1 /* Target-dependent code for the Sanyo Xstormy16a (LC590000) processor. 2 3 Copyright (C) 2001-2014 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "frame.h" 22 #include "frame-base.h" 23 #include "frame-unwind.h" 24 #include "dwarf2-frame.h" 25 #include "symtab.h" 26 #include "gdbtypes.h" 27 #include "gdbcmd.h" 28 #include "gdbcore.h" 29 #include "value.h" 30 #include "dis-asm.h" 31 #include "inferior.h" 32 #include <string.h> 33 #include "gdb_assert.h" 34 #include "arch-utils.h" 35 #include "floatformat.h" 36 #include "regcache.h" 37 #include "doublest.h" 38 #include "osabi.h" 39 #include "objfiles.h" 40 41 enum gdb_regnum 42 { 43 /* Xstormy16 has 16 general purpose registers (R0-R15) plus PC. 44 Functions will return their values in register R2-R7 as they fit. 45 Otherwise a hidden pointer to an big enough area is given as argument 46 to the function in r2. Further arguments are beginning in r3 then. 47 R13 is used as frame pointer when GCC compiles w/o optimization 48 R14 is used as "PSW", displaying the CPU status. 49 R15 is used implicitely as stack pointer. */ 50 E_R0_REGNUM, 51 E_R1_REGNUM, 52 E_R2_REGNUM, E_1ST_ARG_REGNUM = E_R2_REGNUM, E_PTR_RET_REGNUM = E_R2_REGNUM, 53 E_R3_REGNUM, 54 E_R4_REGNUM, 55 E_R5_REGNUM, 56 E_R6_REGNUM, 57 E_R7_REGNUM, E_LST_ARG_REGNUM = E_R7_REGNUM, 58 E_R8_REGNUM, 59 E_R9_REGNUM, 60 E_R10_REGNUM, 61 E_R11_REGNUM, 62 E_R12_REGNUM, 63 E_R13_REGNUM, E_FP_REGNUM = E_R13_REGNUM, 64 E_R14_REGNUM, E_PSW_REGNUM = E_R14_REGNUM, 65 E_R15_REGNUM, E_SP_REGNUM = E_R15_REGNUM, 66 E_PC_REGNUM, 67 E_NUM_REGS 68 }; 69 70 /* Use an invalid address value as 'not available' marker. */ 71 enum { REG_UNAVAIL = (CORE_ADDR) -1 }; 72 73 struct xstormy16_frame_cache 74 { 75 /* Base address. */ 76 CORE_ADDR base; 77 CORE_ADDR pc; 78 LONGEST framesize; 79 int uses_fp; 80 CORE_ADDR saved_regs[E_NUM_REGS]; 81 CORE_ADDR saved_sp; 82 }; 83 84 /* Size of instructions, registers, etc. */ 85 enum 86 { 87 xstormy16_inst_size = 2, 88 xstormy16_reg_size = 2, 89 xstormy16_pc_size = 4 90 }; 91 92 /* Size of return datatype which fits into the remaining return registers. */ 93 #define E_MAX_RETTYPE_SIZE(regnum) ((E_LST_ARG_REGNUM - (regnum) + 1) \ 94 * xstormy16_reg_size) 95 96 /* Size of return datatype which fits into all return registers. */ 97 enum 98 { 99 E_MAX_RETTYPE_SIZE_IN_REGS = E_MAX_RETTYPE_SIZE (E_R2_REGNUM) 100 }; 101 102 /* Function: xstormy16_register_name 103 Returns the name of the standard Xstormy16 register N. */ 104 105 static const char * 106 xstormy16_register_name (struct gdbarch *gdbarch, int regnum) 107 { 108 static char *register_names[] = { 109 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 110 "r8", "r9", "r10", "r11", "r12", "r13", 111 "psw", "sp", "pc" 112 }; 113 114 if (regnum < 0 || regnum >= E_NUM_REGS) 115 internal_error (__FILE__, __LINE__, 116 _("xstormy16_register_name: illegal register number %d"), 117 regnum); 118 else 119 return register_names[regnum]; 120 121 } 122 123 static struct type * 124 xstormy16_register_type (struct gdbarch *gdbarch, int regnum) 125 { 126 if (regnum == E_PC_REGNUM) 127 return builtin_type (gdbarch)->builtin_uint32; 128 else 129 return builtin_type (gdbarch)->builtin_uint16; 130 } 131 132 /* Function: xstormy16_type_is_scalar 133 Makes the decision if a given type is a scalar types. Scalar 134 types are returned in the registers r2-r7 as they fit. */ 135 136 static int 137 xstormy16_type_is_scalar (struct type *t) 138 { 139 return (TYPE_CODE(t) != TYPE_CODE_STRUCT 140 && TYPE_CODE(t) != TYPE_CODE_UNION 141 && TYPE_CODE(t) != TYPE_CODE_ARRAY); 142 } 143 144 /* Function: xstormy16_use_struct_convention 145 Returns non-zero if the given struct type will be returned using 146 a special convention, rather than the normal function return method. 147 7sed in the contexts of the "return" command, and of 148 target function calls from the debugger. */ 149 150 static int 151 xstormy16_use_struct_convention (struct type *type) 152 { 153 return !xstormy16_type_is_scalar (type) 154 || TYPE_LENGTH (type) > E_MAX_RETTYPE_SIZE_IN_REGS; 155 } 156 157 /* Function: xstormy16_extract_return_value 158 Find a function's return value in the appropriate registers (in 159 regbuf), and copy it into valbuf. */ 160 161 static void 162 xstormy16_extract_return_value (struct type *type, struct regcache *regcache, 163 gdb_byte *valbuf) 164 { 165 int len = TYPE_LENGTH (type); 166 int i, regnum = E_1ST_ARG_REGNUM; 167 168 for (i = 0; i < len; i += xstormy16_reg_size) 169 regcache_raw_read (regcache, regnum++, valbuf + i); 170 } 171 172 /* Function: xstormy16_store_return_value 173 Copy the function return value from VALBUF into the 174 proper location for a function return. 175 Called only in the context of the "return" command. */ 176 177 static void 178 xstormy16_store_return_value (struct type *type, struct regcache *regcache, 179 const gdb_byte *valbuf) 180 { 181 if (TYPE_LENGTH (type) == 1) 182 { 183 /* Add leading zeros to the value. */ 184 gdb_byte buf[xstormy16_reg_size]; 185 memset (buf, 0, xstormy16_reg_size); 186 memcpy (buf, valbuf, 1); 187 regcache_raw_write (regcache, E_1ST_ARG_REGNUM, buf); 188 } 189 else 190 { 191 int len = TYPE_LENGTH (type); 192 int i, regnum = E_1ST_ARG_REGNUM; 193 194 for (i = 0; i < len; i += xstormy16_reg_size) 195 regcache_raw_write (regcache, regnum++, valbuf + i); 196 } 197 } 198 199 static enum return_value_convention 200 xstormy16_return_value (struct gdbarch *gdbarch, struct value *function, 201 struct type *type, struct regcache *regcache, 202 gdb_byte *readbuf, const gdb_byte *writebuf) 203 { 204 if (xstormy16_use_struct_convention (type)) 205 return RETURN_VALUE_STRUCT_CONVENTION; 206 if (writebuf) 207 xstormy16_store_return_value (type, regcache, writebuf); 208 else if (readbuf) 209 xstormy16_extract_return_value (type, regcache, readbuf); 210 return RETURN_VALUE_REGISTER_CONVENTION; 211 } 212 213 static CORE_ADDR 214 xstormy16_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) 215 { 216 if (addr & 1) 217 ++addr; 218 return addr; 219 } 220 221 /* Function: xstormy16_push_dummy_call 222 Setup the function arguments for GDB to call a function in the inferior. 223 Called only in the context of a target function call from the debugger. 224 Returns the value of the SP register after the args are pushed. */ 225 226 static CORE_ADDR 227 xstormy16_push_dummy_call (struct gdbarch *gdbarch, 228 struct value *function, 229 struct regcache *regcache, 230 CORE_ADDR bp_addr, int nargs, 231 struct value **args, 232 CORE_ADDR sp, int struct_return, 233 CORE_ADDR struct_addr) 234 { 235 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 236 CORE_ADDR stack_dest = sp; 237 int argreg = E_1ST_ARG_REGNUM; 238 int i, j; 239 int typelen, slacklen; 240 const gdb_byte *val; 241 gdb_byte buf[xstormy16_pc_size]; 242 243 /* If struct_return is true, then the struct return address will 244 consume one argument-passing register. */ 245 if (struct_return) 246 { 247 regcache_cooked_write_unsigned (regcache, E_PTR_RET_REGNUM, struct_addr); 248 argreg++; 249 } 250 251 /* Arguments are passed in R2-R7 as they fit. If an argument doesn't 252 fit in the remaining registers we're switching over to the stack. 253 No argument is put on stack partially and as soon as we switched 254 over to stack no further argument is put in a register even if it 255 would fit in the remaining unused registers. */ 256 for (i = 0; i < nargs && argreg <= E_LST_ARG_REGNUM; i++) 257 { 258 typelen = TYPE_LENGTH (value_enclosing_type (args[i])); 259 if (typelen > E_MAX_RETTYPE_SIZE (argreg)) 260 break; 261 262 /* Put argument into registers wordwise. */ 263 val = value_contents (args[i]); 264 for (j = 0; j < typelen; j += xstormy16_reg_size) 265 { 266 ULONGEST regval; 267 int size = (typelen - j == 1) ? 1 : xstormy16_reg_size; 268 269 regval = extract_unsigned_integer (val + j, size, byte_order); 270 regcache_cooked_write_unsigned (regcache, argreg++, regval); 271 } 272 } 273 274 /* Align SP */ 275 stack_dest = xstormy16_frame_align (gdbarch, stack_dest); 276 277 /* Loop backwards through remaining arguments and push them on the stack, 278 wordaligned. */ 279 for (j = nargs - 1; j >= i; j--) 280 { 281 gdb_byte *val; 282 struct cleanup *back_to; 283 const gdb_byte *bytes = value_contents (args[j]); 284 285 typelen = TYPE_LENGTH (value_enclosing_type (args[j])); 286 slacklen = typelen & 1; 287 val = xmalloc (typelen + slacklen); 288 back_to = make_cleanup (xfree, val); 289 memcpy (val, bytes, typelen); 290 memset (val + typelen, 0, slacklen); 291 292 /* Now write this data to the stack. The stack grows upwards. */ 293 write_memory (stack_dest, val, typelen + slacklen); 294 stack_dest += typelen + slacklen; 295 do_cleanups (back_to); 296 } 297 298 store_unsigned_integer (buf, xstormy16_pc_size, byte_order, bp_addr); 299 write_memory (stack_dest, buf, xstormy16_pc_size); 300 stack_dest += xstormy16_pc_size; 301 302 /* Update stack pointer. */ 303 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, stack_dest); 304 305 /* Return the new stack pointer minus the return address slot since 306 that's what DWARF2/GCC uses as the frame's CFA. */ 307 return stack_dest - xstormy16_pc_size; 308 } 309 310 /* Function: xstormy16_scan_prologue 311 Decode the instructions within the given address range. 312 Decide when we must have reached the end of the function prologue. 313 If a frame_info pointer is provided, fill in its saved_regs etc. 314 315 Returns the address of the first instruction after the prologue. */ 316 317 static CORE_ADDR 318 xstormy16_analyze_prologue (struct gdbarch *gdbarch, 319 CORE_ADDR start_addr, CORE_ADDR end_addr, 320 struct xstormy16_frame_cache *cache, 321 struct frame_info *this_frame) 322 { 323 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 324 CORE_ADDR next_addr; 325 ULONGEST inst, inst2; 326 LONGEST offset; 327 int regnum; 328 329 /* Initialize framesize with size of PC put on stack by CALLF inst. */ 330 cache->saved_regs[E_PC_REGNUM] = 0; 331 cache->framesize = xstormy16_pc_size; 332 333 if (start_addr >= end_addr) 334 return end_addr; 335 336 for (next_addr = start_addr; 337 next_addr < end_addr; next_addr += xstormy16_inst_size) 338 { 339 inst = read_memory_unsigned_integer (next_addr, 340 xstormy16_inst_size, byte_order); 341 inst2 = read_memory_unsigned_integer (next_addr + xstormy16_inst_size, 342 xstormy16_inst_size, byte_order); 343 344 if (inst >= 0x0082 && inst <= 0x008d) /* push r2 .. push r13 */ 345 { 346 regnum = inst & 0x000f; 347 cache->saved_regs[regnum] = cache->framesize; 348 cache->framesize += xstormy16_reg_size; 349 } 350 351 /* Optional stack allocation for args and local vars <= 4 byte. */ 352 else if (inst == 0x301f || inst == 0x303f) /* inc r15, #0x1/#0x3 */ 353 { 354 cache->framesize += ((inst & 0x0030) >> 4) + 1; 355 } 356 357 /* optional stack allocation for args and local vars > 4 && < 16 byte */ 358 else if ((inst & 0xff0f) == 0x510f) /* 51Hf add r15, #0xH */ 359 { 360 cache->framesize += (inst & 0x00f0) >> 4; 361 } 362 363 /* Optional stack allocation for args and local vars >= 16 byte. */ 364 else if (inst == 0x314f && inst2 >= 0x0010) /* 314f HHHH add r15, #0xH */ 365 { 366 cache->framesize += inst2; 367 next_addr += xstormy16_inst_size; 368 } 369 370 else if (inst == 0x46fd) /* mov r13, r15 */ 371 { 372 cache->uses_fp = 1; 373 } 374 375 /* optional copying of args in r2-r7 to r10-r13. */ 376 /* Probably only in optimized case but legal action for prologue. */ 377 else if ((inst & 0xff00) == 0x4600 /* 46SD mov rD, rS */ 378 && (inst & 0x00f0) >= 0x0020 && (inst & 0x00f0) <= 0x0070 379 && (inst & 0x000f) >= 0x00a0 && (inst & 0x000f) <= 0x000d) 380 ; 381 382 /* Optional copying of args in r2-r7 to stack. */ 383 /* 72DS HHHH mov.b (rD, 0xHHHH), r(S-8) 384 (bit3 always 1, bit2-0 = reg) */ 385 /* 73DS HHHH mov.w (rD, 0xHHHH), r(S-8) */ 386 else if ((inst & 0xfed8) == 0x72d8 && (inst & 0x0007) >= 2) 387 { 388 regnum = inst & 0x0007; 389 /* Only 12 of 16 bits of the argument are used for the 390 signed offset. */ 391 offset = (LONGEST) (inst2 & 0x0fff); 392 if (offset & 0x0800) 393 offset -= 0x1000; 394 395 cache->saved_regs[regnum] = cache->framesize + offset; 396 next_addr += xstormy16_inst_size; 397 } 398 399 else /* Not a prologue instruction. */ 400 break; 401 } 402 403 return next_addr; 404 } 405 406 /* Function: xstormy16_skip_prologue 407 If the input address is in a function prologue, 408 returns the address of the end of the prologue; 409 else returns the input address. 410 411 Note: the input address is likely to be the function start, 412 since this function is mainly used for advancing a breakpoint 413 to the first line, or stepping to the first line when we have 414 stepped into a function call. */ 415 416 static CORE_ADDR 417 xstormy16_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 418 { 419 CORE_ADDR func_addr = 0, func_end = 0; 420 const char *func_name; 421 422 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end)) 423 { 424 struct symtab_and_line sal; 425 struct symbol *sym; 426 struct xstormy16_frame_cache cache; 427 CORE_ADDR plg_end; 428 429 memset (&cache, 0, sizeof cache); 430 431 /* Don't trust line number debug info in frameless functions. */ 432 plg_end = xstormy16_analyze_prologue (gdbarch, func_addr, func_end, 433 &cache, NULL); 434 if (!cache.uses_fp) 435 return plg_end; 436 437 /* Found a function. */ 438 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL); 439 /* Don't use line number debug info for assembly source files. */ 440 if (sym && SYMBOL_LANGUAGE (sym) != language_asm) 441 { 442 sal = find_pc_line (func_addr, 0); 443 if (sal.end && sal.end < func_end) 444 { 445 /* Found a line number, use it as end of prologue. */ 446 return sal.end; 447 } 448 } 449 /* No useable line symbol. Use result of prologue parsing method. */ 450 return plg_end; 451 } 452 453 /* No function symbol -- just return the PC. */ 454 455 return (CORE_ADDR) pc; 456 } 457 458 /* The epilogue is defined here as the area at the end of a function, 459 either on the `ret' instruction itself or after an instruction which 460 destroys the function's stack frame. */ 461 static int 462 xstormy16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) 463 { 464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 465 CORE_ADDR func_addr = 0, func_end = 0; 466 467 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) 468 { 469 ULONGEST inst, inst2; 470 CORE_ADDR addr = func_end - xstormy16_inst_size; 471 472 /* The Xstormy16 epilogue is max. 14 bytes long. */ 473 if (pc < func_end - 7 * xstormy16_inst_size) 474 return 0; 475 476 /* Check if we're on a `ret' instruction. Otherwise it's 477 too dangerous to proceed. */ 478 inst = read_memory_unsigned_integer (addr, 479 xstormy16_inst_size, byte_order); 480 if (inst != 0x0003) 481 return 0; 482 483 while ((addr -= xstormy16_inst_size) >= func_addr) 484 { 485 inst = read_memory_unsigned_integer (addr, 486 xstormy16_inst_size, 487 byte_order); 488 if (inst >= 0x009a && inst <= 0x009d) /* pop r10...r13 */ 489 continue; 490 if (inst == 0x305f || inst == 0x307f) /* dec r15, #0x1/#0x3 */ 491 break; 492 inst2 = read_memory_unsigned_integer (addr - xstormy16_inst_size, 493 xstormy16_inst_size, 494 byte_order); 495 if (inst2 == 0x314f && inst >= 0x8000) /* add r15, neg. value */ 496 { 497 addr -= xstormy16_inst_size; 498 break; 499 } 500 return 0; 501 } 502 if (pc > addr) 503 return 1; 504 } 505 return 0; 506 } 507 508 static const unsigned char * 509 xstormy16_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, 510 int *lenptr) 511 { 512 static unsigned char breakpoint[] = { 0x06, 0x0 }; 513 *lenptr = sizeof (breakpoint); 514 return breakpoint; 515 } 516 517 /* Given a pointer to a jump table entry, return the address 518 of the function it jumps to. Return 0 if not found. */ 519 static CORE_ADDR 520 xstormy16_resolve_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr) 521 { 522 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 523 struct obj_section *faddr_sect = find_pc_section (faddr); 524 525 if (faddr_sect) 526 { 527 LONGEST inst, inst2, addr; 528 gdb_byte buf[2 * xstormy16_inst_size]; 529 530 /* Return faddr if it's not pointing into the jump table. */ 531 if (strcmp (faddr_sect->the_bfd_section->name, ".plt")) 532 return faddr; 533 534 if (!target_read_memory (faddr, buf, sizeof buf)) 535 { 536 inst = extract_unsigned_integer (buf, 537 xstormy16_inst_size, byte_order); 538 inst2 = extract_unsigned_integer (buf + xstormy16_inst_size, 539 xstormy16_inst_size, byte_order); 540 addr = inst2 << 8 | (inst & 0xff); 541 return addr; 542 } 543 } 544 return 0; 545 } 546 547 /* Given a function's address, attempt to find (and return) the 548 address of the corresponding jump table entry. Return 0 if 549 not found. */ 550 static CORE_ADDR 551 xstormy16_find_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr) 552 { 553 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 554 struct obj_section *faddr_sect = find_pc_section (faddr); 555 556 if (faddr_sect) 557 { 558 struct obj_section *osect; 559 560 /* Return faddr if it's already a pointer to a jump table entry. */ 561 if (!strcmp (faddr_sect->the_bfd_section->name, ".plt")) 562 return faddr; 563 564 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) 565 { 566 if (!strcmp (osect->the_bfd_section->name, ".plt")) 567 break; 568 } 569 570 if (osect < faddr_sect->objfile->sections_end) 571 { 572 CORE_ADDR addr, endaddr; 573 574 addr = obj_section_addr (osect); 575 endaddr = obj_section_endaddr (osect); 576 577 for (; addr < endaddr; addr += 2 * xstormy16_inst_size) 578 { 579 LONGEST inst, inst2, faddr2; 580 gdb_byte buf[2 * xstormy16_inst_size]; 581 582 if (target_read_memory (addr, buf, sizeof buf)) 583 return 0; 584 inst = extract_unsigned_integer (buf, 585 xstormy16_inst_size, 586 byte_order); 587 inst2 = extract_unsigned_integer (buf + xstormy16_inst_size, 588 xstormy16_inst_size, 589 byte_order); 590 faddr2 = inst2 << 8 | (inst & 0xff); 591 if (faddr == faddr2) 592 return addr; 593 } 594 } 595 } 596 return 0; 597 } 598 599 static CORE_ADDR 600 xstormy16_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) 601 { 602 struct gdbarch *gdbarch = get_frame_arch (frame); 603 CORE_ADDR tmp = xstormy16_resolve_jmp_table_entry (gdbarch, pc); 604 605 if (tmp && tmp != pc) 606 return tmp; 607 return 0; 608 } 609 610 /* Function pointers are 16 bit. The address space is 24 bit, using 611 32 bit addresses. Pointers to functions on the XStormy16 are implemented 612 by using 16 bit pointers, which are either direct pointers in case the 613 function begins below 0x10000, or indirect pointers into a jump table. 614 The next two functions convert 16 bit pointers into 24 (32) bit addresses 615 and vice versa. */ 616 617 static CORE_ADDR 618 xstormy16_pointer_to_address (struct gdbarch *gdbarch, 619 struct type *type, const gdb_byte *buf) 620 { 621 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 622 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type)); 623 CORE_ADDR addr 624 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order); 625 626 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD) 627 { 628 CORE_ADDR addr2 = xstormy16_resolve_jmp_table_entry (gdbarch, addr); 629 if (addr2) 630 addr = addr2; 631 } 632 633 return addr; 634 } 635 636 static void 637 xstormy16_address_to_pointer (struct gdbarch *gdbarch, 638 struct type *type, gdb_byte *buf, CORE_ADDR addr) 639 { 640 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 641 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type)); 642 643 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD) 644 { 645 CORE_ADDR addr2 = xstormy16_find_jmp_table_entry (gdbarch, addr); 646 if (addr2) 647 addr = addr2; 648 } 649 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr); 650 } 651 652 static struct xstormy16_frame_cache * 653 xstormy16_alloc_frame_cache (void) 654 { 655 struct xstormy16_frame_cache *cache; 656 int i; 657 658 cache = FRAME_OBSTACK_ZALLOC (struct xstormy16_frame_cache); 659 660 cache->base = 0; 661 cache->saved_sp = 0; 662 cache->pc = 0; 663 cache->uses_fp = 0; 664 cache->framesize = 0; 665 for (i = 0; i < E_NUM_REGS; ++i) 666 cache->saved_regs[i] = REG_UNAVAIL; 667 668 return cache; 669 } 670 671 static struct xstormy16_frame_cache * 672 xstormy16_frame_cache (struct frame_info *this_frame, void **this_cache) 673 { 674 struct gdbarch *gdbarch = get_frame_arch (this_frame); 675 struct xstormy16_frame_cache *cache; 676 CORE_ADDR current_pc; 677 int i; 678 679 if (*this_cache) 680 return *this_cache; 681 682 cache = xstormy16_alloc_frame_cache (); 683 *this_cache = cache; 684 685 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM); 686 if (cache->base == 0) 687 return cache; 688 689 cache->pc = get_frame_func (this_frame); 690 current_pc = get_frame_pc (this_frame); 691 if (cache->pc) 692 xstormy16_analyze_prologue (gdbarch, cache->pc, current_pc, 693 cache, this_frame); 694 695 if (!cache->uses_fp) 696 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM); 697 698 cache->saved_sp = cache->base - cache->framesize; 699 700 for (i = 0; i < E_NUM_REGS; ++i) 701 if (cache->saved_regs[i] != REG_UNAVAIL) 702 cache->saved_regs[i] += cache->saved_sp; 703 704 return cache; 705 } 706 707 static struct value * 708 xstormy16_frame_prev_register (struct frame_info *this_frame, 709 void **this_cache, int regnum) 710 { 711 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame, 712 this_cache); 713 gdb_assert (regnum >= 0); 714 715 if (regnum == E_SP_REGNUM && cache->saved_sp) 716 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp); 717 718 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL) 719 return frame_unwind_got_memory (this_frame, regnum, 720 cache->saved_regs[regnum]); 721 722 return frame_unwind_got_register (this_frame, regnum, regnum); 723 } 724 725 static void 726 xstormy16_frame_this_id (struct frame_info *this_frame, void **this_cache, 727 struct frame_id *this_id) 728 { 729 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame, 730 this_cache); 731 732 /* This marks the outermost frame. */ 733 if (cache->base == 0) 734 return; 735 736 *this_id = frame_id_build (cache->saved_sp, cache->pc); 737 } 738 739 static CORE_ADDR 740 xstormy16_frame_base_address (struct frame_info *this_frame, void **this_cache) 741 { 742 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame, 743 this_cache); 744 return cache->base; 745 } 746 747 static const struct frame_unwind xstormy16_frame_unwind = { 748 NORMAL_FRAME, 749 default_frame_unwind_stop_reason, 750 xstormy16_frame_this_id, 751 xstormy16_frame_prev_register, 752 NULL, 753 default_frame_sniffer 754 }; 755 756 static const struct frame_base xstormy16_frame_base = { 757 &xstormy16_frame_unwind, 758 xstormy16_frame_base_address, 759 xstormy16_frame_base_address, 760 xstormy16_frame_base_address 761 }; 762 763 static CORE_ADDR 764 xstormy16_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) 765 { 766 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM); 767 } 768 769 static CORE_ADDR 770 xstormy16_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) 771 { 772 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM); 773 } 774 775 static struct frame_id 776 xstormy16_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) 777 { 778 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM); 779 return frame_id_build (sp, get_frame_pc (this_frame)); 780 } 781 782 783 /* Function: xstormy16_gdbarch_init 784 Initializer function for the xstormy16 gdbarch vector. 785 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */ 786 787 static struct gdbarch * 788 xstormy16_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 789 { 790 struct gdbarch *gdbarch; 791 792 /* find a candidate among the list of pre-declared architectures. */ 793 arches = gdbarch_list_lookup_by_info (arches, &info); 794 if (arches != NULL) 795 return (arches->gdbarch); 796 797 gdbarch = gdbarch_alloc (&info, NULL); 798 799 /* 800 * Basic register fields and methods, datatype sizes and stuff. 801 */ 802 803 set_gdbarch_num_regs (gdbarch, E_NUM_REGS); 804 set_gdbarch_num_pseudo_regs (gdbarch, 0); 805 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM); 806 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM); 807 set_gdbarch_register_name (gdbarch, xstormy16_register_name); 808 set_gdbarch_register_type (gdbarch, xstormy16_register_type); 809 810 set_gdbarch_char_signed (gdbarch, 0); 811 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); 812 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); 813 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); 814 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); 815 816 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); 817 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); 818 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); 819 820 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); 821 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT); 822 set_gdbarch_dwarf2_addr_size (gdbarch, 4); 823 824 set_gdbarch_address_to_pointer (gdbarch, xstormy16_address_to_pointer); 825 set_gdbarch_pointer_to_address (gdbarch, xstormy16_pointer_to_address); 826 827 /* Stack grows up. */ 828 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan); 829 830 /* 831 * Frame Info 832 */ 833 set_gdbarch_unwind_sp (gdbarch, xstormy16_unwind_sp); 834 set_gdbarch_unwind_pc (gdbarch, xstormy16_unwind_pc); 835 set_gdbarch_dummy_id (gdbarch, xstormy16_dummy_id); 836 set_gdbarch_frame_align (gdbarch, xstormy16_frame_align); 837 frame_base_set_default (gdbarch, &xstormy16_frame_base); 838 839 set_gdbarch_skip_prologue (gdbarch, xstormy16_skip_prologue); 840 set_gdbarch_in_function_epilogue_p (gdbarch, 841 xstormy16_in_function_epilogue_p); 842 843 /* These values and methods are used when gdb calls a target function. */ 844 set_gdbarch_push_dummy_call (gdbarch, xstormy16_push_dummy_call); 845 set_gdbarch_breakpoint_from_pc (gdbarch, xstormy16_breakpoint_from_pc); 846 set_gdbarch_return_value (gdbarch, xstormy16_return_value); 847 848 set_gdbarch_skip_trampoline_code (gdbarch, xstormy16_skip_trampoline_code); 849 850 set_gdbarch_print_insn (gdbarch, print_insn_xstormy16); 851 852 gdbarch_init_osabi (info, gdbarch); 853 854 dwarf2_append_unwinders (gdbarch); 855 frame_unwind_append_unwinder (gdbarch, &xstormy16_frame_unwind); 856 857 return gdbarch; 858 } 859 860 /* Function: _initialize_xstormy16_tdep 861 Initializer function for the Sanyo Xstormy16a module. 862 Called by gdb at start-up. */ 863 864 /* -Wmissing-prototypes */ 865 extern initialize_file_ftype _initialize_xstormy16_tdep; 866 867 void 868 _initialize_xstormy16_tdep (void) 869 { 870 register_gdbarch_init (bfd_arch_xstormy16, xstormy16_gdbarch_init); 871 } 872