xref: /netbsd-src/external/gpl3/gdb/dist/gdb/xstormy16-tdep.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /* Target-dependent code for the Sanyo Xstormy16a (LC590000) processor.
2 
3    Copyright (C) 2001-2015 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-base.h"
23 #include "frame-unwind.h"
24 #include "dwarf2-frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "inferior.h"
32 #include "arch-utils.h"
33 #include "floatformat.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "osabi.h"
37 #include "objfiles.h"
38 
39 enum gdb_regnum
40 {
41   /* Xstormy16 has 16 general purpose registers (R0-R15) plus PC.
42      Functions will return their values in register R2-R7 as they fit.
43      Otherwise a hidden pointer to an big enough area is given as argument
44      to the function in r2.  Further arguments are beginning in r3 then.
45      R13 is used as frame pointer when GCC compiles w/o optimization
46      R14 is used as "PSW", displaying the CPU status.
47      R15 is used implicitely as stack pointer.  */
48   E_R0_REGNUM,
49   E_R1_REGNUM,
50   E_R2_REGNUM, E_1ST_ARG_REGNUM = E_R2_REGNUM, E_PTR_RET_REGNUM = E_R2_REGNUM,
51   E_R3_REGNUM,
52   E_R4_REGNUM,
53   E_R5_REGNUM,
54   E_R6_REGNUM,
55   E_R7_REGNUM, E_LST_ARG_REGNUM = E_R7_REGNUM,
56   E_R8_REGNUM,
57   E_R9_REGNUM,
58   E_R10_REGNUM,
59   E_R11_REGNUM,
60   E_R12_REGNUM,
61   E_R13_REGNUM, E_FP_REGNUM = E_R13_REGNUM,
62   E_R14_REGNUM, E_PSW_REGNUM = E_R14_REGNUM,
63   E_R15_REGNUM, E_SP_REGNUM = E_R15_REGNUM,
64   E_PC_REGNUM,
65   E_NUM_REGS
66 };
67 
68 /* Use an invalid address value as 'not available' marker.  */
69 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
70 
71 struct xstormy16_frame_cache
72 {
73   /* Base address.  */
74   CORE_ADDR base;
75   CORE_ADDR pc;
76   LONGEST framesize;
77   int uses_fp;
78   CORE_ADDR saved_regs[E_NUM_REGS];
79   CORE_ADDR saved_sp;
80 };
81 
82 /* Size of instructions, registers, etc.  */
83 enum
84 {
85   xstormy16_inst_size = 2,
86   xstormy16_reg_size = 2,
87   xstormy16_pc_size = 4
88 };
89 
90 /* Size of return datatype which fits into the remaining return registers.  */
91 #define E_MAX_RETTYPE_SIZE(regnum)	((E_LST_ARG_REGNUM - (regnum) + 1) \
92 					* xstormy16_reg_size)
93 
94 /* Size of return datatype which fits into all return registers.  */
95 enum
96 {
97   E_MAX_RETTYPE_SIZE_IN_REGS = E_MAX_RETTYPE_SIZE (E_R2_REGNUM)
98 };
99 
100 /* Function: xstormy16_register_name
101    Returns the name of the standard Xstormy16 register N.  */
102 
103 static const char *
104 xstormy16_register_name (struct gdbarch *gdbarch, int regnum)
105 {
106   static char *register_names[] = {
107     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
108     "r8", "r9", "r10", "r11", "r12", "r13",
109     "psw", "sp", "pc"
110   };
111 
112   if (regnum < 0 || regnum >= E_NUM_REGS)
113     internal_error (__FILE__, __LINE__,
114 		    _("xstormy16_register_name: illegal register number %d"),
115 		    regnum);
116   else
117     return register_names[regnum];
118 
119 }
120 
121 static struct type *
122 xstormy16_register_type (struct gdbarch *gdbarch, int regnum)
123 {
124   if (regnum == E_PC_REGNUM)
125     return builtin_type (gdbarch)->builtin_uint32;
126   else
127     return builtin_type (gdbarch)->builtin_uint16;
128 }
129 
130 /* Function: xstormy16_type_is_scalar
131    Makes the decision if a given type is a scalar types.  Scalar
132    types are returned in the registers r2-r7 as they fit.  */
133 
134 static int
135 xstormy16_type_is_scalar (struct type *t)
136 {
137   return (TYPE_CODE(t) != TYPE_CODE_STRUCT
138 	  && TYPE_CODE(t) != TYPE_CODE_UNION
139 	  && TYPE_CODE(t) != TYPE_CODE_ARRAY);
140 }
141 
142 /* Function: xstormy16_use_struct_convention
143    Returns non-zero if the given struct type will be returned using
144    a special convention, rather than the normal function return method.
145    7sed in the contexts of the "return" command, and of
146    target function calls from the debugger.  */
147 
148 static int
149 xstormy16_use_struct_convention (struct type *type)
150 {
151   return !xstormy16_type_is_scalar (type)
152 	 || TYPE_LENGTH (type) > E_MAX_RETTYPE_SIZE_IN_REGS;
153 }
154 
155 /* Function: xstormy16_extract_return_value
156    Find a function's return value in the appropriate registers (in
157    regbuf), and copy it into valbuf.  */
158 
159 static void
160 xstormy16_extract_return_value (struct type *type, struct regcache *regcache,
161 				gdb_byte *valbuf)
162 {
163   int len = TYPE_LENGTH (type);
164   int i, regnum = E_1ST_ARG_REGNUM;
165 
166   for (i = 0; i < len; i += xstormy16_reg_size)
167     regcache_raw_read (regcache, regnum++, valbuf + i);
168 }
169 
170 /* Function: xstormy16_store_return_value
171    Copy the function return value from VALBUF into the
172    proper location for a function return.
173    Called only in the context of the "return" command.  */
174 
175 static void
176 xstormy16_store_return_value (struct type *type, struct regcache *regcache,
177 			      const gdb_byte *valbuf)
178 {
179   if (TYPE_LENGTH (type) == 1)
180     {
181       /* Add leading zeros to the value.  */
182       gdb_byte buf[xstormy16_reg_size];
183       memset (buf, 0, xstormy16_reg_size);
184       memcpy (buf, valbuf, 1);
185       regcache_raw_write (regcache, E_1ST_ARG_REGNUM, buf);
186     }
187   else
188     {
189       int len = TYPE_LENGTH (type);
190       int i, regnum = E_1ST_ARG_REGNUM;
191 
192       for (i = 0; i < len; i += xstormy16_reg_size)
193         regcache_raw_write (regcache, regnum++, valbuf + i);
194     }
195 }
196 
197 static enum return_value_convention
198 xstormy16_return_value (struct gdbarch *gdbarch, struct value *function,
199 			struct type *type, struct regcache *regcache,
200 			gdb_byte *readbuf, const gdb_byte *writebuf)
201 {
202   if (xstormy16_use_struct_convention (type))
203     return RETURN_VALUE_STRUCT_CONVENTION;
204   if (writebuf)
205     xstormy16_store_return_value (type, regcache, writebuf);
206   else if (readbuf)
207     xstormy16_extract_return_value (type, regcache, readbuf);
208   return RETURN_VALUE_REGISTER_CONVENTION;
209 }
210 
211 static CORE_ADDR
212 xstormy16_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
213 {
214   if (addr & 1)
215     ++addr;
216   return addr;
217 }
218 
219 /* Function: xstormy16_push_dummy_call
220    Setup the function arguments for GDB to call a function in the inferior.
221    Called only in the context of a target function call from the debugger.
222    Returns the value of the SP register after the args are pushed.  */
223 
224 static CORE_ADDR
225 xstormy16_push_dummy_call (struct gdbarch *gdbarch,
226 			   struct value *function,
227 			   struct regcache *regcache,
228 			   CORE_ADDR bp_addr, int nargs,
229 			   struct value **args,
230 			   CORE_ADDR sp, int struct_return,
231 			   CORE_ADDR struct_addr)
232 {
233   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
234   CORE_ADDR stack_dest = sp;
235   int argreg = E_1ST_ARG_REGNUM;
236   int i, j;
237   int typelen, slacklen;
238   const gdb_byte *val;
239   gdb_byte buf[xstormy16_pc_size];
240 
241   /* If struct_return is true, then the struct return address will
242      consume one argument-passing register.  */
243   if (struct_return)
244     {
245       regcache_cooked_write_unsigned (regcache, E_PTR_RET_REGNUM, struct_addr);
246       argreg++;
247     }
248 
249   /* Arguments are passed in R2-R7 as they fit.  If an argument doesn't
250      fit in the remaining registers we're switching over to the stack.
251      No argument is put on stack partially and as soon as we switched
252      over to stack no further argument is put in a register even if it
253      would fit in the remaining unused registers.  */
254   for (i = 0; i < nargs && argreg <= E_LST_ARG_REGNUM; i++)
255     {
256       typelen = TYPE_LENGTH (value_enclosing_type (args[i]));
257       if (typelen > E_MAX_RETTYPE_SIZE (argreg))
258 	break;
259 
260       /* Put argument into registers wordwise.  */
261       val = value_contents (args[i]);
262       for (j = 0; j < typelen; j += xstormy16_reg_size)
263 	{
264 	  ULONGEST regval;
265 	  int size = (typelen - j == 1) ? 1 : xstormy16_reg_size;
266 
267 	  regval = extract_unsigned_integer (val + j, size, byte_order);
268 	  regcache_cooked_write_unsigned (regcache, argreg++, regval);
269 	}
270     }
271 
272   /* Align SP */
273   stack_dest = xstormy16_frame_align (gdbarch, stack_dest);
274 
275   /* Loop backwards through remaining arguments and push them on the stack,
276      wordaligned.  */
277   for (j = nargs - 1; j >= i; j--)
278     {
279       gdb_byte *val;
280       struct cleanup *back_to;
281       const gdb_byte *bytes = value_contents (args[j]);
282 
283       typelen = TYPE_LENGTH (value_enclosing_type (args[j]));
284       slacklen = typelen & 1;
285       val = xmalloc (typelen + slacklen);
286       back_to = make_cleanup (xfree, val);
287       memcpy (val, bytes, typelen);
288       memset (val + typelen, 0, slacklen);
289 
290       /* Now write this data to the stack.  The stack grows upwards.  */
291       write_memory (stack_dest, val, typelen + slacklen);
292       stack_dest += typelen + slacklen;
293       do_cleanups (back_to);
294     }
295 
296   store_unsigned_integer (buf, xstormy16_pc_size, byte_order, bp_addr);
297   write_memory (stack_dest, buf, xstormy16_pc_size);
298   stack_dest += xstormy16_pc_size;
299 
300   /* Update stack pointer.  */
301   regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, stack_dest);
302 
303   /* Return the new stack pointer minus the return address slot since
304      that's what DWARF2/GCC uses as the frame's CFA.  */
305   return stack_dest - xstormy16_pc_size;
306 }
307 
308 /* Function: xstormy16_scan_prologue
309    Decode the instructions within the given address range.
310    Decide when we must have reached the end of the function prologue.
311    If a frame_info pointer is provided, fill in its saved_regs etc.
312 
313    Returns the address of the first instruction after the prologue.  */
314 
315 static CORE_ADDR
316 xstormy16_analyze_prologue (struct gdbarch *gdbarch,
317 			    CORE_ADDR start_addr, CORE_ADDR end_addr,
318 			    struct xstormy16_frame_cache *cache,
319 			    struct frame_info *this_frame)
320 {
321   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
322   CORE_ADDR next_addr;
323   ULONGEST inst, inst2;
324   LONGEST offset;
325   int regnum;
326 
327   /* Initialize framesize with size of PC put on stack by CALLF inst.  */
328   cache->saved_regs[E_PC_REGNUM] = 0;
329   cache->framesize = xstormy16_pc_size;
330 
331   if (start_addr >= end_addr)
332     return end_addr;
333 
334   for (next_addr = start_addr;
335        next_addr < end_addr; next_addr += xstormy16_inst_size)
336     {
337       inst = read_memory_unsigned_integer (next_addr,
338 					   xstormy16_inst_size, byte_order);
339       inst2 = read_memory_unsigned_integer (next_addr + xstormy16_inst_size,
340 					    xstormy16_inst_size, byte_order);
341 
342       if (inst >= 0x0082 && inst <= 0x008d)	/* push r2 .. push r13 */
343 	{
344 	  regnum = inst & 0x000f;
345 	  cache->saved_regs[regnum] = cache->framesize;
346 	  cache->framesize += xstormy16_reg_size;
347 	}
348 
349       /* Optional stack allocation for args and local vars <= 4 byte.  */
350       else if (inst == 0x301f || inst == 0x303f)       /* inc r15, #0x1/#0x3 */
351 	{
352 	  cache->framesize += ((inst & 0x0030) >> 4) + 1;
353 	}
354 
355       /* optional stack allocation for args and local vars > 4 && < 16 byte */
356       else if ((inst & 0xff0f) == 0x510f)	/* 51Hf   add r15, #0xH */
357 	{
358 	  cache->framesize += (inst & 0x00f0) >> 4;
359 	}
360 
361       /* Optional stack allocation for args and local vars >= 16 byte.  */
362       else if (inst == 0x314f && inst2 >= 0x0010) /* 314f HHHH add r15, #0xH */
363 	{
364 	  cache->framesize += inst2;
365 	  next_addr += xstormy16_inst_size;
366 	}
367 
368       else if (inst == 0x46fd)	/* mov r13, r15 */
369 	{
370 	  cache->uses_fp = 1;
371 	}
372 
373       /* optional copying of args in r2-r7 to r10-r13.  */
374       /* Probably only in optimized case but legal action for prologue.  */
375       else if ((inst & 0xff00) == 0x4600	/* 46SD   mov rD, rS */
376 	       && (inst & 0x00f0) >= 0x0020 && (inst & 0x00f0) <= 0x0070
377 	       && (inst & 0x000f) >= 0x000a && (inst & 0x000f) <= 0x000d)
378 	;
379 
380       /* Optional copying of args in r2-r7 to stack.  */
381       /* 72DS HHHH   mov.b (rD, 0xHHHH), r(S-8)
382 	 (bit3 always 1, bit2-0 = reg) */
383       /* 73DS HHHH   mov.w (rD, 0xHHHH), r(S-8) */
384       else if ((inst & 0xfed8) == 0x72d8 && (inst & 0x0007) >= 2)
385 	{
386 	  regnum = inst & 0x0007;
387 	  /* Only 12 of 16 bits of the argument are used for the
388 	     signed offset.  */
389 	  offset = (LONGEST) (inst2 & 0x0fff);
390 	  if (offset & 0x0800)
391 	    offset -= 0x1000;
392 
393 	  cache->saved_regs[regnum] = cache->framesize + offset;
394 	  next_addr += xstormy16_inst_size;
395 	}
396 
397       else			/* Not a prologue instruction.  */
398 	break;
399     }
400 
401   return next_addr;
402 }
403 
404 /* Function: xstormy16_skip_prologue
405    If the input address is in a function prologue,
406    returns the address of the end of the prologue;
407    else returns the input address.
408 
409    Note: the input address is likely to be the function start,
410    since this function is mainly used for advancing a breakpoint
411    to the first line, or stepping to the first line when we have
412    stepped into a function call.  */
413 
414 static CORE_ADDR
415 xstormy16_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
416 {
417   CORE_ADDR func_addr = 0, func_end = 0;
418   const char *func_name;
419 
420   if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
421     {
422       struct symtab_and_line sal;
423       struct symbol *sym;
424       struct xstormy16_frame_cache cache;
425       CORE_ADDR plg_end;
426 
427       memset (&cache, 0, sizeof cache);
428 
429       /* Don't trust line number debug info in frameless functions.  */
430       plg_end = xstormy16_analyze_prologue (gdbarch, func_addr, func_end,
431 					    &cache, NULL);
432       if (!cache.uses_fp)
433         return plg_end;
434 
435       /* Found a function.  */
436       sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
437       /* Don't use line number debug info for assembly source files.  */
438       if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
439 	{
440 	  sal = find_pc_line (func_addr, 0);
441 	  if (sal.end && sal.end < func_end)
442 	    {
443 	      /* Found a line number, use it as end of prologue.  */
444 	      return sal.end;
445 	    }
446 	}
447       /* No useable line symbol.  Use result of prologue parsing method.  */
448       return plg_end;
449     }
450 
451   /* No function symbol -- just return the PC.  */
452 
453   return (CORE_ADDR) pc;
454 }
455 
456 /* Implement the stack_frame_destroyed_p gdbarch method.
457 
458    The epilogue is defined here as the area at the end of a function,
459    either on the `ret' instruction itself or after an instruction which
460    destroys the function's stack frame.  */
461 
462 static int
463 xstormy16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
464 {
465   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
466   CORE_ADDR func_addr = 0, func_end = 0;
467 
468   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
469     {
470       ULONGEST inst, inst2;
471       CORE_ADDR addr = func_end - xstormy16_inst_size;
472 
473       /* The Xstormy16 epilogue is max. 14 bytes long.  */
474       if (pc < func_end - 7 * xstormy16_inst_size)
475 	return 0;
476 
477       /* Check if we're on a `ret' instruction.  Otherwise it's
478          too dangerous to proceed.  */
479       inst = read_memory_unsigned_integer (addr,
480 					   xstormy16_inst_size, byte_order);
481       if (inst != 0x0003)
482 	return 0;
483 
484       while ((addr -= xstormy16_inst_size) >= func_addr)
485 	{
486 	  inst = read_memory_unsigned_integer (addr,
487 					       xstormy16_inst_size,
488 					       byte_order);
489 	  if (inst >= 0x009a && inst <= 0x009d)	/* pop r10...r13 */
490 	    continue;
491 	  if (inst == 0x305f || inst == 0x307f)	/* dec r15, #0x1/#0x3 */
492 	    break;
493 	  inst2 = read_memory_unsigned_integer (addr - xstormy16_inst_size,
494 						xstormy16_inst_size,
495 						byte_order);
496 	  if (inst2 == 0x314f && inst >= 0x8000)      /* add r15, neg. value */
497 	    {
498 	      addr -= xstormy16_inst_size;
499 	      break;
500 	    }
501 	  return 0;
502 	}
503       if (pc > addr)
504 	return 1;
505     }
506   return 0;
507 }
508 
509 static const unsigned char *
510 xstormy16_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
511 			      int *lenptr)
512 {
513   static unsigned char breakpoint[] = { 0x06, 0x0 };
514   *lenptr = sizeof (breakpoint);
515   return breakpoint;
516 }
517 
518 /* Given a pointer to a jump table entry, return the address
519    of the function it jumps to.  Return 0 if not found.  */
520 static CORE_ADDR
521 xstormy16_resolve_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
522 {
523   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
524   struct obj_section *faddr_sect = find_pc_section (faddr);
525 
526   if (faddr_sect)
527     {
528       LONGEST inst, inst2, addr;
529       gdb_byte buf[2 * xstormy16_inst_size];
530 
531       /* Return faddr if it's not pointing into the jump table.  */
532       if (strcmp (faddr_sect->the_bfd_section->name, ".plt"))
533 	return faddr;
534 
535       if (!target_read_memory (faddr, buf, sizeof buf))
536 	{
537 	  inst = extract_unsigned_integer (buf,
538 					   xstormy16_inst_size, byte_order);
539 	  inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
540 					    xstormy16_inst_size, byte_order);
541 	  addr = inst2 << 8 | (inst & 0xff);
542 	  return addr;
543 	}
544     }
545   return 0;
546 }
547 
548 /* Given a function's address, attempt to find (and return) the
549    address of the corresponding jump table entry.  Return 0 if
550    not found.  */
551 static CORE_ADDR
552 xstormy16_find_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
553 {
554   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
555   struct obj_section *faddr_sect = find_pc_section (faddr);
556 
557   if (faddr_sect)
558     {
559       struct obj_section *osect;
560 
561       /* Return faddr if it's already a pointer to a jump table entry.  */
562       if (!strcmp (faddr_sect->the_bfd_section->name, ".plt"))
563 	return faddr;
564 
565       ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
566       {
567 	if (!strcmp (osect->the_bfd_section->name, ".plt"))
568 	  break;
569       }
570 
571       if (osect < faddr_sect->objfile->sections_end)
572 	{
573 	  CORE_ADDR addr, endaddr;
574 
575 	  addr = obj_section_addr (osect);
576 	  endaddr = obj_section_endaddr (osect);
577 
578 	  for (; addr < endaddr; addr += 2 * xstormy16_inst_size)
579 	    {
580 	      LONGEST inst, inst2, faddr2;
581 	      gdb_byte buf[2 * xstormy16_inst_size];
582 
583 	      if (target_read_memory (addr, buf, sizeof buf))
584 		return 0;
585 	      inst = extract_unsigned_integer (buf,
586 					       xstormy16_inst_size,
587 					       byte_order);
588 	      inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
589 					        xstormy16_inst_size,
590 						byte_order);
591 	      faddr2 = inst2 << 8 | (inst & 0xff);
592 	      if (faddr == faddr2)
593 		return addr;
594 	    }
595 	}
596     }
597   return 0;
598 }
599 
600 static CORE_ADDR
601 xstormy16_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
602 {
603   struct gdbarch *gdbarch = get_frame_arch (frame);
604   CORE_ADDR tmp = xstormy16_resolve_jmp_table_entry (gdbarch, pc);
605 
606   if (tmp && tmp != pc)
607     return tmp;
608   return 0;
609 }
610 
611 /* Function pointers are 16 bit.  The address space is 24 bit, using
612    32 bit addresses.  Pointers to functions on the XStormy16 are implemented
613    by using 16 bit pointers, which are either direct pointers in case the
614    function begins below 0x10000, or indirect pointers into a jump table.
615    The next two functions convert 16 bit pointers into 24 (32) bit addresses
616    and vice versa.  */
617 
618 static CORE_ADDR
619 xstormy16_pointer_to_address (struct gdbarch *gdbarch,
620 			      struct type *type, const gdb_byte *buf)
621 {
622   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
623   enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
624   CORE_ADDR addr
625     = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
626 
627   if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
628     {
629       CORE_ADDR addr2 = xstormy16_resolve_jmp_table_entry (gdbarch, addr);
630       if (addr2)
631 	addr = addr2;
632     }
633 
634   return addr;
635 }
636 
637 static void
638 xstormy16_address_to_pointer (struct gdbarch *gdbarch,
639 			      struct type *type, gdb_byte *buf, CORE_ADDR addr)
640 {
641   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
642   enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
643 
644   if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
645     {
646       CORE_ADDR addr2 = xstormy16_find_jmp_table_entry (gdbarch, addr);
647       if (addr2)
648 	addr = addr2;
649     }
650   store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
651 }
652 
653 static struct xstormy16_frame_cache *
654 xstormy16_alloc_frame_cache (void)
655 {
656   struct xstormy16_frame_cache *cache;
657   int i;
658 
659   cache = FRAME_OBSTACK_ZALLOC (struct xstormy16_frame_cache);
660 
661   cache->base = 0;
662   cache->saved_sp = 0;
663   cache->pc = 0;
664   cache->uses_fp = 0;
665   cache->framesize = 0;
666   for (i = 0; i < E_NUM_REGS; ++i)
667     cache->saved_regs[i] = REG_UNAVAIL;
668 
669   return cache;
670 }
671 
672 static struct xstormy16_frame_cache *
673 xstormy16_frame_cache (struct frame_info *this_frame, void **this_cache)
674 {
675   struct gdbarch *gdbarch = get_frame_arch (this_frame);
676   struct xstormy16_frame_cache *cache;
677   CORE_ADDR current_pc;
678   int i;
679 
680   if (*this_cache)
681     return *this_cache;
682 
683   cache = xstormy16_alloc_frame_cache ();
684   *this_cache = cache;
685 
686   cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
687   if (cache->base == 0)
688     return cache;
689 
690   cache->pc = get_frame_func (this_frame);
691   current_pc = get_frame_pc (this_frame);
692   if (cache->pc)
693     xstormy16_analyze_prologue (gdbarch, cache->pc, current_pc,
694 				cache, this_frame);
695 
696   if (!cache->uses_fp)
697     cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
698 
699   cache->saved_sp = cache->base - cache->framesize;
700 
701   for (i = 0; i < E_NUM_REGS; ++i)
702     if (cache->saved_regs[i] != REG_UNAVAIL)
703       cache->saved_regs[i] += cache->saved_sp;
704 
705   return cache;
706 }
707 
708 static struct value *
709 xstormy16_frame_prev_register (struct frame_info *this_frame,
710 			       void **this_cache, int regnum)
711 {
712   struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
713                                                                this_cache);
714   gdb_assert (regnum >= 0);
715 
716   if (regnum == E_SP_REGNUM && cache->saved_sp)
717     return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
718 
719   if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
720     return frame_unwind_got_memory (this_frame, regnum,
721 				    cache->saved_regs[regnum]);
722 
723   return frame_unwind_got_register (this_frame, regnum, regnum);
724 }
725 
726 static void
727 xstormy16_frame_this_id (struct frame_info *this_frame, void **this_cache,
728 			 struct frame_id *this_id)
729 {
730   struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
731 							       this_cache);
732 
733   /* This marks the outermost frame.  */
734   if (cache->base == 0)
735     return;
736 
737   *this_id = frame_id_build (cache->saved_sp, cache->pc);
738 }
739 
740 static CORE_ADDR
741 xstormy16_frame_base_address (struct frame_info *this_frame, void **this_cache)
742 {
743   struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
744 							       this_cache);
745   return cache->base;
746 }
747 
748 static const struct frame_unwind xstormy16_frame_unwind = {
749   NORMAL_FRAME,
750   default_frame_unwind_stop_reason,
751   xstormy16_frame_this_id,
752   xstormy16_frame_prev_register,
753   NULL,
754   default_frame_sniffer
755 };
756 
757 static const struct frame_base xstormy16_frame_base = {
758   &xstormy16_frame_unwind,
759   xstormy16_frame_base_address,
760   xstormy16_frame_base_address,
761   xstormy16_frame_base_address
762 };
763 
764 static CORE_ADDR
765 xstormy16_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
766 {
767   return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
768 }
769 
770 static CORE_ADDR
771 xstormy16_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
772 {
773   return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
774 }
775 
776 static struct frame_id
777 xstormy16_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
778 {
779   CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
780   return frame_id_build (sp, get_frame_pc (this_frame));
781 }
782 
783 
784 /* Function: xstormy16_gdbarch_init
785    Initializer function for the xstormy16 gdbarch vector.
786    Called by gdbarch.  Sets up the gdbarch vector(s) for this target.  */
787 
788 static struct gdbarch *
789 xstormy16_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
790 {
791   struct gdbarch *gdbarch;
792 
793   /* find a candidate among the list of pre-declared architectures.  */
794   arches = gdbarch_list_lookup_by_info (arches, &info);
795   if (arches != NULL)
796     return (arches->gdbarch);
797 
798   gdbarch = gdbarch_alloc (&info, NULL);
799 
800   /*
801    * Basic register fields and methods, datatype sizes and stuff.
802    */
803 
804   set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
805   set_gdbarch_num_pseudo_regs (gdbarch, 0);
806   set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
807   set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
808   set_gdbarch_register_name (gdbarch, xstormy16_register_name);
809   set_gdbarch_register_type (gdbarch, xstormy16_register_type);
810 
811   set_gdbarch_char_signed (gdbarch, 0);
812   set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
813   set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
814   set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
815   set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
816 
817   set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
818   set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
819   set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
820 
821   set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
822   set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
823   set_gdbarch_dwarf2_addr_size (gdbarch, 4);
824 
825   set_gdbarch_address_to_pointer (gdbarch, xstormy16_address_to_pointer);
826   set_gdbarch_pointer_to_address (gdbarch, xstormy16_pointer_to_address);
827 
828   /* Stack grows up.  */
829   set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
830 
831   /*
832    * Frame Info
833    */
834   set_gdbarch_unwind_sp (gdbarch, xstormy16_unwind_sp);
835   set_gdbarch_unwind_pc (gdbarch, xstormy16_unwind_pc);
836   set_gdbarch_dummy_id (gdbarch, xstormy16_dummy_id);
837   set_gdbarch_frame_align (gdbarch, xstormy16_frame_align);
838   frame_base_set_default (gdbarch, &xstormy16_frame_base);
839 
840   set_gdbarch_skip_prologue (gdbarch, xstormy16_skip_prologue);
841   set_gdbarch_stack_frame_destroyed_p (gdbarch,
842 				       xstormy16_stack_frame_destroyed_p);
843 
844   /* These values and methods are used when gdb calls a target function.  */
845   set_gdbarch_push_dummy_call (gdbarch, xstormy16_push_dummy_call);
846   set_gdbarch_breakpoint_from_pc (gdbarch, xstormy16_breakpoint_from_pc);
847   set_gdbarch_return_value (gdbarch, xstormy16_return_value);
848 
849   set_gdbarch_skip_trampoline_code (gdbarch, xstormy16_skip_trampoline_code);
850 
851   set_gdbarch_print_insn (gdbarch, print_insn_xstormy16);
852 
853   gdbarch_init_osabi (info, gdbarch);
854 
855   dwarf2_append_unwinders (gdbarch);
856   frame_unwind_append_unwinder (gdbarch, &xstormy16_frame_unwind);
857 
858   return gdbarch;
859 }
860 
861 /* Function: _initialize_xstormy16_tdep
862    Initializer function for the Sanyo Xstormy16a module.
863    Called by gdb at start-up.  */
864 
865 /* -Wmissing-prototypes */
866 extern initialize_file_ftype _initialize_xstormy16_tdep;
867 
868 void
869 _initialize_xstormy16_tdep (void)
870 {
871   register_gdbarch_init (bfd_arch_xstormy16, xstormy16_gdbarch_init);
872 }
873