xref: /netbsd-src/external/gpl3/gdb/dist/gdb/xstormy16-tdep.c (revision a5847cc334d9a7029f6352b847e9e8d71a0f9e0c)
1 /* Target-dependent code for the Sanyo Xstormy16a (LC590000) processor.
2 
3    Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
4    Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-base.h"
24 #include "frame-unwind.h"
25 #include "dwarf2-frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "value.h"
31 #include "dis-asm.h"
32 #include "inferior.h"
33 #include "gdb_string.h"
34 #include "gdb_assert.h"
35 #include "arch-utils.h"
36 #include "floatformat.h"
37 #include "regcache.h"
38 #include "doublest.h"
39 #include "osabi.h"
40 #include "objfiles.h"
41 
42 enum gdb_regnum
43 {
44   /* Xstormy16 has 16 general purpose registers (R0-R15) plus PC.
45      Functions will return their values in register R2-R7 as they fit.
46      Otherwise a hidden pointer to an big enough area is given as argument
47      to the function in r2.  Further arguments are beginning in r3 then.
48      R13 is used as frame pointer when GCC compiles w/o optimization
49      R14 is used as "PSW", displaying the CPU status.
50      R15 is used implicitely as stack pointer.  */
51   E_R0_REGNUM,
52   E_R1_REGNUM,
53   E_R2_REGNUM, E_1ST_ARG_REGNUM = E_R2_REGNUM, E_PTR_RET_REGNUM = E_R2_REGNUM,
54   E_R3_REGNUM,
55   E_R4_REGNUM,
56   E_R5_REGNUM,
57   E_R6_REGNUM,
58   E_R7_REGNUM, E_LST_ARG_REGNUM = E_R7_REGNUM,
59   E_R8_REGNUM,
60   E_R9_REGNUM,
61   E_R10_REGNUM,
62   E_R11_REGNUM,
63   E_R12_REGNUM,
64   E_R13_REGNUM, E_FP_REGNUM = E_R13_REGNUM,
65   E_R14_REGNUM, E_PSW_REGNUM = E_R14_REGNUM,
66   E_R15_REGNUM, E_SP_REGNUM = E_R15_REGNUM,
67   E_PC_REGNUM,
68   E_NUM_REGS
69 };
70 
71 /* Use an invalid address value as 'not available' marker.  */
72 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
73 
74 struct xstormy16_frame_cache
75 {
76   /* Base address.  */
77   CORE_ADDR base;
78   CORE_ADDR pc;
79   LONGEST framesize;
80   int uses_fp;
81   CORE_ADDR saved_regs[E_NUM_REGS];
82   CORE_ADDR saved_sp;
83 };
84 
85 /* Size of instructions, registers, etc.  */
86 enum
87 {
88   xstormy16_inst_size = 2,
89   xstormy16_reg_size = 2,
90   xstormy16_pc_size = 4
91 };
92 
93 /* Size of return datatype which fits into the remaining return registers.  */
94 #define E_MAX_RETTYPE_SIZE(regnum)	((E_LST_ARG_REGNUM - (regnum) + 1) \
95 					* xstormy16_reg_size)
96 
97 /* Size of return datatype which fits into all return registers.  */
98 enum
99 {
100   E_MAX_RETTYPE_SIZE_IN_REGS = E_MAX_RETTYPE_SIZE (E_R2_REGNUM)
101 };
102 
103 /* Function: xstormy16_register_name
104    Returns the name of the standard Xstormy16 register N.  */
105 
106 static const char *
107 xstormy16_register_name (struct gdbarch *gdbarch, int regnum)
108 {
109   static char *register_names[] = {
110     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
111     "r8", "r9", "r10", "r11", "r12", "r13",
112     "psw", "sp", "pc"
113   };
114 
115   if (regnum < 0 || regnum >= E_NUM_REGS)
116     internal_error (__FILE__, __LINE__,
117 		    _("xstormy16_register_name: illegal register number %d"),
118 		    regnum);
119   else
120     return register_names[regnum];
121 
122 }
123 
124 static struct type *
125 xstormy16_register_type (struct gdbarch *gdbarch, int regnum)
126 {
127   if (regnum == E_PC_REGNUM)
128     return builtin_type (gdbarch)->builtin_uint32;
129   else
130     return builtin_type (gdbarch)->builtin_uint16;
131 }
132 
133 /* Function: xstormy16_type_is_scalar
134    Makes the decision if a given type is a scalar types.  Scalar
135    types are returned in the registers r2-r7 as they fit.  */
136 
137 static int
138 xstormy16_type_is_scalar (struct type *t)
139 {
140   return (TYPE_CODE(t) != TYPE_CODE_STRUCT
141 	  && TYPE_CODE(t) != TYPE_CODE_UNION
142 	  && TYPE_CODE(t) != TYPE_CODE_ARRAY);
143 }
144 
145 /* Function: xstormy16_use_struct_convention
146    Returns non-zero if the given struct type will be returned using
147    a special convention, rather than the normal function return method.
148    7sed in the contexts of the "return" command, and of
149    target function calls from the debugger.  */
150 
151 static int
152 xstormy16_use_struct_convention (struct type *type)
153 {
154   return !xstormy16_type_is_scalar (type)
155 	 || TYPE_LENGTH (type) > E_MAX_RETTYPE_SIZE_IN_REGS;
156 }
157 
158 /* Function: xstormy16_extract_return_value
159    Find a function's return value in the appropriate registers (in
160    regbuf), and copy it into valbuf.  */
161 
162 static void
163 xstormy16_extract_return_value (struct type *type, struct regcache *regcache,
164 				void *valbuf)
165 {
166   int len = TYPE_LENGTH (type);
167   int i, regnum = E_1ST_ARG_REGNUM;
168 
169   for (i = 0; i < len; i += xstormy16_reg_size)
170     regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
171 }
172 
173 /* Function: xstormy16_store_return_value
174    Copy the function return value from VALBUF into the
175    proper location for a function return.
176    Called only in the context of the "return" command.  */
177 
178 static void
179 xstormy16_store_return_value (struct type *type, struct regcache *regcache,
180 			      const void *valbuf)
181 {
182   if (TYPE_LENGTH (type) == 1)
183     {
184       /* Add leading zeros to the value.  */
185       char buf[xstormy16_reg_size];
186       memset (buf, 0, xstormy16_reg_size);
187       memcpy (buf, valbuf, 1);
188       regcache_raw_write (regcache, E_1ST_ARG_REGNUM, buf);
189     }
190   else
191     {
192       int len = TYPE_LENGTH (type);
193       int i, regnum = E_1ST_ARG_REGNUM;
194 
195       for (i = 0; i < len; i += xstormy16_reg_size)
196         regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
197     }
198 }
199 
200 static enum return_value_convention
201 xstormy16_return_value (struct gdbarch *gdbarch, struct type *func_type,
202 			struct type *type, struct regcache *regcache,
203 			gdb_byte *readbuf, const gdb_byte *writebuf)
204 {
205   if (xstormy16_use_struct_convention (type))
206     return RETURN_VALUE_STRUCT_CONVENTION;
207   if (writebuf)
208     xstormy16_store_return_value (type, regcache, writebuf);
209   else if (readbuf)
210     xstormy16_extract_return_value (type, regcache, readbuf);
211   return RETURN_VALUE_REGISTER_CONVENTION;
212 }
213 
214 static CORE_ADDR
215 xstormy16_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
216 {
217   if (addr & 1)
218     ++addr;
219   return addr;
220 }
221 
222 /* Function: xstormy16_push_dummy_call
223    Setup the function arguments for GDB to call a function in the inferior.
224    Called only in the context of a target function call from the debugger.
225    Returns the value of the SP register after the args are pushed.  */
226 
227 static CORE_ADDR
228 xstormy16_push_dummy_call (struct gdbarch *gdbarch,
229 			   struct value *function,
230 			   struct regcache *regcache,
231 			   CORE_ADDR bp_addr, int nargs,
232 			   struct value **args,
233 			   CORE_ADDR sp, int struct_return,
234 			   CORE_ADDR struct_addr)
235 {
236   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
237   CORE_ADDR stack_dest = sp;
238   int argreg = E_1ST_ARG_REGNUM;
239   int i, j;
240   int typelen, slacklen;
241   const gdb_byte *val;
242   char buf[xstormy16_pc_size];
243 
244   /* If struct_return is true, then the struct return address will
245      consume one argument-passing register.  */
246   if (struct_return)
247     {
248       regcache_cooked_write_unsigned (regcache, E_PTR_RET_REGNUM, struct_addr);
249       argreg++;
250     }
251 
252   /* Arguments are passed in R2-R7 as they fit.  If an argument doesn't
253      fit in the remaining registers we're switching over to the stack.
254      No argument is put on stack partially and as soon as we switched
255      over to stack no further argument is put in a register even if it
256      would fit in the remaining unused registers.  */
257   for (i = 0; i < nargs && argreg <= E_LST_ARG_REGNUM; i++)
258     {
259       typelen = TYPE_LENGTH (value_enclosing_type (args[i]));
260       if (typelen > E_MAX_RETTYPE_SIZE (argreg))
261 	break;
262 
263       /* Put argument into registers wordwise.  */
264       val = value_contents (args[i]);
265       for (j = 0; j < typelen; j += xstormy16_reg_size)
266 	regcache_cooked_write_unsigned (regcache, argreg++,
267 			extract_unsigned_integer (val + j,
268 						  typelen - j ==
269 						  1 ? 1 :
270 						  xstormy16_reg_size,
271 						  byte_order));
272     }
273 
274   /* Align SP */
275   stack_dest = xstormy16_frame_align (gdbarch, stack_dest);
276 
277   /* Loop backwards through remaining arguments and push them on the stack,
278      wordaligned.  */
279   for (j = nargs - 1; j >= i; j--)
280     {
281       char *val;
282 
283       typelen = TYPE_LENGTH (value_enclosing_type (args[j]));
284       slacklen = typelen & 1;
285       val = alloca (typelen + slacklen);
286       memcpy (val, value_contents (args[j]), typelen);
287       memset (val + typelen, 0, slacklen);
288 
289       /* Now write this data to the stack.  The stack grows upwards.  */
290       write_memory (stack_dest, val, typelen + slacklen);
291       stack_dest += typelen + slacklen;
292     }
293 
294   store_unsigned_integer (buf, xstormy16_pc_size, byte_order, bp_addr);
295   write_memory (stack_dest, buf, xstormy16_pc_size);
296   stack_dest += xstormy16_pc_size;
297 
298   /* Update stack pointer.  */
299   regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, stack_dest);
300 
301   /* Return the new stack pointer minus the return address slot since
302      that's what DWARF2/GCC uses as the frame's CFA.  */
303   return stack_dest - xstormy16_pc_size;
304 }
305 
306 /* Function: xstormy16_scan_prologue
307    Decode the instructions within the given address range.
308    Decide when we must have reached the end of the function prologue.
309    If a frame_info pointer is provided, fill in its saved_regs etc.
310 
311    Returns the address of the first instruction after the prologue.  */
312 
313 static CORE_ADDR
314 xstormy16_analyze_prologue (struct gdbarch *gdbarch,
315 			    CORE_ADDR start_addr, CORE_ADDR end_addr,
316 			    struct xstormy16_frame_cache *cache,
317 			    struct frame_info *this_frame)
318 {
319   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
320   CORE_ADDR next_addr;
321   ULONGEST inst, inst2;
322   LONGEST offset;
323   int regnum;
324 
325   /* Initialize framesize with size of PC put on stack by CALLF inst.  */
326   cache->saved_regs[E_PC_REGNUM] = 0;
327   cache->framesize = xstormy16_pc_size;
328 
329   if (start_addr >= end_addr)
330     return end_addr;
331 
332   for (next_addr = start_addr;
333        next_addr < end_addr; next_addr += xstormy16_inst_size)
334     {
335       inst = read_memory_unsigned_integer (next_addr,
336 					   xstormy16_inst_size, byte_order);
337       inst2 = read_memory_unsigned_integer (next_addr + xstormy16_inst_size,
338 					    xstormy16_inst_size, byte_order);
339 
340       if (inst >= 0x0082 && inst <= 0x008d)	/* push r2 .. push r13 */
341 	{
342 	  regnum = inst & 0x000f;
343 	  cache->saved_regs[regnum] = cache->framesize;
344 	  cache->framesize += xstormy16_reg_size;
345 	}
346 
347       /* Optional stack allocation for args and local vars <= 4 byte.  */
348       else if (inst == 0x301f || inst == 0x303f)       /* inc r15, #0x1/#0x3 */
349 	{
350 	  cache->framesize += ((inst & 0x0030) >> 4) + 1;
351 	}
352 
353       /* optional stack allocation for args and local vars > 4 && < 16 byte */
354       else if ((inst & 0xff0f) == 0x510f)	/* 51Hf   add r15, #0xH */
355 	{
356 	  cache->framesize += (inst & 0x00f0) >> 4;
357 	}
358 
359       /* Optional stack allocation for args and local vars >= 16 byte.  */
360       else if (inst == 0x314f && inst2 >= 0x0010) /* 314f HHHH add r15, #0xH */
361 	{
362 	  cache->framesize += inst2;
363 	  next_addr += xstormy16_inst_size;
364 	}
365 
366       else if (inst == 0x46fd)	/* mov r13, r15 */
367 	{
368 	  cache->uses_fp = 1;
369 	}
370 
371       /* optional copying of args in r2-r7 to r10-r13.  */
372       /* Probably only in optimized case but legal action for prologue.  */
373       else if ((inst & 0xff00) == 0x4600	/* 46SD   mov rD, rS */
374 	       && (inst & 0x00f0) >= 0x0020 && (inst & 0x00f0) <= 0x0070
375 	       && (inst & 0x000f) >= 0x00a0 && (inst & 0x000f) <= 0x000d)
376 	;
377 
378       /* Optional copying of args in r2-r7 to stack.  */
379       /* 72DS HHHH   mov.b (rD, 0xHHHH), r(S-8)
380 	 (bit3 always 1, bit2-0 = reg) */
381       /* 73DS HHHH   mov.w (rD, 0xHHHH), r(S-8) */
382       else if ((inst & 0xfed8) == 0x72d8 && (inst & 0x0007) >= 2)
383 	{
384 	  regnum = inst & 0x0007;
385 	  /* Only 12 of 16 bits of the argument are used for the
386 	     signed offset.  */
387 	  offset = (LONGEST) (inst2 & 0x0fff);
388 	  if (offset & 0x0800)
389 	    offset -= 0x1000;
390 
391 	  cache->saved_regs[regnum] = cache->framesize + offset;
392 	  next_addr += xstormy16_inst_size;
393 	}
394 
395       else			/* Not a prologue instruction.  */
396 	break;
397     }
398 
399   return next_addr;
400 }
401 
402 /* Function: xstormy16_skip_prologue
403    If the input address is in a function prologue,
404    returns the address of the end of the prologue;
405    else returns the input address.
406 
407    Note: the input address is likely to be the function start,
408    since this function is mainly used for advancing a breakpoint
409    to the first line, or stepping to the first line when we have
410    stepped into a function call.  */
411 
412 static CORE_ADDR
413 xstormy16_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
414 {
415   CORE_ADDR func_addr = 0, func_end = 0;
416   char *func_name;
417 
418   if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
419     {
420       struct symtab_and_line sal;
421       struct symbol *sym;
422       struct xstormy16_frame_cache cache;
423       CORE_ADDR plg_end;
424 
425       memset (&cache, 0, sizeof cache);
426 
427       /* Don't trust line number debug info in frameless functions.  */
428       plg_end = xstormy16_analyze_prologue (gdbarch, func_addr, func_end,
429 					    &cache, NULL);
430       if (!cache.uses_fp)
431         return plg_end;
432 
433       /* Found a function.  */
434       sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
435       /* Don't use line number debug info for assembly source files.  */
436       if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
437 	{
438 	  sal = find_pc_line (func_addr, 0);
439 	  if (sal.end && sal.end < func_end)
440 	    {
441 	      /* Found a line number, use it as end of prologue.  */
442 	      return sal.end;
443 	    }
444 	}
445       /* No useable line symbol.  Use result of prologue parsing method.  */
446       return plg_end;
447     }
448 
449   /* No function symbol -- just return the PC.  */
450 
451   return (CORE_ADDR) pc;
452 }
453 
454 /* The epilogue is defined here as the area at the end of a function,
455    either on the `ret' instruction itself or after an instruction which
456    destroys the function's stack frame.  */
457 static int
458 xstormy16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
459 {
460   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
461   CORE_ADDR func_addr = 0, func_end = 0;
462 
463   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
464     {
465       ULONGEST inst, inst2;
466       CORE_ADDR addr = func_end - xstormy16_inst_size;
467 
468       /* The Xstormy16 epilogue is max. 14 bytes long.  */
469       if (pc < func_end - 7 * xstormy16_inst_size)
470 	return 0;
471 
472       /* Check if we're on a `ret' instruction.  Otherwise it's
473          too dangerous to proceed.  */
474       inst = read_memory_unsigned_integer (addr,
475 					   xstormy16_inst_size, byte_order);
476       if (inst != 0x0003)
477 	return 0;
478 
479       while ((addr -= xstormy16_inst_size) >= func_addr)
480 	{
481 	  inst = read_memory_unsigned_integer (addr,
482 					       xstormy16_inst_size,
483 					       byte_order);
484 	  if (inst >= 0x009a && inst <= 0x009d)	/* pop r10...r13 */
485 	    continue;
486 	  if (inst == 0x305f || inst == 0x307f)	/* dec r15, #0x1/#0x3 */
487 	    break;
488 	  inst2 = read_memory_unsigned_integer (addr - xstormy16_inst_size,
489 						xstormy16_inst_size,
490 						byte_order);
491 	  if (inst2 == 0x314f && inst >= 0x8000)      /* add r15, neg. value */
492 	    {
493 	      addr -= xstormy16_inst_size;
494 	      break;
495 	    }
496 	  return 0;
497 	}
498       if (pc > addr)
499 	return 1;
500     }
501   return 0;
502 }
503 
504 const static unsigned char *
505 xstormy16_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
506 			      int *lenptr)
507 {
508   static unsigned char breakpoint[] = { 0x06, 0x0 };
509   *lenptr = sizeof (breakpoint);
510   return breakpoint;
511 }
512 
513 /* Given a pointer to a jump table entry, return the address
514    of the function it jumps to.  Return 0 if not found.  */
515 static CORE_ADDR
516 xstormy16_resolve_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
517 {
518   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
519   struct obj_section *faddr_sect = find_pc_section (faddr);
520 
521   if (faddr_sect)
522     {
523       LONGEST inst, inst2, addr;
524       char buf[2 * xstormy16_inst_size];
525 
526       /* Return faddr if it's not pointing into the jump table.  */
527       if (strcmp (faddr_sect->the_bfd_section->name, ".plt"))
528 	return faddr;
529 
530       if (!target_read_memory (faddr, buf, sizeof buf))
531 	{
532 	  inst = extract_unsigned_integer (buf,
533 					   xstormy16_inst_size, byte_order);
534 	  inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
535 					    xstormy16_inst_size, byte_order);
536 	  addr = inst2 << 8 | (inst & 0xff);
537 	  return addr;
538 	}
539     }
540   return 0;
541 }
542 
543 /* Given a function's address, attempt to find (and return) the
544    address of the corresponding jump table entry.  Return 0 if
545    not found.  */
546 static CORE_ADDR
547 xstormy16_find_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
548 {
549   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
550   struct obj_section *faddr_sect = find_pc_section (faddr);
551 
552   if (faddr_sect)
553     {
554       struct obj_section *osect;
555 
556       /* Return faddr if it's already a pointer to a jump table entry.  */
557       if (!strcmp (faddr_sect->the_bfd_section->name, ".plt"))
558 	return faddr;
559 
560       ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
561       {
562 	if (!strcmp (osect->the_bfd_section->name, ".plt"))
563 	  break;
564       }
565 
566       if (osect < faddr_sect->objfile->sections_end)
567 	{
568 	  CORE_ADDR addr, endaddr;
569 
570 	  addr = obj_section_addr (osect);
571 	  endaddr = obj_section_endaddr (osect);
572 
573 	  for (; addr < endaddr; addr += 2 * xstormy16_inst_size)
574 	    {
575 	      LONGEST inst, inst2, faddr2;
576 	      char buf[2 * xstormy16_inst_size];
577 
578 	      if (target_read_memory (addr, buf, sizeof buf))
579 		return 0;
580 	      inst = extract_unsigned_integer (buf,
581 					       xstormy16_inst_size,
582 					       byte_order);
583 	      inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
584 					        xstormy16_inst_size,
585 						byte_order);
586 	      faddr2 = inst2 << 8 | (inst & 0xff);
587 	      if (faddr == faddr2)
588 		return addr;
589 	    }
590 	}
591     }
592   return 0;
593 }
594 
595 static CORE_ADDR
596 xstormy16_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
597 {
598   struct gdbarch *gdbarch = get_frame_arch (frame);
599   CORE_ADDR tmp = xstormy16_resolve_jmp_table_entry (gdbarch, pc);
600 
601   if (tmp && tmp != pc)
602     return tmp;
603   return 0;
604 }
605 
606 /* Function pointers are 16 bit.  The address space is 24 bit, using
607    32 bit addresses.  Pointers to functions on the XStormy16 are implemented
608    by using 16 bit pointers, which are either direct pointers in case the
609    function begins below 0x10000, or indirect pointers into a jump table.
610    The next two functions convert 16 bit pointers into 24 (32) bit addresses
611    and vice versa.  */
612 
613 static CORE_ADDR
614 xstormy16_pointer_to_address (struct gdbarch *gdbarch,
615 			      struct type *type, const gdb_byte *buf)
616 {
617   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
618   enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
619   CORE_ADDR addr
620     = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
621 
622   if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
623     {
624       CORE_ADDR addr2 = xstormy16_resolve_jmp_table_entry (gdbarch, addr);
625       if (addr2)
626 	addr = addr2;
627     }
628 
629   return addr;
630 }
631 
632 static void
633 xstormy16_address_to_pointer (struct gdbarch *gdbarch,
634 			      struct type *type, gdb_byte *buf, CORE_ADDR addr)
635 {
636   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
637   enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
638 
639   if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
640     {
641       CORE_ADDR addr2 = xstormy16_find_jmp_table_entry (gdbarch, addr);
642       if (addr2)
643 	addr = addr2;
644     }
645   store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
646 }
647 
648 static struct xstormy16_frame_cache *
649 xstormy16_alloc_frame_cache (void)
650 {
651   struct xstormy16_frame_cache *cache;
652   int i;
653 
654   cache = FRAME_OBSTACK_ZALLOC (struct xstormy16_frame_cache);
655 
656   cache->base = 0;
657   cache->saved_sp = 0;
658   cache->pc = 0;
659   cache->uses_fp = 0;
660   cache->framesize = 0;
661   for (i = 0; i < E_NUM_REGS; ++i)
662     cache->saved_regs[i] = REG_UNAVAIL;
663 
664   return cache;
665 }
666 
667 static struct xstormy16_frame_cache *
668 xstormy16_frame_cache (struct frame_info *this_frame, void **this_cache)
669 {
670   struct gdbarch *gdbarch = get_frame_arch (this_frame);
671   struct xstormy16_frame_cache *cache;
672   CORE_ADDR current_pc;
673   int i;
674 
675   if (*this_cache)
676     return *this_cache;
677 
678   cache = xstormy16_alloc_frame_cache ();
679   *this_cache = cache;
680 
681   cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
682   if (cache->base == 0)
683     return cache;
684 
685   cache->pc = get_frame_func (this_frame);
686   current_pc = get_frame_pc (this_frame);
687   if (cache->pc)
688     xstormy16_analyze_prologue (gdbarch, cache->pc, current_pc,
689 				cache, this_frame);
690 
691   if (!cache->uses_fp)
692     cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
693 
694   cache->saved_sp = cache->base - cache->framesize;
695 
696   for (i = 0; i < E_NUM_REGS; ++i)
697     if (cache->saved_regs[i] != REG_UNAVAIL)
698       cache->saved_regs[i] += cache->saved_sp;
699 
700   return cache;
701 }
702 
703 static struct value *
704 xstormy16_frame_prev_register (struct frame_info *this_frame,
705 			       void **this_cache, int regnum)
706 {
707   struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
708                                                                this_cache);
709   gdb_assert (regnum >= 0);
710 
711   if (regnum == E_SP_REGNUM && cache->saved_sp)
712     return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
713 
714   if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
715     return frame_unwind_got_memory (this_frame, regnum,
716 				    cache->saved_regs[regnum]);
717 
718   return frame_unwind_got_register (this_frame, regnum, regnum);
719 }
720 
721 static void
722 xstormy16_frame_this_id (struct frame_info *this_frame, void **this_cache,
723 			 struct frame_id *this_id)
724 {
725   struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
726 							       this_cache);
727 
728   /* This marks the outermost frame.  */
729   if (cache->base == 0)
730     return;
731 
732   *this_id = frame_id_build (cache->saved_sp, cache->pc);
733 }
734 
735 static CORE_ADDR
736 xstormy16_frame_base_address (struct frame_info *this_frame, void **this_cache)
737 {
738   struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
739 							       this_cache);
740   return cache->base;
741 }
742 
743 static const struct frame_unwind xstormy16_frame_unwind = {
744   NORMAL_FRAME,
745   default_frame_unwind_stop_reason,
746   xstormy16_frame_this_id,
747   xstormy16_frame_prev_register,
748   NULL,
749   default_frame_sniffer
750 };
751 
752 static const struct frame_base xstormy16_frame_base = {
753   &xstormy16_frame_unwind,
754   xstormy16_frame_base_address,
755   xstormy16_frame_base_address,
756   xstormy16_frame_base_address
757 };
758 
759 static CORE_ADDR
760 xstormy16_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
761 {
762   return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
763 }
764 
765 static CORE_ADDR
766 xstormy16_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
767 {
768   return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
769 }
770 
771 static struct frame_id
772 xstormy16_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
773 {
774   CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
775   return frame_id_build (sp, get_frame_pc (this_frame));
776 }
777 
778 
779 /* Function: xstormy16_gdbarch_init
780    Initializer function for the xstormy16 gdbarch vector.
781    Called by gdbarch.  Sets up the gdbarch vector(s) for this target.  */
782 
783 static struct gdbarch *
784 xstormy16_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
785 {
786   struct gdbarch *gdbarch;
787 
788   /* find a candidate among the list of pre-declared architectures.  */
789   arches = gdbarch_list_lookup_by_info (arches, &info);
790   if (arches != NULL)
791     return (arches->gdbarch);
792 
793   gdbarch = gdbarch_alloc (&info, NULL);
794 
795   /*
796    * Basic register fields and methods, datatype sizes and stuff.
797    */
798 
799   set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
800   set_gdbarch_num_pseudo_regs (gdbarch, 0);
801   set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
802   set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
803   set_gdbarch_register_name (gdbarch, xstormy16_register_name);
804   set_gdbarch_register_type (gdbarch, xstormy16_register_type);
805 
806   set_gdbarch_char_signed (gdbarch, 0);
807   set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
808   set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
809   set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
810   set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
811 
812   set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
813   set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
814   set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
815 
816   set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
817   set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
818   set_gdbarch_dwarf2_addr_size (gdbarch, 4);
819 
820   set_gdbarch_address_to_pointer (gdbarch, xstormy16_address_to_pointer);
821   set_gdbarch_pointer_to_address (gdbarch, xstormy16_pointer_to_address);
822 
823   /* Stack grows up.  */
824   set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
825 
826   /*
827    * Frame Info
828    */
829   set_gdbarch_unwind_sp (gdbarch, xstormy16_unwind_sp);
830   set_gdbarch_unwind_pc (gdbarch, xstormy16_unwind_pc);
831   set_gdbarch_dummy_id (gdbarch, xstormy16_dummy_id);
832   set_gdbarch_frame_align (gdbarch, xstormy16_frame_align);
833   frame_base_set_default (gdbarch, &xstormy16_frame_base);
834 
835   set_gdbarch_skip_prologue (gdbarch, xstormy16_skip_prologue);
836   set_gdbarch_in_function_epilogue_p (gdbarch,
837 				      xstormy16_in_function_epilogue_p);
838 
839   /* These values and methods are used when gdb calls a target function.  */
840   set_gdbarch_push_dummy_call (gdbarch, xstormy16_push_dummy_call);
841   set_gdbarch_breakpoint_from_pc (gdbarch, xstormy16_breakpoint_from_pc);
842   set_gdbarch_return_value (gdbarch, xstormy16_return_value);
843 
844   set_gdbarch_skip_trampoline_code (gdbarch, xstormy16_skip_trampoline_code);
845 
846   set_gdbarch_print_insn (gdbarch, print_insn_xstormy16);
847 
848   gdbarch_init_osabi (info, gdbarch);
849 
850   dwarf2_append_unwinders (gdbarch);
851   frame_unwind_append_unwinder (gdbarch, &xstormy16_frame_unwind);
852 
853   return gdbarch;
854 }
855 
856 /* Function: _initialize_xstormy16_tdep
857    Initializer function for the Sanyo Xstormy16a module.
858    Called by gdb at start-up.  */
859 
860 /* -Wmissing-prototypes */
861 extern initialize_file_ftype _initialize_xstormy16_tdep;
862 
863 void
864 _initialize_xstormy16_tdep (void)
865 {
866   register_gdbarch_init (bfd_arch_xstormy16, xstormy16_gdbarch_init);
867 }
868