1 /* Low level packing and unpacking of values for GDB, the GNU Debugger. 2 3 Copyright (C) 1986-2019 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "arch-utils.h" 22 #include "symtab.h" 23 #include "gdbtypes.h" 24 #include "value.h" 25 #include "gdbcore.h" 26 #include "command.h" 27 #include "gdbcmd.h" 28 #include "target.h" 29 #include "language.h" 30 #include "demangle.h" 31 #include "regcache.h" 32 #include "block.h" 33 #include "target-float.h" 34 #include "objfiles.h" 35 #include "valprint.h" 36 #include "cli/cli-decode.h" 37 #include "extension.h" 38 #include <ctype.h> 39 #include "tracepoint.h" 40 #include "cp-abi.h" 41 #include "user-regs.h" 42 #include <algorithm> 43 #include "completer.h" 44 #include "common/selftest.h" 45 #include "common/array-view.h" 46 47 /* Definition of a user function. */ 48 struct internal_function 49 { 50 /* The name of the function. It is a bit odd to have this in the 51 function itself -- the user might use a differently-named 52 convenience variable to hold the function. */ 53 char *name; 54 55 /* The handler. */ 56 internal_function_fn handler; 57 58 /* User data for the handler. */ 59 void *cookie; 60 }; 61 62 /* Defines an [OFFSET, OFFSET + LENGTH) range. */ 63 64 struct range 65 { 66 /* Lowest offset in the range. */ 67 LONGEST offset; 68 69 /* Length of the range. */ 70 LONGEST length; 71 72 /* Returns true if THIS is strictly less than OTHER, useful for 73 searching. We keep ranges sorted by offset and coalesce 74 overlapping and contiguous ranges, so this just compares the 75 starting offset. */ 76 77 bool operator< (const range &other) const 78 { 79 return offset < other.offset; 80 } 81 82 /* Returns true if THIS is equal to OTHER. */ 83 bool operator== (const range &other) const 84 { 85 return offset == other.offset && length == other.length; 86 } 87 }; 88 89 /* Returns true if the ranges defined by [offset1, offset1+len1) and 90 [offset2, offset2+len2) overlap. */ 91 92 static int 93 ranges_overlap (LONGEST offset1, LONGEST len1, 94 LONGEST offset2, LONGEST len2) 95 { 96 ULONGEST h, l; 97 98 l = std::max (offset1, offset2); 99 h = std::min (offset1 + len1, offset2 + len2); 100 return (l < h); 101 } 102 103 /* Returns true if RANGES contains any range that overlaps [OFFSET, 104 OFFSET+LENGTH). */ 105 106 static int 107 ranges_contain (const std::vector<range> &ranges, LONGEST offset, 108 LONGEST length) 109 { 110 range what; 111 112 what.offset = offset; 113 what.length = length; 114 115 /* We keep ranges sorted by offset and coalesce overlapping and 116 contiguous ranges, so to check if a range list contains a given 117 range, we can do a binary search for the position the given range 118 would be inserted if we only considered the starting OFFSET of 119 ranges. We call that position I. Since we also have LENGTH to 120 care for (this is a range afterall), we need to check if the 121 _previous_ range overlaps the I range. E.g., 122 123 R 124 |---| 125 |---| |---| |------| ... |--| 126 0 1 2 N 127 128 I=1 129 130 In the case above, the binary search would return `I=1', meaning, 131 this OFFSET should be inserted at position 1, and the current 132 position 1 should be pushed further (and before 2). But, `0' 133 overlaps with R. 134 135 Then we need to check if the I range overlaps the I range itself. 136 E.g., 137 138 R 139 |---| 140 |---| |---| |-------| ... |--| 141 0 1 2 N 142 143 I=1 144 */ 145 146 147 auto i = std::lower_bound (ranges.begin (), ranges.end (), what); 148 149 if (i > ranges.begin ()) 150 { 151 const struct range &bef = *(i - 1); 152 153 if (ranges_overlap (bef.offset, bef.length, offset, length)) 154 return 1; 155 } 156 157 if (i < ranges.end ()) 158 { 159 const struct range &r = *i; 160 161 if (ranges_overlap (r.offset, r.length, offset, length)) 162 return 1; 163 } 164 165 return 0; 166 } 167 168 static struct cmd_list_element *functionlist; 169 170 /* Note that the fields in this structure are arranged to save a bit 171 of memory. */ 172 173 struct value 174 { 175 explicit value (struct type *type_) 176 : modifiable (1), 177 lazy (1), 178 initialized (1), 179 stack (0), 180 type (type_), 181 enclosing_type (type_) 182 { 183 } 184 185 ~value () 186 { 187 if (VALUE_LVAL (this) == lval_computed) 188 { 189 const struct lval_funcs *funcs = location.computed.funcs; 190 191 if (funcs->free_closure) 192 funcs->free_closure (this); 193 } 194 else if (VALUE_LVAL (this) == lval_xcallable) 195 delete location.xm_worker; 196 } 197 198 DISABLE_COPY_AND_ASSIGN (value); 199 200 /* Type of value; either not an lval, or one of the various 201 different possible kinds of lval. */ 202 enum lval_type lval = not_lval; 203 204 /* Is it modifiable? Only relevant if lval != not_lval. */ 205 unsigned int modifiable : 1; 206 207 /* If zero, contents of this value are in the contents field. If 208 nonzero, contents are in inferior. If the lval field is lval_memory, 209 the contents are in inferior memory at location.address plus offset. 210 The lval field may also be lval_register. 211 212 WARNING: This field is used by the code which handles watchpoints 213 (see breakpoint.c) to decide whether a particular value can be 214 watched by hardware watchpoints. If the lazy flag is set for 215 some member of a value chain, it is assumed that this member of 216 the chain doesn't need to be watched as part of watching the 217 value itself. This is how GDB avoids watching the entire struct 218 or array when the user wants to watch a single struct member or 219 array element. If you ever change the way lazy flag is set and 220 reset, be sure to consider this use as well! */ 221 unsigned int lazy : 1; 222 223 /* If value is a variable, is it initialized or not. */ 224 unsigned int initialized : 1; 225 226 /* If value is from the stack. If this is set, read_stack will be 227 used instead of read_memory to enable extra caching. */ 228 unsigned int stack : 1; 229 230 /* Location of value (if lval). */ 231 union 232 { 233 /* If lval == lval_memory, this is the address in the inferior */ 234 CORE_ADDR address; 235 236 /*If lval == lval_register, the value is from a register. */ 237 struct 238 { 239 /* Register number. */ 240 int regnum; 241 /* Frame ID of "next" frame to which a register value is relative. 242 If the register value is found relative to frame F, then the 243 frame id of F->next will be stored in next_frame_id. */ 244 struct frame_id next_frame_id; 245 } reg; 246 247 /* Pointer to internal variable. */ 248 struct internalvar *internalvar; 249 250 /* Pointer to xmethod worker. */ 251 struct xmethod_worker *xm_worker; 252 253 /* If lval == lval_computed, this is a set of function pointers 254 to use to access and describe the value, and a closure pointer 255 for them to use. */ 256 struct 257 { 258 /* Functions to call. */ 259 const struct lval_funcs *funcs; 260 261 /* Closure for those functions to use. */ 262 void *closure; 263 } computed; 264 } location {}; 265 266 /* Describes offset of a value within lval of a structure in target 267 addressable memory units. Note also the member embedded_offset 268 below. */ 269 LONGEST offset = 0; 270 271 /* Only used for bitfields; number of bits contained in them. */ 272 LONGEST bitsize = 0; 273 274 /* Only used for bitfields; position of start of field. For 275 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For 276 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */ 277 LONGEST bitpos = 0; 278 279 /* The number of references to this value. When a value is created, 280 the value chain holds a reference, so REFERENCE_COUNT is 1. If 281 release_value is called, this value is removed from the chain but 282 the caller of release_value now has a reference to this value. 283 The caller must arrange for a call to value_free later. */ 284 int reference_count = 1; 285 286 /* Only used for bitfields; the containing value. This allows a 287 single read from the target when displaying multiple 288 bitfields. */ 289 value_ref_ptr parent; 290 291 /* Type of the value. */ 292 struct type *type; 293 294 /* If a value represents a C++ object, then the `type' field gives 295 the object's compile-time type. If the object actually belongs 296 to some class derived from `type', perhaps with other base 297 classes and additional members, then `type' is just a subobject 298 of the real thing, and the full object is probably larger than 299 `type' would suggest. 300 301 If `type' is a dynamic class (i.e. one with a vtable), then GDB 302 can actually determine the object's run-time type by looking at 303 the run-time type information in the vtable. When this 304 information is available, we may elect to read in the entire 305 object, for several reasons: 306 307 - When printing the value, the user would probably rather see the 308 full object, not just the limited portion apparent from the 309 compile-time type. 310 311 - If `type' has virtual base classes, then even printing `type' 312 alone may require reaching outside the `type' portion of the 313 object to wherever the virtual base class has been stored. 314 315 When we store the entire object, `enclosing_type' is the run-time 316 type -- the complete object -- and `embedded_offset' is the 317 offset of `type' within that larger type, in target addressable memory 318 units. The value_contents() macro takes `embedded_offset' into account, 319 so most GDB code continues to see the `type' portion of the value, just 320 as the inferior would. 321 322 If `type' is a pointer to an object, then `enclosing_type' is a 323 pointer to the object's run-time type, and `pointed_to_offset' is 324 the offset in target addressable memory units from the full object 325 to the pointed-to object -- that is, the value `embedded_offset' would 326 have if we followed the pointer and fetched the complete object. 327 (I don't really see the point. Why not just determine the 328 run-time type when you indirect, and avoid the special case? The 329 contents don't matter until you indirect anyway.) 330 331 If we're not doing anything fancy, `enclosing_type' is equal to 332 `type', and `embedded_offset' is zero, so everything works 333 normally. */ 334 struct type *enclosing_type; 335 LONGEST embedded_offset = 0; 336 LONGEST pointed_to_offset = 0; 337 338 /* Actual contents of the value. Target byte-order. NULL or not 339 valid if lazy is nonzero. */ 340 gdb::unique_xmalloc_ptr<gdb_byte> contents; 341 342 /* Unavailable ranges in CONTENTS. We mark unavailable ranges, 343 rather than available, since the common and default case is for a 344 value to be available. This is filled in at value read time. 345 The unavailable ranges are tracked in bits. Note that a contents 346 bit that has been optimized out doesn't really exist in the 347 program, so it can't be marked unavailable either. */ 348 std::vector<range> unavailable; 349 350 /* Likewise, but for optimized out contents (a chunk of the value of 351 a variable that does not actually exist in the program). If LVAL 352 is lval_register, this is a register ($pc, $sp, etc., never a 353 program variable) that has not been saved in the frame. Not 354 saved registers and optimized-out program variables values are 355 treated pretty much the same, except not-saved registers have a 356 different string representation and related error strings. */ 357 std::vector<range> optimized_out; 358 }; 359 360 /* See value.h. */ 361 362 struct gdbarch * 363 get_value_arch (const struct value *value) 364 { 365 return get_type_arch (value_type (value)); 366 } 367 368 int 369 value_bits_available (const struct value *value, LONGEST offset, LONGEST length) 370 { 371 gdb_assert (!value->lazy); 372 373 return !ranges_contain (value->unavailable, offset, length); 374 } 375 376 int 377 value_bytes_available (const struct value *value, 378 LONGEST offset, LONGEST length) 379 { 380 return value_bits_available (value, 381 offset * TARGET_CHAR_BIT, 382 length * TARGET_CHAR_BIT); 383 } 384 385 int 386 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length) 387 { 388 gdb_assert (!value->lazy); 389 390 return ranges_contain (value->optimized_out, bit_offset, bit_length); 391 } 392 393 int 394 value_entirely_available (struct value *value) 395 { 396 /* We can only tell whether the whole value is available when we try 397 to read it. */ 398 if (value->lazy) 399 value_fetch_lazy (value); 400 401 if (value->unavailable.empty ()) 402 return 1; 403 return 0; 404 } 405 406 /* Returns true if VALUE is entirely covered by RANGES. If the value 407 is lazy, it'll be read now. Note that RANGE is a pointer to 408 pointer because reading the value might change *RANGE. */ 409 410 static int 411 value_entirely_covered_by_range_vector (struct value *value, 412 const std::vector<range> &ranges) 413 { 414 /* We can only tell whether the whole value is optimized out / 415 unavailable when we try to read it. */ 416 if (value->lazy) 417 value_fetch_lazy (value); 418 419 if (ranges.size () == 1) 420 { 421 const struct range &t = ranges[0]; 422 423 if (t.offset == 0 424 && t.length == (TARGET_CHAR_BIT 425 * TYPE_LENGTH (value_enclosing_type (value)))) 426 return 1; 427 } 428 429 return 0; 430 } 431 432 int 433 value_entirely_unavailable (struct value *value) 434 { 435 return value_entirely_covered_by_range_vector (value, value->unavailable); 436 } 437 438 int 439 value_entirely_optimized_out (struct value *value) 440 { 441 return value_entirely_covered_by_range_vector (value, value->optimized_out); 442 } 443 444 /* Insert into the vector pointed to by VECTORP the bit range starting of 445 OFFSET bits, and extending for the next LENGTH bits. */ 446 447 static void 448 insert_into_bit_range_vector (std::vector<range> *vectorp, 449 LONGEST offset, LONGEST length) 450 { 451 range newr; 452 453 /* Insert the range sorted. If there's overlap or the new range 454 would be contiguous with an existing range, merge. */ 455 456 newr.offset = offset; 457 newr.length = length; 458 459 /* Do a binary search for the position the given range would be 460 inserted if we only considered the starting OFFSET of ranges. 461 Call that position I. Since we also have LENGTH to care for 462 (this is a range afterall), we need to check if the _previous_ 463 range overlaps the I range. E.g., calling R the new range: 464 465 #1 - overlaps with previous 466 467 R 468 |-...-| 469 |---| |---| |------| ... |--| 470 0 1 2 N 471 472 I=1 473 474 In the case #1 above, the binary search would return `I=1', 475 meaning, this OFFSET should be inserted at position 1, and the 476 current position 1 should be pushed further (and become 2). But, 477 note that `0' overlaps with R, so we want to merge them. 478 479 A similar consideration needs to be taken if the new range would 480 be contiguous with the previous range: 481 482 #2 - contiguous with previous 483 484 R 485 |-...-| 486 |--| |---| |------| ... |--| 487 0 1 2 N 488 489 I=1 490 491 If there's no overlap with the previous range, as in: 492 493 #3 - not overlapping and not contiguous 494 495 R 496 |-...-| 497 |--| |---| |------| ... |--| 498 0 1 2 N 499 500 I=1 501 502 or if I is 0: 503 504 #4 - R is the range with lowest offset 505 506 R 507 |-...-| 508 |--| |---| |------| ... |--| 509 0 1 2 N 510 511 I=0 512 513 ... we just push the new range to I. 514 515 All the 4 cases above need to consider that the new range may 516 also overlap several of the ranges that follow, or that R may be 517 contiguous with the following range, and merge. E.g., 518 519 #5 - overlapping following ranges 520 521 R 522 |------------------------| 523 |--| |---| |------| ... |--| 524 0 1 2 N 525 526 I=0 527 528 or: 529 530 R 531 |-------| 532 |--| |---| |------| ... |--| 533 0 1 2 N 534 535 I=1 536 537 */ 538 539 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr); 540 if (i > vectorp->begin ()) 541 { 542 struct range &bef = *(i - 1); 543 544 if (ranges_overlap (bef.offset, bef.length, offset, length)) 545 { 546 /* #1 */ 547 ULONGEST l = std::min (bef.offset, offset); 548 ULONGEST h = std::max (bef.offset + bef.length, offset + length); 549 550 bef.offset = l; 551 bef.length = h - l; 552 i--; 553 } 554 else if (offset == bef.offset + bef.length) 555 { 556 /* #2 */ 557 bef.length += length; 558 i--; 559 } 560 else 561 { 562 /* #3 */ 563 i = vectorp->insert (i, newr); 564 } 565 } 566 else 567 { 568 /* #4 */ 569 i = vectorp->insert (i, newr); 570 } 571 572 /* Check whether the ranges following the one we've just added or 573 touched can be folded in (#5 above). */ 574 if (i != vectorp->end () && i + 1 < vectorp->end ()) 575 { 576 int removed = 0; 577 auto next = i + 1; 578 579 /* Get the range we just touched. */ 580 struct range &t = *i; 581 removed = 0; 582 583 i = next; 584 for (; i < vectorp->end (); i++) 585 { 586 struct range &r = *i; 587 if (r.offset <= t.offset + t.length) 588 { 589 ULONGEST l, h; 590 591 l = std::min (t.offset, r.offset); 592 h = std::max (t.offset + t.length, r.offset + r.length); 593 594 t.offset = l; 595 t.length = h - l; 596 597 removed++; 598 } 599 else 600 { 601 /* If we couldn't merge this one, we won't be able to 602 merge following ones either, since the ranges are 603 always sorted by OFFSET. */ 604 break; 605 } 606 } 607 608 if (removed != 0) 609 vectorp->erase (next, next + removed); 610 } 611 } 612 613 void 614 mark_value_bits_unavailable (struct value *value, 615 LONGEST offset, LONGEST length) 616 { 617 insert_into_bit_range_vector (&value->unavailable, offset, length); 618 } 619 620 void 621 mark_value_bytes_unavailable (struct value *value, 622 LONGEST offset, LONGEST length) 623 { 624 mark_value_bits_unavailable (value, 625 offset * TARGET_CHAR_BIT, 626 length * TARGET_CHAR_BIT); 627 } 628 629 /* Find the first range in RANGES that overlaps the range defined by 630 OFFSET and LENGTH, starting at element POS in the RANGES vector, 631 Returns the index into RANGES where such overlapping range was 632 found, or -1 if none was found. */ 633 634 static int 635 find_first_range_overlap (const std::vector<range> *ranges, int pos, 636 LONGEST offset, LONGEST length) 637 { 638 int i; 639 640 for (i = pos; i < ranges->size (); i++) 641 { 642 const range &r = (*ranges)[i]; 643 if (ranges_overlap (r.offset, r.length, offset, length)) 644 return i; 645 } 646 647 return -1; 648 } 649 650 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at 651 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise 652 return non-zero. 653 654 It must always be the case that: 655 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT 656 657 It is assumed that memory can be accessed from: 658 PTR + (OFFSET_BITS / TARGET_CHAR_BIT) 659 to: 660 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1) 661 / TARGET_CHAR_BIT) */ 662 static int 663 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits, 664 const gdb_byte *ptr2, size_t offset2_bits, 665 size_t length_bits) 666 { 667 gdb_assert (offset1_bits % TARGET_CHAR_BIT 668 == offset2_bits % TARGET_CHAR_BIT); 669 670 if (offset1_bits % TARGET_CHAR_BIT != 0) 671 { 672 size_t bits; 673 gdb_byte mask, b1, b2; 674 675 /* The offset from the base pointers PTR1 and PTR2 is not a complete 676 number of bytes. A number of bits up to either the next exact 677 byte boundary, or LENGTH_BITS (which ever is sooner) will be 678 compared. */ 679 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT; 680 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT); 681 mask = (1 << bits) - 1; 682 683 if (length_bits < bits) 684 { 685 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1); 686 bits = length_bits; 687 } 688 689 /* Now load the two bytes and mask off the bits we care about. */ 690 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask; 691 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask; 692 693 if (b1 != b2) 694 return 1; 695 696 /* Now update the length and offsets to take account of the bits 697 we've just compared. */ 698 length_bits -= bits; 699 offset1_bits += bits; 700 offset2_bits += bits; 701 } 702 703 if (length_bits % TARGET_CHAR_BIT != 0) 704 { 705 size_t bits; 706 size_t o1, o2; 707 gdb_byte mask, b1, b2; 708 709 /* The length is not an exact number of bytes. After the previous 710 IF.. block then the offsets are byte aligned, or the 711 length is zero (in which case this code is not reached). Compare 712 a number of bits at the end of the region, starting from an exact 713 byte boundary. */ 714 bits = length_bits % TARGET_CHAR_BIT; 715 o1 = offset1_bits + length_bits - bits; 716 o2 = offset2_bits + length_bits - bits; 717 718 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT); 719 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits); 720 721 gdb_assert (o1 % TARGET_CHAR_BIT == 0); 722 gdb_assert (o2 % TARGET_CHAR_BIT == 0); 723 724 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask; 725 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask; 726 727 if (b1 != b2) 728 return 1; 729 730 length_bits -= bits; 731 } 732 733 if (length_bits > 0) 734 { 735 /* We've now taken care of any stray "bits" at the start, or end of 736 the region to compare, the remainder can be covered with a simple 737 memcmp. */ 738 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0); 739 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0); 740 gdb_assert (length_bits % TARGET_CHAR_BIT == 0); 741 742 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT, 743 ptr2 + offset2_bits / TARGET_CHAR_BIT, 744 length_bits / TARGET_CHAR_BIT); 745 } 746 747 /* Length is zero, regions match. */ 748 return 0; 749 } 750 751 /* Helper struct for find_first_range_overlap_and_match and 752 value_contents_bits_eq. Keep track of which slot of a given ranges 753 vector have we last looked at. */ 754 755 struct ranges_and_idx 756 { 757 /* The ranges. */ 758 const std::vector<range> *ranges; 759 760 /* The range we've last found in RANGES. Given ranges are sorted, 761 we can start the next lookup here. */ 762 int idx; 763 }; 764 765 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of 766 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's 767 ranges starting at OFFSET2 bits. Return true if the ranges match 768 and fill in *L and *H with the overlapping window relative to 769 (both) OFFSET1 or OFFSET2. */ 770 771 static int 772 find_first_range_overlap_and_match (struct ranges_and_idx *rp1, 773 struct ranges_and_idx *rp2, 774 LONGEST offset1, LONGEST offset2, 775 LONGEST length, ULONGEST *l, ULONGEST *h) 776 { 777 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx, 778 offset1, length); 779 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx, 780 offset2, length); 781 782 if (rp1->idx == -1 && rp2->idx == -1) 783 { 784 *l = length; 785 *h = length; 786 return 1; 787 } 788 else if (rp1->idx == -1 || rp2->idx == -1) 789 return 0; 790 else 791 { 792 const range *r1, *r2; 793 ULONGEST l1, h1; 794 ULONGEST l2, h2; 795 796 r1 = &(*rp1->ranges)[rp1->idx]; 797 r2 = &(*rp2->ranges)[rp2->idx]; 798 799 /* Get the unavailable windows intersected by the incoming 800 ranges. The first and last ranges that overlap the argument 801 range may be wider than said incoming arguments ranges. */ 802 l1 = std::max (offset1, r1->offset); 803 h1 = std::min (offset1 + length, r1->offset + r1->length); 804 805 l2 = std::max (offset2, r2->offset); 806 h2 = std::min (offset2 + length, offset2 + r2->length); 807 808 /* Make them relative to the respective start offsets, so we can 809 compare them for equality. */ 810 l1 -= offset1; 811 h1 -= offset1; 812 813 l2 -= offset2; 814 h2 -= offset2; 815 816 /* Different ranges, no match. */ 817 if (l1 != l2 || h1 != h2) 818 return 0; 819 820 *h = h1; 821 *l = l1; 822 return 1; 823 } 824 } 825 826 /* Helper function for value_contents_eq. The only difference is that 827 this function is bit rather than byte based. 828 829 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits 830 with LENGTH bits of VAL2's contents starting at OFFSET2 bits. 831 Return true if the available bits match. */ 832 833 static bool 834 value_contents_bits_eq (const struct value *val1, int offset1, 835 const struct value *val2, int offset2, 836 int length) 837 { 838 /* Each array element corresponds to a ranges source (unavailable, 839 optimized out). '1' is for VAL1, '2' for VAL2. */ 840 struct ranges_and_idx rp1[2], rp2[2]; 841 842 /* See function description in value.h. */ 843 gdb_assert (!val1->lazy && !val2->lazy); 844 845 /* We shouldn't be trying to compare past the end of the values. */ 846 gdb_assert (offset1 + length 847 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT); 848 gdb_assert (offset2 + length 849 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT); 850 851 memset (&rp1, 0, sizeof (rp1)); 852 memset (&rp2, 0, sizeof (rp2)); 853 rp1[0].ranges = &val1->unavailable; 854 rp2[0].ranges = &val2->unavailable; 855 rp1[1].ranges = &val1->optimized_out; 856 rp2[1].ranges = &val2->optimized_out; 857 858 while (length > 0) 859 { 860 ULONGEST l = 0, h = 0; /* init for gcc -Wall */ 861 int i; 862 863 for (i = 0; i < 2; i++) 864 { 865 ULONGEST l_tmp, h_tmp; 866 867 /* The contents only match equal if the invalid/unavailable 868 contents ranges match as well. */ 869 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i], 870 offset1, offset2, length, 871 &l_tmp, &h_tmp)) 872 return false; 873 874 /* We're interested in the lowest/first range found. */ 875 if (i == 0 || l_tmp < l) 876 { 877 l = l_tmp; 878 h = h_tmp; 879 } 880 } 881 882 /* Compare the available/valid contents. */ 883 if (memcmp_with_bit_offsets (val1->contents.get (), offset1, 884 val2->contents.get (), offset2, l) != 0) 885 return false; 886 887 length -= h; 888 offset1 += h; 889 offset2 += h; 890 } 891 892 return true; 893 } 894 895 bool 896 value_contents_eq (const struct value *val1, LONGEST offset1, 897 const struct value *val2, LONGEST offset2, 898 LONGEST length) 899 { 900 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT, 901 val2, offset2 * TARGET_CHAR_BIT, 902 length * TARGET_CHAR_BIT); 903 } 904 905 906 /* The value-history records all the values printed by print commands 907 during this session. */ 908 909 static std::vector<value_ref_ptr> value_history; 910 911 912 /* List of all value objects currently allocated 913 (except for those released by calls to release_value) 914 This is so they can be freed after each command. */ 915 916 static std::vector<value_ref_ptr> all_values; 917 918 /* Allocate a lazy value for type TYPE. Its actual content is 919 "lazily" allocated too: the content field of the return value is 920 NULL; it will be allocated when it is fetched from the target. */ 921 922 struct value * 923 allocate_value_lazy (struct type *type) 924 { 925 struct value *val; 926 927 /* Call check_typedef on our type to make sure that, if TYPE 928 is a TYPE_CODE_TYPEDEF, its length is set to the length 929 of the target type instead of zero. However, we do not 930 replace the typedef type by the target type, because we want 931 to keep the typedef in order to be able to set the VAL's type 932 description correctly. */ 933 check_typedef (type); 934 935 val = new struct value (type); 936 937 /* Values start out on the all_values chain. */ 938 all_values.emplace_back (val); 939 940 return val; 941 } 942 943 /* The maximum size, in bytes, that GDB will try to allocate for a value. 944 The initial value of 64k was not selected for any specific reason, it is 945 just a reasonable starting point. */ 946 947 static int max_value_size = 65536; /* 64k bytes */ 948 949 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of 950 LONGEST, otherwise GDB will not be able to parse integer values from the 951 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would 952 be unable to parse "set max-value-size 2". 953 954 As we want a consistent GDB experience across hosts with different sizes 955 of LONGEST, this arbitrary minimum value was selected, so long as this 956 is bigger than LONGEST on all GDB supported hosts we're fine. */ 957 958 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16 959 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE); 960 961 /* Implement the "set max-value-size" command. */ 962 963 static void 964 set_max_value_size (const char *args, int from_tty, 965 struct cmd_list_element *c) 966 { 967 gdb_assert (max_value_size == -1 || max_value_size >= 0); 968 969 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE) 970 { 971 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE; 972 error (_("max-value-size set too low, increasing to %d bytes"), 973 max_value_size); 974 } 975 } 976 977 /* Implement the "show max-value-size" command. */ 978 979 static void 980 show_max_value_size (struct ui_file *file, int from_tty, 981 struct cmd_list_element *c, const char *value) 982 { 983 if (max_value_size == -1) 984 fprintf_filtered (file, _("Maximum value size is unlimited.\n")); 985 else 986 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"), 987 max_value_size); 988 } 989 990 /* Called before we attempt to allocate or reallocate a buffer for the 991 contents of a value. TYPE is the type of the value for which we are 992 allocating the buffer. If the buffer is too large (based on the user 993 controllable setting) then throw an error. If this function returns 994 then we should attempt to allocate the buffer. */ 995 996 static void 997 check_type_length_before_alloc (const struct type *type) 998 { 999 unsigned int length = TYPE_LENGTH (type); 1000 1001 if (max_value_size > -1 && length > max_value_size) 1002 { 1003 if (TYPE_NAME (type) != NULL) 1004 error (_("value of type `%s' requires %u bytes, which is more " 1005 "than max-value-size"), TYPE_NAME (type), length); 1006 else 1007 error (_("value requires %u bytes, which is more than " 1008 "max-value-size"), length); 1009 } 1010 } 1011 1012 /* Allocate the contents of VAL if it has not been allocated yet. */ 1013 1014 static void 1015 allocate_value_contents (struct value *val) 1016 { 1017 if (!val->contents) 1018 { 1019 check_type_length_before_alloc (val->enclosing_type); 1020 val->contents.reset 1021 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type))); 1022 } 1023 } 1024 1025 /* Allocate a value and its contents for type TYPE. */ 1026 1027 struct value * 1028 allocate_value (struct type *type) 1029 { 1030 struct value *val = allocate_value_lazy (type); 1031 1032 allocate_value_contents (val); 1033 val->lazy = 0; 1034 return val; 1035 } 1036 1037 /* Allocate a value that has the correct length 1038 for COUNT repetitions of type TYPE. */ 1039 1040 struct value * 1041 allocate_repeat_value (struct type *type, int count) 1042 { 1043 int low_bound = current_language->string_lower_bound; /* ??? */ 1044 /* FIXME-type-allocation: need a way to free this type when we are 1045 done with it. */ 1046 struct type *array_type 1047 = lookup_array_range_type (type, low_bound, count + low_bound - 1); 1048 1049 return allocate_value (array_type); 1050 } 1051 1052 struct value * 1053 allocate_computed_value (struct type *type, 1054 const struct lval_funcs *funcs, 1055 void *closure) 1056 { 1057 struct value *v = allocate_value_lazy (type); 1058 1059 VALUE_LVAL (v) = lval_computed; 1060 v->location.computed.funcs = funcs; 1061 v->location.computed.closure = closure; 1062 1063 return v; 1064 } 1065 1066 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */ 1067 1068 struct value * 1069 allocate_optimized_out_value (struct type *type) 1070 { 1071 struct value *retval = allocate_value_lazy (type); 1072 1073 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type)); 1074 set_value_lazy (retval, 0); 1075 return retval; 1076 } 1077 1078 /* Accessor methods. */ 1079 1080 struct type * 1081 value_type (const struct value *value) 1082 { 1083 return value->type; 1084 } 1085 void 1086 deprecated_set_value_type (struct value *value, struct type *type) 1087 { 1088 value->type = type; 1089 } 1090 1091 LONGEST 1092 value_offset (const struct value *value) 1093 { 1094 return value->offset; 1095 } 1096 void 1097 set_value_offset (struct value *value, LONGEST offset) 1098 { 1099 value->offset = offset; 1100 } 1101 1102 LONGEST 1103 value_bitpos (const struct value *value) 1104 { 1105 return value->bitpos; 1106 } 1107 void 1108 set_value_bitpos (struct value *value, LONGEST bit) 1109 { 1110 value->bitpos = bit; 1111 } 1112 1113 LONGEST 1114 value_bitsize (const struct value *value) 1115 { 1116 return value->bitsize; 1117 } 1118 void 1119 set_value_bitsize (struct value *value, LONGEST bit) 1120 { 1121 value->bitsize = bit; 1122 } 1123 1124 struct value * 1125 value_parent (const struct value *value) 1126 { 1127 return value->parent.get (); 1128 } 1129 1130 /* See value.h. */ 1131 1132 void 1133 set_value_parent (struct value *value, struct value *parent) 1134 { 1135 value->parent = value_ref_ptr::new_reference (parent); 1136 } 1137 1138 gdb_byte * 1139 value_contents_raw (struct value *value) 1140 { 1141 struct gdbarch *arch = get_value_arch (value); 1142 int unit_size = gdbarch_addressable_memory_unit_size (arch); 1143 1144 allocate_value_contents (value); 1145 return value->contents.get () + value->embedded_offset * unit_size; 1146 } 1147 1148 gdb_byte * 1149 value_contents_all_raw (struct value *value) 1150 { 1151 allocate_value_contents (value); 1152 return value->contents.get (); 1153 } 1154 1155 struct type * 1156 value_enclosing_type (const struct value *value) 1157 { 1158 return value->enclosing_type; 1159 } 1160 1161 /* Look at value.h for description. */ 1162 1163 struct type * 1164 value_actual_type (struct value *value, int resolve_simple_types, 1165 int *real_type_found) 1166 { 1167 struct value_print_options opts; 1168 struct type *result; 1169 1170 get_user_print_options (&opts); 1171 1172 if (real_type_found) 1173 *real_type_found = 0; 1174 result = value_type (value); 1175 if (opts.objectprint) 1176 { 1177 /* If result's target type is TYPE_CODE_STRUCT, proceed to 1178 fetch its rtti type. */ 1179 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result)) 1180 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result))) 1181 == TYPE_CODE_STRUCT 1182 && !value_optimized_out (value)) 1183 { 1184 struct type *real_type; 1185 1186 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL); 1187 if (real_type) 1188 { 1189 if (real_type_found) 1190 *real_type_found = 1; 1191 result = real_type; 1192 } 1193 } 1194 else if (resolve_simple_types) 1195 { 1196 if (real_type_found) 1197 *real_type_found = 1; 1198 result = value_enclosing_type (value); 1199 } 1200 } 1201 1202 return result; 1203 } 1204 1205 void 1206 error_value_optimized_out (void) 1207 { 1208 error (_("value has been optimized out")); 1209 } 1210 1211 static void 1212 require_not_optimized_out (const struct value *value) 1213 { 1214 if (!value->optimized_out.empty ()) 1215 { 1216 if (value->lval == lval_register) 1217 error (_("register has not been saved in frame")); 1218 else 1219 error_value_optimized_out (); 1220 } 1221 } 1222 1223 static void 1224 require_available (const struct value *value) 1225 { 1226 if (!value->unavailable.empty ()) 1227 throw_error (NOT_AVAILABLE_ERROR, _("value is not available")); 1228 } 1229 1230 const gdb_byte * 1231 value_contents_for_printing (struct value *value) 1232 { 1233 if (value->lazy) 1234 value_fetch_lazy (value); 1235 return value->contents.get (); 1236 } 1237 1238 const gdb_byte * 1239 value_contents_for_printing_const (const struct value *value) 1240 { 1241 gdb_assert (!value->lazy); 1242 return value->contents.get (); 1243 } 1244 1245 const gdb_byte * 1246 value_contents_all (struct value *value) 1247 { 1248 const gdb_byte *result = value_contents_for_printing (value); 1249 require_not_optimized_out (value); 1250 require_available (value); 1251 return result; 1252 } 1253 1254 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET, 1255 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */ 1256 1257 static void 1258 ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset, 1259 const std::vector<range> &src_range, int src_bit_offset, 1260 int bit_length) 1261 { 1262 for (const range &r : src_range) 1263 { 1264 ULONGEST h, l; 1265 1266 l = std::max (r.offset, (LONGEST) src_bit_offset); 1267 h = std::min (r.offset + r.length, 1268 (LONGEST) src_bit_offset + bit_length); 1269 1270 if (l < h) 1271 insert_into_bit_range_vector (dst_range, 1272 dst_bit_offset + (l - src_bit_offset), 1273 h - l); 1274 } 1275 } 1276 1277 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET, 1278 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */ 1279 1280 static void 1281 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset, 1282 const struct value *src, int src_bit_offset, 1283 int bit_length) 1284 { 1285 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset, 1286 src->unavailable, src_bit_offset, 1287 bit_length); 1288 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset, 1289 src->optimized_out, src_bit_offset, 1290 bit_length); 1291 } 1292 1293 /* Copy LENGTH target addressable memory units of SRC value's (all) contents 1294 (value_contents_all) starting at SRC_OFFSET, into DST value's (all) 1295 contents, starting at DST_OFFSET. If unavailable contents are 1296 being copied from SRC, the corresponding DST contents are marked 1297 unavailable accordingly. Neither DST nor SRC may be lazy 1298 values. 1299 1300 It is assumed the contents of DST in the [DST_OFFSET, 1301 DST_OFFSET+LENGTH) range are wholly available. */ 1302 1303 void 1304 value_contents_copy_raw (struct value *dst, LONGEST dst_offset, 1305 struct value *src, LONGEST src_offset, LONGEST length) 1306 { 1307 LONGEST src_bit_offset, dst_bit_offset, bit_length; 1308 struct gdbarch *arch = get_value_arch (src); 1309 int unit_size = gdbarch_addressable_memory_unit_size (arch); 1310 1311 /* A lazy DST would make that this copy operation useless, since as 1312 soon as DST's contents were un-lazied (by a later value_contents 1313 call, say), the contents would be overwritten. A lazy SRC would 1314 mean we'd be copying garbage. */ 1315 gdb_assert (!dst->lazy && !src->lazy); 1316 1317 /* The overwritten DST range gets unavailability ORed in, not 1318 replaced. Make sure to remember to implement replacing if it 1319 turns out actually necessary. */ 1320 gdb_assert (value_bytes_available (dst, dst_offset, length)); 1321 gdb_assert (!value_bits_any_optimized_out (dst, 1322 TARGET_CHAR_BIT * dst_offset, 1323 TARGET_CHAR_BIT * length)); 1324 1325 /* Copy the data. */ 1326 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size, 1327 value_contents_all_raw (src) + src_offset * unit_size, 1328 length * unit_size); 1329 1330 /* Copy the meta-data, adjusted. */ 1331 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT; 1332 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT; 1333 bit_length = length * unit_size * HOST_CHAR_BIT; 1334 1335 value_ranges_copy_adjusted (dst, dst_bit_offset, 1336 src, src_bit_offset, 1337 bit_length); 1338 } 1339 1340 /* Copy LENGTH bytes of SRC value's (all) contents 1341 (value_contents_all) starting at SRC_OFFSET byte, into DST value's 1342 (all) contents, starting at DST_OFFSET. If unavailable contents 1343 are being copied from SRC, the corresponding DST contents are 1344 marked unavailable accordingly. DST must not be lazy. If SRC is 1345 lazy, it will be fetched now. 1346 1347 It is assumed the contents of DST in the [DST_OFFSET, 1348 DST_OFFSET+LENGTH) range are wholly available. */ 1349 1350 void 1351 value_contents_copy (struct value *dst, LONGEST dst_offset, 1352 struct value *src, LONGEST src_offset, LONGEST length) 1353 { 1354 if (src->lazy) 1355 value_fetch_lazy (src); 1356 1357 value_contents_copy_raw (dst, dst_offset, src, src_offset, length); 1358 } 1359 1360 int 1361 value_lazy (const struct value *value) 1362 { 1363 return value->lazy; 1364 } 1365 1366 void 1367 set_value_lazy (struct value *value, int val) 1368 { 1369 value->lazy = val; 1370 } 1371 1372 int 1373 value_stack (const struct value *value) 1374 { 1375 return value->stack; 1376 } 1377 1378 void 1379 set_value_stack (struct value *value, int val) 1380 { 1381 value->stack = val; 1382 } 1383 1384 const gdb_byte * 1385 value_contents (struct value *value) 1386 { 1387 const gdb_byte *result = value_contents_writeable (value); 1388 require_not_optimized_out (value); 1389 require_available (value); 1390 return result; 1391 } 1392 1393 gdb_byte * 1394 value_contents_writeable (struct value *value) 1395 { 1396 if (value->lazy) 1397 value_fetch_lazy (value); 1398 return value_contents_raw (value); 1399 } 1400 1401 int 1402 value_optimized_out (struct value *value) 1403 { 1404 /* We can only know if a value is optimized out once we have tried to 1405 fetch it. */ 1406 if (value->optimized_out.empty () && value->lazy) 1407 { 1408 TRY 1409 { 1410 value_fetch_lazy (value); 1411 } 1412 CATCH (ex, RETURN_MASK_ERROR) 1413 { 1414 /* Fall back to checking value->optimized_out. */ 1415 } 1416 END_CATCH 1417 } 1418 1419 return !value->optimized_out.empty (); 1420 } 1421 1422 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and 1423 the following LENGTH bytes. */ 1424 1425 void 1426 mark_value_bytes_optimized_out (struct value *value, int offset, int length) 1427 { 1428 mark_value_bits_optimized_out (value, 1429 offset * TARGET_CHAR_BIT, 1430 length * TARGET_CHAR_BIT); 1431 } 1432 1433 /* See value.h. */ 1434 1435 void 1436 mark_value_bits_optimized_out (struct value *value, 1437 LONGEST offset, LONGEST length) 1438 { 1439 insert_into_bit_range_vector (&value->optimized_out, offset, length); 1440 } 1441 1442 int 1443 value_bits_synthetic_pointer (const struct value *value, 1444 LONGEST offset, LONGEST length) 1445 { 1446 if (value->lval != lval_computed 1447 || !value->location.computed.funcs->check_synthetic_pointer) 1448 return 0; 1449 return value->location.computed.funcs->check_synthetic_pointer (value, 1450 offset, 1451 length); 1452 } 1453 1454 LONGEST 1455 value_embedded_offset (const struct value *value) 1456 { 1457 return value->embedded_offset; 1458 } 1459 1460 void 1461 set_value_embedded_offset (struct value *value, LONGEST val) 1462 { 1463 value->embedded_offset = val; 1464 } 1465 1466 LONGEST 1467 value_pointed_to_offset (const struct value *value) 1468 { 1469 return value->pointed_to_offset; 1470 } 1471 1472 void 1473 set_value_pointed_to_offset (struct value *value, LONGEST val) 1474 { 1475 value->pointed_to_offset = val; 1476 } 1477 1478 const struct lval_funcs * 1479 value_computed_funcs (const struct value *v) 1480 { 1481 gdb_assert (value_lval_const (v) == lval_computed); 1482 1483 return v->location.computed.funcs; 1484 } 1485 1486 void * 1487 value_computed_closure (const struct value *v) 1488 { 1489 gdb_assert (v->lval == lval_computed); 1490 1491 return v->location.computed.closure; 1492 } 1493 1494 enum lval_type * 1495 deprecated_value_lval_hack (struct value *value) 1496 { 1497 return &value->lval; 1498 } 1499 1500 enum lval_type 1501 value_lval_const (const struct value *value) 1502 { 1503 return value->lval; 1504 } 1505 1506 CORE_ADDR 1507 value_address (const struct value *value) 1508 { 1509 if (value->lval != lval_memory) 1510 return 0; 1511 if (value->parent != NULL) 1512 return value_address (value->parent.get ()) + value->offset; 1513 if (NULL != TYPE_DATA_LOCATION (value_type (value))) 1514 { 1515 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value))); 1516 return TYPE_DATA_LOCATION_ADDR (value_type (value)); 1517 } 1518 1519 return value->location.address + value->offset; 1520 } 1521 1522 CORE_ADDR 1523 value_raw_address (const struct value *value) 1524 { 1525 if (value->lval != lval_memory) 1526 return 0; 1527 return value->location.address; 1528 } 1529 1530 void 1531 set_value_address (struct value *value, CORE_ADDR addr) 1532 { 1533 gdb_assert (value->lval == lval_memory); 1534 value->location.address = addr; 1535 } 1536 1537 struct internalvar ** 1538 deprecated_value_internalvar_hack (struct value *value) 1539 { 1540 return &value->location.internalvar; 1541 } 1542 1543 struct frame_id * 1544 deprecated_value_next_frame_id_hack (struct value *value) 1545 { 1546 gdb_assert (value->lval == lval_register); 1547 return &value->location.reg.next_frame_id; 1548 } 1549 1550 int * 1551 deprecated_value_regnum_hack (struct value *value) 1552 { 1553 gdb_assert (value->lval == lval_register); 1554 return &value->location.reg.regnum; 1555 } 1556 1557 int 1558 deprecated_value_modifiable (const struct value *value) 1559 { 1560 return value->modifiable; 1561 } 1562 1563 /* Return a mark in the value chain. All values allocated after the 1564 mark is obtained (except for those released) are subject to being freed 1565 if a subsequent value_free_to_mark is passed the mark. */ 1566 struct value * 1567 value_mark (void) 1568 { 1569 if (all_values.empty ()) 1570 return nullptr; 1571 return all_values.back ().get (); 1572 } 1573 1574 /* See value.h. */ 1575 1576 void 1577 value_incref (struct value *val) 1578 { 1579 val->reference_count++; 1580 } 1581 1582 /* Release a reference to VAL, which was acquired with value_incref. 1583 This function is also called to deallocate values from the value 1584 chain. */ 1585 1586 void 1587 value_decref (struct value *val) 1588 { 1589 if (val != nullptr) 1590 { 1591 gdb_assert (val->reference_count > 0); 1592 val->reference_count--; 1593 if (val->reference_count == 0) 1594 delete val; 1595 } 1596 } 1597 1598 /* Free all values allocated since MARK was obtained by value_mark 1599 (except for those released). */ 1600 void 1601 value_free_to_mark (const struct value *mark) 1602 { 1603 auto iter = std::find (all_values.begin (), all_values.end (), mark); 1604 if (iter == all_values.end ()) 1605 all_values.clear (); 1606 else 1607 all_values.erase (iter + 1, all_values.end ()); 1608 } 1609 1610 /* Remove VAL from the chain all_values 1611 so it will not be freed automatically. */ 1612 1613 value_ref_ptr 1614 release_value (struct value *val) 1615 { 1616 if (val == nullptr) 1617 return value_ref_ptr (); 1618 1619 std::vector<value_ref_ptr>::reverse_iterator iter; 1620 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter) 1621 { 1622 if (*iter == val) 1623 { 1624 value_ref_ptr result = *iter; 1625 all_values.erase (iter.base () - 1); 1626 return result; 1627 } 1628 } 1629 1630 /* We must always return an owned reference. Normally this happens 1631 because we transfer the reference from the value chain, but in 1632 this case the value was not on the chain. */ 1633 return value_ref_ptr::new_reference (val); 1634 } 1635 1636 /* See value.h. */ 1637 1638 std::vector<value_ref_ptr> 1639 value_release_to_mark (const struct value *mark) 1640 { 1641 std::vector<value_ref_ptr> result; 1642 1643 auto iter = std::find (all_values.begin (), all_values.end (), mark); 1644 if (iter == all_values.end ()) 1645 std::swap (result, all_values); 1646 else 1647 { 1648 std::move (iter + 1, all_values.end (), std::back_inserter (result)); 1649 all_values.erase (iter + 1, all_values.end ()); 1650 } 1651 std::reverse (result.begin (), result.end ()); 1652 return result; 1653 } 1654 1655 /* Return a copy of the value ARG. 1656 It contains the same contents, for same memory address, 1657 but it's a different block of storage. */ 1658 1659 struct value * 1660 value_copy (struct value *arg) 1661 { 1662 struct type *encl_type = value_enclosing_type (arg); 1663 struct value *val; 1664 1665 if (value_lazy (arg)) 1666 val = allocate_value_lazy (encl_type); 1667 else 1668 val = allocate_value (encl_type); 1669 val->type = arg->type; 1670 VALUE_LVAL (val) = VALUE_LVAL (arg); 1671 val->location = arg->location; 1672 val->offset = arg->offset; 1673 val->bitpos = arg->bitpos; 1674 val->bitsize = arg->bitsize; 1675 val->lazy = arg->lazy; 1676 val->embedded_offset = value_embedded_offset (arg); 1677 val->pointed_to_offset = arg->pointed_to_offset; 1678 val->modifiable = arg->modifiable; 1679 if (!value_lazy (val)) 1680 { 1681 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg), 1682 TYPE_LENGTH (value_enclosing_type (arg))); 1683 1684 } 1685 val->unavailable = arg->unavailable; 1686 val->optimized_out = arg->optimized_out; 1687 val->parent = arg->parent; 1688 if (VALUE_LVAL (val) == lval_computed) 1689 { 1690 const struct lval_funcs *funcs = val->location.computed.funcs; 1691 1692 if (funcs->copy_closure) 1693 val->location.computed.closure = funcs->copy_closure (val); 1694 } 1695 return val; 1696 } 1697 1698 /* Return a "const" and/or "volatile" qualified version of the value V. 1699 If CNST is true, then the returned value will be qualified with 1700 "const". 1701 if VOLTL is true, then the returned value will be qualified with 1702 "volatile". */ 1703 1704 struct value * 1705 make_cv_value (int cnst, int voltl, struct value *v) 1706 { 1707 struct type *val_type = value_type (v); 1708 struct type *enclosing_type = value_enclosing_type (v); 1709 struct value *cv_val = value_copy (v); 1710 1711 deprecated_set_value_type (cv_val, 1712 make_cv_type (cnst, voltl, val_type, NULL)); 1713 set_value_enclosing_type (cv_val, 1714 make_cv_type (cnst, voltl, enclosing_type, NULL)); 1715 1716 return cv_val; 1717 } 1718 1719 /* Return a version of ARG that is non-lvalue. */ 1720 1721 struct value * 1722 value_non_lval (struct value *arg) 1723 { 1724 if (VALUE_LVAL (arg) != not_lval) 1725 { 1726 struct type *enc_type = value_enclosing_type (arg); 1727 struct value *val = allocate_value (enc_type); 1728 1729 memcpy (value_contents_all_raw (val), value_contents_all (arg), 1730 TYPE_LENGTH (enc_type)); 1731 val->type = arg->type; 1732 set_value_embedded_offset (val, value_embedded_offset (arg)); 1733 set_value_pointed_to_offset (val, value_pointed_to_offset (arg)); 1734 return val; 1735 } 1736 return arg; 1737 } 1738 1739 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */ 1740 1741 void 1742 value_force_lval (struct value *v, CORE_ADDR addr) 1743 { 1744 gdb_assert (VALUE_LVAL (v) == not_lval); 1745 1746 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v))); 1747 v->lval = lval_memory; 1748 v->location.address = addr; 1749 } 1750 1751 void 1752 set_value_component_location (struct value *component, 1753 const struct value *whole) 1754 { 1755 struct type *type; 1756 1757 gdb_assert (whole->lval != lval_xcallable); 1758 1759 if (whole->lval == lval_internalvar) 1760 VALUE_LVAL (component) = lval_internalvar_component; 1761 else 1762 VALUE_LVAL (component) = whole->lval; 1763 1764 component->location = whole->location; 1765 if (whole->lval == lval_computed) 1766 { 1767 const struct lval_funcs *funcs = whole->location.computed.funcs; 1768 1769 if (funcs->copy_closure) 1770 component->location.computed.closure = funcs->copy_closure (whole); 1771 } 1772 1773 /* If type has a dynamic resolved location property 1774 update it's value address. */ 1775 type = value_type (whole); 1776 if (NULL != TYPE_DATA_LOCATION (type) 1777 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST) 1778 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type)); 1779 } 1780 1781 /* Access to the value history. */ 1782 1783 /* Record a new value in the value history. 1784 Returns the absolute history index of the entry. */ 1785 1786 int 1787 record_latest_value (struct value *val) 1788 { 1789 /* We don't want this value to have anything to do with the inferior anymore. 1790 In particular, "set $1 = 50" should not affect the variable from which 1791 the value was taken, and fast watchpoints should be able to assume that 1792 a value on the value history never changes. */ 1793 if (value_lazy (val)) 1794 value_fetch_lazy (val); 1795 /* We preserve VALUE_LVAL so that the user can find out where it was fetched 1796 from. This is a bit dubious, because then *&$1 does not just return $1 1797 but the current contents of that location. c'est la vie... */ 1798 val->modifiable = 0; 1799 1800 value_history.push_back (release_value (val)); 1801 1802 return value_history.size (); 1803 } 1804 1805 /* Return a copy of the value in the history with sequence number NUM. */ 1806 1807 struct value * 1808 access_value_history (int num) 1809 { 1810 int absnum = num; 1811 1812 if (absnum <= 0) 1813 absnum += value_history.size (); 1814 1815 if (absnum <= 0) 1816 { 1817 if (num == 0) 1818 error (_("The history is empty.")); 1819 else if (num == 1) 1820 error (_("There is only one value in the history.")); 1821 else 1822 error (_("History does not go back to $$%d."), -num); 1823 } 1824 if (absnum > value_history.size ()) 1825 error (_("History has not yet reached $%d."), absnum); 1826 1827 absnum--; 1828 1829 return value_copy (value_history[absnum].get ()); 1830 } 1831 1832 static void 1833 show_values (const char *num_exp, int from_tty) 1834 { 1835 int i; 1836 struct value *val; 1837 static int num = 1; 1838 1839 if (num_exp) 1840 { 1841 /* "show values +" should print from the stored position. 1842 "show values <exp>" should print around value number <exp>. */ 1843 if (num_exp[0] != '+' || num_exp[1] != '\0') 1844 num = parse_and_eval_long (num_exp) - 5; 1845 } 1846 else 1847 { 1848 /* "show values" means print the last 10 values. */ 1849 num = value_history.size () - 9; 1850 } 1851 1852 if (num <= 0) 1853 num = 1; 1854 1855 for (i = num; i < num + 10 && i <= value_history.size (); i++) 1856 { 1857 struct value_print_options opts; 1858 1859 val = access_value_history (i); 1860 printf_filtered (("$%d = "), i); 1861 get_user_print_options (&opts); 1862 value_print (val, gdb_stdout, &opts); 1863 printf_filtered (("\n")); 1864 } 1865 1866 /* The next "show values +" should start after what we just printed. */ 1867 num += 10; 1868 1869 /* Hitting just return after this command should do the same thing as 1870 "show values +". If num_exp is null, this is unnecessary, since 1871 "show values +" is not useful after "show values". */ 1872 if (from_tty && num_exp) 1873 set_repeat_arguments ("+"); 1874 } 1875 1876 enum internalvar_kind 1877 { 1878 /* The internal variable is empty. */ 1879 INTERNALVAR_VOID, 1880 1881 /* The value of the internal variable is provided directly as 1882 a GDB value object. */ 1883 INTERNALVAR_VALUE, 1884 1885 /* A fresh value is computed via a call-back routine on every 1886 access to the internal variable. */ 1887 INTERNALVAR_MAKE_VALUE, 1888 1889 /* The internal variable holds a GDB internal convenience function. */ 1890 INTERNALVAR_FUNCTION, 1891 1892 /* The variable holds an integer value. */ 1893 INTERNALVAR_INTEGER, 1894 1895 /* The variable holds a GDB-provided string. */ 1896 INTERNALVAR_STRING, 1897 }; 1898 1899 union internalvar_data 1900 { 1901 /* A value object used with INTERNALVAR_VALUE. */ 1902 struct value *value; 1903 1904 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */ 1905 struct 1906 { 1907 /* The functions to call. */ 1908 const struct internalvar_funcs *functions; 1909 1910 /* The function's user-data. */ 1911 void *data; 1912 } make_value; 1913 1914 /* The internal function used with INTERNALVAR_FUNCTION. */ 1915 struct 1916 { 1917 struct internal_function *function; 1918 /* True if this is the canonical name for the function. */ 1919 int canonical; 1920 } fn; 1921 1922 /* An integer value used with INTERNALVAR_INTEGER. */ 1923 struct 1924 { 1925 /* If type is non-NULL, it will be used as the type to generate 1926 a value for this internal variable. If type is NULL, a default 1927 integer type for the architecture is used. */ 1928 struct type *type; 1929 LONGEST val; 1930 } integer; 1931 1932 /* A string value used with INTERNALVAR_STRING. */ 1933 char *string; 1934 }; 1935 1936 /* Internal variables. These are variables within the debugger 1937 that hold values assigned by debugger commands. 1938 The user refers to them with a '$' prefix 1939 that does not appear in the variable names stored internally. */ 1940 1941 struct internalvar 1942 { 1943 struct internalvar *next; 1944 char *name; 1945 1946 /* We support various different kinds of content of an internal variable. 1947 enum internalvar_kind specifies the kind, and union internalvar_data 1948 provides the data associated with this particular kind. */ 1949 1950 enum internalvar_kind kind; 1951 1952 union internalvar_data u; 1953 }; 1954 1955 static struct internalvar *internalvars; 1956 1957 /* If the variable does not already exist create it and give it the 1958 value given. If no value is given then the default is zero. */ 1959 static void 1960 init_if_undefined_command (const char* args, int from_tty) 1961 { 1962 struct internalvar* intvar; 1963 1964 /* Parse the expression - this is taken from set_command(). */ 1965 expression_up expr = parse_expression (args); 1966 1967 /* Validate the expression. 1968 Was the expression an assignment? 1969 Or even an expression at all? */ 1970 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN) 1971 error (_("Init-if-undefined requires an assignment expression.")); 1972 1973 /* Extract the variable from the parsed expression. 1974 In the case of an assign the lvalue will be in elts[1] and elts[2]. */ 1975 if (expr->elts[1].opcode != OP_INTERNALVAR) 1976 error (_("The first parameter to init-if-undefined " 1977 "should be a GDB variable.")); 1978 intvar = expr->elts[2].internalvar; 1979 1980 /* Only evaluate the expression if the lvalue is void. 1981 This may still fail if the expresssion is invalid. */ 1982 if (intvar->kind == INTERNALVAR_VOID) 1983 evaluate_expression (expr.get ()); 1984 } 1985 1986 1987 /* Look up an internal variable with name NAME. NAME should not 1988 normally include a dollar sign. 1989 1990 If the specified internal variable does not exist, 1991 the return value is NULL. */ 1992 1993 struct internalvar * 1994 lookup_only_internalvar (const char *name) 1995 { 1996 struct internalvar *var; 1997 1998 for (var = internalvars; var; var = var->next) 1999 if (strcmp (var->name, name) == 0) 2000 return var; 2001 2002 return NULL; 2003 } 2004 2005 /* Complete NAME by comparing it to the names of internal 2006 variables. */ 2007 2008 void 2009 complete_internalvar (completion_tracker &tracker, const char *name) 2010 { 2011 struct internalvar *var; 2012 int len; 2013 2014 len = strlen (name); 2015 2016 for (var = internalvars; var; var = var->next) 2017 if (strncmp (var->name, name, len) == 0) 2018 { 2019 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name)); 2020 2021 tracker.add_completion (std::move (copy)); 2022 } 2023 } 2024 2025 /* Create an internal variable with name NAME and with a void value. 2026 NAME should not normally include a dollar sign. */ 2027 2028 struct internalvar * 2029 create_internalvar (const char *name) 2030 { 2031 struct internalvar *var = XNEW (struct internalvar); 2032 2033 var->name = concat (name, (char *)NULL); 2034 var->kind = INTERNALVAR_VOID; 2035 var->next = internalvars; 2036 internalvars = var; 2037 return var; 2038 } 2039 2040 /* Create an internal variable with name NAME and register FUN as the 2041 function that value_of_internalvar uses to create a value whenever 2042 this variable is referenced. NAME should not normally include a 2043 dollar sign. DATA is passed uninterpreted to FUN when it is 2044 called. CLEANUP, if not NULL, is called when the internal variable 2045 is destroyed. It is passed DATA as its only argument. */ 2046 2047 struct internalvar * 2048 create_internalvar_type_lazy (const char *name, 2049 const struct internalvar_funcs *funcs, 2050 void *data) 2051 { 2052 struct internalvar *var = create_internalvar (name); 2053 2054 var->kind = INTERNALVAR_MAKE_VALUE; 2055 var->u.make_value.functions = funcs; 2056 var->u.make_value.data = data; 2057 return var; 2058 } 2059 2060 /* See documentation in value.h. */ 2061 2062 int 2063 compile_internalvar_to_ax (struct internalvar *var, 2064 struct agent_expr *expr, 2065 struct axs_value *value) 2066 { 2067 if (var->kind != INTERNALVAR_MAKE_VALUE 2068 || var->u.make_value.functions->compile_to_ax == NULL) 2069 return 0; 2070 2071 var->u.make_value.functions->compile_to_ax (var, expr, value, 2072 var->u.make_value.data); 2073 return 1; 2074 } 2075 2076 /* Look up an internal variable with name NAME. NAME should not 2077 normally include a dollar sign. 2078 2079 If the specified internal variable does not exist, 2080 one is created, with a void value. */ 2081 2082 struct internalvar * 2083 lookup_internalvar (const char *name) 2084 { 2085 struct internalvar *var; 2086 2087 var = lookup_only_internalvar (name); 2088 if (var) 2089 return var; 2090 2091 return create_internalvar (name); 2092 } 2093 2094 /* Return current value of internal variable VAR. For variables that 2095 are not inherently typed, use a value type appropriate for GDBARCH. */ 2096 2097 struct value * 2098 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var) 2099 { 2100 struct value *val; 2101 struct trace_state_variable *tsv; 2102 2103 /* If there is a trace state variable of the same name, assume that 2104 is what we really want to see. */ 2105 tsv = find_trace_state_variable (var->name); 2106 if (tsv) 2107 { 2108 tsv->value_known = target_get_trace_state_variable_value (tsv->number, 2109 &(tsv->value)); 2110 if (tsv->value_known) 2111 val = value_from_longest (builtin_type (gdbarch)->builtin_int64, 2112 tsv->value); 2113 else 2114 val = allocate_value (builtin_type (gdbarch)->builtin_void); 2115 return val; 2116 } 2117 2118 switch (var->kind) 2119 { 2120 case INTERNALVAR_VOID: 2121 val = allocate_value (builtin_type (gdbarch)->builtin_void); 2122 break; 2123 2124 case INTERNALVAR_FUNCTION: 2125 val = allocate_value (builtin_type (gdbarch)->internal_fn); 2126 break; 2127 2128 case INTERNALVAR_INTEGER: 2129 if (!var->u.integer.type) 2130 val = value_from_longest (builtin_type (gdbarch)->builtin_int, 2131 var->u.integer.val); 2132 else 2133 val = value_from_longest (var->u.integer.type, var->u.integer.val); 2134 break; 2135 2136 case INTERNALVAR_STRING: 2137 val = value_cstring (var->u.string, strlen (var->u.string), 2138 builtin_type (gdbarch)->builtin_char); 2139 break; 2140 2141 case INTERNALVAR_VALUE: 2142 val = value_copy (var->u.value); 2143 if (value_lazy (val)) 2144 value_fetch_lazy (val); 2145 break; 2146 2147 case INTERNALVAR_MAKE_VALUE: 2148 val = (*var->u.make_value.functions->make_value) (gdbarch, var, 2149 var->u.make_value.data); 2150 break; 2151 2152 default: 2153 internal_error (__FILE__, __LINE__, _("bad kind")); 2154 } 2155 2156 /* Change the VALUE_LVAL to lval_internalvar so that future operations 2157 on this value go back to affect the original internal variable. 2158 2159 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have 2160 no underlying modifyable state in the internal variable. 2161 2162 Likewise, if the variable's value is a computed lvalue, we want 2163 references to it to produce another computed lvalue, where 2164 references and assignments actually operate through the 2165 computed value's functions. 2166 2167 This means that internal variables with computed values 2168 behave a little differently from other internal variables: 2169 assignments to them don't just replace the previous value 2170 altogether. At the moment, this seems like the behavior we 2171 want. */ 2172 2173 if (var->kind != INTERNALVAR_MAKE_VALUE 2174 && val->lval != lval_computed) 2175 { 2176 VALUE_LVAL (val) = lval_internalvar; 2177 VALUE_INTERNALVAR (val) = var; 2178 } 2179 2180 return val; 2181 } 2182 2183 int 2184 get_internalvar_integer (struct internalvar *var, LONGEST *result) 2185 { 2186 if (var->kind == INTERNALVAR_INTEGER) 2187 { 2188 *result = var->u.integer.val; 2189 return 1; 2190 } 2191 2192 if (var->kind == INTERNALVAR_VALUE) 2193 { 2194 struct type *type = check_typedef (value_type (var->u.value)); 2195 2196 if (TYPE_CODE (type) == TYPE_CODE_INT) 2197 { 2198 *result = value_as_long (var->u.value); 2199 return 1; 2200 } 2201 } 2202 2203 return 0; 2204 } 2205 2206 static int 2207 get_internalvar_function (struct internalvar *var, 2208 struct internal_function **result) 2209 { 2210 switch (var->kind) 2211 { 2212 case INTERNALVAR_FUNCTION: 2213 *result = var->u.fn.function; 2214 return 1; 2215 2216 default: 2217 return 0; 2218 } 2219 } 2220 2221 void 2222 set_internalvar_component (struct internalvar *var, 2223 LONGEST offset, LONGEST bitpos, 2224 LONGEST bitsize, struct value *newval) 2225 { 2226 gdb_byte *addr; 2227 struct gdbarch *arch; 2228 int unit_size; 2229 2230 switch (var->kind) 2231 { 2232 case INTERNALVAR_VALUE: 2233 addr = value_contents_writeable (var->u.value); 2234 arch = get_value_arch (var->u.value); 2235 unit_size = gdbarch_addressable_memory_unit_size (arch); 2236 2237 if (bitsize) 2238 modify_field (value_type (var->u.value), addr + offset, 2239 value_as_long (newval), bitpos, bitsize); 2240 else 2241 memcpy (addr + offset * unit_size, value_contents (newval), 2242 TYPE_LENGTH (value_type (newval))); 2243 break; 2244 2245 default: 2246 /* We can never get a component of any other kind. */ 2247 internal_error (__FILE__, __LINE__, _("set_internalvar_component")); 2248 } 2249 } 2250 2251 void 2252 set_internalvar (struct internalvar *var, struct value *val) 2253 { 2254 enum internalvar_kind new_kind; 2255 union internalvar_data new_data = { 0 }; 2256 2257 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical) 2258 error (_("Cannot overwrite convenience function %s"), var->name); 2259 2260 /* Prepare new contents. */ 2261 switch (TYPE_CODE (check_typedef (value_type (val)))) 2262 { 2263 case TYPE_CODE_VOID: 2264 new_kind = INTERNALVAR_VOID; 2265 break; 2266 2267 case TYPE_CODE_INTERNAL_FUNCTION: 2268 gdb_assert (VALUE_LVAL (val) == lval_internalvar); 2269 new_kind = INTERNALVAR_FUNCTION; 2270 get_internalvar_function (VALUE_INTERNALVAR (val), 2271 &new_data.fn.function); 2272 /* Copies created here are never canonical. */ 2273 break; 2274 2275 default: 2276 new_kind = INTERNALVAR_VALUE; 2277 new_data.value = value_copy (val); 2278 new_data.value->modifiable = 1; 2279 2280 /* Force the value to be fetched from the target now, to avoid problems 2281 later when this internalvar is referenced and the target is gone or 2282 has changed. */ 2283 if (value_lazy (new_data.value)) 2284 value_fetch_lazy (new_data.value); 2285 2286 /* Release the value from the value chain to prevent it from being 2287 deleted by free_all_values. From here on this function should not 2288 call error () until new_data is installed into the var->u to avoid 2289 leaking memory. */ 2290 release_value (new_data.value).release (); 2291 2292 /* Internal variables which are created from values with a dynamic 2293 location don't need the location property of the origin anymore. 2294 The resolved dynamic location is used prior then any other address 2295 when accessing the value. 2296 If we keep it, we would still refer to the origin value. 2297 Remove the location property in case it exist. */ 2298 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value)); 2299 2300 break; 2301 } 2302 2303 /* Clean up old contents. */ 2304 clear_internalvar (var); 2305 2306 /* Switch over. */ 2307 var->kind = new_kind; 2308 var->u = new_data; 2309 /* End code which must not call error(). */ 2310 } 2311 2312 void 2313 set_internalvar_integer (struct internalvar *var, LONGEST l) 2314 { 2315 /* Clean up old contents. */ 2316 clear_internalvar (var); 2317 2318 var->kind = INTERNALVAR_INTEGER; 2319 var->u.integer.type = NULL; 2320 var->u.integer.val = l; 2321 } 2322 2323 void 2324 set_internalvar_string (struct internalvar *var, const char *string) 2325 { 2326 /* Clean up old contents. */ 2327 clear_internalvar (var); 2328 2329 var->kind = INTERNALVAR_STRING; 2330 var->u.string = xstrdup (string); 2331 } 2332 2333 static void 2334 set_internalvar_function (struct internalvar *var, struct internal_function *f) 2335 { 2336 /* Clean up old contents. */ 2337 clear_internalvar (var); 2338 2339 var->kind = INTERNALVAR_FUNCTION; 2340 var->u.fn.function = f; 2341 var->u.fn.canonical = 1; 2342 /* Variables installed here are always the canonical version. */ 2343 } 2344 2345 void 2346 clear_internalvar (struct internalvar *var) 2347 { 2348 /* Clean up old contents. */ 2349 switch (var->kind) 2350 { 2351 case INTERNALVAR_VALUE: 2352 value_decref (var->u.value); 2353 break; 2354 2355 case INTERNALVAR_STRING: 2356 xfree (var->u.string); 2357 break; 2358 2359 case INTERNALVAR_MAKE_VALUE: 2360 if (var->u.make_value.functions->destroy != NULL) 2361 var->u.make_value.functions->destroy (var->u.make_value.data); 2362 break; 2363 2364 default: 2365 break; 2366 } 2367 2368 /* Reset to void kind. */ 2369 var->kind = INTERNALVAR_VOID; 2370 } 2371 2372 char * 2373 internalvar_name (const struct internalvar *var) 2374 { 2375 return var->name; 2376 } 2377 2378 static struct internal_function * 2379 create_internal_function (const char *name, 2380 internal_function_fn handler, void *cookie) 2381 { 2382 struct internal_function *ifn = XNEW (struct internal_function); 2383 2384 ifn->name = xstrdup (name); 2385 ifn->handler = handler; 2386 ifn->cookie = cookie; 2387 return ifn; 2388 } 2389 2390 char * 2391 value_internal_function_name (struct value *val) 2392 { 2393 struct internal_function *ifn; 2394 int result; 2395 2396 gdb_assert (VALUE_LVAL (val) == lval_internalvar); 2397 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn); 2398 gdb_assert (result); 2399 2400 return ifn->name; 2401 } 2402 2403 struct value * 2404 call_internal_function (struct gdbarch *gdbarch, 2405 const struct language_defn *language, 2406 struct value *func, int argc, struct value **argv) 2407 { 2408 struct internal_function *ifn; 2409 int result; 2410 2411 gdb_assert (VALUE_LVAL (func) == lval_internalvar); 2412 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn); 2413 gdb_assert (result); 2414 2415 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv); 2416 } 2417 2418 /* The 'function' command. This does nothing -- it is just a 2419 placeholder to let "help function NAME" work. This is also used as 2420 the implementation of the sub-command that is created when 2421 registering an internal function. */ 2422 static void 2423 function_command (const char *command, int from_tty) 2424 { 2425 /* Do nothing. */ 2426 } 2427 2428 /* Clean up if an internal function's command is destroyed. */ 2429 static void 2430 function_destroyer (struct cmd_list_element *self, void *ignore) 2431 { 2432 xfree ((char *) self->name); 2433 xfree ((char *) self->doc); 2434 } 2435 2436 /* Add a new internal function. NAME is the name of the function; DOC 2437 is a documentation string describing the function. HANDLER is 2438 called when the function is invoked. COOKIE is an arbitrary 2439 pointer which is passed to HANDLER and is intended for "user 2440 data". */ 2441 void 2442 add_internal_function (const char *name, const char *doc, 2443 internal_function_fn handler, void *cookie) 2444 { 2445 struct cmd_list_element *cmd; 2446 struct internal_function *ifn; 2447 struct internalvar *var = lookup_internalvar (name); 2448 2449 ifn = create_internal_function (name, handler, cookie); 2450 set_internalvar_function (var, ifn); 2451 2452 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc, 2453 &functionlist); 2454 cmd->destroyer = function_destroyer; 2455 } 2456 2457 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to 2458 prevent cycles / duplicates. */ 2459 2460 void 2461 preserve_one_value (struct value *value, struct objfile *objfile, 2462 htab_t copied_types) 2463 { 2464 if (TYPE_OBJFILE (value->type) == objfile) 2465 value->type = copy_type_recursive (objfile, value->type, copied_types); 2466 2467 if (TYPE_OBJFILE (value->enclosing_type) == objfile) 2468 value->enclosing_type = copy_type_recursive (objfile, 2469 value->enclosing_type, 2470 copied_types); 2471 } 2472 2473 /* Likewise for internal variable VAR. */ 2474 2475 static void 2476 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile, 2477 htab_t copied_types) 2478 { 2479 switch (var->kind) 2480 { 2481 case INTERNALVAR_INTEGER: 2482 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile) 2483 var->u.integer.type 2484 = copy_type_recursive (objfile, var->u.integer.type, copied_types); 2485 break; 2486 2487 case INTERNALVAR_VALUE: 2488 preserve_one_value (var->u.value, objfile, copied_types); 2489 break; 2490 } 2491 } 2492 2493 /* Update the internal variables and value history when OBJFILE is 2494 discarded; we must copy the types out of the objfile. New global types 2495 will be created for every convenience variable which currently points to 2496 this objfile's types, and the convenience variables will be adjusted to 2497 use the new global types. */ 2498 2499 void 2500 preserve_values (struct objfile *objfile) 2501 { 2502 htab_t copied_types; 2503 struct internalvar *var; 2504 2505 /* Create the hash table. We allocate on the objfile's obstack, since 2506 it is soon to be deleted. */ 2507 copied_types = create_copied_types_hash (objfile); 2508 2509 for (const value_ref_ptr &item : value_history) 2510 preserve_one_value (item.get (), objfile, copied_types); 2511 2512 for (var = internalvars; var; var = var->next) 2513 preserve_one_internalvar (var, objfile, copied_types); 2514 2515 preserve_ext_lang_values (objfile, copied_types); 2516 2517 htab_delete (copied_types); 2518 } 2519 2520 static void 2521 show_convenience (const char *ignore, int from_tty) 2522 { 2523 struct gdbarch *gdbarch = get_current_arch (); 2524 struct internalvar *var; 2525 int varseen = 0; 2526 struct value_print_options opts; 2527 2528 get_user_print_options (&opts); 2529 for (var = internalvars; var; var = var->next) 2530 { 2531 2532 if (!varseen) 2533 { 2534 varseen = 1; 2535 } 2536 printf_filtered (("$%s = "), var->name); 2537 2538 TRY 2539 { 2540 struct value *val; 2541 2542 val = value_of_internalvar (gdbarch, var); 2543 value_print (val, gdb_stdout, &opts); 2544 } 2545 CATCH (ex, RETURN_MASK_ERROR) 2546 { 2547 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message); 2548 } 2549 END_CATCH 2550 2551 printf_filtered (("\n")); 2552 } 2553 if (!varseen) 2554 { 2555 /* This text does not mention convenience functions on purpose. 2556 The user can't create them except via Python, and if Python support 2557 is installed this message will never be printed ($_streq will 2558 exist). */ 2559 printf_unfiltered (_("No debugger convenience variables now defined.\n" 2560 "Convenience variables have " 2561 "names starting with \"$\";\n" 2562 "use \"set\" as in \"set " 2563 "$foo = 5\" to define them.\n")); 2564 } 2565 } 2566 2567 2568 /* See value.h. */ 2569 2570 struct value * 2571 value_from_xmethod (xmethod_worker_up &&worker) 2572 { 2573 struct value *v; 2574 2575 v = allocate_value (builtin_type (target_gdbarch ())->xmethod); 2576 v->lval = lval_xcallable; 2577 v->location.xm_worker = worker.release (); 2578 v->modifiable = 0; 2579 2580 return v; 2581 } 2582 2583 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */ 2584 2585 struct type * 2586 result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv) 2587 { 2588 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD 2589 && method->lval == lval_xcallable && !argv.empty ()); 2590 2591 return method->location.xm_worker->get_result_type (argv[0], argv.slice (1)); 2592 } 2593 2594 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */ 2595 2596 struct value * 2597 call_xmethod (struct value *method, gdb::array_view<value *> argv) 2598 { 2599 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD 2600 && method->lval == lval_xcallable && !argv.empty ()); 2601 2602 return method->location.xm_worker->invoke (argv[0], argv.slice (1)); 2603 } 2604 2605 /* Extract a value as a C number (either long or double). 2606 Knows how to convert fixed values to double, or 2607 floating values to long. 2608 Does not deallocate the value. */ 2609 2610 LONGEST 2611 value_as_long (struct value *val) 2612 { 2613 /* This coerces arrays and functions, which is necessary (e.g. 2614 in disassemble_command). It also dereferences references, which 2615 I suspect is the most logical thing to do. */ 2616 val = coerce_array (val); 2617 return unpack_long (value_type (val), value_contents (val)); 2618 } 2619 2620 /* Extract a value as a C pointer. Does not deallocate the value. 2621 Note that val's type may not actually be a pointer; value_as_long 2622 handles all the cases. */ 2623 CORE_ADDR 2624 value_as_address (struct value *val) 2625 { 2626 struct gdbarch *gdbarch = get_type_arch (value_type (val)); 2627 2628 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure 2629 whether we want this to be true eventually. */ 2630 #if 0 2631 /* gdbarch_addr_bits_remove is wrong if we are being called for a 2632 non-address (e.g. argument to "signal", "info break", etc.), or 2633 for pointers to char, in which the low bits *are* significant. */ 2634 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val)); 2635 #else 2636 2637 /* There are several targets (IA-64, PowerPC, and others) which 2638 don't represent pointers to functions as simply the address of 2639 the function's entry point. For example, on the IA-64, a 2640 function pointer points to a two-word descriptor, generated by 2641 the linker, which contains the function's entry point, and the 2642 value the IA-64 "global pointer" register should have --- to 2643 support position-independent code. The linker generates 2644 descriptors only for those functions whose addresses are taken. 2645 2646 On such targets, it's difficult for GDB to convert an arbitrary 2647 function address into a function pointer; it has to either find 2648 an existing descriptor for that function, or call malloc and 2649 build its own. On some targets, it is impossible for GDB to 2650 build a descriptor at all: the descriptor must contain a jump 2651 instruction; data memory cannot be executed; and code memory 2652 cannot be modified. 2653 2654 Upon entry to this function, if VAL is a value of type `function' 2655 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then 2656 value_address (val) is the address of the function. This is what 2657 you'll get if you evaluate an expression like `main'. The call 2658 to COERCE_ARRAY below actually does all the usual unary 2659 conversions, which includes converting values of type `function' 2660 to `pointer to function'. This is the challenging conversion 2661 discussed above. Then, `unpack_long' will convert that pointer 2662 back into an address. 2663 2664 So, suppose the user types `disassemble foo' on an architecture 2665 with a strange function pointer representation, on which GDB 2666 cannot build its own descriptors, and suppose further that `foo' 2667 has no linker-built descriptor. The address->pointer conversion 2668 will signal an error and prevent the command from running, even 2669 though the next step would have been to convert the pointer 2670 directly back into the same address. 2671 2672 The following shortcut avoids this whole mess. If VAL is a 2673 function, just return its address directly. */ 2674 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC 2675 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD) 2676 return value_address (val); 2677 2678 val = coerce_array (val); 2679 2680 /* Some architectures (e.g. Harvard), map instruction and data 2681 addresses onto a single large unified address space. For 2682 instance: An architecture may consider a large integer in the 2683 range 0x10000000 .. 0x1000ffff to already represent a data 2684 addresses (hence not need a pointer to address conversion) while 2685 a small integer would still need to be converted integer to 2686 pointer to address. Just assume such architectures handle all 2687 integer conversions in a single function. */ 2688 2689 /* JimB writes: 2690 2691 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we 2692 must admonish GDB hackers to make sure its behavior matches the 2693 compiler's, whenever possible. 2694 2695 In general, I think GDB should evaluate expressions the same way 2696 the compiler does. When the user copies an expression out of 2697 their source code and hands it to a `print' command, they should 2698 get the same value the compiler would have computed. Any 2699 deviation from this rule can cause major confusion and annoyance, 2700 and needs to be justified carefully. In other words, GDB doesn't 2701 really have the freedom to do these conversions in clever and 2702 useful ways. 2703 2704 AndrewC pointed out that users aren't complaining about how GDB 2705 casts integers to pointers; they are complaining that they can't 2706 take an address from a disassembly listing and give it to `x/i'. 2707 This is certainly important. 2708 2709 Adding an architecture method like integer_to_address() certainly 2710 makes it possible for GDB to "get it right" in all circumstances 2711 --- the target has complete control over how things get done, so 2712 people can Do The Right Thing for their target without breaking 2713 anyone else. The standard doesn't specify how integers get 2714 converted to pointers; usually, the ABI doesn't either, but 2715 ABI-specific code is a more reasonable place to handle it. */ 2716 2717 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR 2718 && !TYPE_IS_REFERENCE (value_type (val)) 2719 && gdbarch_integer_to_address_p (gdbarch)) 2720 return gdbarch_integer_to_address (gdbarch, value_type (val), 2721 value_contents (val)); 2722 2723 return unpack_long (value_type (val), value_contents (val)); 2724 #endif 2725 } 2726 2727 /* Unpack raw data (copied from debugee, target byte order) at VALADDR 2728 as a long, or as a double, assuming the raw data is described 2729 by type TYPE. Knows how to convert different sizes of values 2730 and can convert between fixed and floating point. We don't assume 2731 any alignment for the raw data. Return value is in host byte order. 2732 2733 If you want functions and arrays to be coerced to pointers, and 2734 references to be dereferenced, call value_as_long() instead. 2735 2736 C++: It is assumed that the front-end has taken care of 2737 all matters concerning pointers to members. A pointer 2738 to member which reaches here is considered to be equivalent 2739 to an INT (or some size). After all, it is only an offset. */ 2740 2741 LONGEST 2742 unpack_long (struct type *type, const gdb_byte *valaddr) 2743 { 2744 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 2745 enum type_code code = TYPE_CODE (type); 2746 int len = TYPE_LENGTH (type); 2747 int nosign = TYPE_UNSIGNED (type); 2748 2749 switch (code) 2750 { 2751 case TYPE_CODE_TYPEDEF: 2752 return unpack_long (check_typedef (type), valaddr); 2753 case TYPE_CODE_ENUM: 2754 case TYPE_CODE_FLAGS: 2755 case TYPE_CODE_BOOL: 2756 case TYPE_CODE_INT: 2757 case TYPE_CODE_CHAR: 2758 case TYPE_CODE_RANGE: 2759 case TYPE_CODE_MEMBERPTR: 2760 if (nosign) 2761 return extract_unsigned_integer (valaddr, len, byte_order); 2762 else 2763 return extract_signed_integer (valaddr, len, byte_order); 2764 2765 case TYPE_CODE_FLT: 2766 case TYPE_CODE_DECFLOAT: 2767 return target_float_to_longest (valaddr, type); 2768 2769 case TYPE_CODE_PTR: 2770 case TYPE_CODE_REF: 2771 case TYPE_CODE_RVALUE_REF: 2772 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure 2773 whether we want this to be true eventually. */ 2774 return extract_typed_address (valaddr, type); 2775 2776 default: 2777 error (_("Value can't be converted to integer.")); 2778 } 2779 } 2780 2781 /* Unpack raw data (copied from debugee, target byte order) at VALADDR 2782 as a CORE_ADDR, assuming the raw data is described by type TYPE. 2783 We don't assume any alignment for the raw data. Return value is in 2784 host byte order. 2785 2786 If you want functions and arrays to be coerced to pointers, and 2787 references to be dereferenced, call value_as_address() instead. 2788 2789 C++: It is assumed that the front-end has taken care of 2790 all matters concerning pointers to members. A pointer 2791 to member which reaches here is considered to be equivalent 2792 to an INT (or some size). After all, it is only an offset. */ 2793 2794 CORE_ADDR 2795 unpack_pointer (struct type *type, const gdb_byte *valaddr) 2796 { 2797 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure 2798 whether we want this to be true eventually. */ 2799 return unpack_long (type, valaddr); 2800 } 2801 2802 bool 2803 is_floating_value (struct value *val) 2804 { 2805 struct type *type = check_typedef (value_type (val)); 2806 2807 if (is_floating_type (type)) 2808 { 2809 if (!target_float_is_valid (value_contents (val), type)) 2810 error (_("Invalid floating value found in program.")); 2811 return true; 2812 } 2813 2814 return false; 2815 } 2816 2817 2818 /* Get the value of the FIELDNO'th field (which must be static) of 2819 TYPE. */ 2820 2821 struct value * 2822 value_static_field (struct type *type, int fieldno) 2823 { 2824 struct value *retval; 2825 2826 switch (TYPE_FIELD_LOC_KIND (type, fieldno)) 2827 { 2828 case FIELD_LOC_KIND_PHYSADDR: 2829 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno), 2830 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); 2831 break; 2832 case FIELD_LOC_KIND_PHYSNAME: 2833 { 2834 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); 2835 /* TYPE_FIELD_NAME (type, fieldno); */ 2836 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0); 2837 2838 if (sym.symbol == NULL) 2839 { 2840 /* With some compilers, e.g. HP aCC, static data members are 2841 reported as non-debuggable symbols. */ 2842 struct bound_minimal_symbol msym 2843 = lookup_minimal_symbol (phys_name, NULL, NULL); 2844 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); 2845 2846 if (!msym.minsym) 2847 retval = allocate_optimized_out_value (field_type); 2848 else 2849 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym)); 2850 } 2851 else 2852 retval = value_of_variable (sym.symbol, sym.block); 2853 break; 2854 } 2855 default: 2856 gdb_assert_not_reached ("unexpected field location kind"); 2857 } 2858 2859 return retval; 2860 } 2861 2862 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE. 2863 You have to be careful here, since the size of the data area for the value 2864 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger 2865 than the old enclosing type, you have to allocate more space for the 2866 data. */ 2867 2868 void 2869 set_value_enclosing_type (struct value *val, struct type *new_encl_type) 2870 { 2871 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val))) 2872 { 2873 check_type_length_before_alloc (new_encl_type); 2874 val->contents 2875 .reset ((gdb_byte *) xrealloc (val->contents.release (), 2876 TYPE_LENGTH (new_encl_type))); 2877 } 2878 2879 val->enclosing_type = new_encl_type; 2880 } 2881 2882 /* Given a value ARG1 (offset by OFFSET bytes) 2883 of a struct or union type ARG_TYPE, 2884 extract and return the value of one of its (non-static) fields. 2885 FIELDNO says which field. */ 2886 2887 struct value * 2888 value_primitive_field (struct value *arg1, LONGEST offset, 2889 int fieldno, struct type *arg_type) 2890 { 2891 struct value *v; 2892 struct type *type; 2893 struct gdbarch *arch = get_value_arch (arg1); 2894 int unit_size = gdbarch_addressable_memory_unit_size (arch); 2895 2896 arg_type = check_typedef (arg_type); 2897 type = TYPE_FIELD_TYPE (arg_type, fieldno); 2898 2899 /* Call check_typedef on our type to make sure that, if TYPE 2900 is a TYPE_CODE_TYPEDEF, its length is set to the length 2901 of the target type instead of zero. However, we do not 2902 replace the typedef type by the target type, because we want 2903 to keep the typedef in order to be able to print the type 2904 description correctly. */ 2905 check_typedef (type); 2906 2907 if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) 2908 { 2909 /* Handle packed fields. 2910 2911 Create a new value for the bitfield, with bitpos and bitsize 2912 set. If possible, arrange offset and bitpos so that we can 2913 do a single aligned read of the size of the containing type. 2914 Otherwise, adjust offset to the byte containing the first 2915 bit. Assume that the address, offset, and embedded offset 2916 are sufficiently aligned. */ 2917 2918 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno); 2919 LONGEST container_bitsize = TYPE_LENGTH (type) * 8; 2920 2921 v = allocate_value_lazy (type); 2922 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno); 2923 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize 2924 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)) 2925 v->bitpos = bitpos % container_bitsize; 2926 else 2927 v->bitpos = bitpos % 8; 2928 v->offset = (value_embedded_offset (arg1) 2929 + offset 2930 + (bitpos - v->bitpos) / 8); 2931 set_value_parent (v, arg1); 2932 if (!value_lazy (arg1)) 2933 value_fetch_lazy (v); 2934 } 2935 else if (fieldno < TYPE_N_BASECLASSES (arg_type)) 2936 { 2937 /* This field is actually a base subobject, so preserve the 2938 entire object's contents for later references to virtual 2939 bases, etc. */ 2940 LONGEST boffset; 2941 2942 /* Lazy register values with offsets are not supported. */ 2943 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) 2944 value_fetch_lazy (arg1); 2945 2946 /* We special case virtual inheritance here because this 2947 requires access to the contents, which we would rather avoid 2948 for references to ordinary fields of unavailable values. */ 2949 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno)) 2950 boffset = baseclass_offset (arg_type, fieldno, 2951 value_contents (arg1), 2952 value_embedded_offset (arg1), 2953 value_address (arg1), 2954 arg1); 2955 else 2956 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; 2957 2958 if (value_lazy (arg1)) 2959 v = allocate_value_lazy (value_enclosing_type (arg1)); 2960 else 2961 { 2962 v = allocate_value (value_enclosing_type (arg1)); 2963 value_contents_copy_raw (v, 0, arg1, 0, 2964 TYPE_LENGTH (value_enclosing_type (arg1))); 2965 } 2966 v->type = type; 2967 v->offset = value_offset (arg1); 2968 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset; 2969 } 2970 else if (NULL != TYPE_DATA_LOCATION (type)) 2971 { 2972 /* Field is a dynamic data member. */ 2973 2974 gdb_assert (0 == offset); 2975 /* We expect an already resolved data location. */ 2976 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type)); 2977 /* For dynamic data types defer memory allocation 2978 until we actual access the value. */ 2979 v = allocate_value_lazy (type); 2980 } 2981 else 2982 { 2983 /* Plain old data member */ 2984 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno) 2985 / (HOST_CHAR_BIT * unit_size)); 2986 2987 /* Lazy register values with offsets are not supported. */ 2988 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) 2989 value_fetch_lazy (arg1); 2990 2991 if (value_lazy (arg1)) 2992 v = allocate_value_lazy (type); 2993 else 2994 { 2995 v = allocate_value (type); 2996 value_contents_copy_raw (v, value_embedded_offset (v), 2997 arg1, value_embedded_offset (arg1) + offset, 2998 type_length_units (type)); 2999 } 3000 v->offset = (value_offset (arg1) + offset 3001 + value_embedded_offset (arg1)); 3002 } 3003 set_value_component_location (v, arg1); 3004 return v; 3005 } 3006 3007 /* Given a value ARG1 of a struct or union type, 3008 extract and return the value of one of its (non-static) fields. 3009 FIELDNO says which field. */ 3010 3011 struct value * 3012 value_field (struct value *arg1, int fieldno) 3013 { 3014 return value_primitive_field (arg1, 0, fieldno, value_type (arg1)); 3015 } 3016 3017 /* Return a non-virtual function as a value. 3018 F is the list of member functions which contains the desired method. 3019 J is an index into F which provides the desired method. 3020 3021 We only use the symbol for its address, so be happy with either a 3022 full symbol or a minimal symbol. */ 3023 3024 struct value * 3025 value_fn_field (struct value **arg1p, struct fn_field *f, 3026 int j, struct type *type, 3027 LONGEST offset) 3028 { 3029 struct value *v; 3030 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); 3031 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); 3032 struct symbol *sym; 3033 struct bound_minimal_symbol msym; 3034 3035 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol; 3036 if (sym != NULL) 3037 { 3038 memset (&msym, 0, sizeof (msym)); 3039 } 3040 else 3041 { 3042 gdb_assert (sym == NULL); 3043 msym = lookup_bound_minimal_symbol (physname); 3044 if (msym.minsym == NULL) 3045 return NULL; 3046 } 3047 3048 v = allocate_value (ftype); 3049 VALUE_LVAL (v) = lval_memory; 3050 if (sym) 3051 { 3052 set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym))); 3053 } 3054 else 3055 { 3056 /* The minimal symbol might point to a function descriptor; 3057 resolve it to the actual code address instead. */ 3058 struct objfile *objfile = msym.objfile; 3059 struct gdbarch *gdbarch = get_objfile_arch (objfile); 3060 3061 set_value_address (v, 3062 gdbarch_convert_from_func_ptr_addr 3063 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), current_top_target ())); 3064 } 3065 3066 if (arg1p) 3067 { 3068 if (type != value_type (*arg1p)) 3069 *arg1p = value_ind (value_cast (lookup_pointer_type (type), 3070 value_addr (*arg1p))); 3071 3072 /* Move the `this' pointer according to the offset. 3073 VALUE_OFFSET (*arg1p) += offset; */ 3074 } 3075 3076 return v; 3077 } 3078 3079 3080 3081 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at 3082 VALADDR, and store the result in *RESULT. 3083 The bitfield starts at BITPOS bits and contains BITSIZE bits; if 3084 BITSIZE is zero, then the length is taken from FIELD_TYPE. 3085 3086 Extracting bits depends on endianness of the machine. Compute the 3087 number of least significant bits to discard. For big endian machines, 3088 we compute the total number of bits in the anonymous object, subtract 3089 off the bit count from the MSB of the object to the MSB of the 3090 bitfield, then the size of the bitfield, which leaves the LSB discard 3091 count. For little endian machines, the discard count is simply the 3092 number of bits from the LSB of the anonymous object to the LSB of the 3093 bitfield. 3094 3095 If the field is signed, we also do sign extension. */ 3096 3097 static LONGEST 3098 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr, 3099 LONGEST bitpos, LONGEST bitsize) 3100 { 3101 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type)); 3102 ULONGEST val; 3103 ULONGEST valmask; 3104 int lsbcount; 3105 LONGEST bytes_read; 3106 LONGEST read_offset; 3107 3108 /* Read the minimum number of bytes required; there may not be 3109 enough bytes to read an entire ULONGEST. */ 3110 field_type = check_typedef (field_type); 3111 if (bitsize) 3112 bytes_read = ((bitpos % 8) + bitsize + 7) / 8; 3113 else 3114 { 3115 bytes_read = TYPE_LENGTH (field_type); 3116 bitsize = 8 * bytes_read; 3117 } 3118 3119 read_offset = bitpos / 8; 3120 3121 val = extract_unsigned_integer (valaddr + read_offset, 3122 bytes_read, byte_order); 3123 3124 /* Extract bits. See comment above. */ 3125 3126 if (gdbarch_bits_big_endian (get_type_arch (field_type))) 3127 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize); 3128 else 3129 lsbcount = (bitpos % 8); 3130 val >>= lsbcount; 3131 3132 /* If the field does not entirely fill a LONGEST, then zero the sign bits. 3133 If the field is signed, and is negative, then sign extend. */ 3134 3135 if (bitsize < 8 * (int) sizeof (val)) 3136 { 3137 valmask = (((ULONGEST) 1) << bitsize) - 1; 3138 val &= valmask; 3139 if (!TYPE_UNSIGNED (field_type)) 3140 { 3141 if (val & (valmask ^ (valmask >> 1))) 3142 { 3143 val |= ~valmask; 3144 } 3145 } 3146 } 3147 3148 return val; 3149 } 3150 3151 /* Unpack a field FIELDNO of the specified TYPE, from the object at 3152 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of 3153 ORIGINAL_VALUE, which must not be NULL. See 3154 unpack_value_bits_as_long for more details. */ 3155 3156 int 3157 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr, 3158 LONGEST embedded_offset, int fieldno, 3159 const struct value *val, LONGEST *result) 3160 { 3161 int bitpos = TYPE_FIELD_BITPOS (type, fieldno); 3162 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); 3163 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); 3164 int bit_offset; 3165 3166 gdb_assert (val != NULL); 3167 3168 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos; 3169 if (value_bits_any_optimized_out (val, bit_offset, bitsize) 3170 || !value_bits_available (val, bit_offset, bitsize)) 3171 return 0; 3172 3173 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset, 3174 bitpos, bitsize); 3175 return 1; 3176 } 3177 3178 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous 3179 object at VALADDR. See unpack_bits_as_long for more details. */ 3180 3181 LONGEST 3182 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno) 3183 { 3184 int bitpos = TYPE_FIELD_BITPOS (type, fieldno); 3185 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); 3186 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); 3187 3188 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize); 3189 } 3190 3191 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at 3192 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store 3193 the contents in DEST_VAL, zero or sign extending if the type of 3194 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of 3195 VAL. If the VAL's contents required to extract the bitfield from 3196 are unavailable/optimized out, DEST_VAL is correspondingly 3197 marked unavailable/optimized out. */ 3198 3199 void 3200 unpack_value_bitfield (struct value *dest_val, 3201 LONGEST bitpos, LONGEST bitsize, 3202 const gdb_byte *valaddr, LONGEST embedded_offset, 3203 const struct value *val) 3204 { 3205 enum bfd_endian byte_order; 3206 int src_bit_offset; 3207 int dst_bit_offset; 3208 struct type *field_type = value_type (dest_val); 3209 3210 byte_order = gdbarch_byte_order (get_type_arch (field_type)); 3211 3212 /* First, unpack and sign extend the bitfield as if it was wholly 3213 valid. Optimized out/unavailable bits are read as zero, but 3214 that's OK, as they'll end up marked below. If the VAL is 3215 wholly-invalid we may have skipped allocating its contents, 3216 though. See allocate_optimized_out_value. */ 3217 if (valaddr != NULL) 3218 { 3219 LONGEST num; 3220 3221 num = unpack_bits_as_long (field_type, valaddr + embedded_offset, 3222 bitpos, bitsize); 3223 store_signed_integer (value_contents_raw (dest_val), 3224 TYPE_LENGTH (field_type), byte_order, num); 3225 } 3226 3227 /* Now copy the optimized out / unavailability ranges to the right 3228 bits. */ 3229 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos; 3230 if (byte_order == BFD_ENDIAN_BIG) 3231 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize; 3232 else 3233 dst_bit_offset = 0; 3234 value_ranges_copy_adjusted (dest_val, dst_bit_offset, 3235 val, src_bit_offset, bitsize); 3236 } 3237 3238 /* Return a new value with type TYPE, which is FIELDNO field of the 3239 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents 3240 of VAL. If the VAL's contents required to extract the bitfield 3241 from are unavailable/optimized out, the new value is 3242 correspondingly marked unavailable/optimized out. */ 3243 3244 struct value * 3245 value_field_bitfield (struct type *type, int fieldno, 3246 const gdb_byte *valaddr, 3247 LONGEST embedded_offset, const struct value *val) 3248 { 3249 int bitpos = TYPE_FIELD_BITPOS (type, fieldno); 3250 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); 3251 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno)); 3252 3253 unpack_value_bitfield (res_val, bitpos, bitsize, 3254 valaddr, embedded_offset, val); 3255 3256 return res_val; 3257 } 3258 3259 /* Modify the value of a bitfield. ADDR points to a block of memory in 3260 target byte order; the bitfield starts in the byte pointed to. FIELDVAL 3261 is the desired value of the field, in host byte order. BITPOS and BITSIZE 3262 indicate which bits (in target bit order) comprise the bitfield. 3263 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and 3264 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */ 3265 3266 void 3267 modify_field (struct type *type, gdb_byte *addr, 3268 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize) 3269 { 3270 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 3271 ULONGEST oword; 3272 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize); 3273 LONGEST bytesize; 3274 3275 /* Normalize BITPOS. */ 3276 addr += bitpos / 8; 3277 bitpos %= 8; 3278 3279 /* If a negative fieldval fits in the field in question, chop 3280 off the sign extension bits. */ 3281 if ((~fieldval & ~(mask >> 1)) == 0) 3282 fieldval &= mask; 3283 3284 /* Warn if value is too big to fit in the field in question. */ 3285 if (0 != (fieldval & ~mask)) 3286 { 3287 /* FIXME: would like to include fieldval in the message, but 3288 we don't have a sprintf_longest. */ 3289 warning (_("Value does not fit in %s bits."), plongest (bitsize)); 3290 3291 /* Truncate it, otherwise adjoining fields may be corrupted. */ 3292 fieldval &= mask; 3293 } 3294 3295 /* Ensure no bytes outside of the modified ones get accessed as it may cause 3296 false valgrind reports. */ 3297 3298 bytesize = (bitpos + bitsize + 7) / 8; 3299 oword = extract_unsigned_integer (addr, bytesize, byte_order); 3300 3301 /* Shifting for bit field depends on endianness of the target machine. */ 3302 if (gdbarch_bits_big_endian (get_type_arch (type))) 3303 bitpos = bytesize * 8 - bitpos - bitsize; 3304 3305 oword &= ~(mask << bitpos); 3306 oword |= fieldval << bitpos; 3307 3308 store_unsigned_integer (addr, bytesize, byte_order, oword); 3309 } 3310 3311 /* Pack NUM into BUF using a target format of TYPE. */ 3312 3313 void 3314 pack_long (gdb_byte *buf, struct type *type, LONGEST num) 3315 { 3316 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 3317 LONGEST len; 3318 3319 type = check_typedef (type); 3320 len = TYPE_LENGTH (type); 3321 3322 switch (TYPE_CODE (type)) 3323 { 3324 case TYPE_CODE_INT: 3325 case TYPE_CODE_CHAR: 3326 case TYPE_CODE_ENUM: 3327 case TYPE_CODE_FLAGS: 3328 case TYPE_CODE_BOOL: 3329 case TYPE_CODE_RANGE: 3330 case TYPE_CODE_MEMBERPTR: 3331 store_signed_integer (buf, len, byte_order, num); 3332 break; 3333 3334 case TYPE_CODE_REF: 3335 case TYPE_CODE_RVALUE_REF: 3336 case TYPE_CODE_PTR: 3337 store_typed_address (buf, type, (CORE_ADDR) num); 3338 break; 3339 3340 case TYPE_CODE_FLT: 3341 case TYPE_CODE_DECFLOAT: 3342 target_float_from_longest (buf, type, num); 3343 break; 3344 3345 default: 3346 error (_("Unexpected type (%d) encountered for integer constant."), 3347 TYPE_CODE (type)); 3348 } 3349 } 3350 3351 3352 /* Pack NUM into BUF using a target format of TYPE. */ 3353 3354 static void 3355 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num) 3356 { 3357 LONGEST len; 3358 enum bfd_endian byte_order; 3359 3360 type = check_typedef (type); 3361 len = TYPE_LENGTH (type); 3362 byte_order = gdbarch_byte_order (get_type_arch (type)); 3363 3364 switch (TYPE_CODE (type)) 3365 { 3366 case TYPE_CODE_INT: 3367 case TYPE_CODE_CHAR: 3368 case TYPE_CODE_ENUM: 3369 case TYPE_CODE_FLAGS: 3370 case TYPE_CODE_BOOL: 3371 case TYPE_CODE_RANGE: 3372 case TYPE_CODE_MEMBERPTR: 3373 store_unsigned_integer (buf, len, byte_order, num); 3374 break; 3375 3376 case TYPE_CODE_REF: 3377 case TYPE_CODE_RVALUE_REF: 3378 case TYPE_CODE_PTR: 3379 store_typed_address (buf, type, (CORE_ADDR) num); 3380 break; 3381 3382 case TYPE_CODE_FLT: 3383 case TYPE_CODE_DECFLOAT: 3384 target_float_from_ulongest (buf, type, num); 3385 break; 3386 3387 default: 3388 error (_("Unexpected type (%d) encountered " 3389 "for unsigned integer constant."), 3390 TYPE_CODE (type)); 3391 } 3392 } 3393 3394 3395 /* Convert C numbers into newly allocated values. */ 3396 3397 struct value * 3398 value_from_longest (struct type *type, LONGEST num) 3399 { 3400 struct value *val = allocate_value (type); 3401 3402 pack_long (value_contents_raw (val), type, num); 3403 return val; 3404 } 3405 3406 3407 /* Convert C unsigned numbers into newly allocated values. */ 3408 3409 struct value * 3410 value_from_ulongest (struct type *type, ULONGEST num) 3411 { 3412 struct value *val = allocate_value (type); 3413 3414 pack_unsigned_long (value_contents_raw (val), type, num); 3415 3416 return val; 3417 } 3418 3419 3420 /* Create a value representing a pointer of type TYPE to the address 3421 ADDR. */ 3422 3423 struct value * 3424 value_from_pointer (struct type *type, CORE_ADDR addr) 3425 { 3426 struct value *val = allocate_value (type); 3427 3428 store_typed_address (value_contents_raw (val), 3429 check_typedef (type), addr); 3430 return val; 3431 } 3432 3433 3434 /* Create a value of type TYPE whose contents come from VALADDR, if it 3435 is non-null, and whose memory address (in the inferior) is 3436 ADDRESS. The type of the created value may differ from the passed 3437 type TYPE. Make sure to retrieve values new type after this call. 3438 Note that TYPE is not passed through resolve_dynamic_type; this is 3439 a special API intended for use only by Ada. */ 3440 3441 struct value * 3442 value_from_contents_and_address_unresolved (struct type *type, 3443 const gdb_byte *valaddr, 3444 CORE_ADDR address) 3445 { 3446 struct value *v; 3447 3448 if (valaddr == NULL) 3449 v = allocate_value_lazy (type); 3450 else 3451 v = value_from_contents (type, valaddr); 3452 VALUE_LVAL (v) = lval_memory; 3453 set_value_address (v, address); 3454 return v; 3455 } 3456 3457 /* Create a value of type TYPE whose contents come from VALADDR, if it 3458 is non-null, and whose memory address (in the inferior) is 3459 ADDRESS. The type of the created value may differ from the passed 3460 type TYPE. Make sure to retrieve values new type after this call. */ 3461 3462 struct value * 3463 value_from_contents_and_address (struct type *type, 3464 const gdb_byte *valaddr, 3465 CORE_ADDR address) 3466 { 3467 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address); 3468 struct type *resolved_type_no_typedef = check_typedef (resolved_type); 3469 struct value *v; 3470 3471 if (valaddr == NULL) 3472 v = allocate_value_lazy (resolved_type); 3473 else 3474 v = value_from_contents (resolved_type, valaddr); 3475 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL 3476 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST) 3477 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef); 3478 VALUE_LVAL (v) = lval_memory; 3479 set_value_address (v, address); 3480 return v; 3481 } 3482 3483 /* Create a value of type TYPE holding the contents CONTENTS. 3484 The new value is `not_lval'. */ 3485 3486 struct value * 3487 value_from_contents (struct type *type, const gdb_byte *contents) 3488 { 3489 struct value *result; 3490 3491 result = allocate_value (type); 3492 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type)); 3493 return result; 3494 } 3495 3496 /* Extract a value from the history file. Input will be of the form 3497 $digits or $$digits. See block comment above 'write_dollar_variable' 3498 for details. */ 3499 3500 struct value * 3501 value_from_history_ref (const char *h, const char **endp) 3502 { 3503 int index, len; 3504 3505 if (h[0] == '$') 3506 len = 1; 3507 else 3508 return NULL; 3509 3510 if (h[1] == '$') 3511 len = 2; 3512 3513 /* Find length of numeral string. */ 3514 for (; isdigit (h[len]); len++) 3515 ; 3516 3517 /* Make sure numeral string is not part of an identifier. */ 3518 if (h[len] == '_' || isalpha (h[len])) 3519 return NULL; 3520 3521 /* Now collect the index value. */ 3522 if (h[1] == '$') 3523 { 3524 if (len == 2) 3525 { 3526 /* For some bizarre reason, "$$" is equivalent to "$$1", 3527 rather than to "$$0" as it ought to be! */ 3528 index = -1; 3529 *endp += len; 3530 } 3531 else 3532 { 3533 char *local_end; 3534 3535 index = -strtol (&h[2], &local_end, 10); 3536 *endp = local_end; 3537 } 3538 } 3539 else 3540 { 3541 if (len == 1) 3542 { 3543 /* "$" is equivalent to "$0". */ 3544 index = 0; 3545 *endp += len; 3546 } 3547 else 3548 { 3549 char *local_end; 3550 3551 index = strtol (&h[1], &local_end, 10); 3552 *endp = local_end; 3553 } 3554 } 3555 3556 return access_value_history (index); 3557 } 3558 3559 /* Get the component value (offset by OFFSET bytes) of a struct or 3560 union WHOLE. Component's type is TYPE. */ 3561 3562 struct value * 3563 value_from_component (struct value *whole, struct type *type, LONGEST offset) 3564 { 3565 struct value *v; 3566 3567 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole)) 3568 v = allocate_value_lazy (type); 3569 else 3570 { 3571 v = allocate_value (type); 3572 value_contents_copy (v, value_embedded_offset (v), 3573 whole, value_embedded_offset (whole) + offset, 3574 type_length_units (type)); 3575 } 3576 v->offset = value_offset (whole) + offset + value_embedded_offset (whole); 3577 set_value_component_location (v, whole); 3578 3579 return v; 3580 } 3581 3582 struct value * 3583 coerce_ref_if_computed (const struct value *arg) 3584 { 3585 const struct lval_funcs *funcs; 3586 3587 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg)))) 3588 return NULL; 3589 3590 if (value_lval_const (arg) != lval_computed) 3591 return NULL; 3592 3593 funcs = value_computed_funcs (arg); 3594 if (funcs->coerce_ref == NULL) 3595 return NULL; 3596 3597 return funcs->coerce_ref (arg); 3598 } 3599 3600 /* Look at value.h for description. */ 3601 3602 struct value * 3603 readjust_indirect_value_type (struct value *value, struct type *enc_type, 3604 const struct type *original_type, 3605 const struct value *original_value) 3606 { 3607 /* Re-adjust type. */ 3608 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type)); 3609 3610 /* Add embedding info. */ 3611 set_value_enclosing_type (value, enc_type); 3612 set_value_embedded_offset (value, value_pointed_to_offset (original_value)); 3613 3614 /* We may be pointing to an object of some derived type. */ 3615 return value_full_object (value, NULL, 0, 0, 0); 3616 } 3617 3618 struct value * 3619 coerce_ref (struct value *arg) 3620 { 3621 struct type *value_type_arg_tmp = check_typedef (value_type (arg)); 3622 struct value *retval; 3623 struct type *enc_type; 3624 3625 retval = coerce_ref_if_computed (arg); 3626 if (retval) 3627 return retval; 3628 3629 if (!TYPE_IS_REFERENCE (value_type_arg_tmp)) 3630 return arg; 3631 3632 enc_type = check_typedef (value_enclosing_type (arg)); 3633 enc_type = TYPE_TARGET_TYPE (enc_type); 3634 3635 retval = value_at_lazy (enc_type, 3636 unpack_pointer (value_type (arg), 3637 value_contents (arg))); 3638 enc_type = value_type (retval); 3639 return readjust_indirect_value_type (retval, enc_type, 3640 value_type_arg_tmp, arg); 3641 } 3642 3643 struct value * 3644 coerce_array (struct value *arg) 3645 { 3646 struct type *type; 3647 3648 arg = coerce_ref (arg); 3649 type = check_typedef (value_type (arg)); 3650 3651 switch (TYPE_CODE (type)) 3652 { 3653 case TYPE_CODE_ARRAY: 3654 if (!TYPE_VECTOR (type) && current_language->c_style_arrays) 3655 arg = value_coerce_array (arg); 3656 break; 3657 case TYPE_CODE_FUNC: 3658 arg = value_coerce_function (arg); 3659 break; 3660 } 3661 return arg; 3662 } 3663 3664 3665 /* Return the return value convention that will be used for the 3666 specified type. */ 3667 3668 enum return_value_convention 3669 struct_return_convention (struct gdbarch *gdbarch, 3670 struct value *function, struct type *value_type) 3671 { 3672 enum type_code code = TYPE_CODE (value_type); 3673 3674 if (code == TYPE_CODE_ERROR) 3675 error (_("Function return type unknown.")); 3676 3677 /* Probe the architecture for the return-value convention. */ 3678 return gdbarch_return_value (gdbarch, function, value_type, 3679 NULL, NULL, NULL); 3680 } 3681 3682 /* Return true if the function returning the specified type is using 3683 the convention of returning structures in memory (passing in the 3684 address as a hidden first parameter). */ 3685 3686 int 3687 using_struct_return (struct gdbarch *gdbarch, 3688 struct value *function, struct type *value_type) 3689 { 3690 if (TYPE_CODE (value_type) == TYPE_CODE_VOID) 3691 /* A void return value is never in memory. See also corresponding 3692 code in "print_return_value". */ 3693 return 0; 3694 3695 return (struct_return_convention (gdbarch, function, value_type) 3696 != RETURN_VALUE_REGISTER_CONVENTION); 3697 } 3698 3699 /* Set the initialized field in a value struct. */ 3700 3701 void 3702 set_value_initialized (struct value *val, int status) 3703 { 3704 val->initialized = status; 3705 } 3706 3707 /* Return the initialized field in a value struct. */ 3708 3709 int 3710 value_initialized (const struct value *val) 3711 { 3712 return val->initialized; 3713 } 3714 3715 /* Helper for value_fetch_lazy when the value is a bitfield. */ 3716 3717 static void 3718 value_fetch_lazy_bitfield (struct value *val) 3719 { 3720 gdb_assert (value_bitsize (val) != 0); 3721 3722 /* To read a lazy bitfield, read the entire enclosing value. This 3723 prevents reading the same block of (possibly volatile) memory once 3724 per bitfield. It would be even better to read only the containing 3725 word, but we have no way to record that just specific bits of a 3726 value have been fetched. */ 3727 struct value *parent = value_parent (val); 3728 3729 if (value_lazy (parent)) 3730 value_fetch_lazy (parent); 3731 3732 unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val), 3733 value_contents_for_printing (parent), 3734 value_offset (val), parent); 3735 } 3736 3737 /* Helper for value_fetch_lazy when the value is in memory. */ 3738 3739 static void 3740 value_fetch_lazy_memory (struct value *val) 3741 { 3742 gdb_assert (VALUE_LVAL (val) == lval_memory); 3743 3744 CORE_ADDR addr = value_address (val); 3745 struct type *type = check_typedef (value_enclosing_type (val)); 3746 3747 if (TYPE_LENGTH (type)) 3748 read_value_memory (val, 0, value_stack (val), 3749 addr, value_contents_all_raw (val), 3750 type_length_units (type)); 3751 } 3752 3753 /* Helper for value_fetch_lazy when the value is in a register. */ 3754 3755 static void 3756 value_fetch_lazy_register (struct value *val) 3757 { 3758 struct frame_info *next_frame; 3759 int regnum; 3760 struct type *type = check_typedef (value_type (val)); 3761 struct value *new_val = val, *mark = value_mark (); 3762 3763 /* Offsets are not supported here; lazy register values must 3764 refer to the entire register. */ 3765 gdb_assert (value_offset (val) == 0); 3766 3767 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val)) 3768 { 3769 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val); 3770 3771 next_frame = frame_find_by_id (next_frame_id); 3772 regnum = VALUE_REGNUM (new_val); 3773 3774 gdb_assert (next_frame != NULL); 3775 3776 /* Convertible register routines are used for multi-register 3777 values and for interpretation in different types 3778 (e.g. float or int from a double register). Lazy 3779 register values should have the register's natural type, 3780 so they do not apply. */ 3781 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame), 3782 regnum, type)); 3783 3784 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID. 3785 Since a "->next" operation was performed when setting 3786 this field, we do not need to perform a "next" operation 3787 again when unwinding the register. That's why 3788 frame_unwind_register_value() is called here instead of 3789 get_frame_register_value(). */ 3790 new_val = frame_unwind_register_value (next_frame, regnum); 3791 3792 /* If we get another lazy lval_register value, it means the 3793 register is found by reading it from NEXT_FRAME's next frame. 3794 frame_unwind_register_value should never return a value with 3795 the frame id pointing to NEXT_FRAME. If it does, it means we 3796 either have two consecutive frames with the same frame id 3797 in the frame chain, or some code is trying to unwind 3798 behind get_prev_frame's back (e.g., a frame unwind 3799 sniffer trying to unwind), bypassing its validations. In 3800 any case, it should always be an internal error to end up 3801 in this situation. */ 3802 if (VALUE_LVAL (new_val) == lval_register 3803 && value_lazy (new_val) 3804 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id)) 3805 internal_error (__FILE__, __LINE__, 3806 _("infinite loop while fetching a register")); 3807 } 3808 3809 /* If it's still lazy (for instance, a saved register on the 3810 stack), fetch it. */ 3811 if (value_lazy (new_val)) 3812 value_fetch_lazy (new_val); 3813 3814 /* Copy the contents and the unavailability/optimized-out 3815 meta-data from NEW_VAL to VAL. */ 3816 set_value_lazy (val, 0); 3817 value_contents_copy (val, value_embedded_offset (val), 3818 new_val, value_embedded_offset (new_val), 3819 type_length_units (type)); 3820 3821 if (frame_debug) 3822 { 3823 struct gdbarch *gdbarch; 3824 struct frame_info *frame; 3825 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID, 3826 so that the frame level will be shown correctly. */ 3827 frame = frame_find_by_id (VALUE_FRAME_ID (val)); 3828 regnum = VALUE_REGNUM (val); 3829 gdbarch = get_frame_arch (frame); 3830 3831 fprintf_unfiltered (gdb_stdlog, 3832 "{ value_fetch_lazy " 3833 "(frame=%d,regnum=%d(%s),...) ", 3834 frame_relative_level (frame), regnum, 3835 user_reg_map_regnum_to_name (gdbarch, regnum)); 3836 3837 fprintf_unfiltered (gdb_stdlog, "->"); 3838 if (value_optimized_out (new_val)) 3839 { 3840 fprintf_unfiltered (gdb_stdlog, " "); 3841 val_print_optimized_out (new_val, gdb_stdlog); 3842 } 3843 else 3844 { 3845 int i; 3846 const gdb_byte *buf = value_contents (new_val); 3847 3848 if (VALUE_LVAL (new_val) == lval_register) 3849 fprintf_unfiltered (gdb_stdlog, " register=%d", 3850 VALUE_REGNUM (new_val)); 3851 else if (VALUE_LVAL (new_val) == lval_memory) 3852 fprintf_unfiltered (gdb_stdlog, " address=%s", 3853 paddress (gdbarch, 3854 value_address (new_val))); 3855 else 3856 fprintf_unfiltered (gdb_stdlog, " computed"); 3857 3858 fprintf_unfiltered (gdb_stdlog, " bytes="); 3859 fprintf_unfiltered (gdb_stdlog, "["); 3860 for (i = 0; i < register_size (gdbarch, regnum); i++) 3861 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); 3862 fprintf_unfiltered (gdb_stdlog, "]"); 3863 } 3864 3865 fprintf_unfiltered (gdb_stdlog, " }\n"); 3866 } 3867 3868 /* Dispose of the intermediate values. This prevents 3869 watchpoints from trying to watch the saved frame pointer. */ 3870 value_free_to_mark (mark); 3871 } 3872 3873 /* Load the actual content of a lazy value. Fetch the data from the 3874 user's process and clear the lazy flag to indicate that the data in 3875 the buffer is valid. 3876 3877 If the value is zero-length, we avoid calling read_memory, which 3878 would abort. We mark the value as fetched anyway -- all 0 bytes of 3879 it. */ 3880 3881 void 3882 value_fetch_lazy (struct value *val) 3883 { 3884 gdb_assert (value_lazy (val)); 3885 allocate_value_contents (val); 3886 /* A value is either lazy, or fully fetched. The 3887 availability/validity is only established as we try to fetch a 3888 value. */ 3889 gdb_assert (val->optimized_out.empty ()); 3890 gdb_assert (val->unavailable.empty ()); 3891 if (value_bitsize (val)) 3892 value_fetch_lazy_bitfield (val); 3893 else if (VALUE_LVAL (val) == lval_memory) 3894 value_fetch_lazy_memory (val); 3895 else if (VALUE_LVAL (val) == lval_register) 3896 value_fetch_lazy_register (val); 3897 else if (VALUE_LVAL (val) == lval_computed 3898 && value_computed_funcs (val)->read != NULL) 3899 value_computed_funcs (val)->read (val); 3900 else 3901 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type.")); 3902 3903 set_value_lazy (val, 0); 3904 } 3905 3906 /* Implementation of the convenience function $_isvoid. */ 3907 3908 static struct value * 3909 isvoid_internal_fn (struct gdbarch *gdbarch, 3910 const struct language_defn *language, 3911 void *cookie, int argc, struct value **argv) 3912 { 3913 int ret; 3914 3915 if (argc != 1) 3916 error (_("You must provide one argument for $_isvoid.")); 3917 3918 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID; 3919 3920 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret); 3921 } 3922 3923 #if GDB_SELF_TEST 3924 namespace selftests 3925 { 3926 3927 /* Test the ranges_contain function. */ 3928 3929 static void 3930 test_ranges_contain () 3931 { 3932 std::vector<range> ranges; 3933 range r; 3934 3935 /* [10, 14] */ 3936 r.offset = 10; 3937 r.length = 5; 3938 ranges.push_back (r); 3939 3940 /* [20, 24] */ 3941 r.offset = 20; 3942 r.length = 5; 3943 ranges.push_back (r); 3944 3945 /* [2, 6] */ 3946 SELF_CHECK (!ranges_contain (ranges, 2, 5)); 3947 /* [9, 13] */ 3948 SELF_CHECK (ranges_contain (ranges, 9, 5)); 3949 /* [10, 11] */ 3950 SELF_CHECK (ranges_contain (ranges, 10, 2)); 3951 /* [10, 14] */ 3952 SELF_CHECK (ranges_contain (ranges, 10, 5)); 3953 /* [13, 18] */ 3954 SELF_CHECK (ranges_contain (ranges, 13, 6)); 3955 /* [14, 18] */ 3956 SELF_CHECK (ranges_contain (ranges, 14, 5)); 3957 /* [15, 18] */ 3958 SELF_CHECK (!ranges_contain (ranges, 15, 4)); 3959 /* [16, 19] */ 3960 SELF_CHECK (!ranges_contain (ranges, 16, 4)); 3961 /* [16, 21] */ 3962 SELF_CHECK (ranges_contain (ranges, 16, 6)); 3963 /* [21, 21] */ 3964 SELF_CHECK (ranges_contain (ranges, 21, 1)); 3965 /* [21, 25] */ 3966 SELF_CHECK (ranges_contain (ranges, 21, 5)); 3967 /* [26, 28] */ 3968 SELF_CHECK (!ranges_contain (ranges, 26, 3)); 3969 } 3970 3971 /* Check that RANGES contains the same ranges as EXPECTED. */ 3972 3973 static bool 3974 check_ranges_vector (gdb::array_view<const range> ranges, 3975 gdb::array_view<const range> expected) 3976 { 3977 return ranges == expected; 3978 } 3979 3980 /* Test the insert_into_bit_range_vector function. */ 3981 3982 static void 3983 test_insert_into_bit_range_vector () 3984 { 3985 std::vector<range> ranges; 3986 3987 /* [10, 14] */ 3988 { 3989 insert_into_bit_range_vector (&ranges, 10, 5); 3990 static const range expected[] = { 3991 {10, 5} 3992 }; 3993 SELF_CHECK (check_ranges_vector (ranges, expected)); 3994 } 3995 3996 /* [10, 14] */ 3997 { 3998 insert_into_bit_range_vector (&ranges, 11, 4); 3999 static const range expected = {10, 5}; 4000 SELF_CHECK (check_ranges_vector (ranges, expected)); 4001 } 4002 4003 /* [10, 14] [20, 24] */ 4004 { 4005 insert_into_bit_range_vector (&ranges, 20, 5); 4006 static const range expected[] = { 4007 {10, 5}, 4008 {20, 5}, 4009 }; 4010 SELF_CHECK (check_ranges_vector (ranges, expected)); 4011 } 4012 4013 /* [10, 14] [17, 24] */ 4014 { 4015 insert_into_bit_range_vector (&ranges, 17, 5); 4016 static const range expected[] = { 4017 {10, 5}, 4018 {17, 8}, 4019 }; 4020 SELF_CHECK (check_ranges_vector (ranges, expected)); 4021 } 4022 4023 /* [2, 8] [10, 14] [17, 24] */ 4024 { 4025 insert_into_bit_range_vector (&ranges, 2, 7); 4026 static const range expected[] = { 4027 {2, 7}, 4028 {10, 5}, 4029 {17, 8}, 4030 }; 4031 SELF_CHECK (check_ranges_vector (ranges, expected)); 4032 } 4033 4034 /* [2, 14] [17, 24] */ 4035 { 4036 insert_into_bit_range_vector (&ranges, 9, 1); 4037 static const range expected[] = { 4038 {2, 13}, 4039 {17, 8}, 4040 }; 4041 SELF_CHECK (check_ranges_vector (ranges, expected)); 4042 } 4043 4044 /* [2, 14] [17, 24] */ 4045 { 4046 insert_into_bit_range_vector (&ranges, 9, 1); 4047 static const range expected[] = { 4048 {2, 13}, 4049 {17, 8}, 4050 }; 4051 SELF_CHECK (check_ranges_vector (ranges, expected)); 4052 } 4053 4054 /* [2, 33] */ 4055 { 4056 insert_into_bit_range_vector (&ranges, 4, 30); 4057 static const range expected = {2, 32}; 4058 SELF_CHECK (check_ranges_vector (ranges, expected)); 4059 } 4060 } 4061 4062 } /* namespace selftests */ 4063 #endif /* GDB_SELF_TEST */ 4064 4065 void 4066 _initialize_values (void) 4067 { 4068 add_cmd ("convenience", no_class, show_convenience, _("\ 4069 Debugger convenience (\"$foo\") variables and functions.\n\ 4070 Convenience variables are created when you assign them values;\n\ 4071 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\ 4072 \n\ 4073 A few convenience variables are given values automatically:\n\ 4074 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ 4075 \"$__\" holds the contents of the last address examined with \"x\"." 4076 #ifdef HAVE_PYTHON 4077 "\n\n\ 4078 Convenience functions are defined via the Python API." 4079 #endif 4080 ), &showlist); 4081 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist); 4082 4083 add_cmd ("values", no_set_class, show_values, _("\ 4084 Elements of value history around item number IDX (or last ten)."), 4085 &showlist); 4086 4087 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\ 4088 Initialize a convenience variable if necessary.\n\ 4089 init-if-undefined VARIABLE = EXPRESSION\n\ 4090 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\ 4091 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\ 4092 VARIABLE is already initialized.")); 4093 4094 add_prefix_cmd ("function", no_class, function_command, _("\ 4095 Placeholder command for showing help on convenience functions."), 4096 &functionlist, "function ", 0, &cmdlist); 4097 4098 add_internal_function ("_isvoid", _("\ 4099 Check whether an expression is void.\n\ 4100 Usage: $_isvoid (expression)\n\ 4101 Return 1 if the expression is void, zero otherwise."), 4102 isvoid_internal_fn, NULL); 4103 4104 add_setshow_zuinteger_unlimited_cmd ("max-value-size", 4105 class_support, &max_value_size, _("\ 4106 Set maximum sized value gdb will load from the inferior."), _("\ 4107 Show maximum sized value gdb will load from the inferior."), _("\ 4108 Use this to control the maximum size, in bytes, of a value that gdb\n\ 4109 will load from the inferior. Setting this value to 'unlimited'\n\ 4110 disables checking.\n\ 4111 Setting this does not invalidate already allocated values, it only\n\ 4112 prevents future values, larger than this size, from being allocated."), 4113 set_max_value_size, 4114 show_max_value_size, 4115 &setlist, &showlist); 4116 #if GDB_SELF_TEST 4117 selftests::register_test ("ranges_contain", selftests::test_ranges_contain); 4118 selftests::register_test ("insert_into_bit_range_vector", 4119 selftests::test_insert_into_bit_range_vector); 4120 #endif 4121 } 4122