is called with each line in turn and can modify it or allocate and return a
716    new one.  ctf_dump accumulates all the results and returns a single giant
717    multiline string.  */
718 
719 extern char *ctf_dump (ctf_dict_t *, ctf_dump_state_t **state,
720 		       ctf_sect_names_t sect, ctf_dump_decorate_f *,
721 		       void *arg);
722 
723 /* Error-warning reporting: an 'iterator' that returns errors and warnings from
724    the error/warning list, in order of emission.  Errors and warnings are popped
725    after return: the caller must free the returned error-text pointer.  */
726 extern char *ctf_errwarning_next (ctf_dict_t *, ctf_next_t **,
727 				  int *is_warning, int *errp);
728 
729 /* Creation.  */
730 
731 /* Create a new, empty dict.  If creation fails, return NULL and put a CTF error
732    code in the passed-in int (if set).  */
733 extern ctf_dict_t *ctf_create (int *);
734 
735 /* Add specific types to a dict.  You can add new types to any dict, but you can
736    only add members to types that have been added since this dict was read in
737    (you cannot read in a dict, look up a type in it, then add members to
738    it).  All adding functions take a uint32_t CTF_ADD_ROOT / CTF_ADD_NONROOT
739    flag to indicate whether this type should be visible to name lookups via
740    ctf_lookup_by_name et al.  */
741 
742 extern ctf_id_t ctf_add_array (ctf_dict_t *, uint32_t,
743 			       const ctf_arinfo_t *);
744 extern ctf_id_t ctf_add_const (ctf_dict_t *, uint32_t, ctf_id_t);
745 extern ctf_id_t ctf_add_enum_encoded (ctf_dict_t *, uint32_t, const char *,
746 				      const ctf_encoding_t *);
747 extern ctf_id_t ctf_add_enum (ctf_dict_t *, uint32_t, const char *);
748 extern ctf_id_t ctf_add_float (ctf_dict_t *, uint32_t,
749 			       const char *, const ctf_encoding_t *);
750 extern ctf_id_t ctf_add_forward (ctf_dict_t *, uint32_t, const char *,
751 				 uint32_t);
752 extern ctf_id_t ctf_add_function (ctf_dict_t *, uint32_t,
753 				  const ctf_funcinfo_t *, const ctf_id_t *);
754 extern ctf_id_t ctf_add_integer (ctf_dict_t *, uint32_t, const char *,
755 				 const ctf_encoding_t *);
756 
757 /* Add a "slice", which wraps some integral type and changes its encoding
758    (useful for bitfields, etc).  In most respects slices are treated the same
759    kind as the type they wrap: only ctf_type_reference can see the difference,
760    returning the wrapped type.  */
761 
762 extern ctf_id_t ctf_add_slice (ctf_dict_t *, uint32_t, ctf_id_t, const ctf_encoding_t *);
763 extern ctf_id_t ctf_add_pointer (ctf_dict_t *, uint32_t, ctf_id_t);
764 extern ctf_id_t ctf_add_type (ctf_dict_t *, ctf_dict_t *, ctf_id_t);
765 extern ctf_id_t ctf_add_typedef (ctf_dict_t *, uint32_t, const char *,
766 				 ctf_id_t);
767 extern ctf_id_t ctf_add_restrict (ctf_dict_t *, uint32_t, ctf_id_t);
768 
769 /* Struct and union addition.  Straight addition uses possibly-confusing rules
770    to guess the final size of the struct/union given its members: to explicitly
771    state the size of the struct or union (to report compiler-generated padding,
772    etc) use the _sized variants.  */
773 
774 extern ctf_id_t ctf_add_struct (ctf_dict_t *, uint32_t, const char *);
775 extern ctf_id_t ctf_add_union (ctf_dict_t *, uint32_t, const char *);
776 extern ctf_id_t ctf_add_struct_sized (ctf_dict_t *, uint32_t, const char *,
777 				      size_t);
778 extern ctf_id_t ctf_add_union_sized (ctf_dict_t *, uint32_t, const char *,
779 				     size_t);
780 
781 /* Note that CTF cannot encode a given type.  This usually returns an
782    ECTF_NONREPRESENTABLE error when queried.  Mostly useful for struct members,
783    variables, etc, to point to.  */
784 
785 extern ctf_id_t ctf_add_unknown (ctf_dict_t *, uint32_t, const char *);
786 extern ctf_id_t ctf_add_volatile (ctf_dict_t *, uint32_t, ctf_id_t);
787 
788 /* Add an enumerator to an enum (the name is a misnomer).  We do not currently
789    validate that enumerators have unique names, even though C requires it: in
790    future this may change.  */
791 
792 extern int ctf_add_enumerator (ctf_dict_t *, ctf_id_t, const char *, int);
793 
794 /* Add a member to a struct or union, either at the next available offset (with
795    suitable padding for the alignment) or at a specific offset, and possibly
796    with a specific encoding (creating a slice for you).  Offsets need not be
797    unique, and need not be added in ascending order.  */
798 
799 extern int ctf_add_member (ctf_dict_t *, ctf_id_t, const char *, ctf_id_t);
800 extern int ctf_add_member_offset (ctf_dict_t *, ctf_id_t, const char *,
801 				  ctf_id_t, unsigned long);
802 extern int ctf_add_member_encoded (ctf_dict_t *, ctf_id_t, const char *,
803 				   ctf_id_t, unsigned long,
804 				   const ctf_encoding_t);
805 
806 extern int ctf_add_variable (ctf_dict_t *, const char *, ctf_id_t);
807 
808 /* Set the size and member and index types of an array.  */
809 
810 extern int ctf_set_array (ctf_dict_t *, ctf_id_t, const ctf_arinfo_t *);
811 
812 /* Add a function oor object symbol type with a particular name, without saying
813    anything about the actual symbol index.  (The linker will then associate them
814    with actual symbol indexes using the ctf_link functions below.)  */
815 
816 extern int ctf_add_objt_sym (ctf_dict_t *, const char *, ctf_id_t);
817 extern int ctf_add_func_sym (ctf_dict_t *, const char *, ctf_id_t);
818 
819 /* Snapshot/rollback.  Call ctf_update to snapshot the state of a dict:
820   a later call to ctf_discard then deletes all types added since (but not new
821   members, enumerands etc).  Call ctf_snapshot to return a snapshot ID: pass
822   one of these IDs to ctf_rollback to discard all types added since the
823   corresponding call to ctf_snapshot.  */
824 
825 extern int ctf_update (ctf_dict_t *);
826 extern ctf_snapshot_id_t ctf_snapshot (ctf_dict_t *);
827 extern int ctf_rollback (ctf_dict_t *, ctf_snapshot_id_t);
828 extern int ctf_discard (ctf_dict_t *);
829 
830 /* Dict writeout.
831 
832    ctf_write: write out an uncompressed dict to an fd.
833    ctf_compress_write: write out a compressed dict to an fd (currently always
834    gzip, but this may change in future).
835    ctf_write_mem: write out a dict to a buffer and return it and its size,
836    compressing it if its uncompressed size is over THRESHOLD.  */
837 
838 extern int ctf_write (ctf_dict_t *, int);
839 extern int ctf_compress_write (ctf_dict_t * fp, int fd);
840 extern unsigned char *ctf_write_mem (ctf_dict_t *, size_t *, size_t threshold);
841 
842 /* Create a CTF archive named FILE from CTF_DICTS inputs with NAMES (or write it
843    to the passed-in fd).  */
844 
845 extern int ctf_arc_write (const char *file, ctf_dict_t **ctf_dicts, size_t,
846 			  const char **names, size_t);
847 extern int ctf_arc_write_fd (int, ctf_dict_t **, size_t, const char **,
848 			     size_t);
849 
850 /* Linking.  These functions are used by ld to link .ctf sections in input
851    object files into a single .ctf section which is an archive possibly
852    containing members containing types whose names collide across multiple
853    compilation units, but they are usable by other programs as well and are not
854    private to the linker.  */
855 
856 /* Add a CTF archive to the link with a given NAME (usually the name of the
857    containing object file).  The dict added to is usually a new dict created
858    with ctf_create which will be filled with types corresponding to the shared
859    dict in the output (conflicting types in child dicts in the output archive
860    are stored in internal space inside this dict, but are not easily visible
861    until after ctf_link_write below).
862 
863    The NAME need not be unique (but usually is).  */
864 
865 extern int ctf_link_add_ctf (ctf_dict_t *, ctf_archive_t *, const char *name);
866 
867 /* Do the deduplicating link, filling the dict with types.  The FLAGS are the
868    CTF_LINK_* flags above.  */
869 
870 extern int ctf_link (ctf_dict_t *, int flags);
871 
872 /* Symtab linker handling, called after ctf_link to set up the symbol type
873    information used by ctf_*_lookup_symbol.  */
874 
875 /* Add strings to the link from the ELF string table, repeatedly calling
876    ADD_STRING to add each string and its corresponding offset in turn.  */
877 
878 typedef const char *ctf_link_strtab_string_f (uint32_t *offset, void *arg);
879 extern int ctf_link_add_strtab (ctf_dict_t *,
880 				ctf_link_strtab_string_f *add_string, void *);
881 
882 /* Note that a given symbol will be public with a given set of properties.
883    If the symbol has been added with that name via ctf_add_{func,objt}_sym,
884    this symbol type will end up in the symtypetabs and can be looked up via
885    ctf_*_lookup_symbol after the dict is read back in.  */
886 
887 extern int ctf_link_add_linker_symbol (ctf_dict_t *, ctf_link_sym_t *);
888 
889 /* Impose an ordering on symbols, as defined by the strtab and symbol
890    added by earlier calls to the above two functions.  */
891 
892 extern int ctf_link_shuffle_syms (ctf_dict_t *);
893 
894 /* Return the serialized form of this ctf_linked dict as a new
895    dynamically-allocated string, compressed if size over THRESHOLD.
896 
897    May be a CTF dict or a CTF archive (this library mostly papers over the
898    differences so you can open both the same way, treat both as ctf_archive_t
899    and so on).  */
900 
901 extern unsigned char *ctf_link_write (ctf_dict_t *, size_t *size,
902 				      size_t threshold);
903 
904 /* Specialist linker functions.  These functions are not used by ld, but can be
905    used by other programs making use of the linker machinery for other purposes
906    to customize its output.  Must be called befoore ctf_link. */
907 
908 /* Add an entry to rename a given compilation unit to some other name.  This
909    is only used if conflicting types are found in that compilation unit: they
910    will instead be placed in the child dict named TO. Many FROMs can map to one
911    TO: all the types are placed together in that dict, with any whose names
912    collide as a result being marked as non-root types.  */
913 
914 extern int ctf_link_add_cu_mapping (ctf_dict_t *, const char *from,
915 				    const char *to);
916 
917 /* Allow CTF archive names to be tweaked at the last minute before writeout.
918    Unlike cu-mappings, this cannot transform names so that they collide: it's
919    meant for unusual use cases that use names for archive members that are not
920    exactly the same as CU names but are modified in some systematic way.  */
921 typedef char *ctf_link_memb_name_changer_f (ctf_dict_t *,
922 					    const char *, void *);
923 extern void ctf_link_set_memb_name_changer
924   (ctf_dict_t *, ctf_link_memb_name_changer_f *, void *);
925 
926 /* Filter out unwanted variables, which can be very voluminous, and (unlike
927    symbols) cause the CTF string table to grow to hold their names.  The
928    variable filter should return nonzero if a variable should not appear in the
929    output.  */
930 typedef int ctf_link_variable_filter_f (ctf_dict_t *, const char *, ctf_id_t,
931 					void *);
932 extern int ctf_link_set_variable_filter (ctf_dict_t *,
933 					 ctf_link_variable_filter_f *, void *);
934 
935 /* Turn debugging off and on, and get its value.  This is the same as setting
936    LIBCTF_DEBUG in the environment.  */
937 extern void ctf_setdebug (int debug);
938 extern int ctf_getdebug (void);
939 
940 /* Deprecated aliases for existing functions and types.  */
941 
942 struct ctf_file;
943 typedef struct ctf_dict ctf_file_t;
944 extern void ctf_file_close (ctf_file_t *);
945 extern ctf_dict_t *ctf_parent_file (ctf_dict_t *);
946 extern ctf_dict_t *ctf_arc_open_by_name (const ctf_archive_t *,
947 					 const char *, int *);
948 extern ctf_dict_t *ctf_arc_open_by_name_sections (const ctf_archive_t *arc,
949 						  const ctf_sect_t *symsect,
950 						  const ctf_sect_t *strsect,
951 						  const char *name, int *errp);
952 
953 /* Deprecated witeout function to write out a gzip-compressed dict.  Unlike all
954    the other writeout functions, this even compresses the header (it has to,
955    since it's passed a gzFile), so the caller must also decompress it, since
956    ctf_open() etc cannot tell it is a CTF dict or how large it is before
957    decompression.  */
958 
959 extern int ctf_gzwrite (ctf_dict_t *fp, gzFile fd);
960 
961 /* Deprecated functions with no current use.  */
962 
963 extern const char *ctf_label_topmost (ctf_dict_t *);
964 extern int ctf_label_info (ctf_dict_t *, const char *, ctf_lblinfo_t *);
965 extern int ctf_label_iter (ctf_dict_t *, ctf_label_f *, void *);
966 extern int ctf_label_next (ctf_dict_t *, ctf_next_t **, const char **); /* TBD */
967 
968 #ifdef	__cplusplus
969 }
970 #endif
971 
972 #endif				/* _CTF_API_H */
973